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Applying a portion of total nitrogen (N) during the growing season has the 

potential to improve nitrogen use efficiency (NUE) by achieving greater synchrony 

between N supply and crop N demand, allowing for responsive adjustments to actual 

field conditions. Three studies from 2017-2019 evaluated using reactive sensor and 

proactive Maize-N model for determining in-season N requirements via fertigation in 

corn. The first study evaluated the integration of reactive sensor and proactive Maize-N 

model for determining the timing and rate of in-season N via fertigation. Overall, reactive 

and proactive fertigation treatments reduced total N applied by 35 to 65 kg N ha-1 thus 

increasing NUE and profit compared to the University of Nebraska-Lincoln (UNL) 

algorithm and Holland and Schepers (H-S) algorithm treatments with no significant 

difference in yields. The second study evaluated Maize-N model for predicting economic 

optimum N rate (EONR), N uptake, and soil nitrate-N. Overall, Maize-N underestimated 

N rate recommendations by 47 kg N ha-1 compared to the calculated actual EONR with 

no significant differences in yield. However, the Maize-N EONR reduced profit by 33.5 $ 

ha-1. Maize-N underestimated N uptake by 24.7 kg N ha-1. Additionally, Maize-N 

overestimated soil nitrate-N, but a calibrated model improved agreement between 

predicted and observed soil nitrate-N by 67.5%. The third study evaluated the 



 

performance of active and passive crop canopy sensors compared to the SPAD meter in 

terms of assessing in-season corn N status. Reasonable correlation at any growth stage 

did not always lead to the same fertigation decision, as the same decision for two sensors 

can be achieved if both sensor's SI values are greater than 0.95 thresholds or both less 

than or equal to 0.95. The overall fertigation decisions that matched between SPAD SI 

and active sensor SI across all growth stages and site years was 72%, and 37 to 48% 

between SPAD SI and passive sensor SI. Crop canopy sensor and Maize-N model 

integration will likely result in more accurate N rate and timing decisions. 
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Chapter 1: A Review of Current Literature 

Corn Production and Nitrogen Fertilizer Consumption 

Corn (Zea mays L.) is among the most commonly grown crops in the United 

States with 36.1 million ha. The U.S. is the biggest corn producer in the world with 366.3 

million metric tons of grain in 2018 (USDA-NASS, 2019). In Nebraska, corn is the most 

important crop with 3.9 Million ha (2.2 Million ha irrigated, which representing 57% of 

total corn planted area) and the third-largest corn producer in the U.S. with 45.4 million 

metric tons of grain in 2018. Corn is the biggest N consumer with 47.5% of total N 

fertilizer applied to the crop in the US in 2014 (USDA-ERS, 2019). 

Nitrogen (N) is an essential plant growth element and the most limiting nutrient in 

crop production (Fageria and Baligar, 2005; Ladha et al., 2005). To achieve optimal corn 

yields, high amounts of N fertilizer application are required. In 2017, the total worldwide 

consumption of N fertilizer was 113.6 million Mg to meet the global growth in food 

demand (FAO, 2017). Nitrogen (applied or indigenous) in the soil that is not taken up by 

the crop can be converted to different forms, such as ammonium and nitrate. Thus, if N is 

unused by the crop, it can be lost via many pathways, such as ammonia volatilization, 

nitrate denitrification, and leaching, which has a high potential for groundwater 

contamination (Raun and Johnson, 1999; Quemada et al., 2013). 

 

Nitrate Groundwater Contamination 

Nitrate and ammonium are the main forms of inorganic N that exist in the soil and 

available to be taken up by the plant. Ammonium in the soil is formed from applied 

fertilizer or manure and also from the mineralization of soil organic matter (SOM). 

Ammonium is converted to nitrate in warm and moisture conditions by the nitrification 
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process. Thus, nitrate is the more dominant form of inorganic N in most agricultural soils. 

Nitrate carries a negative charge and clay minerals and SOM also carry a negative charge 

on their surfaces. Thus, nitrate is not held by cation exchange sites as ammonium is. 

Also, nitrate is a highly water-soluble form of N, and a mobile anion thus it is readily 

leached or moved below the crop root zone (Exner et al., 2014). High inputs of N 

fertilizer applied to row crop production along with surplus precipitation or irrigation in 

irrigated cropland can result in nitrate leaching below the crop root zone (Frank et al., 

1991; Spalding et al., 2010). Additionally, poor synchrony between soil N supply and 

crop N demand results in inefficient use of fertilizer N and is one of the major causes of 

nitrate groundwater contamination (Ferguson, 2015). Commercial N fertilizer is a major 

source of groundwater contamination when it converts to nitrate and moves out of the 

crop root zone to groundwater (Exner et al., 2014). Both the amount and timing of N and 

water applications are closely related to N leached to the groundwater when the amount 

and timing does not match crop demand, resulting in inefficient N use (Frank et al., 

1991). 

                                                                           

Nitrogen Use Efficiency 

Crop N fertilizer utilization by crops is historically inefficient (Ladha et al., 2005; 

Sharma and Bali, 2018). According to Raun and Johnson (1999), global nitrogen use 

efficiency (NUE) has been estimated to be only 33% for several crops including corn. 

Three important components can be used to measure NUE, including partial factor 

productivity for N (PFPN), the recovery efficiency of N (REN), and the agronomic 

efficiency of applied N (AEN) (Table 1.1).  
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Partial factor productivity for N ) represents the ratio of grain yield produced per 

unit of N fertilizer applied (Cassman et al., 2002; Sharma and Bali, 2018). Cassman et al. 

(2002) reported that PFPN for corn production in the U.S. increased from 42 in 1980 to 57 

kg kg-1 in 2000. They stated that increases in PFPN related to increasing REN because N 

uptake is closely associated with dry matter accumulation and grain yield. Corn grain 

yield has steadily increased without significant increases in N rate, which can be 

contributed to a consistent increase in PFP over time. Ferguson (2015) reported that NUE 

as PFP has steadily increased from 49 to 67 kg grain kg N-1 from 1988 to 2012 for corn 

production in Nebraska statewide. Increased efficiencies have been attributed largely to 

the adoption of N management practices that include accounting for N credits from SOM, 

irrigation water, manure, and other sources besides N from fertilizer.  

The REN is defined as the difference between fertilized N uptake and unfertilized 

N uptake dividing by N applied (Dobermann, 2005). Therefore, the unfertilized check is 

subtracted from fertilized to identify REN from fertilizer alone. The unfertilized check is 

also important to NUE to identify N uptake from indigenous sources including residual 

soil nitrate-N, mineralized N from SOM, deposition of atmospheric ammonium, and 

nitrate-N from irrigation water (Wortmann et al., 2011). The REN has been estimated to 

be between 35 to 75% of N applied to corn (Morris et al., 2018). Likewise, N fertilizer-

recovery efficiency was estimated to be 37% in the major six-corn producing U.S. 

Midwest states through 1995 to 1999 across 55 on-farm experiments (Cassman et al., 

2002). 

The AEN is defined as the difference between fertilized grain yield and 

unfertilized grain yield dividing by N applied (Dobermann, 2005; Thompson et al., 



4 
 

2015). The grain yield of the fertilized plot and yield of the unfertilized check plot is 

required to measure AEN due to fertilizer alone. The AEN is a short-term indicator of the 

impact of applied N fertilizer on productivity and related directly to economic return 

(Fixen et al., 2014). As NUE increases, the economic benefit to the producers increases 

while minimizing negative environmental impacts. Therefore, further increases in corn 

NUE and decreases in N losses are needed to identify factors contributing to low NUE.  

 

 

 



 
5
 

Table 1.1. Measurements and calculations of nitrogen use efficiency (NUE) and related parameters and their typical 

ranges in cereals according to (Dobermann, 2005; Naser, 2012). 

        

NUE Measurement    Calculation                   Interpretation     Common values 

PFPN = Partial Factor 

Productivity of applied  

  N (kg grain yield per kg  

  N applied) 

PFPN = YN/FN • PFPN integrates the use efficiency of 

both indigenous and applied N 

resources: PFPN = (Y0/FN) + AEN 

 

• Increasing indigenous soil N (Y0) and  

   the efficiency of applied N (AEN) are 

equally important for improving PFPN 

40–70 kg grain kg-1 N                        

>70 kg grain kg-1 N at low 

rates of N or in very 

efficiently managed 

systems. However, in 

many cases with high 

PFPN that has a low N rate 

resulted in reduced yield. 

Thus, AEN and REN 

should be considered in 

the evaluation and 

effectiveness of an N 

strategy.     
  

 

    

AEN = Agronomic 

efficiency 

  of applied N (kg yield  

  increase per kg N applied) 

AEN = (YN – Y0)/FN • AEN is the product of the efficiency of 

N recovery from applied N and the 

efficiency with which the plant uses 

each additional unit of N acquired:   

    AEN = REN x PEN 

• AEN can be increased by N, crop, and 

soil management practices that affect 

REN, PEN, or both. 

  

10–30 kg grain kg-1 N                         

>30 kg kg-1 in well-

managed systems or at 

low levels of N use or low 

soil N supply 

REN = Crop recovery 

efficiency of applied N 

   (kg increase in N uptake 

   per kg N applied) 

REN = (UN – U0)/FN • REN depends on the congruence 

between plant N demand and the 

quantity of N released from applied 

N. 

0.30–0.50 kg kg-1                             

0.50–0.80 kg kg-1 in well-

managed systems or at 

low levels of N use or low 

soil N supply 
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• REN is affected by the N levels of N 

use or low timing, placement, N form) 

as well as by factors that determine 

the size of the crop N sink (genotype, 

climate, plant density, abiotic/biotic 

stresses). 
    

FN is the amount of (fertilizer) N applied (kg ha-1) 

YN is crop yield with applied N (kg ha-1)  

Y0 is crop yield (kg ha-1) in a check treatment with no N  

UN is the total plant N uptake in aboveground biomass at maturity (kg ha-1) in a plot that received N  

U0 is the total N uptake in aboveground biomass at maturity (kg ha-1) in a plot that received no N 

PEN is a Physiological efficiency of applied N (kg yield increase per kg increase in N uptake from fertilizer).
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Factors Contributing to Low Nitrogen Use Efficiency  
 

Poor synchrony between N supply and crop N demand is one main factor for low 

NUE in corn production (Shanahan et al., 2008; Ferguson, 2015; Thompson et al., 2015; 

Sharma and Bali, 2018). Inappropriate timing of N fertilizer application between N 

supply in the soil and crop N uptake is the major reason for poor synchronization 

(Ferguson, 2015). Cassman et al. ( 2002) stated that about 75% of the N fertilizer 

application is applied prior to planting and only 25% of N fertilizer is applied after 

planting. This resulted in high levels of inorganic N, such as nitrate in the soil profile 

before significant crop N demand, which increases the risk of N loss. In-season 

applications of N fertilizer between V8 to R2 have been proposed by Shanahan et al. 

(2008) to coincide N supply with the period of rapid N uptake, resulting in a greater NUE 

and minimizing N losses compared to pre-plant N applications. 

Another factor contributing to low NUE is uniform N application instead of 

spatially varying rates within the field (Shanahan et al., 2008). Mamo et al. (2003) 

reported that a uniform N rate applied to the whole field results in sub-field areas that are 

either under or over-fertilized. They concluded that under-fertilization limits yield and 

over-fertilization increases the risk of nitrate leaching below the crop root zone. Several 

studies have reported that uniform application discounts the fact that soil N 

mineralization supply and crop N needs and responses differ spatially within fields 

(Inman et al., 2005b; Shanahan et al., 2008; Roberts et al., 2010; Thompson et al., 2015; 

Sharma and Bali, 2018). Thompson et al. (2015) stated that the N mineralization of SOM 

varied spatially according to differences in soil temperature and water availability, which 

varies with landscape position. Likewise, Roberts et al. (2010) observed that soil N levels 
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and N mineralization vary spatially within fields and between fields. Inman et al. (2005b) 

observed that using variable N rate application reduced total N applied by 22 kg ha-1 

without a reduction in corn grain yield compared to uniform N application. Thus, 

managing N applications based on spatial soil variability can decrease the risk of under 

and overfertilization and increase profit compared to uniform N applications (Mamo et 

al., 2003).  

A third factor contributing to low NUE is temporal variability. Temporal 

variations in N response and N mineralization can be linked to environmental factors 

(Thompson et al., 2015). This represents changing environmental conditions and how 

they interact with N management practice (Mamo et al., 2003). Cassman et al. (2002) 

stated that the interactions between climate and crop management can result in variations 

of corn N requirement and yield from year to year. Varied N need by year can be 

attributed to weather differences that cause a different rate of soil N mineralization 

depending on temperature and moisture differences (Krienke, 2015). Accounting for 

temporal variability and effects of weather on the crop N needs during the growing 

season reduces the risk of N loss and improves NUE (Lory and Scharf, 2003). 

 

4Rs of Nutrient Stewardship 

Managing N fertilizer in corn production to achieve both profitability and 

environmental benefits is extremely difficult for producers (Tao et al., 2018). The authors 

proposed to promote the 4Rs of Nutrient Stewardship to support producers in developing 

and implementing better nutrient management strategies. They stated that 4Rs 

incorporating the right rate, right source, right timing, and right place for fertilizer 

management is essential to develop nutrient management strategies. Practically, it is 
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difficult to use 4Rs to improve field-based fertilizer decisions due to a limited number of 

studies that have quantified the influences of these 4Rs factors and their interactions on N 

status, yield, and profitability in producer’s fields (Tao et al., 2018). They found that N 

source and timing, previous crop, tillage practice, and drainage class were driving 

variables affecting N availability to corn and not only N rate in the growing season. 

Several field studies have shown that the impact of one or more of the 4Rs on corn grain 

yield and N losses affect NUE as well (Quemada et al., 2013; Halvorson and Bartolo, 

2014; Anderson and Kyveryga, 2016; Tao et al., 2018). Tao et al. (2018) concluded that 

the adaptive management program and the 4Rs of Nutrient Stewardship management are 

useful to support and improve field-based fertilizer decisions. Furthermore, an increase in  

NUE and a decrease in N losses could be employed by developing, adopting, and 

implementing next-generation management practices and techniques such as fertigation, 

controlled-release N fertilizers, and spatially variable in-season N application using crop 

canopy sensors (Ferguson, 2015).  

 

Approaches for Determining N Requirement 

Nitrogen management practices can generally be categorized as:  

- Predictive approach  

- Reactive approach  

- Proactive approach  
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Predictive Approach 

There are many N recommendation approaches or algorithms developed over time 

to assist producers in determining the right rate of N to achieve optimum yields. A 

predictive approach includes various methods of determining the N rate at the beginning 

of the growing season (Ping et al., 2008). An initial N recommendation approach was 

developed based on mass balance theory developed by Stanford (1973) to determine the 

N rate from research in the early 1970s. Morris et al. (2018) stated that N fertilizer 

recommendation approaches from the 1970s until 2005 in 34 U.S. states were based on 

yield goal ideas developed by Stanford (1973). Stanford found that approximately 0.544 

kg N ha-1 was required to produce 25.5 kg ha-1 of corn grain yield (1.2 lbs N bu-1 grain). 

This approach calculates N rate pre-plant through the use of this ratio, and multiplying it 

with the desired yield goal or expected yield, then subtracting N credits, such as soil 

residual nitrate, N mineralization from SOM, manure, legume credits, and N from 

irrigation water for a specific field. Morris et al. (2018) reported the yield goal-based 

approach is more suitable in arid environments where year-to-year differences in grain 

yield, N mineralization, and N loss vary little as soil moisture is managed by irrigation. 

Because of wet springs in the Corn Belt, which can cause loss of pre-plant N fertilizer, N 

deficiency, and yield loss, the current best management practices (BMPs) for N 

management recommend split N application, which is more efficient than single large 

pre-plant doses (Shapiro et al., 2008; Morris et al., 2018).        

One example of a yield goal approach that considers splitting N rate application is 

developed by the University of Nebraska-Lincoln (UNL algorithm) as a current BMP to 

split N application in irrigated corn (Shapiro et al., 2008). This algorithm estimates 
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economic optimum N rate (EONR) (the N rate which optimizes profit) based on expected 

yield (105 percent of the average yield for the previous five years), soil test results (SOM 

and residual soil nitrate), and other N credits (N from legumes, manure, previous crop, 

and N from irrigation water). The algorithm is adjusted for the classification of soil 

texture and also includes a correction factor based on corn and N price and timing of N 

application as shown in Equation 1 as follows (Shapiro et al., 2008): 

 

N rate recommendation (kg N ha-1) =  

1.12 x [35 + (1.2 x EY) - (8 x Nitrate-N ppm) - (0.14 x EY x OM) - other N credits]           

x Priceadj x Timingadj                                                                                                                                                          [1] 

 

Where,  

            1.12 is used to convert N recommendations from lbs N ac-1 to kg N ha-1. 

            1.2 lb N per 1 bu corn yield 

            EY is expected yield (bu ac-1) 

                                Nitrate-N ppm is an average nitrate-N concentration in the root zone (30-120 cm          

depth) in parts per million  

            OM is the percent organic matter 

                                 Other N credits are the N from legumes, manure, other organic materials, and N 

from irrigation water 

            Priceadj is the adjustment factor for prices of corn and N 

            Timingadj is the adjustment factor for fall, spring, and split applications 

 

 

Work by Dobermann et al. (2011) indicated that the UNL algorithm resulted in an 

effective prediction of EONR with high NUE and low residual soil nitrate in irrigated 

corn across Nebraska. Ferguson et al. (2002) used the UNL algorithm to apply N rate as 

variable rate N application based on the spatial variability in the field. The authors 

concluded that applying N rates depending on spatial variability showed no advantage 
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compared to when applying N rates depending on uniform application using UNL 

algorithm.                                                    

Several limitations have been noted in this approach including uncertainties at the 

time of fertilization of predicting yield, soil N mineralization, internal N efficiency, and 

soil and fertilizer use efficiency resulting from the interaction of corn hybrid, cropping 

system management, weather, landscape, and soil properties (Morris et al., 2018). Thus, 

the yield goal approach may result in under or over-fertilization compare to an optimal N 

rate (ONR) required to maximize yield, resulting in poor economic return (Ransom, 

2018).  

Reactive Approach 

To overcome the limitations of yield goal-based or predictive approaches, 

researchers have used various reactive sampling techniques to increase N management 

options for corn producers (Barker and Sawyer, 2012). Various reactive sampling 

techniques can include soil tests (Magdoff et al., 1984; Scharf, 2001), destructive plant 

tissue tests (Schröder et al., 2000; Scharf, 2001), and non-destructive measuring of crop 

canopy light characteristics using a crop sensor-based approach to determine N 

requirements (Samborski et al., 2009; Holland and Schepers, 2010; Schlemmer et al., 

2013). The crop sensor-based approach has the potential to provide a rapid, larger sample 

size that is an inexpensive and accurate technique compared to destructive sampling to 

monitor crop N status (Inman et al., 2005; Morris et al., 2018; Naser et al., 2020). Crop 

canopy reflectance can be used to detect N status using a crop sensor during the growing 

season. A strong linear relationship exists between leaf N content and leaf chlorophyll 

content (Shaver et al., 2011; Naser et al., 2020), which makes sense because the majority 
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of leaf N is contained in chlorophyll molecules (Daughtry et al., 2000). As a result, a 

reactive approach can be focused on using crop sensors to quantify leaf chlorophyll 

content. Reactive sensor-based approaches can be an effective indicator of in-season crop 

N need that integrates crop growing conditions including weather effects on the crop 

from the time of planting to the time of sensing (Thompson et al., 2015). A reactive 

approach responds to measured crop N needs and determines the timing of additional N 

requirements based on the indication of the crop N sufficiency status. 

  

SPAD Chlorophyll Meters 

Handheld SPAD Chlorophyll Meters (SPAD CM) (Spectrum Technologies Inc.) 

measures light transmittance properties of leaves in two wavelengths (650 and 940 nm) 

by clamping the sensor on the crop leaf and emitting its own light to assess leaf 

greenness. Samborski et al. (2009) reported that SPAD CM operation is based on the 

amount of red light absorbed that indicates the amount of chlorophyll, and the amount of 

NIR light transmitted serves as an internal reference to compensate for leaf thickness and 

water content. They indicated that a very strong, nonlinear relationship between SPAD 

CM readings and leaf chlorophyll content exists in corn. Likewise, Schröder et al. (2000) 

found that SPAD CM readings have a strong correlation with leaf chlorophyll 

concentration and leaf N concentration. Several studies have shown that SPAD CM can 

be used to monitor leaf greenness and N status through the corn growing season as a 

simple to use, reliable, and accurate tool to detect N deficiency (Dwyer et al., 1991; 

Bullock and Anderson, 1998; Scharf and Lory, 2006). Other studies utilized SPAD CM 

readings to measure leaf greenness and detect crop N status at early stages to correct in-

season N deficiency without reducing yields (Peterson et al., 1993; Varvel et al., 1997, 
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2007; Daughtry et al., 2000; Samborski et al., 2009; Schmidt et al., 2009). Chlorophyll 

measurements with handheld tools, such as the SPAD CM, were used to create 

information on plant N status as a convenient alternative to destroying plant tissue and 

laboratory N analysis (Blackmer and Schepers, 1995; Schröder et al., 2000).  

 The SPAD CM is unitless, indicating leaf greenness and plant N status at a 

specific time, it does not predict plant status in the future or how much N fertilizer will be 

needed by the crop (Bullock and Anderson, 1998; Samborski et al., 2009). Additionally, 

several studies have shown that calibration of SPAD CM measurements is required for 

different hybrids, crop growth stage, the timing of N fertilizer application, N source, site, 

leaf thickness, and environmental conditions (Schepers et al., 1992; Blackmer and 

Schepers, 1995; Bullock and Anderson, 1998; Schröder et al., 2000; Samborski et al., 

2009). Because these sources of variation affect SPAD CM measurements, a non-limiting 

N fertilizer area or high N reference has been used to normalize sensor data to a specific 

situation to assure N adequacy at the time of sensor measurements. Murdock et al. (1997) 

suggested that as much as possible, reference areas should represent the entire field, but 

not poorly drained areas. Then, sensor measurements can be collected from unknown 

chlorophyll concentration (target area or bulk treatment) and compared to non-limited N 

fertilizer or reference area to calculate a sufficiency index (SI), which has the following 

equation (Peterson et al., 1993): 

 

                                 𝑺𝑰 =
 𝐕𝐈 𝐔𝐧𝐤𝐧𝐨𝐰𝐧

 𝐕𝐈 𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞
                                                         [2] 

 

Where,  

 

SI = sufficiency index,  
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VI Unknown is a sensor vegetation index obtained from target chlorophyll 

concentration,  

VI Reference is a sensor vegetation index obtained from non-limited N fertilizer 

or high N reference. 

 

 

Several studies have demonstrated the requirements of non-limiting or high N 

reference to calibrate SPAD CM measurements (Blackmer and Schepers, 1995; Daughtry 

et al., 2000; Samborski et al., 2009; Schmidt et al., 2009). Hawkins et al. (2007) and 

Varvel et al. (2007) found that there is a strong relationship between relative SPAD CM 

values and the optimal N rate when SPAD CM values are compared to high N reference 

values. Thus, the most accurate N rate recommendations can be produced using a high N 

reference area (Morris et al., 2018). Peterson et al. (1993) and Blackmer and Schepers 

(1995) used sufficiency index (SI) to normalized SPAD CM measurements and to detect 

and correct corn N stress via fertigation when SI values were 0.95 or below, indicating N 

deficiency. They found that N deficient state at early growth stages can be corrected, but 

may not achieve maximum yields. Treatments that started with adequate N fertilizer and 

then became deficient were corrected, and maximum yields were attained. Blackmer and 

Schepers (1995), confirmed by Varvel et al. (1997), that the SPAD CM can be effective 

to detect in-season N stress and additional N rate can apply to correct crop deficiency at 

the V8 growth stage for maximizing yield if there is no severe N deficiency at an early 

stage.  

However, Schmidt et al. (2009) reported that although SPAD CM has been 

suggested to provide a rapid in-season assessment of the corn N status to recommend N 

fertilizer, one shortcoming is that the SPAD CM measurements are taken by hand and for 
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specific plants, making this a non-realistic approach for variable rate N management at 

the field level. Additionally, SPAD meter use is labor-intensive and time-consuming with 

smaller sample sizes than canopy reflectance sensors (Morris et al., 2018).  

 

Crop Canopy Sensors 

Proximal and remote sensing have been used extensively for in-season N 

management that provides an estimate of crop N status over a large field area that 

accounts for spatial variability and supports decisions on N supplements (Morris et al., 

2018; Thompson and Puntel, 2020). The properties of canopy light reflectance can be 

measured by proximal sensors or by sensors mounted on aerial platforms, such as 

airplanes, drones, and satellites. Crop canopy sensors can be divided into two categories,  

active and passive sensors, according to their light sources (Muñoz-Huerta et al., 2013).  

Passive sensors use sunlight as their energy source and measure reflected light 

from the target emitted from the sun (Souza et al., 2017). Passive sensors can be carried 

and used by satellites, aircraft, or drones to obtain agricultural imagery. Unmanned aerial 

systems (UAS) have become a common platform for carrying and using passive sensors 

for agricultural research as well as commercial purposes. Several studies have shown that 

useful information such as crop N status can be obtained from crop canopies with passive 

sensors mounted on satellite or airborne platforms (Inman et al., 2005; Shaver et al., 

2010, 2014; Erdle et al., 2011; Krienke et al., 2017; Thompson and Puntel, 2020). 

However, the angles of the sun, time of day, and cloud cover will influence reflectance 

and vegetation indices measured from the corn canopy (Souza et al., 2010). 

Consequently, UAV passive sensors require calibration and specialized software to 

analyze and interpret imagery. 
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Active sensors have their own light source and measure reflected light from the 

target emitted from the sensor. Tubaña et al. (2011) documented that active sensors were 

developed to overcome the limitations of passive sensors and to minimize the impacts of 

ambient light conditions on crop canopy reflectance readings. Active sensors can be used 

at any time of day or night. They are relatively inexpensive, easy to use, and small 

enough to mount on a fertilizer application boom or tractor and on UAS (Inman et al., 

2005a; Shaver et al., 2011; Krienke, 2015). The use of small platforms, such as active 

sensors (on-the-go) on the N applicator can immediately provide information to assess 

corn N status and apply varying N rates based on real-time reflectance data (Inman et al., 

2005a; Schmidt et al., 2009). Many active sensors have been used in agriculture 

applications, but the most common active sensors used are GreenSeeker (NTech 

Industries Inc., Ukiah, CA, USA), and the Crop Circle sensor family such as RapidScan-

CS-45 and OptRx sensor (Holland Scientific, Lincoln, NE, USA).   

 

Vegetative Indices 

Passive and active crop canopy sensor reflectance values are expressed as 

vegetation indices (VIs) that were developed to link reflectance from leaves or canopies 

with canopy characteristics (Hatfield et al., 2008). Canopy reflectance sensor 

measurements can be used to normalize sensor data to generate VIs. The VIs are 

combinations of reflectance from two or more wavelengths. For example, the 

normalization of the red and NIR wavelength bands using light reflectance from a crop 

canopy generates the Normalized Difference Vegetation Index (NDVI) to estimate 

canopy biomass. The NDVI is one of the most widely adopted VIs proposed by Rouse et 

al. (1974). The NDVI is determined by normalizing the ratio of the difference between 



18 
 

NIR (correlated to leaf structure) and red (correlated to chlorophyll content) wavelength 

bands to the sum between NIR and red wavelength bands, which has the following 

equation:   

 

                                 𝑵𝑫𝑽𝑰 =
 𝐍𝐈𝐑−𝐑𝐞𝐝

 𝐍𝐈𝐑+𝐑𝐞𝐝
                                                   [3] 

 

Where,  

NIR is the reflectance in the near-infrared wavelength band  

Red is the reflectance in the red wavelength band 

  

NDVI values range between -1.0 and 1.0. and NDVI values from bare soil 

reflectance normally range between 0.1 and 0.2. The NDVI has been used successfully to 

direct variable N applications during the growing season and has the potential for 

improving N management (Solari et al., 2008; Samborski et al., 2009; Kitchen et al., 

2010). The NDVI reading fails to discern differences under high canopy coverage 

conditions due to the saturation of red region reflectance. Sims and Gamon (2002) stated 

that relatively low chlorophyll contents are sufficient to saturate absorption in the red 

region, reducing sensitivity to high chlorophyll contents. Red edge band (700-740 nm)-

based spectral indices can overcome the limitation of the saturation of the red band 

observed in NDVI, and is more sensitive to crop canopy chlorophyll and N status under 

high canopy coverage conditions such as corn (Li et al., 2014). They concluded that the 

red band can be replaced by a red edge band to create the Normalized Difference Red 

Edge (NDRE) index previously suggested by Buschmann and Nagel (1993), which is a 

reliable indicator of chlorophyll or N status. The NDRE using red edge and NIR bands 
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are more sensitive to maize canopy N indicators than those using NIR and red bands, and 

has the following equation (Li et al., 2014):  

 

                               𝑵𝑫𝑹𝑬 =
 𝐍𝐈𝐑−𝐑𝐞𝐝 𝐄𝐝𝐠𝐞 

 𝐍𝐈𝐑+𝐑𝐞𝐝 𝐄𝐝𝐠𝐞
                                         [4] 

Where,  

NIR is the reflectance in the near-infrared wavelength band  

Red Edge is the reflectance in the red edge wavelength band  

 

 

High N Reference  

To account for some factors influencing VIs other than N-related factors, a high N 

reference (non-limited N) has been developed. The high N reference area in the field 

receives a non-limiting N rate at planting to be above crop needs to ensure that total N is 

sufficient throughout the entire growing season. Thus, the high N reference is used to 

calculate crop N SI (VI Unknown / VI Reference) as earlier mentioned in Equation 2 to 

assess crop N status. Unknown or target VIs is the field area to be fertilized while 

reference VIs is the field area with non-limited N. Shapiro et al. (2013) recommended 

establishing appropriate reference strips in each field to represent conditions or variability 

for the entire field. The reference crop needs to be managed identically to the rest of the 

field or treatments except that sufficient N is applied to ensure that plants do not show N 

deficiency at the time of sensing. However, using a high N reference area can be 

inconvenient and may be restricted in some countries or situations (Holland and 

Schepers, 2013). Moreover, a high N reference area should be moved to a different area 

of the field every year to ensure that the nutrient status of the rest of the field is 
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represented accurately. Franzen et al. (2016) stated that using a high N reference area for 

calibration of active sensors can be problematic. They concluded that establishing high N 

reference may induce a sulfur deficiency in corn as a result of a nutrient imbalance 

between N and sulfur. A virtual reference concept was proposed by Holland and Schepers 

(2013) as a method to overcome the limitations of using a high N reference approach and 

to identify adequately fertilized plants whose reflectance serves as a reference without 

applying high amounts of N fertilizer. In this approach, reference values are obtained 

utilizing the 95-percentile cumulative values from a histogram of sensor VI values to 

generate SI. This SI values can then be used to calculate in-season N rates 

recommendation using an algorithm.   

 

In-season N Recommendation Algorithm 

Several corn N recommendation algorithms with different inputs have been 

developed that use the high N reference for translating crop canopy sensor information 

into in-season N rates (Holland and Schepers, 2010; Solari et al., 2010). Holland and 

Schepers (2010) developed a universal algorithm as an alternative to current uniform N 

application practices. The algorithm developed a generalized approach that can be used 

with crop canopy sensors to detect spatial variability that exists within fields. This 

algorithm calculates the N rate based on a yield response function (quadratic or quadratic 

plateau) to N and SI (Franzen et al., 2016). The algorithm inputs include EONR or the 

maximum N rate that producers expect will maximize yield, and provides for credit for N 

fertilizer applied before crop sensing, N credits (from previous crops, manure application, 

nitrate content in irrigation water), SI, and delta SI to determine the in-season sidedress N 
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application rate between V8-V14 growth stages.  This algorithm has the following 

equation (Holland and Schepers, 2010):  

                                                                                             

 

              𝑵𝑨𝑷𝑷 = (𝑵𝑶𝑷𝑻 − 𝑵𝑷𝒓𝒆𝑭𝒆𝒓𝒕 − 𝑵𝑪𝑹𝑫  + 𝑵𝑪𝑶𝑴𝑷 ) ·                      [5]                    

√
(𝟏 − 𝑺𝑰 )

∆𝑺𝑰 · (𝟏 + 𝟎. 𝟏 · 𝒆𝒎(𝑺𝑰𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 −𝑺𝑰))
 

  

Where,  

NAPP is N application rate 

            NOPT is EONR or the maximum N rate prescribed by producers 

            NPreFert is the total N fertilizer applied before crop sensing and /or in-season N 

application 

            NCRD is N credit for the previous season’s crop, nitrate in irrigation water, or 

manure application 

            NCOMP is N in excess of NOPT required by the crop under soil limiting conditions at 

a   given growth stage 

            SI is the sufficiency index of the target crop 

            M is back-off rate variable (0 < m < 100) 

            Threshold is the back-off cut-on point 

            ∆SI is the difference between where SI equals 1 and the point where the response 

curve intersects the y-axis (1-SI (0)) 

 

Improving N rate recommendations can be achieved through remote sensing 

techniques to detect crop N status and spatially adjusted in-season N fertilizer to improve 

NUE and increase profit (Ferguson et al., 2002). Shanahan et al. (2008) reported that 

additional soil, climate, and management factors are required to refine recommendation 

algorithms to better predict EONR and improve NUE. Improving NUE and decreasing N 

losses can result from developing, adopting, and implementing next-generation 
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management practices and techniques (Ferguson, 2015). One of the next-generation 

precision N management practices and techniques is simulating crop N requirement 

models (Thompson et al., 2015).  

 

Proactive Approach 

A proactive approach attempts to predict N demand and supplement N to the crop 

before N deficiency occurs that will reduce yield potential. Crop simulation models 

attempt to account for spatial variability among fields and temporal variability between 

years by combining soil, crop, and management information with current and long-term 

weather to estimate corn N demands (Setiyono et al., 2011; Sela et al., 2016). They have 

the potential to provide information for farmers to adjust in-season N application to 

synchronize soil N fertilizer application with crop N demand (Cassman et al., 2002; Li et 

al., 2006; Thompson et al., 2015; Jin et al., 2017). Several crop simulation models have 

been developed to investigate soil-crop-weather dynamics (Puntel et al., 2016), such as a 

WOrld FOod STudies (WOFOST) (Supit et al., 1994), the Decision Support System for 

Agrotechnology Transfer (DSSAT) (Jones et al., 2003), and a System Approach to Land 

Use Sustainability (SALUS) (Basso et al., 2006). However, these models typically are not 

designed to support decisions about pre-plant or in-season N rate recommendations 

(Thompson et al., 2015). 

A number of specific simulation models have been developed to recommend pre-

plant and in-season N management in corn (Jin et al., 2017). These models include 

Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) (Janssen et al., 

1990), the Agricultural Production Systems sIMulator (APSIM) (Holzworth et al., 2006; 
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Puntel et al., 2016), Adapt-N (Melkonian et al., 2008), and Maize-N (Setiyono et al., 

2011).  

The Adapt-N model is a tool developed at Cornell University to provide an in-

season N recommendations tool to optimize split application N management for corn 

production based on simulation of soil N dynamics and maize N uptake for conditions in 

the Northeast U.S. (Melkonian et al., 2008; Sela et al., 2016). Rutan and Steinke (2017) 

reported that the Adapt-N model is built on the Precision N Management (PNM) model 

(Melkonian et al., 2007, 2008) which integrated and enhanced the combination of the 

LEACHN model and a corn N uptake, growth, and yield model (Sinclair and Muchow, 

1995). Users provide site-specific soil properties, manure application, irrigation, land 

management, crop species, and N management information while the model has dynamic 

accesses to gridded, near real-time (1d lag), high-resolution regional weather data (4 by 4 

km) for site-specific N recommendations. This high-resolution weather data enables 

simulations of soil N levels in the early season, which can improve estimates of in-season 

N requirements. A recent study evaluated Adapt-N and compared it with grower-selected 

(conventional) corn sidedress N rates during 2011-2014 across 113 New York and Iowa 

on-farm strip trials (Sela et al., 2016). The authors found that Adapt-N reduced N rates 53 

and 31 kg N ha−1 compared to grower-selected rates without significant grain yield 

reductions for New York and Iowa, respectively, and increased grower profits $65 ha−1 

and reduced environmental N losses by 28 kg ha-1. In contrast, Laboski et al. (2014) found 

that the Adapt-N model trend was to under-recommend N to a great extent and be less 

profitable than the Maximum Return to Nitrogen (MRTN) approach in Indiana and Iowa 

using retroactively generated sidedress N rates. They concluded that the model failed to 
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adequately account for excessive spring rainfall, N mineralization, and subsequent 

availability of manure N.   

The Maize-N model is another precision N management tool developed at the 

University of Nebraska-Lincoln for estimating EONR for corn (Setiyono et al., 2011). 

Thompson et al. (2015) stated that the Maize-N model is based on functions from the 

Hybrid-Maize simulation model (Yang et al., 2006) for maize growth and yield 

prediction under rainfed and irrigated conditions, and from a mono-component model 

(Yang and Janssen, 2000) for simulating C and N mineralization from SOM and crop 

residuals. The model inputs include long-term weather, planting date, previous crop, 

tillage, soil information (SOM, pH, texture, bulk density), other N credits such as soil 

residual nitrate, manure, N fertilizer source and application, and grain and fertilizer prices 

(Setiyono et al., 2011). Setiyono et al. (2011) reported that in addition to EONR, 

attainable yield, N uptake, and daily rate of C and N mineralization were simulated by the 

Maize-N model. Additionally, the Maize-N model simulates indigenous N supply and 

relates it to yield through yield vs. N uptake relationship using a research and farmer field 

trial database (Morris et al., 2018). Determining EONR by the Maize-N model depends 

on the prediction of N mineralization from SOM as it is affected by weather conditions 

such as temperature and precipitation (Thompson et al., 2015; Banger et al., 2019; Yin et 

al., 2020). 

The model was validated and simulated EONR showed a good agreement to 

measured EONR based on experiments conducted in western Corn Belt states in both 

irrigated conditions (central Nebraska and eastern South Dakota) and rainfed conditions 

(eastern South Dakota and western Nebraska) (Setiyono et al., 2011). The EONR 
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simulated by Maize-N showed greater accuracy with lower root mean square error 

(RMSE) and mean error (ME) values than current university N recommendation 

approaches. A more recent field study by Thompson et al. (2015) conducted across 12 

sites in Nebraska, Missouri, and North Dakota found that the Maize-N model, in general, 

recommended more N than a sensor-based approach in-season recommendations, but was 

better at protecting yield potential. However, recent research conducted across eight US 

Midwest Corn Belt states at 49 sites and three growing seasons showed that the Maize-N 

model performance in predicting EONR was lower than some other current N 

recommendation models (Ransom et al., 2020). A summary of features and inputs for 

Maize-N vs. Adapt-N is presented in Table 1.2  

 

 

 



 
2
6
 

 

Table 1.2. Summary of features and inputs for Adapt-N and Maize-N simulation models. Table adapted from Morris et 

al., (2018). 

 

    Feature/Input                Adapt-N (Version 2015)                  Maize-N (Version 2016)                         Comments  

Time scale                       Real-time, daily high-resolution          Long-term using historical daily      Key difference between the tools 

                                       weather data. Uses historical climate    climate data inputs for yield 

                                        data for post-date estimates                  estimation and N mineralization 

                                                                                                      with the option of in-season 

                                                                                                      weather data for N mineralization 

 

Optimum N estimation   Mass balance: deterministic (pre)-       Response curve-N credits-               Adapt-N incorporates pre-set 

                                        stochastic (post) with crop-fertilizer    efficiency, with crop-fertilizer          seasonal crop-fertilizer price ratios;  

                                        price ratio                                             price ratio                                          Maize-N employs user inputs 

 

Climate-weather inputs   Near-real-time: Solar radiation;            Solar radiation, max-min                 Solar radiation and ET are (or can  

                                        Evapotranspiraton (ET); max-min        temperature; precipitation; ET         be) estimated in both tools. 

                                        temperature; precipitation 

 

Soil inputs                       Soil type or series name related to       SOC; texture; bulk density; acidity;  Default values available for some 

                                        NRCS database; rooting depth; slope;  measured soil nitrate before              inputs 

                                        soil organic carbon (SOC)                    planting (opt.) 

 

Crop inputs                     Cultivar (grain, silage, sweet);              Maturity rating; date of planting;     Adapt-N uses user-defined yield; 

                                        maturity class; population; expected     population; grain price                     Maize-N estimates yield, with 

                                        yield                                                                                                                 possible user modification 

                                                                                                             

Management inputs        Tillage (type, time, residue level);        Tillage (type, time); irrigation; 

                                        irrigation (amount, date); manure         manuring (type, N and moisture 

                                        applications (type, N & solid                contents, rate, timing); previous 

                                        contents, rate, timing, incorpo-             crop and yield 

                                        ration method); previous crop  

                                        characteristics 

 

N Fertilizer inputs           Multiple: Type, rate, time of                Basal and in-season: Type, price, 
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                                        application, placement depth                rate, time of application, N from 

                                                                                                      irrigation 

Graphical outputs            N contributions and uptake; N             Soil C–N dynamics; yield 

                                         losses (total, NO3 leaching and           response curve; N contribu- 

                                         N2O); N content dynamics; crop         tions and uptake; yield indicators; 

                                         development; weather inputs               efficiency indicators; weather  

                                                                                                        inputs 

 

Other                              Web-accessible; option for automatic     Purchased and downloaded to         Both tools have diagnostic and 

                                        daily updates by email or text                PC. Input/output features.                reporting features, and facilitate 

                                        message; batch data upload capability.  Tested for conditions in the             evaluation of management 

                                        Available for 18 U.S. states in the          western Corn Belt                            alternatives 

                                        Northeast and Midwest.
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Integration of Crop Sensor and Crop Model Approaches 

 A reactive approach based on crop leaf or crop canopy sensors and a proactive 

approach based on crop simulation models are effective and useful tools for N 

management in corn. Crop sensors based on canopy reflectance provide a great value to 

assess crop N status (Morris et al., 2018). However, complex interactions that exist in the 

dynamic soil-plant-atmosphere system and uncertainty in weather make it challenging to 

manage N and estimate ONR (Puntel et al., 2016). Crop simulation models accounting 

for soil-plant-atmosphere system interaction over space and time may greatly improve 

EONR estimates and minimize N leaching without affecting farmer's profits (Basso et al., 

2016).  

Finding approaches for improving corn N recommendations are important to 

provide optimal yield and profit for producers while reducing N loss to the environment 

(Morris et al., 2018). In recent research conducted over 49 sites through eight states and 

three growing seasons, integrating two N recommendation tools, such as Yield Goal and 

Maize-N model to generate an N recommendation improved the performance of these 

tools, and decreased RMSE compared to using a single N recommendation tool (Ransom, 

2018). Likewise, Thompson et al. (2015) recommended integrating or combining crop 

sensors and model information could increase the accuracy of N rate recommendations to 

match EONR, thus improving NUE and increasing or maintaining yield and profit while 

reducing N losses and minimizing environmental consequences. Because in-season N 

sidedress application takes place once at a specific growth stage range, the method is 

limited by labor, weather, and availability of high clearance applicator equipment. To 
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overcome these limitations under irrigated conditions, a desirable alternative method is to 

apply N via fertigation. 

 

What is Fertigation? 

Fertigation is a method to apply fertilizers through the irrigation system, which is 

a common and cost-effective means to apply multiple small doses of in-season fertilizer 

application. Fertigation has consistently been shown to increase fertilizer efficiency and 

crop growth through closely controlling the rate and timing of nutrients and water supply 

compared with traditional application methods (Mikkelsen et al., 2015). Blackmer and 

Schepers (1995) found that SPAD CM measurements can be used to schedule fertigation 

in irrigated corn, which resulted in maintaining yield and profit, reducing N rate, and 

protecting the environment. Likewise, Schepers et al. (1995) demonstrated that using a 

spoon-feeding strategy based on SPAD CM SI to schedule fertigation saved 168 kg N ha-

1 for the first year and 105 kg N ha-1 for the second year without reducing yield . 

However, spatial variability in N status observed for the second year made it difficult to 

meet crop N needs. 

Using fertigation has many advantages, such as increasing flexibility in nutrient 

supply and splitting fertilizer doses to be synchronized with crop nutrient uptake, and 

improving fertilizer distribution in the root zone to improve crop uptake (Incrocci et al., 

2017). Also, fertigation can provide high uniformity of fertilizer (depending on the 

uniformity of water application), reduce soil compaction, less labor, and reduce N run-off 

thus minimizing environmental pollution. However, fertigation has some challenges, 

including inefficiency during a wet season and required training and experience 

(Mikkelsen et al., 2015).  
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Conclusion 

Reactive and proactive approaches via fertigation are considering next-generation 

precision N management practices and techniques. Both approaches can address in-

season N crop need in response to current growing season conditions, with the potential 

to improve NUE and decrease N losses. Integrating sensor and model information 

increase the accuracy of in-season decision support for N recommendation. Thus, the 

integration of reactive and proactive approaches to determine the timing and rate of N 

requirement via fertigation in corn will be considered in the second chapter of this 

dissertation. 
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Chapter 2: Integration of Reactive Sensor and Proactive Maize-N Model 

Approaches for Determining Nitrogen Requirements Via Fertigation in Corn 

Introduction 

Low nitrogen use efficiency (NUE) has been attributed to several causes 

including poor synchrony between soil N supply and crop N demand, unaccounted for 

spatial soil variability, and temporal variation in crop N requirements (Cassman et al., 

2002; Shanahan et al., 2008; Solari et al., 2008; Thompson et al., 2015). Inappropriate 

timing of N fertilizer application between N supply in the soil and crop N uptake is the 

major reason for poor synchronization (Ferguson, 2015). Cassman et al. ( 2002) stated 

that about 75% of the N fertilizer application is applied prior to planting and only 25% of 

N fertilizer is applied after planting. This can result in high levels of inorganic N, such as 

nitrate in the soil profile before rapid crop N demand, which increases the risk of N loss. 

In-season applications of N fertilizer between V8 to R2 have been proposed by Shanahan 

et al. (2008) to coincide N supply with the period of rapid N uptake, resulting in greater 

NUE and minimizing N losses compared to pre-plant N applications.  

Uniform N application rates instead of spatially variable application rates within 

the field can be a second factor that contributes to low NUE (Shanahan et al., 2008; 

Thompson et al., 2015). Mamo et al. (2003) reported that a uniform N rate applied to the 

whole field resulted in either under or over-fertilized for sub-field areas. Roberts et al. 

(2010) observed that soil N levels and N mineralization vary spatially within fields and 

between fields. Likewise, Mamo et al. (2003) reported that N mineralization of SOM 

varies spatially across a field due to variation in soil characteristics. Several studies have 

reported that uniform applications within the field discounts the fact that soil N 
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mineralization supply, crop N needs, and responses are not the same spatially, resulting in 

a greater risk of N loss (Inman et al., 2005b; Shanahan et al., 2008; Roberts et al., 2010; 

Thompson et al., 2015). Managing  N applications based on spatial soil variability can 

decrease the risk of under and overfertilization and increase profit compared to uniform 

N applications (Mamo et al., 2003).  

Unaccounted for temporal variability, which is temporal variation in N 

mineralization and N response related to environmental conditions, is another factor that 

leads to lower NUE. This represents changing environmental conditions and how they 

interact with N management practices (Mamo et al., 2003). The interactions between 

climate and management can impact N mineralization, crop N demand, and yield 

variations from year to year (Thompson et al., 2015). Accounting for temporal variability 

and effects of weather on the crop N needs during the growing season reduces the risk of 

N loss and improves NUE (Lory and Scharf, 2003). Spatial and temporal variability 

combined create uncertainty and decrease the ability to accurately estimate the optimal N 

rate (ONR) for any given year (Roberts et al., 2010). Thus, it is critical to determine the 

timing and rate of crop N needs that vary spatially and temporally within a field to 

improve NUE and minimize N loss to the environment.  

There are two major strategies to manage N, reactive and proactive approaches,  

with the potential to increase synchrony between soil N supply and crop N demand and 

account for spatial soil variability and temporal variation in crop N requirements that 

cause low NUE. A proactive approach attempts to predict N demand and supplement N 

to the crop before additional N application is required, to avoid crop N deficiency. In 

contrast, the reactive approach attempts to detect crop N deficiency based on the 
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indication of the real-time crop N sufficiency status to determine additional N supply 

requirements. Both approaches are employed in various combinations, such as a proactive 

approach that predicts N demand at pre-season and a reactive approach that reactively 

detects in-season crop N status and determines if additional N requirements are needed. 

A proactive approach can include an empirical prediction algorithm that 

incorporates historical productivity (yield goal) or crop simulation models. One example 

of a yield goal approach is the University of Nebraska-Lincoln corn N recommendation 

algorithm (UNL algorithm) that considers splitting N rate application, which proactively 

predicts total N requirements (Shapiro et al., 2019). This algorithm aims to estimate N 

requirements and minimize residual soil nitrate using yield goal, SOM, residual soil 

nitrate as well as various N source credits such as legumes or manure, and irrigation 

water nitrate content. Crop simulation models attempt to account for spatial variability 

between fields and temporal variability between years by combining soil, crop, and 

management information with current and long-term weather to estimate N demands for 

corn (Setiyono et al., 2011; Sela et al., 2016). Although many crop simulation models 

exist, such as DSSAT (Jones et al., 2003), APSIM (Holzworth et al., 2006), CropSyst 

(Stöckle et al., 2003), SALUS (Basso et al., 2006), and others that have been used to 

investigate soil-crop-weather dynamics (Puntel et al., 2016), they were not designed to 

support pre-plant or in-season N rate recommendations (Thompson et al., 2015). A 

number of specific simulation models, such as Adapt-N (Melkonian et al., 2008) and 

Maize-N models (Setiyono et al., 2011) have been developed to recommend pre-plant 

and in-season N rate applications in corn (Jin et al., 2017). Adapt-N model was 

developed at Cornell University to provide an in-season N recommendations tool to 
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optimize split application nutrient management for corn production based on simulation 

of soil N dynamics and maize N uptake under conditions in the Northeast US (Melkonian 

et al., 2008; Sela et al., 2016).  

The Maize-N model was developed at the University of Nebraska-Lincoln to 

predict economic optimal N rate (EONR) based on functions from the Hybrid-Maize 

model (Yang et al., 2006) for corn growth and yield prediction and a mono-component 

model (Yang and Janssen, 2000) for SOM mineralization and yield response to N uptake. 

The Maize-N model attempts to account for variability among fields and years by 

combining current and long-term weather data, current and last crop information, soil 

information, tillage system, various N credits, and prices for grain and N fertilizer to 

estimate EONR (Setiyono et al., 2011). The model was validated and EONR simulated 

by the Maize-N model showed a good agreement to measured EONR based on 

experiments conducted in western Corn Belt states in both irrigated conditions (central 

Nebraska and eastern South Dakota) and rainfed conditions (eastern South Dakota and 

western Nebraska) (Setiyono et al., 2011). Likewise, Thompson et al. (2015) reported 

that the EONR simulated by the Maize-N model showed greater accuracy with lower root 

mean square error (RMSE) and mean error (ME) values compared with the current 

university N recommendation approach, such as the UNL algorithm.  

In contrast, the reactive approach can include responding to measured crop N 

requirements that have been calibrated to different sampling techniques, such as soil tests 

(Magdoff et al., 1984; Scharf, 2001), destructive plant tissue tests (Schröder et al., 2000; 

Scharf, 2001), and non-destructive measuring of crop canopy light characteristics using a 

crop sensor-based approach to determine N requirements (Samborski et al., 2009; 
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Holland and Schepers, 2010; Schlemmer et al., 2013). The crop sensor-based approach 

has the potential to provide a rapid, large sample size that is a more inexpensive and 

accurate technique compared to destructive sampling to monitor crop N status (Inman et 

al., 2005; Morris et al., 2018; Naser et al., 2020). A strong linear relationship exists 

between leaf N content and leaf chlorophyll content (Shaver et al., 2011; Naser et al., 

2020), which makes sense because the majority of leaf N is contained in chlorophyll 

molecules (Daughtry et al., 2000). Sensors using either light reflectance or transmittance 

properties of canopies or leaves can be used to detect spectral characteristics (Morris et 

al., 2018), which relates to plant chlorophyll content and N content (Erdle et al., 2011). 

Sensors can be divided into two broad categories: active and passive.  

Passive sensors utilize ambient light (sunlight) as their source of energy to 

illuminate their targets, whereas active sensors use their own source of light (Erdle et al., 

2011; Shaver et al., 2011). Using active sensor reflectance measurements of corn canopy 

has been shown to be effective to estimate N status and improve NUE (Solari et al., 2008; 

Holland and Schepers, 2010; Thompson et al., 2015). An example of a sensor that uses 

light transmittance is (Soil Plant Analysis Development) SPAD 502 Chlorophyll Meters 

(SPAD CM) (Spectrum Technologies Inc. Aurora, Illinois, USA), which is also 

considered an active crop leaf sensor. SPAD CM measures light transmittance properties 

of leaves in the red (650 nm) and near-infrared (940 nm) spectral bands (Solari et al., 

2008 ), which is strongly correlated with leaf chlorophyll content. Thus, SPAD CM has 

been used as an N management tool to provide rapid and nondestructive estimates of crop 

chlorophyll content and monitor corn N status (Peterson et al., 1993; Varvel et al., 1997), 

which eliminates the need to use conventional plant tissue sampling to quantify N content 
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(Naser et al., 2020). Shapiro et al. (2013) provided guidelines for the use of chlorophyll 

meters for fine-tuning N management decisions during the growing season, increasing 

NUE, and maintaining the yield of corn. However, to monitor crop N status, it is required 

to have a high N reference area (non-limiting N) to determine the sufficiency index (SI) 

by normalizing data in the field to avoid the site and sampling date effects. This is 

described in detail by Peterson et al. (1993).  

A recent review by Morris et al. (2018) showed that using either a crop canopy 

sensor or crop leaf sensor as a reactive approach for N management is effective and has 

greater accuracy than a proactive approach. This greater accuracy translates to reduced N 

rate, improved NUE, increased or maintained yield, and reduced N loss. Likewise, a 

recent field study by Thompson et al. (2015) found that a reactive approach using crop 

canopy sensor-based Holland-Schepers algorithm (H-S algorithm) (Holland and 

Schepers, 2010) was effective in reducing in-season N rate, increasing NUE as measured 

by PFPN and AE with little to no reduction in yield compared with a proactive approach 

across 12 sites in Nebraska, Missouri, and North Dakota. The sensor-based approach 

relied on applying a sufficient base rate of N application at planting followed by a 

reactive one-time in-season assessment of the crop N deficiency informed by the sensor 

(Holland and Schepers, 2010). Although the use of a sensor-based approach attempts to 

detect spatial variability that exists within fields and generate SI, the method does not 

need to set a threshold to detect the timing of the N application. Because the in-season N 

sidedress application takes place once at a specific growth stage range, the method is 

limited by labor, weather, and availability of high clearance applicator equipment. 
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To overcome the limitations of labor, weather, and availability of high clearance 

applicator equipment under irrigated conditions, a desirable alternative method is to apply 

N via fertigation. Fertigation is a method to apply fertilizers through the irrigation system, 

which is a common and cost-effective means to apply multiple small doses of in-season 

fertilizer application. Applying multiple small N doses when N uptake by corn is highest 

can result in greater NUE and less N loss. For example, Blackmer and Schepers, (1995) 

and Schepers et al. (1995) found that a reactive approach using SPAD CM can be a 

valuable tool to monitor corn N status and schedule fertigation for corn resulting in lower 

N rates, higher NUE without reducing yield compared with a proactive approach, which 

resulted in higher N rates without increased grain yield.  

However, there are no previous studies that have integrated a reactive approach 

using crop N sensors and a proactive approach using the Maize-N model to determine the 

timing and rate of in-season N requirements via fertigation. The objective of this research 

was to evaluate and develop a new N application method using the integration of reactive 

sensor and proactive Maize-N model approaches via fertigation in corn. 
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Material and Methods 

Site Description 

This study was conducted during the 2017 and 2018 growing seasons at two sites 

of the University of Nebraska-Lincoln: (i) South Central Agriculture Laboratory (SCAL), 

near Clay Center, Nebraska (44.6° N, 98.1° W; elevation: 552 m above mean sea level) 

and (ii) West Central Research and Extension Center (WCREC) (41°5'  N, 100°45' W; 

elevation: 861 m above mean sea level), North Platte, Nebraska. The soil at the SCAL 

site was classified as Hasting silt loam (fine, montmorillonitic, mesic Udic Argiustolls) 

soil series with 0 to 1 percent slopes (Hammer et al.,1981). Whereas, the soil at the 

WCREC site was classified as Cozad silt loam (fine, silty, mixed, mesic Typic 

Haplustolls) soil series with 0 to 1 percent slopes (Bowman et al., 1978). 

The SCAL site is characterized as a transition zone between sub-humid and semi-

arid climates, with average precipitation received during the crop growing season from 

April 1 to September 30, 2017 of 450.9 mm and the average daily temperature was 

18.98⁰C. For 2018, the average precipitation received during the crop growing season 

from April 1 to September 30, 2018 was 505.5 mm and the average daily temperature 

was 18.88⁰C (HPRCC, 2019). The WCREC site is characterized as a semi-arid climate, 

with average precipitation received during the crop growing season from April 1 to 

September 30, 2017 of 457.4 mm and the average daily temperature was 18.37⁰C. For 

2018, the average precipitation received during the crop growing season from April 1 to 

September 30, 2018 was 453.5 mm and the average daily temperature was 17.72⁰C 

(HPRCC, 2019).  
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Soil samples were collected at each site to characterize soil chemical properties 

and residual soil nitrate. Initial spring soil samples for the topsoil layer (0-20 cm) were 

composited from four to six soil cores to obtain one sample and two samples for each 

replication to obtain eight soil samples for each site. Four to five soil cores were 

composited for the deep soil layers to 180 cm with 30 cm increment and two samples for 

each replication to obtain 48 soil samples. The previous crop and a summary of soil 

properties for the topsoil layer across two site years are presented in Table 2.1.  

 

Table 2.1. Summary of soil properties for spring soil samples acquired at depths of 

0-20 cm for SCAL and WCREC sites in 2017 and 2018. 

                  

Site Year 

ID 

Soil 

Texture                   
pH† 

SOM‡ 

% 

CEC* 
meq 

100g-1 

NO3-N٭                     
mg  

kg-1 

P-M3ᵟ              
mg  

kg-1 

K§                                 

mg  

 kg-1 

Previous 

crop 

SCAL17 SiL⁺ 6.8 3.4 15.0 8.3 29.3 360.4 soybean 

WCREC17 SiL 7.9 2.0 17.8 7.0 53.1 516.4 soybean 

SCAL18 SiL 6.6 3.3 15.8 11.8 32.6 334.3 corn 

WCREC18 SiL 7.8 2.1 17.2 8.5 49.4 451.9 soybean 

⁺SiL is silt loam, †pH is 1:1 soil: water, ‡SOM is soil organic matter LOI %, *CEC is cation exchange 

capacity, ٭NO3-N is nitrate-nitrogen, ᵟP-M3 is Mehlich-3 soil phosphorus, §K is potassium extracted by 1 

N ammonium acetate. 

 

 

Experimental and Treatments Design 

The experimental design was a randomized complete block design with eight 

treatments and four replications. At the SCAL site, plot dimensions were 6.1 m wide by 

36.6 m long with eight rows at 0.76 m row width. At the WCREC site, plot dimensions 

were 12.2 m wide by 27.9 m long with 16 rows in 2017 and 10.7 m wide by 32 m long 

with 14 rows at 0.76 m row width in 2018. Planting at the SCAL site was on April 24, 

2017, and May 2, 2018, while planting at the WCREC site was on May 8 in both years. A 
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planting population of 84,000 plants ha-1 using hybrid Fontanelle 6A327RBC was used 

for both site years.  

Other than N fertilizer, all other agronomic activities, including pest control were 

managed according to the University of Nebraska Extension Guidelines (Shapiro et al., 

2019). All site years were irrigated with a linear sprinkler irrigation system at the SCAL 

site and a center-pivot irrigation system at the WCREC site. Both irrigation systems were 

used for applying irrigation water and were capable of applying N fertilizer to crops 

through irrigation water (fertigation). Irrigation management was conducted according to 

the method developed by Irmak et al. (2005). Irrigation timing and amount were 

determined from a combination of soil moisture content and crop growth stage 

monitoring with the use of a Watermark soil moisture sensors (model 200SS) with a 

range of measurements from 0-239 (kPa) (IRROMETER Company, Inc., Riverside, CA, 

USA) at the SCAL site and using a neutron moisture meter (model CPN 503DR 

Hydroprobe) (Campbell Pacific Nuclear International Inc., Concord, CA, USA) at 

WCREC site. At both sites, fertilizer was applied according to UNL extension guidelines. 

Starter fertilizer was applied as ammonium polyphosphate 10-34-0 (NPK) (6.5 kg N ha-1 

and 22 kg P2O5 ha-1) and 0.32 kg ha-1 20% Zn for SCAL site and as ammonium 

polyphosphate 10-34-0 (NPK) (6.5 kg N ha-1 and 22 kg P2O5 ha-1) and phosphorus 

applied to plots deficient in soil test P as triple superphosphate ranged between 83 to 184 

kg ha-1 using a dry fertilizer spreader (Barber Engineering Company, Spokane, WA, 

USA) in 2017 only for WCREC site. The fertilizer was banded over the seed via the 

planter in both site years (Table 2.2). 
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Eight treatments representing current best management practices (BMP) for N 

management in Nebraska as well as potential new practices were evaluated. The 

treatments were broadly categorized as the following: check, calibration, proactive, and 

reactive. The check (unfertilized) treatment received only starter fertilizer to supplement 

the recommended phosphorus and zinc needs. This treatment is important to identify N 

uptake from indigenous sources, including residual soil nitrate-N, mineralized N from 

SOM, crop residues, deposition of atmospheric ammonium, and nitrate-N from irrigation 

water (Wortmann et al., 2011). A non-N-limiting reference treatment was used as a 

calibration treatment to determine the relative N sufficiency status by normalizing sensor 

data and calculating the relative SI of target treatments (Blackmer and Schepers, 1995). 

The reference treatment was also used to represent maximum yield. The reference 

treatment received a non-limiting N rate (280 kg ha-1) at planting to be above crop needs 

to ensure that total N was sufficient throughout the entire growing season. 

Six treatments were labeled according to Timing-Application Method-Rate-N 

Source. Timing was either proactive or reactive. A reactive approach responds to 

measured crop N needs and determines the timing of additional N requirements based on 

the indication of the crop N sufficiency status. In contrast, a proactive approach attempts 

to predict N demand and supplement N to the crop before N deficiency occurs. The 

application method was either sidedress or fertigation. The rate was arbitrarily fixed or 

calculated by the UNL algorithm and H-S algorithm or predicted by the Maize-N model. 

The N source for all but one treatment was a urea-ammonium nitrate (UAN) solution 

(32%N) as a base rate and additional N applied via fertigation and thus omitted from the 

description. One treatment used Environment Smart Nitrogen (ESN), a polymer-coated 
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controlled-release N source as a base rate and additional N applied via fertigation as 

UAN (32%N) (Table 2.2).  

The proactive treatments consisted of: (i) the proactive-sidedress-UNL algorithm 

(P-SD-UNL) treatment, (ii) the proactive-fertigation-model (P-F-Model) treatment. The 

P-SD-UNL treatment was considered as the current non-sensor-based BMP, which 

proactively predicted seasonal N rate requirements. The N rate is an empirically fit 

prediction algorithm that incorporates historic productivity (expected yield), SOM, 

residual soil nitrate as well as various N source credits such as from legumes or manure 

and irrigation water nitrate content. The algorithm was recommended to be a one-time in-

season sidedress application informed by yield goal and N credits. It included price and 

application timing adjustment factors (Shapiro et al., 2019) as follows: 

 

N rate recommendation (kg N ha-1) =  

1.12 x [35 + (1.2 x EY) - (8 x Nitrate-N ppm) - (0.14 x EY x OM) - other N credits]  

x Priceadj x Timingadj                                                                                                                                                      [2.1]                                                                                                                             

 

where,  

            1.12 is used to convert N recommendations from lbs N ac-1 to kg N ha-1. 

            EY is expected yield (bu ac-1) 

                                                       Nitrate-N ppm is weighted average soil nitrate down to 120 cm 

           OM is the percent soil organic matter 

                                                        Other N credits include previous legume credit, manure, other organic materials, 

and irrigation water nitrate 

            Priceadj is the adjustment factor for prices of corn and N 

            Timingadj is the adjustment factor for fall, spring, and split applications 
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The P-F-Model treatment was not sensor guided, but was informed by the Maize-

N model, which proactively predicted N rate requirements according to expected crop N 

supply and demand for the next three weeks using long-term weather data, current and 

previous crop information, current soil information, and N credits (Setiyono et al., 2011).  

The reactive treatments consisted of: (i) reactive-sidedress-H-S algorithm (R-SD-

HS), (ii) reactive-fertigation-fixed (R-F-Fixed) treatment, (iii) reactive-fertigation-model 

(R-F-Model) treatment, and (iv) reactive-fertigation-model-slow release (R-F-Model-

SR). The R-SD-HS treatment was considered as the current sensor-informed BMP, 

informed by the active sensor to calculate in-season sidedress N applications. The 

calculation of N application took into account EONR (calculated using UNL algorithm) 

or the maximum N rate prescribed by the producers, total N fertilizer applied before crop 

sensing, N credits as well as sensor SI value (Holland and Schepers, 2010) as follows: 

 

                𝑵𝑨𝑷𝑷 = (𝑵𝑶𝑷𝑻 − 𝑵𝑷𝒓𝒆𝑭𝒆𝒓𝒕 − 𝑵𝑪𝑹𝑫  + 𝑵𝑪𝑶𝑴𝑷 ) ·                   [2.2]                    

√
(𝟏 − 𝑺𝑰 )

∆𝑺𝑰 · (𝟏 + 𝟎. 𝟏 · 𝒆𝒎(𝑺𝑰𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 −𝑺𝑰))
 

 

where,  

NAPP is N application rate to be applied as sidedress 

            NOPT is EONR or the maximum N rate prescribed by producers 

            NPreFert is the total N fertilizer applied before crop sensing and/or in-season N 

application 

            NCRD is N credit for the previous season’s crop, nitrate in water, and manure 

application 

            NCOMP is N above NOPT required by the crop under soil limiting conditions at a 

given growth stage 

            SI is the sufficiency index of the target crop 
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            M is back-off rate variable (0 < m < 100) 

            Threshold is the back-off cut-on point 

            ∆SI is differences between where SI equals one and the point where the response 

curve intersects the y-axis (1-SI (0)) 

 

Three reactive fertigation treatments included R-F-Fixed, R-F-Model, and R-F-

Model-SR informed by the sensor as reactive to crop N deficiency. N rates were either 

arbitrarily fixed-rate (34 kg ha-1 as the typical rate of N to be applied via fertigation 

without injuring corn plants) (Blackmer and Schepers, 1995) for R-F-Fixed treatment or 

were determined by Maize-N for R-F-Model and R-F-SR-Model treatments. The base 

rate of N fertilizer for all site years was applied at planting as UAN (Table 2.2), banded 

to the soil between crop rows (knife was spaced in the middle of the row and fertilizer 

was injected below the soil surface) for all treatments except for R-F-SR-Model 

treatment. For R-F-SR-Model treatment, the base rate of N fertilizer was applied at 

planting as ESN (Table 2.2), which was surface broadcast using a dry fertilizer drop 

spreader (3m wide).
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Table 2.2. Site year, treatment, planting date, starter N rate, application date, base N rate, N application date, N  

source, and method of application for eight N fertilizer decision strategies for SCAL and WCREC sites in 2017 and 

2018.  

         

Site Year 

ID  Treatment 

 

 

Planting 

Date 

Starter⁺   
N Rate  

(kg N 

ha-1) 

Application 

Date 

Base N 

Rate  

(kg N 

ha-1) 

N 

Application 

Date 

 

 

N  

Source 
Method of 

Application 

SCAL17 Check 24 Apr.  6.5 24 Apr.  0 - - - 

 Reference      280 8 May UAN32%† Banded  

 P-SD-UNL      84     

 R-SD-HS     84    

 R-F-Fixed 
   84     

 R-F-Model     84     

 R-F-SR-Model      95  ESN‡ Broadcast 

 P-F-Model      84  UAN32% Banded  

 
       

 

WCREC17 Check 8 May 6.5 8 May 0 - - - 

 Reference    280 4 May UAN32% Banded  

 P-SD-UNL    78.5     

 R-SD-HS    78.5     

 R-F-Fixed    78.5     

 R-F-Model    78.5     

 R-F-SR-Model    64 3 May ESN Broadcast 

 P-F-Model    78.5 4 May UAN32% Banded  

 
       

 

SCAL18 Check 2 May 6.5 2 May 0 - - - 

 Reference    280 11 May UAN32% Banded  

 P-SD-UNL    78.5    

 R-SD-HS    78.5    
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 R-F-Fixed    78.5     

 R-F-Model    78.5    

 R-F-SR-Model    147 10 May ESN Broadcast 

 P-F-Model    78.5 11 May UAN32% Banded  

 
       

 

WCREC18 Check 8 May 6.5 8 May 0 - - - 

 Reference    280 16 May UAN32% Banded  

 P-SD-UNL    87 17 May   

 R-SD-HS    87 17 May   

 R-F-Fixed    78.5 16 May    

 R-F-Model    78.5 16 May   

 R-F-SR-Model    84 17 May ESN Broadcast 

  P-F-Model 
   78.5 16 May UAN32% Banded  

⁺ Indicates Liquid ammonium polyphosphate (10-34-0) (NPK) banded for all treatments as starter N. 

† Indicates Urea-Ammonium Nitrate solution (32%N) as a base rate. 

‡ Indicates Environment Smart Nitrogen (ESN) coated urea (44% N) as a base rate. 
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Active Crop Sensors and Data Collection 

SPAD CM and RapidScan CS-45 (RS) crop canopy sensor (Holland Scientific, 

Lincoln, NE, USA) were used to monitor crop and detect corn N status. The SPAD CM 

was used to validate the method previously developed by Peterson et al. (1993) and 

Blackmer and Schepers, (1995) to compare with RS whether or not using the RS would 

result in the same management decisions. The RS is capable of rapid data collection with 

the capacity to sense a much larger area than the SPAD CM (Krienke et al., 2017). 

However, fertigation decisions relied solely on the SI calculated using the SPAD CM.  

The SPAD CM is an active handheld crop leaf sensor (contact sensor) that 

measures light transmittance properties of leaves in two wavelengths (650 and 940 nm) 

by clamping it on the crop leaf and emitting its own light to measure N status. In the 

field, fifteen readings per row from the middle two rows (total of thirty readings) were 

collected (from the sensing area as described above). Sensor measurements were taken 

from halfway between the leaf margin and the leaf midrib from the newest fully 

expanded leaf before the tassel (VT) growth stage, and from the ear leaf after the VT 

growth stage. SPAD CM values were generated and averaged to obtain one mean value 

for each plot.  

The RS is an active handheld crop canopy sensor (proximal sensor) that integrates 

a data logger, GPS, crop sensor, and power source into one small unit with a modulated 

polychromatic light source and three measurement channels: 670 nm, 730 nm, and 780 

nm. Reflectance from these three channels was used to obtain the normalized difference 

red edge index (NDRE) (Li et al., 2014). Sensing was conducted in the middle of each 

plot (sensing area). The sensing area of each plot consisted of the two middle rows of 
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each plot with 9 m length by holding the RS unit in the nadir position at the 

recommended height of approximately 1 meter above the corn and walking directly over 

each row for each plot.  Measurements with the sensor were moved to between three 

rows instead of directly over the two rows after the VT growth stage through 

physiological maturity (R6) growth stages. NDRE values were generated and averaged 

for each row to obtain one mean value for each plot.  

SPAD CM measurements were used to calculate SI by normalizing the target 

vegetation index versus the reference vegetation index to limit the effects of growth 

stages, hybrid, environmental conditions, and disease. The SI is defined as follows: 

 

 

                                          𝑺𝑰 =
 𝐕𝐈 𝐓𝐚𝐫𝐠𝐞𝐭

 𝐕𝐈 𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞
                                                      [2.3] 

 

Where,  

SI = sufficiency index,  

VI Target is a sensor vegetation index obtained from unknown or target 

chlorophyll concentration,  

VI Reference is a sensor vegetation index obtained from non-limited N fertilizer 

or high N reference. 

 

 

When the SI value was equal to or less than 0.95, supplement N via fertigation 

was applied. N needs were reassessed after two weeks using sensor SI information to 

determine if an additional N application is needed. This procedure was repeated to assess 

crop N status until late season at the R2 growth stage, which was suggested by Hawkins 

et al. (2007) to avoid fertigation loss efficiency (Figure 2.1).  
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Figure 2.1. Timing decision logic of fertigation application.  

 

Model N Rates 
 

The N rate for treatments based on the model was determined using the Maize-N 

model. The Maize-N model was developed to estimate EONR of fertilizer to apply for 

corn by taking into account current and long-term weather, current and previous crop 

information, crop rotation, N fertilizer information, tillage system, soil properties, N 

credits, and indigenous soil N supply (Setiyono et al., 2011). All these input values were 

entered into the model to predict EONR. Maize-N model version 2017 was used for the 

2017 and 2018 growing seasons. Current weather data was incorporated with other inputs 

into the model to estimate the amount of N mineralization from the period of the last crop 
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to the time of running the model for the current crop. In contrast, long-term weather data 

based on historical trends were incorporated with other inputs into the model to estimate 

the amount of N mineralization for the remainder of the season. The input and output 

values of the Maize-N model prediction for each site are shown in Appendix A. 

 

Biomass Samples, Grain Yield, NUE, and Partial Profit 

Whole plant (aboveground biomass) samples were collected at physiological 

maturity (R6). Six plants were sampled randomly for each plot by collecting three plants 

from each adjacent row to each row of the sensing area (two rows were selected in the 

middle of each plot with 9 m length). Then, the plant was separated from the ear, bagged, 

weighed, chopped, placed into an oven to dry at 70°C until reaching constant weight. The 

ear was air-dried, shelled, and weighed. Total aboveground biomass samples (stover and 

grain) were analyzed for total N to calculate total aboveground N uptake. Plots (sensing 

area with two rows for 9 m length) were hand-harvested on September 28, 2017, and 

October 3, 2018, for the SCAL site to obtain grain yield. Grain was shelled, weighed, and 

adjusted to 0.155 g g-1 moisture content. At the WCREC site, grain yield was measured 

using a three-row plot combine on November 8, 2017, and October 11, 2018, and 

adjusted to 0.155 g g-1 moisture content.  

PFPN, AEN, and REN were calculated to represent NUE. The PFPN was calculated 

by dividing grain yield produced by total N fertilizer applied. AEN was calculated by 

dividing the difference in grain yield between the fertilized treatment and the check 

treatment by total N fertilizer applied. REN was calculated by dividing the difference in 

aboveground biomass N uptake between the fertilized treatment and the check treatment 

by total N fertilizer applied. Partial profit was calculated as the total corn revenue 
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subtracted by fertilizer costs. The total corn revenue was calculated as the yield for each 

plot multiplied by the yield price. The yield was sold for $0.14 kg-1 and $0.15 kg-1 corn 

for 2017 and 2018, respectively. Fertilizer cost was calculated as the amount of total N 

fertilizer applied to each plot multiplied by the cost of the N fertilizer source. The N 

fertilizer cost was $1.30 kg-1 ESN fertilizer for both years and $0.99 kg-1 and $0.90 kg-1 

UAN fertilizer for 2017 and 2018, respectively. 
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Residual Soil Nitrate-N (RSN-N) 

Deep soil samples (30 cm increments to 150 cm for 2017 and 180 cm for 2018) 

for quantifying residual soil nitrate post-harvest were collected on November 27 and 

December 1, 2017, and November 7 and November 14, 2018, respectively, at the SCAL 

site. At the WCREC site, deep soil samples (30 cm increments to 180 cm) were collected 

on October 17 and October 22, 2018. Three to four soil cores were composited to make 

one sample per depth, five and six samples per replication to obtain 160 and 192 soil 

samples, respectively. Soil samples were collected from two rows between rows of the 

sensing area.  

Statistical Analysis 

Analysis of variance (ANOVA) was conducted using PROC GLIMMIX in 

Statistical Analysis System (SAS) version 9.4. Grain yield, PFPN, AEN, REN, partial 

profit, and RSN-N were analyzed as response variables. A mean separation test was 

performed using Tukey’s Multiple Comparison Test. 
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Results and Discussion 

Weather 

Table 2.3 shows total precipitation, total irrigation, and average temperature for 

historic average weather data for 30 years and 2017-2018 through the growing season 

from April to September at SCAL and WCREC sites. Figure 2.2 shows weather data for 

the same period for each site year from April to September (growing season) for 

comparison, including mean daily temperature, total precipitation, and total irrigation. At 

SCAL17, the average precipitation during the growing season was less than the 30-year 

historical average, but was higher than the 30-year historical average in May, which has a 

high potential for leaching of nitrate by precipitation. At SCAL18, the average 

precipitation during the growing season was higher than the 30-year historical average, 

especially in June, which has a high potential for leaching of nitrate. At WCREC, the 

average precipitation during the 2017 and 2018 growing seasons was higher than the 30-

year historical average (HPRCC, 2019), especially in July in 2017 and in May, June, and 

July in 2018, which has the potential for leaching of nitrate. 

Total irrigation at the SCAL site through the 2017 and 2018 growing seasons was 

less than the total irrigation at the WCREC site for both years (Table 2.3). The average 

temperature for both SCAL (18.98 ⁰C in 2017 and 18.88 ⁰C in 2018) and WCREC (18.37 

⁰C in 2017 and 17.72 ⁰C in 2018) sites was very close to 30 years historical average 

temperature for SCAL (18.76 ⁰C) and for WCREC (17.95 ⁰C) during the 2017 and 2018 

growing season for the same periods from April to September.  

 



67 
 

 

Table 2.3. A summary of annual total precipitation (mm), total irrigation (mm), and 

average temperature (⁰C) through the growing season for historic 30 years average 

weather data and for 2017 and 2018 for sites in SCAL and WCREC. 

                

Site Year ID Apr. May   Jun.  Jul.  Aug. Sep.     
                                     Precipitation (mm)                               Total 

SCAL17 81.28 153.92 22.61 50.80 89.64 52.68 450.93 

WCREC17 52.07 70.61 28.70 104.39 81.79 119.84 457.40 

SCAL18 13.67 48.46 158.72 76.71 84.58 123.37 505.51 

WCREC18 28.52 172.62 108.64 129.11 7.75 6.83 453.47 

SCAL-Hist.† 59.36 111.28 93.90 89.26 83.31 55.74 492.85 

WCREC-Hist.† 53.94 75.85 86.90 63.89 56.77 38.34 375.69 
                                       Irrigation (mm)                              Total 

SCAL17 0 0 44.45 57.15 31.75 0 133.35 

WCREC17 0 0 55.88 142.24 45.72 40.64 284.48 

SCAL18 0 0 0 12.70 31.75 0 44.45 

WCREC18 0 0 0 132.08 76.20 0 208.28 
        

                Average Temperature (°C)  Avg 

SCAL17 10.40 15.60 22.75 24.83 20.74 19.56 18.98 

WCREC17 10.21 13.83 21.95 25.20 20.80 18.24 18.37 

SCAL18 5.72 19.27 23.81 23.18 22.29 19.04 18.88 

WCREC18 5.46 16.83 21.50 22.78 21.26 18.49 17.72 

SCAL-Hist. 9.89 16.11 21.83 23.82 22.69 18.20 18.76 

WCREC-Hist. 8.95 14.78 20.73 23.52 22.33 17.40 17.95 

†Historic 30 years average weather data for SCAL and WCREC. 
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Figure 2.2. Total water (mm) and mean daily temperature (⁰C) through the growing season for each site in SCAL and 

WCREC in 2017 and 2018.
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In-Season Nitrogen Application Rates 

Table 2.4 summarizes sensor timing, SI values, and in-season N application rates 

for eight treatments for SCAL and WCREC sites in 2017 and 2018. At SCAL17, the in-

season N application rate for the R-F-SR-Model treatment (based on sensor and model 

with initial ESN fertilizer) was lower than the in-season N rate for all other treatments. At 

WCREC17, no in-season N was applied for the R-F-Fixed (based on the sensor only) 

treatment compared to in-season N rates for other treatments. The reference treatment 

also received the in-season N application rate. At SCAL18, no in-season N was applied 

for the R-F-Fixed, R-F-Model (based on sensor and model), and R-F-SR-Model 

treatments. At WCREC18, the in-season N application rate for the R-SD-HS treatment 

was lower than the in-season N rates for all other treatments. In-season N rate for R-F-

Model treatment was lower than in-season N rates for fertigation treatments.  

At the SCAL17 site, the R-F-SR-Model treatment had a lower in-season N rate 

due to a higher initial N rate applied (95 kg N ha-1) as ESN slow-release N being input 

into the Maize-N model. This resulted in reducing the in-season N rate predicted by the 

Maize-N model for R-F-SR-Model treatment without reducing yield as it was among the 

highest-yielding treatments. At WCREC17, the R-F-Fixed treatment did not receive 

additional in-season N application since the SI values were greater than 0.95 during all 

growth stages (V6-R6), without limiting yield as it was among the highest-yielding 

treatments (not significantly lower than any other). Also, the seasonal average SI value 

(0.98) for this treatment was greater than the SI values for all other treatments. To assure 

the sufficiency of plant N at the time of sensing, the in-season N rate was also applied for 

the reference treatment at WCREC17.  
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At SCAL18, the R-F-Fixed, R-F-Model, and R-F-SR-Model treatments did not 

receive additional in-season-N applications since SI values were greater than 0.95 during 

all growth stages (V6-R6), without limiting yield as it was among the highest-yielding 

treatments (not significantly lower than any other). Also, the seasonal average SI values 

(0.99) for these three treatments were slightly different than SI values for the reference 

during all growth stages at sensor timing. At WCREC18, a relatively low in-season N 

rate was recommended using the H-S algorithm for R-SD-HS treatment since it had a 

higher SI value (0.98). The R-F-Model treatment had a lower in-season N rate than 

fertigation treatments due to a higher seasonal average SI value (0.98) (V6-R6) than other 

fertigation treatments except for P-F-Model treatment (based on the model only) which 

received multiple in-season N applications. However, the lower in-season N rate applied 

for R-F-Model treatment did not impact yield, as it was among the highest-yielding 

treatments. 

Across all site years, on average, in-season N application rates were lower for 

reactive fertigation treatments (R-F-Fixed, R-F-Model, and R-F-SR-Model treatments) 

compared to the proactive sidedress UNL algorithm (P-SD-UNL treatment) and reactive 

sidedress H-S algorithm (R-SD-HS treatment). The R-F-Fixed, R-F-Model, and R-F-SR-

Model treatments reduced in-season N rates by 62, 55, and 59 kg N ha-1 compared to the 

P-SD-UNL treatment and by 25, 18, and 22 kg N ha-1 compared to the R-SD-HS 

treatment. In contrast, the proactive fertigation treatment (P-F-Model) reduced in-season 

N rates by 32 kg N ha-1 compared to the P-SD-UNL treatment, but it increased in-season 

N rates by 5 kg N ha-1 compared to the R-SD-HS treatment. This is consistent with the 

finding of Thompson et al. (2015) that reported the reactive approach-based-sensor 
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recommended lower in-season N rates than the proactive approach-based Maize-N model 

across 9 of 11 sites. The results showed that reactive fertigation treatments (R-F-Fixed, 

R-F-Model, and R-F-SR-Model treatments) reduced the in-season N rates application due 

to the ability of the sensor to detect and respond to crop N status. This resulted in better 

synchronization between N supply and crop demand. However, the proactive fertigation 

treatment (P-F-Model) reduced the in-season N rate compared to the proactive sidedress 

UNL algorithm (P-SD-UNL treatment) and did not reduce the in-season N rate compared 

to reactive sidedress H-S algorithm (R-SD-HS treatment). This is because the proactive 

fertigation treatment (P-F-Model) did not have the ability to detect and respond to current 

crop N status as did reactive treatments.   

 

 

 



 

 

7
2
 

Table 2.4. Site year, treatment, sensor timing, sufficiency index, in-season N rate, N recommendation method, and 

method of N application for eight N fertilizer decision strategies for SCAL and WCREC sites in 2017 and 2018.  

        

Site Year ID  Treatment 
Growth stage at 

Sensor Timing 

Sufficiency 

Index (SI)  

In-Season 

N Rate 

(kg ha-1) 

N  

Recommendation 

Method 

N  

Application  

Method 

SCAL17 Check V6-R6 0.82 0 - - 
 Reference - - 0 - - 
 

P-SD-UNL V6 0.95 84 UNL algorithm Sidedress 
 R-SD-HS V11 0.93 56 H-S algorithm Sidedress 
 

R-F-Fixed V11 0.92 34 Fixed rate Fertigation 
 R-F-Model V11 0.93 37  Model rate Fertigation 
 

R-F-SR-Model V11 0.93 20  Model rate Fertigation 
 

P-F-Model V9 0.97 30  Model rate Fertigation 

    

WCREC17 Check V6-R6 0.89 0 - - 
 Reference VT - 34 Calibration Fertigation 
 P-SD-UNL V6 0.97 41 UNL algorithm Sidedress 
 R-SD-HS V13 0.90 46 H-S algorithm Sidedress 
 

R-F-Fixed V6-R6 0.98 0 - - 
 

R-F-Model V8 0.92 46  Model rate Fertigation 
 

R-F-SR-Model V8  0.93 33  Model rate Fertigation 
 P-F-Model V8 0.94 43  Model rate Fertigation 
    

SCAL18 Check V6-R6 0.85 0 - - 
 Reference - - 0 - - 
 

P-SD-UNL V6 0.95 136 UNL algorithm Sidedress 
 

R-SD-HS VT 0.99 58 H-S algorithm Sidedress 



 

 

7
3
 

 
R-F-Fixed V6-R6 0.99 0 - - 

 
R-F-Model V6-R6 0.99 0 - - 

 
R-F-SR-Model V6-R6 0.99 0 - - 

 
P-F-Model VT 1.01 30  Model rate Fertigation 

       

WCREC18 Check V6-R5 0.73 0 - - 

 Reference - - 0 - - 

 P-SD-UNL V6 0.94 64 UNL algorithm Sidedress 

 R-SD-HS V18 0.98 17 H-S algorithm Sidedress 

 R-F-Fixed V10 0.95 17 Fixed rate Fertigation 

  R1 0.95 25   

 R-F-Model V12 0.97 12  Model rate Fertigation 

  R1 0.97 10   

 R-F-SR-Model V10 0.97 13  Model rate Fertigation 

  V12 0.94 7   

  R1 0.95 18   

 P-F-Model V10 0.99 34  Model rate Fertigation 

  R1 0.99 47   

    R2 1.01 12     
The red color of SI values indicates SI values were equal to or less than the 0.95 thresholds.  
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Grain Yield 
 

Table 2.5 shows Type III tests of fixed effects of site, year, and treatment on grain 

yield at SCAL and WCREC sites in 2017 and 2018. There were significant site, year, and 

treatment main effects on grain yield. There were significant site x treatment and year x 

treatment interactions effects on grain yield at SCAL and WCREC sites in 2017 and 

2018. Because of the significant interactions effect of site x treatment and year x 

treatment, the simple effect of treatment on grain yield will be explored by site and year 

as shown in Figure 2.3 and Figure 2.4.  

Table 2.5. Type III tests of fixed effect of site, year, and treatment on grain yield at 

SCAL and WCREC sites in 2017 and 2018. 

          

Grain Yield 

Effect 
Numerator 

 DF 

Denominator    

DF 
   F Value Pr > F 

site 1 12 23.08 0.0004 

year 1 12 30.62 0.0001 

site*year 1 12 0.05 0.8319 

Trt 7 84 26.25 <.0001 

site*Trt 7 84 2.15 0.0473 

year*Trt 7 84 2.59 0.018 

site*year*Trt 7 84 1.72 0.1149 

 

 

 

Grain yield ranged from 8.49 at WCREC18 to 16.18 Mg ha-1 at SCAL17 as 

shown in Appendix A (Table A.1). Figure 2.3 and Figure 2.4 show the mean estimates by 

site and year for average grain yield and total N applied at SCAL and WCREC sites in 

2017 and 2018 arranged by treatment. At SCAL17, the highest grain yield was observed 

with the reference treatment (16.18 Mg ha-1), which was not significantly different from 

grain yield of other treatments except for the check treatment. The lowest grain yield was 
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observed with the check treatment (11.17 Mg ha-1), which was significantly different 

from the grain yield of other treatments (Figure 2.3). At WCREC17, the highest grain 

yield was observed with the reference treatment (14.14 Mg ha-1), which was not 

significantly different from the grain yield of other treatments. The lowest grain yield was 

observed with the check treatment (12.74 Mg ha-1), which was not significantly different 

from the grain yield of other treatments (Figure 2.3). 

 

Figure 2.3. Mean estimates by site and year for average grain yield and total N 

applied at SCAL and WCREC sites in 2017 arranged by treatment. Different letters 

indicate a significant difference at the 95% confidence level (alpha = 0.05) within the 

site. 

 

 

At SCAL18, the highest grain yield was observed with the R-F-Fixed treatment 

(14.56 Mg ha-1), which was not significantly different from the grain yield of other 

treatments except for the check treatment. The lowest grain yield was observed with the 

check treatment (9.33 Mg ha-1), which was significantly different from other treatments 
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(Figure 2.4). At WCREC18, the highest grain yield was observed with the P-F-Model 

treatment (13.28 Mg ha-1), which was not significantly different from grain yield for 

other treatments except for the check treatment. The lowest grain yield was observed with 

the check treatment (8.49 Mg ha-1), which was significantly different from other 

treatments (Figure 2.4). 

 

Figure 2.4. Mean estimates by site and year for average grain yield and total N 

applied at SCAL and WCREC sites in 2018 arranged by treatment. Different letters 

indicate a significant difference at the 95% confidence level (alpha = 0.05) within the 

site.  

 

 

High grain yield observed for the check treatment at WCREC17 is explained by 

the large contribution of N from other sources such as N mineralization, which provided 

sufficient N to the crop and avoided N deficiency that limited response to N fertilizer for 

other treatments. Higher grain yield was also observed for the R-F-Fixed treatment at 

SCAL18 site year although it did not receive additional in-season-N applications. Similar 
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results were observed by Thompson et al. (2015) that found high yields for check 

treatment for two sites in Nebraska in 2012. Results showed that the reactive fertigation 

treatments (R-F-Fixed, R-F-Model, and R-F-SR-Model) maintained or increased grain 

yield and reduced total N application compared to currently recommended approaches 

including proactive sidedress UNL algorithm (P-SD-UNL treatment) and reactive 

sidedress H-S algorithm (R-SD-HS treatment), which resulted in higher applied N rates, 

but neither treatment increased grain yield. The proactive fertigation treatment (P-F-

Model) maintained or increased grain yield compared to P-SD-UNL and R-SD-HS, and 

reduced total N application rates compared to P-SD-UNL, but did not reduce total N 

application compared to R-SD-HS. 

Nitrogen Use Efficiency (PFP, RE, and AE) 
 

The partial factor productivity of N (PFPN), agronomy efficiency (AEN), and 

recovery efficiency (REN) were used as agronomic indices to measure nitrogen use 

efficiency (NUE). Table 2.6 shows Type III tests of fixed effect of site, year, and 

treatment on PFPN, AEN, and REN at SCAL and WCREC sites in 2017 and 2018. There 

were significant site, year, and treatment main effects on PFPN and AEN and significant 

year and treatment main effects on REN. There were significant site x year x treatment 

interaction effects on PFPN, AEN, and REN at SCAL and WCREC sites in 2017 and 2018. 

Due to significant interaction effects of site x year x treatment, the simple effect of 

treatment on PFPN, AEN, and REN will be explored by site and year as shown in Figure 

2.5 through Figure 2.10.  
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Table 2.6. Type III tests of fixed effect of site, year, and treatment on three measures 

of NUE (PFPN, AEN, and REN) at SCAL and WCREC sites in 2017 and 2018. 

          

Partial Factor Productivity of Nitrogen (PFPN) 

Effect 
Numerator  

DF 

Denominator    

DF 
   F Value  Pr > F 

site 1 12 4.52 0.055 

year 1 12 5.92 0.0316 

site*year 1 12 12.44 0.0042 

Trt 6 72 100.49 <.0001 

site*Trt 6 72 10.53 <.0001 

year*Trt 6 72 13.23 <.0001 

site*year*Trt 6 72 14.55 <.0001 
     

Agronomic Efficiency of Nitrogen (AEN) 

site 1 12 18.11 0.0011 

year 1 12 23.85 0.0004 

site*year 1 12 4.33 0.0596 

Trt 6 72 16.47 <.0001 

site*Trt 6 72 5.06 0.0002 

year*Trt 6 72 4.51 0.0006 

site*year*Trt 6 72 5.16 0.0002 
     

Recovery Efficiency of Nitrogen (REN) 

site 1 12 0.19 0.6715 

year 1 12 11.55 0.0053 

site*year 1 12 4.75 0.05 

Trt 6 72 2.3 0.0432 

site*Trt 6 72 1.34 0.2526 

year*Trt 6 72 1.89 0.0948 

site*year*Trt 6 72 3.17 0.0081 

 

 

PFPN ranged from 44.11 at WCREC17 site year to 171.33 kg grain kg N applied-1 

at SCAL18 as shown in Appendix A (Table A.1). Figure 2.5 and Figure 2.6 show the 

mean estimates by site and year for average PFPN at SCAL and WCREC sites in 2017 

and 2018 arranged by treatment. At SCAL17, the highest PFPN was observed with the R-

F-SR-Model treatment (127.13 kg grain kg N applied-1), which was not significantly 
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different from other treatments except for the reference and P-SD-UNL treatments. The 

lowest PFPN was observed with the reference treatment (56.40 kg grain kg N-1), which 

was significantly different from other treatments (Figure 2.5). At WCREC17, the highest 

PFPN was observed with the R-F-Fixed treatment (164.93 kg grain kg N-1), which was 

significantly different from other treatments. The lowest PFPN was observed with the 

reference treatment (44.11 kg grain kg N-1), which was significantly different from other 

treatments (Figure 2.5).   

 

Figure 2.5. Mean estimates by site and year for average partial factor productivity 

of N (PFPN) at SCAL and WCREC sites in 2017 arranged by treatment. Different 

letters indicate a significant difference at the 95% confidence level (alpha = 0.05) 

within the site.  

 

 

At SCAL18, the highest PFPN was observed with the R-F-Fixed treatment 

(171.33 kg grain kg N-1), which was significantly different from other treatments except 

for the R-F-Model treatment. The lowest PFPN was observed with the reference treatment 
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(48.09 kg grain kg N-1), which was significantly different from other treatments except 

for the P-SD-UNL treatment (Figure 2.6). At WCREC18, the highest PFPN was observed 

with the R-F-Model treatment (125.67 kg grain kg N-1), which was significantly different 

from other treatments except for R-SD-HS and R-F-SR-Model treatments. The lowest 

PFPN was observed with the reference treatment (46.13 kg grain kg N-1), which was 

significantly different from other treatments (Figure 2.6). 

 

Figure 2.6. Mean estimates by site and year for average partial factor productivity 

of N (PFPN) at SCAL and WCREC sites in 2018 arranged by treatment. Different 

letters indicate a significant difference at the 95% confidence level (alpha = 0.05) 

within the site.  

 

 

AEN ranged from 3.95 at WCREC17 site year to 61.60 kg grain increase kg N-1 at 

SCAL18 site year as shown in Appendix A (Table A.1). Figure 2.7 and Figure 2.8 show 

the mean estimates by site and year for average AEN at SCAL and WCREC sites in 2017 

and 2018 arranged by treatment. At SCAL17, the highest AEN was observed with the R-
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F-SR-Model treatment (35.59 kg grain increase kg N-1), which was not significantly 

different from other treatments except for the reference treatment. The lowest AEN was 

observed with the reference treatment (17.46 kg grain increase kg N-1), which was not 

significantly different from other treatments except for R-F-Fixed and R-F-SR-Model 

treatments (Figure 2.7). At WCREC17, the highest AEN was observed with the R-F-

Fixed treatment (15.09 kg grain increase kg N-1), which was not significantly different 

from other treatments. The lowest AEN was observed with the P-SD-UNL treatment (3.95 

kg grain increase kg N-1), which was also not significantly different from other treatments 

(Figure 2.7).   

 

Figure 2.7. Mean estimates by site and year for average agronomic efficiency of N 

(AEN) at SCAL and WCREC sites in 2017 arranged by treatment. Different letters 

indicate a significant difference at the 95% confidence level (alpha = 0.05) within the 

site.  
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At SCAL18, the highest AEN was observed with the R-F-Fixed treatment (61.60 

kg grain increase kg N-1), which was significantly different from other treatments except 

for the R-F-Model treatment. The lowest AEN was observed with the reference treatment 

(15.58 kg grain increase kg N-1), which was not significantly different from other 

treatments except for R-F-Fixed, R-F-Model, and P-F-Model treatments (Figure 2.8). At 

WCREC18, the highest AEN was observed with the R-F-Model treatment (39.75 kg grain 

increase kg N-1), which was not significantly different from other treatments except for 

the reference treatment. The lowest AEN was observed with the reference treatment 

(16.53 kg grain increase kg N-1), which was not significantly different from other 

treatments except for R-SD-HS, R-F-Model, and R-F-SR-Model treatments (Figure 2.8).   

 
Figure 2.8. Mean estimates by site and year for average agronomic efficiency of N 

(AEN) at SCAL and WCREC sites in 2018 arranged by treatment. Different letters 

indicate a significant difference at the 95% confidence level (alpha = 0.05) within the 

site.  
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REN ranged from 0.19 at WCREC17 to 1.17 kg increase in N uptake kg N-1 at 

WCREC18 as shown in Appendix A (Table A.1). Figure 2.9 and Figure 2.10 show the 

mean estimates by site and year for average REN at SCAL and WCREC sites in 2017 and 

2018 arranged by treatment. At SCAL17, the highest REN was observed with R-F-Model, 

R-F-SR-Model, and P-F-Model treatments (0.60 kg N uptake increase kg N-1), which was 

not significantly different from other treatments. The lowest REN was observed with 

reference and P-SD-UNL treatments (kg 0.48 N uptake increase kg N-1), which was also 

not significantly different from other treatments (Figure 2.9). At WCREC17, the highest 

REN was observed with the R-F-SR-Model treatment (0.57 kg N uptake increase kg N-1), 

which was not significantly different from other treatments. The lowest REN was 

observed with the R-F-Model treatment (kg 0.19 N uptake increase kg N-1), which was 

also not significantly different from other treatments (Figure 2.9). 

 

Figure 2.9. Mean estimates by site and year for average aboveground biomass 

recovery efficiency of N (REN) at SCAL and WCREC sites in 2017 arranged by 
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treatment. Different letters indicate a significant difference at the 95% confidence 

level (alpha = 0.05) within the site.  

 

 

At SCAL18, the highest REN was observed with the R-F-Fixed treatment (0.79 kg 

N uptake increase kg N-1), which was not significantly different from other treatments. 

The lowest REN was observed with the reference treatment (0.51 kg N uptake increase kg 

N-1), which was not significantly different from other treatments (Figure 2.10). At 

WCREC18, the highest REN was observed with the R-F-Model treatment (1.17 kg N 

uptake increase kg N-1), which was not significantly different from other treatments 

except reference, R-F-Fixed, and R-F-SR-Model treatments. The lowest REN was 

observed with the reference treatment (0.45 kg N uptake increase kg N-1), which was not 

significantly different from other treatments except R-SD-HS and R-F-Model treatments 

(Figure 2.10).  
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Figure 2.10. Mean estimates by site and year for average aboveground biomass 

recovery efficiency of N (REN) at SCAL and WCREC sites in 2018 arranged by 

treatment. Different letters indicate a significant difference at the 95% confidence 

level (alpha = 0.05) within the site.  

 

 

Overall, PFPN, AEN, and REN were lower with the reference, P-SD-UNL, R-SD-

HS, and P-F-Model treatments than with reactive fertigation treatments (R-F-Fixed, R-F-

Model, and R-F-SR-Model treatments). This was expected for the reference treatment 

since it received a higher amount of N than the crop needed, as well as for P-SD-UNL, R-

SD-HS, and P-F-Model treatments which resulted in higher N rates. The treatment with 

the highest PFPN, AEN, and REN had the lowest N rate application, while the lowest 

PFPN, AEN, and REN had the highest N rate application. This is consistent with findings 

by Roberts et al. (2010) and Thompson et al. (2015) that reported the higher PFPN, AEN, 

and REN obtained with the lower amounts of N rate applied for treatment. Likewise, 

Cassman et al. (2002) observed that REN increased as the amount of N application 

decreases, especially with high N rate applications. They stated that increases in PFP 

related to increases in REN as N uptake is closely related to dry matter accumulation and 

grain yield. Thus. if the yield is not reduced, the higher NUE measured by PFPN and AEN  

is desirable (Thompson et al., 2015). Results demonstrated that reactive fertigation 

treatments (R-F-Fixed, R-F-Model, and R-F-SR-Model) improved NUE as measured by 

PFPN, AEN, and REN compared to proactive sidedress treatment (P-SD-UNL) and 

reactive sidedress treatment (R-SD-HS), by reducing in-season N application without 

reducing yield. This is attributed to the ability of the sensor to detect and respond to crop 

N status resulting in increased synchrony between N supply and crop demand. However, 

the proactive fertigation treatment (P-F-Model) improved PFPN, AEN, and REN compared 
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to the P-SD-UNL treatment, but did not improve PFPN, AEN, and REN compared to the 

R-SD-HS treatment. 

Partial Profit 
 

Total yield revenue was calculated as the yield for each plot multiplied by grain 

price, and fertilizer cost was calculated as the amount of N fertilizer applied to each plot 

multiplied by the cost of the N fertilizer. Partial profit was calculated as the total corn 

revenue subtracted by the fertilizer costs. 

Table 2.7 shows Type III tests of fixed effect of site, year, and treatment on partial 

profit at SCAL and WCREC sites in 2017 and 2018. There were significant site and 

treatment main effects on partial profit. There were significant year x treatment 

interactions effect on partial profit at SCAL and WCREC sites in 2017 and 2018. 

Because of the significant interaction effects of year x treatment, the simple effect of 

treatment on partial profit will be explored by site and year as shown in Figure 2.11 and 

Figure 2.12.  

Table 2.7. Type III tests of fixed effect of site, year, and treatment on partial profit 

at SCAL and WCREC sites in 2017 and 2018. 

     

Partial Profit 

Effect 
Numerator  

DF 

Denominator    

DF 
    F Value Pr > F 

site 1 12 19.47 0.0008 

year 1 12 1.84 0.1995 

site*year 1 12 0.24 0.6329 

Trt 7 84 14.38 <.0001 

site*Trt 7 84 1.94 0.0736 

year*Trt 7 84 3.01 0.0072 

site*year*Trt 7 84 2.03 0.0606 
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Partial profit ranged from 1236.46 at WCREC18 to 2054.10 $ ha1 at SCAL18 as 

shown in Appendix A (Table A.1). Figure 2.11 and Figure 2.12 show the mean estimates 

by site and year for average partial profit at SCAL and WCREC sites in 2017 and 2018 

arranged by treatment. At SCAL17, the highest partial profit was observed with the R-F-

Fixed treatment (1982.05 $ ha-1), which was not significantly different from other 

treatments except for the check treatment. The lowest partial profit was observed with the 

check treatment (1513.37 $ ha-1), which was significantly different from other treatments 

(Figure 2.11). At WCREC17, the highest partial profit was observed with the R-F-Fixed 

treatment (1823.55 $ ha-1), which was not significantly different from other treatments. 

The lowest partial profit was observed with the reference treatment (1606.14 $ ha-1), 

which was also not significantly different from other treatments (Figure 2.11). 

 

Figure 2.11. Mean estimates by site and year for average partial profit at SCAL and 

WCREC sites in 2017 arranged by treatment. (Assuming grain was $0.14 kg-1 corn 

and N fertilizer was $1.30 kg-1 ESN fertilizer and $0.99 kg-1 UAN fertilizer in 2017). 

Different letters indicate a significant difference at the 95% confidence level (alpha 

= 0.05) within the site. 
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At SCAL18, the highest partial profit was observed with the R-F-Fixed treatment 

(2054.10 $ ha-1), which was not significantly different from other treatments except for 

the check treatment. The lowest partial profit was observed with the check treatment 

(1358.90 $ ha-1), which was significantly different from other treatments (Figure 2.12). 

At WCREC18, the highest partial profit was observed with the P-F-Model treatment 

(1781.66 $ ha-1), which was not significantly different from other treatments except for 

the check treatment. The lowest partial profit was observed with the check treatment 

(1236.46 $ ha-1), which was significantly different from other treatments (Figure 2.12). 

 

Figure 2.12. Mean estimates by site and year for average partial profit at SCAL and 

WCREC sites in 2018 arranged by treatment. (Assuming grain was $0.15 kg-1 corn 

and N fertilizer was $1.30 kg-1 ESN fertilizer and $0.90 kg-1 UAN fertilizer in 2018). 

Different letters indicate a significant difference at the 95%confidence level (alpha = 

0.05) within the site.  
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sources, such as N mineralization from SOM and crop residues (Wortmann et al., 2011), 

which provided sufficient N to the crop. The proactive and reactive fertigation treatments 

increased or maintained partial profit compared to proactive sidedress (P-SD-UNL) and 

reactive sidedress treatments (R-SD-HS). The increased partial profit of the reactive and 

proactive fertigation treatments over P-SD-UNL and R-SD-HS treatments was due to 

lower in-season N rates and equivalent yields. Similar results were observed by 

Thompson et al. (2015) who stated that lower in-season N recommendations and 

comparable yields increased profitability for reactive approach based-sensor compared to 

the proactive approach based Maize-N model. 

 

Partial Profit and NUE Differences (Treatment – UNL) 
 

Figure 2.13 shows the average partial profit (difference between each treatment 

and the P-SD-UNL treatment) versus average NUE as measured by PFPN (difference 

between each treatment and P-SD-UNL treatment) for SCAL and WCREC sites in 2017 

and 2018. At the SCAL site, the R-F-Fixed treatment had the highest average PFPN (71.8 

kg grain kg N-1) and the highest average partial profit (118.4 $ ha-1) compared to other 

treatments. The reference treatment had the lowest average PFPN (-23.9 kg grain kg N-1) 

and the lowest average partial profit (-61.4 $ ha-1). At the WCREC site, the R-F-Fixed 

had the highest average PFPN (38.3 kg grain kg N-1) and the R-F-Model treatment had the 

highest average partial profit (69.8 $ ha-1) compared with other treatments. The reference 

treatment also had the lowest average PFPN (-48.0 kg grain kg N-1) and the lowest 

average partial profit (-67.1 $ ha-1). Figure 2.14 shows the overall average partial profit 

(difference between each treatment and the P-SD-UNL treatment) versus overall average 
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NUE as measured by PFPN (difference between each treatment and P-SD-UNL 

treatment) across all site years. The R-F-Fixed treatment had the highest average PFPN 

(55 kg grain kg N-1) and the highest average partial profit (59.3 $ ha-1). The reference 

treatment also had the lowest average PFPN (-35.9 kg grain kg N-1) and the lowest 

average partial profit (-64.3 $ ha-1). 
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Figure 2.13. Average partial profit for the difference between treatment and UNL 

treatment versus average nitrogen use efficiency as partial factor productivity for N 

(PFPN) for the difference between treatment and UNL treatment at SCAL (top) and 

WCREC (bottom) sites in 2017 and 2018. 
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Figure 2.14. Overall average partial profit for the difference between treatment and 

UNL treatment versus overall average nitrogen use efficiency as partial factor 

productivity for N (PFPN) for the difference between treatment and UNL treatment 

at SCAL and WCREC sites in 2017 and 2018. 
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Residual Soil Nitrate-N (RSN-N) 
 

Table 2.8 shows Type III tests of fixed effects of the environment, depth, and 

treatment on RSN-N for SCAL site in 2017 and 2018 and WCREC site in 2018. There 

were significant environment, depth, treatment main effects on RSN-N. There were 

significant environment x depth x treatment interaction effects on RSN-N. Due to the 

significant interaction effects of environment x depth x treatment, the simple effect of 

treatment on RSN-N will be explored by each environment as shown in Figure 2.15 

through Figure 2.17. 

Table 2.8. Type III tests of fixed effect of environment (site and year), depth, and 

treatment on RSN-N for SCAL site in 2017 and 2018 and WCREC site in 2018. 

     

Residual Nitrate-N  

Effect 
Numerator  

DF 

Denominator    

DF 
   F Value  Pr > F 

env 2 9 13.54 0.0019 

Trt 7 63 22.08 <.0001 

env*Trt 14 63 5.81 <.0001 

Depth 5 42 40.76 <.0001 

env*Depth 9 42 11.26 <.0001 

Trt*Depth 35 294 2.76 <.0001 

env*Trt*Depth 63 294 2.2 <.0001 

 
 
 

Post-harvest average RSN-N ranged from 0.23 at SCAL18 to 61.11 kg ha1 at 

WCREC18. Figure 2.15 through Figure 2.17 shows the mean estimates by the 

environment for average RSN-N for SCAL site in 2017 and 2018 and WCREC site in 

2018 arranged by depth for each treatment.  

At SCAL17, the highest RSN-N was observed with the reference treatment (35.72 

kg ha-1) at a depth of 30 cm, which was not significantly different from other treatments 
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at the same depth (Figure 2.15). The reference treatment also had the highest average 

RSN-N (17.99 kg ha-1) for all depths (30-150 cm) of the soil profile as shown in 

Appendix A (Table A.1), which was significantly different from other treatments. The 

lowest RSN-N was observed with the check treatment (1.73 kg ha-1) at a depth of 120 cm, 

which was also not significantly different from other treatments at the same depth (Figure 

2.15). The check treatment also had the lowest average RSN-N (7.66 kg ha-1) for all 

depths (30-150 cm) of soil profile as shown in Appendix A (Table A.1), which was not 

significantly different from other treatments except reference and R-F-Model treatments. 

At SCAL18, the highest RSN-N was observed with the P-SD-UNL treatment 

(22.28 kg ha-1) at a depth of 90 cm, which was significantly different from the check, R-

SD-HS, R-F-Model treatments at the same depth (Figure 2.16). The P-SD-UNL treatment 

also had the highest average RSN-N (15.03 kg ha-1) for all depths (30-150 cm) of the soil 

profile as shown in Appendix A (Table A.1), which was significantly different from other 

treatments. The lowest RSN-N was observed with the R-F-Model treatment (0.23 kg ha-1) 

at a depth of 150 cm, which was not significantly different from other treatments at the 

same depth (Figure 2.16). The R-F-Model treatment also had the lowest average RSN-N 

(2.79 kg ha-1) for all depths (30-150 cm) of the soil profile as shown in Appendix A 

(Table A.1), which was not significantly different from other treatments except reference 

and P-SD-UNL treatments. 
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Figure 2.15. Mean estimates by the environment (site and year) for post-harvest 

average RSN-N for SCAL site in 2017 arranged by depth for each treatment. 

Different letters indicate a significant difference at the 95% confidence level (alpha 

= 0.05) within depth. 
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Figure 2.16. Mean estimates by the environment (site and year) for post-harvest 

average RSN-N for SCAL site in 2018 arranged by depth for each treatment. 

Different letters indicate a significant difference at the 95% confidence level (alpha 

= 0.05) within depth. 
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At WCREC18, the highest RSN-N was observed with the reference treatment 

(61.11 kg ha-1) at a depth of 60 cm, which was significantly different from other 

treatments at the same depth. The reference treatment had the highest RSN-N (41.71 kg 

ha-1) at a depth of 90 cm, which was also significantly different from other treatments at 

the same depth (Figure 2.17). Also, the reference treatment had the highest average RSN-

N (24.23 kg ha-1) for all depths (30-150 cm) of soil profile as shown in Appendix A 

(Table A.1), which was significantly different from other treatments. The lowest RSN-N 

was observed with the check treatment (1.15 kg ha-1) at a depth of 120 cm, which was not 

significantly different from other treatments at the same depth (Figure 2.17). The check 

treatment had the lowest average RSN-N (3.59 kg ha-1) for all depths (30-150 cm) of soil 

profile as shown in Appendix A (Table A.1), which was not significantly different from 

other treatments except the reference treatment. 
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Figure 2.17. Mean estimates by the environment (site and year) for post-harvest 

average RSN-N for WCREC site in 2018 arranged by depth for each treatment. 

Different letters indicate a significant difference at the 95% confidence level (alpha 

= 0.05) within depth. 

 

 

0 5 10 15 20 25 30 35 40 45 50 55 60 65

30
60
90

120
150
180

30
60
90

120
150
180

30
60
90

120
150
180

30
60
90

120
150
180

30
60
90

120
150
180

30
60
90

120
150
180

30
60
90

120
150
180

30
60
90

120
150
180

Residual Soil Nitrate-N (kg ha-1)

30 90 60 120 150 180

Check

Reference

P-SD-

UNL

R-SD-

HS

R-F-

Model

R-F-SR-

Model

P-F-

Model

R-F-

Fixed

Treatment
WCREC 2018Depth (cm))

Check: 6.5 kg N ha-1

Reference: 287 kg N ha-1

P-SD-UNL: 158 kg N ha-1

R-SD-HS: 111 kg N h-1

R-F-Fixed: 127 kg N ha-1

R-F-Model: 107 kg N ha-1

R-F-SR-Model: 129 kg N ha-1

P-F-Model: 178 kg N ha-1

A

A

A

A

A

A

A

A

A

A

A

B

A

B

A

B

B

B

B

B

B

B

A

B

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

A

A

B

B

B

A

A



99 
 

 

Across all site years, the reference treatment had the highest average post-harvest 

RSN-N (21.09 kg ha-1) for effective root zone depth at 120 cm, which was significantly 

different from other treatments. This was expected since the reference treatment received 

the highest N application. The check treatment had the lowest average post-harvest RSN-

N (5.65 kg ha-1) at the same depth, which was not significantly different from other 

treatments except for reference and P-SD-UNL treatments. This was also expected since 

the check treatment did not receive N fertilizer except starter fertilizer.  

 Reactive fertigation treatments (R-F-Fixed and R-F-Model) reduced average 

post-harvest RSN-N for effective root zone depth at 120 cm by 5.33 kg ha-1 compared to 

the current recommended proactive sidedress UNL algorithm (P-SD-UNL treatment) and 

by 0.38 kg ha-1 compared to reactive sidedress H-S algorithm (R-SD-HS treatment). A 

similar result was also observed by Ferguson and Irmak, (2006) that reported a reactive 

approach guided by SPAD CM had lower residual nitrate-N than the currently 

recommended proactive sidedress UNL algorithm (P-SD-UNL treatment) in 60 cm depth 

of soil profile. The reactive fertigation treatment (R-F-SR-Model) and proactive 

fertigation treatment (P-F-Model) reduced average post-harvest RSN-N by 4.34 and 4.36 

kg ha-1, respectively, compared to P-SD-UNL treatment, but both treatments did not 

reduce RSN-N compared to R-SD-HS treatment at the same depth.  
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Overall Comparison Summary 
 

Table 2.9. shows overall average total N applied, grain yield, PFPN, AEN, REN, 

partial profit, and RSN-N across SCAL and WCREC sites in 2017 and 2018. The overall 

results across all site years showed that the reactive fertigation treatments (R-F-Fixed, R-

F-Model, and R-F-SR-Model) reduced total N applied by 65, 57, and 43 kg ha-1, 

respectively, compared to the current recommended proactive sidedress UNL algorithm 

(P-SD-UNL treatment) and by 28, 20, and 6 kg ha-1, respectively, compared to the current 

recommended reactive sidedress H-S algorithm (R-SD-HS treatment). The proactive 

fertigation treatment (P-F-Model) reduced total N applied by 35 kg ha-1 compared to the 

P-SD-UNL treatment and increased total N applied by 2 kg ha-1 compared to the R-SD-

HS treatment. The reactive fertigation treatments (R-F-Fixed, R-F-Model, and R-F-SR-

Model) and proactive fertigation treatment (P-F-Model) maintained grain yield compared 

to P-SD-UNL and R-SD-HS treatments. 

The reactive fertigation treatments (R-F-Fixed, R-F-Model, and R-F-SR-Model) 

increased PFPN by 55, 44, and 30 kg grain kg N-1, respectively, compared to the P-SD-

UNL treatment and by 34, 23, and 8 kg grain kg N-1, respectively, compared to the R-SD-

HS treatment. The proactive fertigation treatment (P-F-Model) increased PFPN by 23 and 

1 kg grain kg N applied-1, respectively, compared to the P-SD-UNL and R-SD-HS 

treatments. The reactive fertigation treatments (R-F-Fixed, R-F-Model, and R-F-SR-

Model) also increased AEN by 15, 14, and 9 kg grain increase kg N-1, respectively, 

compared to the P-SD-UNL treatment and by 7, 7, and 1 kg grain increase kg N-1, 

respectively, compared to the R-SD-HS treatment. The proactive fertigation treatment (P-

F-Model) increased AEN by 8 (kg grain increase kg N-1) compared to the P-SD-UNL 
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treatment, but did not increase AEN compared to the R-SD-HS treatment. The reactive 

fertigation treatments (R-F-Fixed, R-F-Model, and R-F-SR-Model) increased REN by 

0.08, 0.10, and 0.10 kg N uptake kg N-1, respectively, compared to the P-SD-UNL 

treatment, but was no more efficient than the R-SD-HS treatment. The proactive 

fertigation treatment (P-F-Model) increased REN by 0.09 kg N uptake kg N-1 compared to 

the P-SD-UNL treatment, but was no more efficient than the R-SD-HS treatment. 

The reactive fertigation treatments (R-F-Fixed, R-F-Model, and R-F-SR-Model) 

increased partial profit by 59, 54, and 20 $ ha-1, respectively, compared to the P-SD-UNL 

treatment and by 17 and 11 $ ha-1 for R-F-Fixed and R-F-Model, respectively, compared 

to the  R-SD-HS treatment, but R-F-SR-Model treatment did not increase partial profit 

compared to R-SD-HS treatment. The proactive fertigation treatment (P-F-Model) 

increased partial profit by 47 and 4 $ ha-1, respectively, compared to P-SD-UNL and R-

SD-HS treatments. 

The reactive fertigation treatments (R-F-Fixed, R-F-Model, and R-F-SR-Model) 

reduced RSN-N by 4.8, 4.5, and 4.3 kg ha-1, respectively, compared to the P-SD-UNL 

treatment, but did not reduce RSN compared to R-SD-HS treatment. In contrast, the 

proactive fertigation treatment (P-F-Model) reduced RSN by 3.96 kg ha-1 compared to 

the P-SD-UNL treatment but did not reduce RSN-N compared to the R-SD-HS treatment.



 

 

1
0
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Table 2.9. Overall average total N applied, grain yield, partial factor productivity of N (PFPN), agronomy efficiency 

(AEN), recovery efficiency (REN), partial profit, and post-harvest residual soil nitrate-N (RSN-N) across two site years. 

                  

 Treatment 

  
Check Reference 

P-SD-

UNL 

R-SD-

HS 

R-F-

Fixed 

R-F-

Model 

R-F-SR-

Model 

P-F-

Model 

Total N applied (kg ha-1)  6.5 295 170 133 105 113 127 135 

Grain yield (Mg ha-1)  10.43b 14.34a 13.93a 14.00a 13.93a 13.94a 14.04a 14.02a 

PFPN (kg grain kg N-1) - 48.68e 84.62d 105.94c 139.66a 128.81b 114.12c 107.15c 

AEN (kg grain kg N-1) - 13.48d 19.46c 27.10b 34.58a 33.71a 28.08b 26.96b 

REN (kg N uptake kg N-1) - 0.45c 0.52bc 0.71a 0.60ab 0.62ab 0.62ab 0.61ab 

Partial profit ($ ha-1)  1458.9c 1739.9b 1804.2ab 1846.8a 1863.4a 1858.2a 1823.9ab 1851.3a 

RSN-N (kg ha-1)  4.7c 16.7a 10.6b 5.9bc 5.77bc 6.1bc 6.3bc 6.6bc 
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Conclusion 

The integration of reactive sensor and proactive Maize-N model approaches were 

evaluated for determining N requirements via fertigation in corn. Results across all site 

years showed that the reactive fertigation treatments (R-F-Fixed, R-F-Model, and R-F-

SR-Model) reduced total N applied by 65, 57, and 43 kg ha-1, respectively, compared to 

the proactive sidedress UNL algorithm treatment and by 28, 20, and 6 kg ha-1 compared 

to the reactive sidedress H-S algorithm treatment with no significant difference in yield. 

The proactive fertigation treatment (P-F-Model) reduced total N applied by 35 kg ha-1 

compared to the proactive sidedress UNL algorithm treatment only. Across all site years, 

both reactive and proactive fertigation treatments showed a higher NUE as PFP and 

partial profit than the proactive sidedress UNL algorithm treatment and the reactive 

sidedress H-S algorithm treatment. Additionally, residual soil nitrate-N was reduced by 

reactive and proactive fertigation treatments compared to the proactive sidedress UNL 

algorithm treatment. Either sensor or model approaches, or the combination of both 

approaches have the potential to be effective methods to direct fertigation to improve 

NUE while increasing profit and reducing environmental impact.    
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Chapter 3: Testing The Maize-N Model for Nitrogen Fertilizer Rate, Nitrogen 

Uptake, and Soil Nitrate-N Predictions   

Introduction 
 

Crop simulation models integrate the current knowledge of plant growth and 

development from various disciplines, such as crop science, physiology, 

agrometeorology, soil science, and agronomy to simulate the behavior of a crop’s growth 

and development, yield formation, and biomass partitioning among organs (roots, stems, 

leaves, and grains) (Yang et al., 2004; Sandhu and Irmak, 2020). They synthesize our 

current quantitative understanding of crop growth processes as influenced by genotype, 

environmental conditions, and crop management (Yang et al., 2006; Oteng-Darko et al., 

2013). Crop simulation models have been widely used in research, teaching, and 

extension and have become an indispensable tool for supporting crop management 

decisions, scientific investigation, and to inform policymaking (Hammer et al., 2002; 

Yang et al., 2017).  

Crop simulation models attempt to account for spatial variability among fields 

and temporal variability between years by combining soil, crop, and management 

information with current and long-term weather to estimate corn nitrogen (N) demands 

(Setiyono et al., 2011; Sela et al., 2016). They have the potential to provide information 

for farmers to adjust in-season N application to synchronize soil N fertilizer application 

with crop N demand (Cassman et al., 2002; Thompson et al., 2015; Jin et al., 2017). 

Although several crop simulation models exist, such as a WOrld FOod STudies 

(WOFOST) (Supit et al., 1994), the Decision Support System for Agrotechnology 

Transfer (DSSAT) (Jones et al., 2003), a Cropping Systems simulator (CropSyst) 
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(Stöckle et al., 2003), and a System Approach to Land Use Sustainability (SALUS) 

(Basso et al., 2006) have been used to investigate soil-crop-weather dynamics (Puntel et 

al., 2016). They typically are not designed to support decisions about pre-plant or in-

season N rate recommendations (Thompson et al., 2015). Specific simulation models 

have been developed to recommend pre-plant and in-season N management in corn (Jin 

et al., 2017) such as the Quantitative Evaluation of the Fertility of Tropical Soils 

(QUEFTS) (Janssen et al., 1990), the Agricultural Production Systems sIMulator 

(APSIM) (Holzworth et al., 2006; Puntel et al., 2016), Adapt-N (Melkonian et al., 2008), 

and Maize-N (Setiyono et al., 2011).  

In this study, the Maize-N model was used as it is simple, easy to run, and 

requires relatively fewer input parameters compared to other crop simulation models. 

Maize-N is built on functions from the Hybrid-Maize crop simulation model (Yang et al., 

2004, 2006) for maize growth and yield prediction under rainfed and irrigated conditions, 

and from a mono-component model (Yang and Janssen, 2000) for simulating carbon (C) 

and N mineralization from soil organic matter (SOM) and crop residuals. Thus, the 

Maize-N model has been used as a useful tool for N management in corn that accounts 

for dynamic interactions between soil, crop management, and weather conditions 

(Setiyono et al., 2011; Thompson et al., 2015).  

The Maize-N model attempts to account for variability among fields and years by 

combining historical weather, current season weather, previous and current crop 

information, soil information, tillage system, various N credits, and prices for grain and N 

fertilizer to estimate economic optimum N rate (EONR). Besides predicting EONR (the 

N rate which optimizes profit), the Maize-N model was also developed to predict 
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available soil N supply and N uptake demand (Setiyono et al., 2011). Soil N 

mineralization from SOM, crop N uptake, and N losses can influence EONR (Puntel et 

al., 2016). Determining EONR by the Maize-N model depends on the prediction of N 

mineralization from SOM as it is affected by weather conditions such as temperature and 

precipitation (Leiros et al., 1999; Thompson et al., 2015; Banger et al., 2019; Yin et al., 

2020). Several studies have shown that uncertainty of weather conditions, particularly 

temperature and precipitation, and their impact on N mineralization and N losses is the 

main challenge to predicting EONR prior to planting (Melkonian et al., 2007; Setiyono et 

al., 2011; Puntel et al., 2016; Sela et al., 2016; Yin et al., 2020). Other studies have 

shown that EONR can be well predicted using the Adapt-N model (Sela et al., 2016; 

Rutan and Steinke, 2017). Prediction of plant N uptake using the QUEFTS model showed 

a good agreement with a relative root mean square error (RRMSE) of 10-15% between 

predicted and observed N uptake (Setiyono et al., 2010). A more recent study by Yin et 

al. (2020) reported that the Simulateur mulTIdisciplinaire pour les Cultures Standard 

(STICS) model showed reasonable agreement in simulating N uptake and soil N 

mineralization with relatively low RRMSE of 20-24% for N uptake and 16-21% for soil 

N mineralization. 

The Maize-N model has been used in simulating EONR in experiments conducted 

in western Corn Belt states in both irrigated conditions (central Nebraska and eastern 

South Dakota) and rainfed conditions (eastern South Dakota and western Nebraska) 

(Setiyono et al., 2011). The EONR simulated by Maize-N showed greater accuracy with 

lower root mean square error (RMSE) and mean error (ME) values than current 

university N recommendation approaches. A field study by Thompson et al. (2015) 
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conducted across 12 sites in Nebraska, Missouri, and North Dakota found that the EONR 

predicted by the Maize-N model was more closely estimated the linear-plateau derived 

ONR than a sensor-based approach. The model tended to overapply N, but better-

protected yield. They also, reported that the Maize-N model underestimated N 

mineralization from SOM. However, recent research conducted across eight U.S. 

Midwest Corn Belt states at 49 sites and three growing seasons showed that the Maize-N 

model performance in predicting EONR was lower than some other current N 

recommendation models (Ransom et al., 2020). Thus, the ability to predict pre-season N 

requirements still needs improvement, and much applied N fertilizer is not accounted for 

by crop uptake (Shapiro et al., 2018). Additionally, the Maize-N model has not been 

evaluated sufficiently for predicting in-season soil nitrate-N supply and N uptake. 

Therefore, there are opportunities to test and evaluate the model performance to improve 

these deficiencies by improving the predictions of the Maize-N model. 

The overall goal of this study was to test and evaluate the Maize-N model 

performance for predicting EONR, crop N uptake at V8 through R6, and soil nitrate-N 

supply at V8 through R5. The specific objectives were (i) to evaluate the EONR, crop N 

uptake, and soil nitrate-N supply predicted by the Maize-N model compare to the 

estimated ONR and calculated EONR, observed N uptake, and observed soil nitrate-N 

supply and (ii) to monitor crop N status and refine Maize-N model N uptake prediction 

using crop canopy sensor information. 
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Materials and Methods 

Study Site 

This study was conducted on two fields, over two corn growing seasons (2018 

and 2019) at the University of Nebraska-Lincoln research site at the South-Central 

Agriculture Laboratory (SCAL), near Clay Center, Nebraska, USA, and are referred to as 

SCAL18 and SCAL19 site years, respectively. For SCAL18, the geo-coordinates of the 

field are latitude 40° 34' 50.4732'' N, and longitude -98° 8' 40.7688'' W. For SCAL19, the 

geo-coordinates of the field are latitude 40° 34' 50.5632'' N, -98° 8' 40.504'' W. The soil 

for both fields was classified as Hasting silt loam (fine, montmorillonitic, mesic Udic 

Argiustolls) soil series with 0 to 1 percent slopes (Hammer et al.,1981). The location of 

the study sites was characterized as a transition zone between sub-humid and semi-arid 

climates. For SCAL18, the total precipitation received during the crop growing season 

from April 1 to September 30, 2018 was 506 mm. The average daily temperature was 

18.9⁰C and the average relative humidity was 74.6%. For SCAL19, the total precipitation 

received during the crop growing season from April 1 to September 30, 2019 was 599 

mm. The average daily temperature was 19.1⁰C and the average relative humidity was 

75.4% (HPRCC, 2019). The total precipitation received during the two growing seasons 

of the same period was higher than the thirty-year historical average (493 mm). The 

average temperature for both site years was slightly higher than the thirty-years historical 

average (18.7⁰C).         

Soil samples were collected at each site each year to characterize soil chemical 

properties and residual soil nitrate. Initial spring soil samples for the topsoil layer (0-20 

cm) were composited from four soil cores to obtain one sample for each replication. Four 
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soil cores were composited for the deep soil layers from 0 to 180 cm with 30 cm 

increments and one sample per depth for each replication to obtain a total of 24 soil 

samples. A summary of soil properties for the topsoil layer and previous crop for both 

site years are presented in Table 3.1.  

Table 3.1. Summary of soil properties for spring soil samples at depths of 0-20 cm 

and previous crop for SCAL18 and SCAL19 site years. 

                 

Site 

Year 

ID 

Soil 

Texture                   
pH† 

SOM‡ 

% 

CEC* 
meq 

100g-1 

NO3-N٭                   
mg  

kg-1 

P-M3ᵟ              
mg  

kg-1 

 K§               

mg 

 kg-1 

Previous 

crop 

SCAL18 SiL⁺ 6.6  3.3  15.8  11.8  32.6 334.3    corn 

SCAL19    SiL 6.5  3.3  16.0  8.2  29.8 315.3    corn 

⁺SiL is silt loam, †pH is 1:1 soil: water, ‡SOM is soil organic matter LOI %, *CEC is cation exchange 

capacity, ٭NO3-N is nitrate-nitrogen, ᵟP-M3 is Mehlich-3 soil phosphorus, §K is potassium extracted by 1 N 

ammonium acetate.  

 

 

Experimental and Treatment Design 

This study was a part of a large fertigation project. The experimental design was a 

randomized complete block design with five treatments and four replications. Individual 

plots were 6.1 m wide by 23.1 m length with eight maize rows with 0.76 m row width 

between rows. Corn was planted on May 2 for SCAL18 and May 14 for SCAL19 at a 

population of 84,000 plants ha-1 using Hybrid Fontanelle 6A327RBC for the SCAL18 site 

and Hybrid Channel 209-15 STXRIB for the SCAL19 site.  

Other than N fertilizer treatment, all other agronomic activities, including pest 

control were managed according to the University of Nebraska Extension Guidelines 

(Shapiro et al., 2019). Both site years were irrigated with a linear sprinkler irrigation 

system. Irrigation management was conducted according to the method developed by 

Irmak et al. (2005). Irrigation timing and amount were determined from a combination of 
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soil moisture content and crop growth stage monitoring with the use of Watermark soil 

moisture sensors (model 200SS) with a range of measurements from 0-239 kPa 

(IRROMETER Company, Inc., Riverside, CA, USA). Also, soil temperature sensors 

(model 200TS) were used to measure soil temperature. For both SCAL18 and SCAL19, 

fertilizer was applied according to UNL extension guidelines (Shapiro et al., 2019). 

Starter fertilizer was applied as ammonium polyphosphate 10-34-0 (NPK) (6.5 kg N ha-1 

and 22 kg P2O5 ha-1) and 0.32 kg ha-1 20% Zn for SCAL18 and as ammonium 

polyphosphate 10-34-0 (NPK) only with the same amount for SCAL19. The fertilizer 

was banded over the seed via the planter in both site years (Table 3.2). 

Five treatments used the Maize-N model for N management in Nebraska. The 

treatments were categorized as the following: check, calibration, and three proactive 

treatments. The check (unfertilized) treatment received only starter fertilizer to 

supplement phosphorus and zinc needs. This treatment is important to identify N uptake 

from indigenous sources, including residual soil nitrate-N, mineralized N from SOM, 

crop residues, deposition of atmospheric ammonium, and nitrate-N from irrigation water 

(Wortmann et al., 2011). A non-N limiting reference treatment was used as a calibration 

treatment to determine the relative N sufficiency status by normalizing sensor data and 

calculating the relative sufficiency index (SI) of target treatments (Blackmer and 

Schepers, 1995). The reference treatment was also used to represent maximum yield. The 

reference treatment received a non-limiting N rate of 280 kg N ha-1 as urea-ammonium 

nitrate (UAN) solution (32%N) after planting to be above crop needs to ensure that total 

N was sufficient throughout the growing season. Three treatments were labeled according 

to the Timing-Application Method-Rate. A proactive approach attempts to predict N 
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demand and supplement N to the crop before N deficiency occurs. The application 

method was sidedress by a backpack sprayer (ShurFlo SRS-600). The rate was predicted 

by the Maize-N model (Setiyono et al., 2011). The N source for all treatments was UAN 

32% N. The proactive treatments consisted of: (i) proactive-sidedress-model (P-SD-

model), (ii) proactive-sidedress-model minus 56 kg N ha-1 (P-SD-model - 56), and (iii) 

proactive-sidedress-model plus 56 kg N ha-1 (P-SD-model + 56) (Table 3.2). 



 

 

1
1
7
 

Table 3.2. Site year, treatment, planting date, starter N rate, application date, N rate, application date, and N 

application method for five treatments for SCAL18 and SCAL19 site years.  

                

Site Year     

ID  
Treatment 

 
 

Application 

Date 

Sidedress†     

N Rate    

(kg ha-1) 

Application 

Date 

Total N     

(kg ha-1) 

 Starter⁺   

Planting 

Date 
N Rate  

  (kg N ha-1) 

SCAL18 Check 2-May 6.5 2-May 0 - 6.5 

 P-SD-Model -56    78 25-May 85 

 P-SD-Model    135  141 

 P-SD-Model +56    191  197 

 Reference    280  287 

  
                                                                                 

SCAL19 Check 14-May 6.5 14-May 0 - 6.5 

 P-SD-Model -56    110 13-Jun 116 

 P-SD-Model    166  172 

 P-SD-Model +56    222  228 

  Reference       280   287 

⁺ Indicates Liquid ammonium polyphosphate (10-34-0) (NPK) banded for all treatments as starter N. 

† Indicates Urea-Ammonium Nitrate (UAN) solution (32%N). 
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Maize-N Model-Determined Economically Optimal N Rate (EONR) 

The N rate requirements for the P-SD-model treatment were determined by the 

Maize-N model. The Maize-N model was developed to estimate the EONR for corn by 

taking into account current weather (up to the time of application) and long-term average 

weather (from time of application to crop maturity), current and previous crop 

information, crop rotation, N fertilizer information, tillage system, soil properties, N 

credits, and indigenous soil N supply (Setiyono et al., 2011). All these input values were 

entered into the model to predict available soil nitrate, N uptake demand, and EONR 

(Table 3.3). Maize-N model version 2017 was used for both SCAL18 and 2019 growing 

seasons. The model uses real-time weather data from the end of the previous season to 

the current to estimate the amount of N mineralization and crop growth that had already 

occurred and uses long-term average daily weather data to predict N mineralization and 

crop growth for the rest of the season until crop maturity.  

In order to improve Maize-N model predictions, inputs to the Maize-N model 

were adjusted and tested at the end of each season for nitrate-N prediction. In this study, 

the adjustment process used additional information as below:  

• Default air temperature values were replaced with measured soil temperature during the 

growing season (from 19-June for SCAL18 and from 17-June for SCAL19 to the end of 

each growing season).  

• Default values of bulk density and measured values of SOM for the top 20 cm were 

replaced with measured values of bulk density and measured values of SOM for the top 

30 cm of soil. 
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• Default values of the ratio of SOC below topsoil to the amount of SOC in the topsoil 

(20 cm) replaced with measured values for the top 30 cm of soil.  

Maize-N model inputs, processes, and outputs used to predict EONR are provided 

in Table 3.3 and the Maize-N model decision-making process to predict EONR is 

shown in Figure 3.1. The input and output values of the Maize-N model prediction for 

SCAL18 and SCAL19 are shown in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1
2
0
 

Table 3.3. Maize-N model inputs, processes, and outputs used to predict the economically optimal N rate (EONR). 

Table adapted from Setiyono et al., (2011). 

Inputs Processes Outputs 

➢ Long-term weather data: Daily maximum 

and minimum air temperature, solar radiation, 

relative humidity, precipitation, and 

evapotranspiration 

 

 

 

Maize yield & 

variation 

(Hybrid-Maize 

model) 

 

 

 

 

Soil C & N 

mineralization         

(DK C & N model) 

 

 

 

 

N use efficiencies 

(QUEFTS, f (Ya, Y0)) 

 

 

 

 

Maize yield response 

 to N rate                    

(Spherical model) 

 

 

➢ Economically optimal N rate (EONR) 

➢ Current Maize Crop: Irrigated or rainfed 

system, maturity, planting date, plant 

population, grain price, and yield history 

(optional)     

 

➢ N fertilizer: N already applied, N to be 

applied, and fertilizer cost 

➢ Last Crop: Type, yield, total N applied, date 

of maturity, amount of crop residue left in the 

field, root-zone soil moisture at crop maturity, 

and % of the field capacity   

 

➢ N use efficiencies: Recovery efficiency 

(RE), physiological efficiency (PE), and 

agronomic efficiency (AE) 

➢ Nitrogen Fertilizer Management: N already 

applied, dates, amount, N to be applied, type 

of fertilizer, N content, price, and N from 

irrigation water 

➢ Yield: Yield potential, yield at EONR,  

      and yield without N fertilizer 

 

➢ Tillage: Type and date of tillage operation 

➢ Total N uptake demand: N uptake from 

indigenous sources, total: from N-leftover, 

SOM min., crop residues min., manure, 

slow-release fertilizer, and irrigation water 

➢ Soil properties: Top-soil organic matter 

(SOM) content %, top-soil bulk density, soil 

texture, soil pH, and soil root zone depth 

➢ N leaching: Season up to date N leaching, 

long-term average N leaching loss of the 

same period 

➢ Measured root zone soil nitrate: The 

amount and date of sampling 

➢ Seasonal C & N mineralization 

dynamics 

➢ Manuring: Type, moisture content, amount, 

and date of application 

➢ Interactive yield response to N rate 
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Figure 3.1. Maize-N model decision-making process to predict the economically 

optimal N rate (EONR). Figure adapted from personal communication with Dr. 

Haishun Yang (UNL). 

 

 

Crop Canopy Sensing 
 

The RapidScan CS-45 (RS) active crop canopy sensor (Holland Scientific, 

Lincoln, NE, USA) and SPAD chlorophyll meters (SPAD CM) (Spectrum Technologies 

Inc.) were used to monitor crop N status and refine Maize-N model N uptake prediction. 

The RS is an active handheld crop canopy sensor that integrates a data logger, GPS, crop 

sensor, and power source into one small unit with a modulated polychromatic light source 

and three measurement channels: 670, 730, and 780 nm. Reflectance from these three 

channels was used to obtain the normalized difference red edge index (NDRE) (Li et al., 

2014). Sensing was conducted in the middle of each plot (sensing area). The sensing area 
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of each plot consisted of the two middle rows of each plot with 9 m length from the 

vegetative six-leaf collar (V6) to tasseling (VT) growth stages by holding the RS unit in 

the nadir position at the recommended height of approximately 1 meter above the canopy 

and walking directly over each row for each plot. Measurements of the sensor were 

moved to be taken between three rows instead of directly over two rows from VT through 

physiological maturity (R6) growth stages. The NDRE values were generated and 

averaged for each row to obtain one mean value for each plot.  

The SPAD CM is an active handheld crop leaf sensor (contact sensor) that 

measures light transmittance properties of leaves in two wavelengths (650 and 940 nm) 

by clamping it on the crop leaf and emitting its own light to monitor crop N status. In the 

field, fifteen readings per row from the middle two rows (total of thirty readings) were 

collected (from the sensing area as described above). Sensor measurements were taken 

from halfway between the leaf margin or edge and the leaf midrib from the newest fully 

expanded leaf before the VT growth stage, and from the ear leaf after the VT growth 

stage. The SPAD CM values were generated and averaged to obtain one mean value for 

each plot.  

Biomass and Soil Samples  

Whole plant samples (aboveground biomass) were collected six times for 

SCAL18 and five times for SCAL19 during the growing season at various growth stages. 

For SCAL18, biomass samples were collected at vegetative stages [eight leaf collar (V8) 

and fourteen leaf collar (V14)] and reproductive stages [silking (R1), milk (R3), dent 

(R5), and physiological maturity (R6)]. For SCAL19, biomass samples were collected at 

vegetative stages [seven leaf collar (V7), twelve leaf collar (V12), and VT] and 
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reproductive stages [R3 and R6]. Six plants were sampled randomly for each plot by 

collecting three plants from each adjacent row of the sensing area (2 rows were selected 

in the middle of each plot with 9 m length). Plants were separated from the ear (for 

samples after silking), bagged, weighed, chopped, and dried at 70°C until constant 

weight. Ears were air-dried, shelled, and weighed. Total aboveground biomass samples 

(stover and grain) were analyzed for total N to calculate total aboveground N uptake.  

Soil samples were collected five times for SCAL18 and four times for SCAL19 

during the growing season at various corn growth stages to quantify soil nitrate-N. For 

SCAL18, soil samples were collected at vegetative stages [eight leaf collar (V8) and 

fourteen leaf collar (V14)] and reproductive stages [silking (R1), milk (R3), and dent 

(R5)]. For SCAL19, soil samples were collected at vegetative stages [seven leaf collar 

(V7), twelve leaf collar (V12), and tasseling (VT)] and reproductive stage [milk (R3)]. 

Soil samples were collected at four depths in 30 cm increments to 120 cm and four soil 

cores were composited for one sample per depth, four samples per treatment for each 

replication to obtain a total of 80 soil samples. Soil samples were collected in between 

two rows of the sensing area. Plots (sensing area with two rows for 9 m length) were 

hand-harvested on October 3, 2018, for SCAL18 and October 16, 2019, for the SCAL19 

to obtain grain yield. Grain was shelled, weighed, and adjusted to 0.155 g g-1 moisture 

content. 
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Statistical Analysis 

Estimation ONR and Calculation Actual EONR  
 

An estimation of the ONR and calculation of actual EONR for SCAL18 and 

SCAL19 were required in order to compare it with the EONR predicted by the Maize-N 

model. The relationship between yield and N rate was determined using polynomial 

regression. Regression analysis was done using PROC GLIMMIX in Statistical Analysis 

System (SAS) version 9.4. A lack-of-fit term was used to determine whether orders 

higher than those stated in the model needed to be included. The quadratic regression 

model was used to fit the relationship between yield and N rate to determine ONR. 

Actual EONR was calculated from modeled yield including the cost of 32% UAN which 

was $0.90 kg-1 for 2018 and $0.88 kg-1 for 2019, and the price of corn which was $0.14 

kg-1 for 2018 and $0.15 kg-1 for 2019. Fertilizer cost was subtracted from grain price to 

determine the partial profit in $ ha-1. Actual EONR was determined as the N rate with the 

highest partial profit for both site years. 

Evaluation of Maize-N Model Performance 
  

Statistical and graphical methods were used to evaluate the Maize-N model 

goodness of fit. The root mean square error (RMSE) and the relative root mean square 

error (RRMSE) were calculated for the statistical evaluation as below: 

 

                  RMSE = √
∑ (Ρi−Οi)²n

i=1

𝑛
                                           [3.1] 

                           RRMSE =  
RMSE

Ō
× 100                                          [3.2] 
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where,  

        Pi is the Maize-N predicted value 

        Oi is the observed value  

        n is the number of data pairs 

        Ō is the mean observed value 

 

The RMSE provides the average difference between predicted and observed values, 

whereas RRMSE provides the relative difference between predicted and observed values. 

A lower value of RMSE or RRMSE indicates better model performance. In this study, we 

considered RRMSE ≤ 15% as “good” agreement; 15–30% as “moderate” agreement; and 

≥30% as “poor” agreement (Puntel et al., 2016, 2018; Yin et al., 2020). 
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Results and Discussion  

Estimated ONR and Calculated Actual EONR Compared to Predicted EONR  
 

There was no need to include a cubic term or higher in the analysis since the lack-

of-fit (lof) term was not significant with a p-value of 0.4456 and 0.7092 for SCAL18 and 

SCAL19, respectively (Table 3.4 and Table 3.5).  

Table 3.4. Type I Test of Fixed Effects for each term in the quadratic regression 

model for the SCAL18 site year. 

 

Type I Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

N_rate 1 15 83.02 <.0001 

N_rate*N_rate 1 15 33.95 <.0001 

lof 2 15 0.85 0.4456 

 

Table 3.5. Type I Test of Fixed Effects for each term in the quadratic regression 

model for the SCAL19 site year. 

 

Type I Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

N_rate 1 15 225.87 <.0001 

N_rate*N_rate 1 15 49.00 <.0001 

lof 2 15 0.35 0.7092 

 

Therefore, the regression quadratic predictors can be written as: 
 

                                                      𝑌̂ = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2                                           [ 3.3] 

where,  

           𝑌̂ is estimated corn yield 

          𝑋 is the N rate 

          𝛽0 is the intercept 

          𝛽1is the linear coefficient 

          𝛽2 is the quadratic coefficient. 

 

The estimates for the coefficients for SCAL18 and SCAL19 to determine ONR 

are shown in Table 3.6. The PROC RSREG from SAS was used to determine the optimal 
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value of the N rate. The quadratic model using canonical analysis was used to estimate 

the N rate value that yields the maximum estimated yield as provided in Equations 3.4 

and 3.5.     

Table 3.6. The estimates of the coefficients for SCAL18 and SCAL19 sites are shown 

below: 

SCAL18 

Parameter Estimates 

Effect Estimate Standard 

Error 

DF t Value Pr > |t| 

Intercept 8.8473 0.4016 17 22.02 <.0001 

N_rate 0.05143 0.006179 17 8.32 <.0001 

N_rate*N_rate -0.00012 0.000020 17 -5.88 <.0001 

Scale 0.6042 0.2072 . . . 

SCAL19 

Parameter Estimates 

Effect Estimate Standard 

Error 

DF t Value Pr > |t| 

Intercept 6.2118 0.2625 17 23.66 <.0001 

N_rate 0.04543 0.003933 17 11.55 <.0001 

N_rate*N_rate -0.00009 0.000013 17 -7.28 <.0001 

Scale 0.2467 0.08461 . . . 

 

The equations of the curves for SCAL18 and SCAL19 respectively are given by: 

                Estimated Yield =  −0.00012 X2 + 0.05143X + 8.8473                          [3.4] 

                Estimated Yield =  −0.00009 X2 + 0.04543X + 6.2118                          [3.5]  

where X is the N rate. 

An estimation of the ONR and calculation of actual EONR were required in order 

to compare with predicted EONR using the Maize-N model for SCAL18 and SCAL19 

site years. The relationship between yield and N rate was fitted using the quadratic 

regression model as shown in Figure 3.2. The quadratic model well-described corn grain 

yield response to N fertilizer rate. The ONR estimated using the quadratic model and 

actual EONR using the modeled yield were compared to the EONR predicted by the 



128 
 

 

Maize-N model which represents the N rate applied for SCAL18 and SCAL19 (Table 

3.2). The ONR values were estimated as the N rate needed to achieve maximum yield. 

Whereas the EONR values were calculated as the optimum economic N rate from 

modeled yield with fertilizer cost and corn price as inputs as same as fertilizer cost and 

corn price used to predict EONR by Maize-N. Therefore, the N rate recommendations for 

calculated actual EONR or predicted EONR were generally lower than the N rate 

recommendations for ONR. 
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Figure 3.2. Corn grain yield response to N fertilizer rate for five treatments (Check, 

P-SD- model minus 56, P-SD-model rate, P-SD-model plus 56, and reference 

respectively). The vertical lines represent estimated ONR derived using the 

quadratic model, calculated actual EONR from modeled yield, and Maize-N 

predicted EONR including fertilizer cost and corn price for SCAL18 (Top) and 

SCAL19 (Bottom).  
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The EONR predicted by Maize-N as shown in Table 3.2 and Figure 3.2 (141 kg 

ha-1 for SCAL18 and 172 kg ha-1 for SCAL19) was compared with the ONR estimated by 

the quadratic model (218 kg ha-1 for SCAL18 and 239 kg ha-1 for SCAL19) (Figure 3.2) 

and with actual EONR calculated from modeled yield (187 kg ha-1 for SCAL18 and 220 

kg ha-1 for SCAL19) (Figure 3.2). 

The EONR predicted by Maize-N underestimated N recommendation compared 

to the estimated ONR by -77 and -67 kg N ha-1 for SCAL18 and SCAL19, respectively, 

and to the calculated actual EONR, by -46 and -48 kg N ha-1 for SCAL18 and SCAL19, 

respectively. A similar result was noted by Ransom et al. (2020) that the Maize-N model 

underestimated N recommendation by -70 kg ha-1 compared to EONR across 49 sites in 

US Corn Belt. In contrast, Thompson et al. (2015) reported that the EONR predicted by 

the Maize-N model closely estimated ONR when data was combined across 12 sites. 

They concluded that the Maize-N model tended towards the over-application of N. 

However, in this study, although there were no significant differences in the yields for 

calculated actual EONR, predicted EONR, and estimated ONR, the Maize-N predicted 

EONR reduced profit by 36 $ ha-1 and 20 $ ha-1 for SCAL18 and by 31 $ ha-1 and 26 $ 

ha-1 for SCAL19 compared to calculated actual EONR and estimated ONR, respectively. 
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Yield Response to Treatments 
 

Grain yield tended to increase with the N rate, but not significantly. Yield with 

EONR predicted by the model was not different from the yield with model plus 56 kg N 

ha-1 and reference treatments as shown in Table 3.7. In general, the average corn yield for 

SCAL18 was higher for all N treatments compared to the average corn yield for SCAL19 

(Table 3.7) due to hail and wind damage at the R2 growth stage in 2019 that affected 

yield.   

Table 3.7. Site year, treatment, and yield for SCAL18 and SCAL19 site years. 

Means followed by the same letter are not significantly different at P≤0.05.  

 

      

Site Year       Treatment Yield 

 (Mg ha-1) 

SCAL18   Check     9.3 c 

  P-SD-model -56 12.0 b 

  P-SD-model 13.9 a 

  P-SD-model +56 14.6 a  

  Reference 13.8 a 

   
SCAL19   Check     6.5 c 

  P-SD-model -56 10.3 b 

  P-SD-model   11.1 ab 

  P-SD-model +56 11.8 a  

   Reference 11.5 a 

 

 

Monitoring Crop N Status  

 

The SPAD CM sensor was used to monitor the crop and detect crop N status 

during the growing season. It was used to determine if additional N application was 

needed based on the sensor sufficiency index (SI) information that was computed during 

the growing season. No additional N needed since the SPAD SI values were above the 
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threshold of 0.95 through the growing season until the R5 growth stage for SCAL18 and 

until the R3 growth stage for SCAL19. Earlier studies have shown that when the SI is 

above 0.95, there is little likelihood of yield increase with additional N. Also, applying 

additional N after R3 was not recommended as N application doesn’t coincide with the 

period of rapid N uptake that results in a greater risk of N loss (Shanahan et al., 2008). 

These results supported the Maize-N prediction of EONR for both site years, with no 

need for in-season N. 

Observed and Predicted Total N Uptake Comparison  

 

The difference in observed and predicted total N uptake were derived for each 

growing season, then analyzed for correlation. Differences between predicted and 

observed values were treated as repeated measures. A linear regression of differences 

with an autoregressive (AR(1)) covariance structure was used to account for the repeated 

measures. The regression model was then used to construct 95% confidence intervals for 

each day that the plant N uptake and soil nitrate-N were measured.   

Differences between observed and predicted crop N uptake gradually increased 

with time from the V12 growth stage to the R6 growth stage for SCAL18 (Figure 3.3 A). 

For SCAL19, the differences between predicted and observed N uptake did not have a 

consistent pattern for all growth stages (Figure 3.3 B). For SCAL18, the Maize-N 

underpredicted N uptake compared to observed N uptake for all growth stages. The 

model-predicted N uptake showed a significant difference from the observed N uptake 

values for all growth stages (V12, R1, R3, R5, and R6) except at the early growth stage 

(V8) as shown in Figure 3.3 A. For SCAL19, the model predicted N uptake slightly 

overestimated observed N uptake. The model predicted N uptake showed a non-
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significant difference from the observed N uptake values across all growth stages as 

shown in Figure 3.3 B.  

 
 

Figure 3.3. Predicted and observed N uptake for uncalibrated model treatment for 

SCAL18 (A) (n = 6) and SCAL19 (B) (n = 5) at V8, V12, R1, R3, R5, and R6 growth 

stages. Different letters indicate a significant difference from each other at the 95% 

confidence limits (alpha = 0.05). 
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Figure 3.4 shows the relationship between predicted and observed N uptake for 

the uncalibrated Maize-N model for SCAL18 and SCAL19 site years. The Maize-N 

model explained 99% and 92% of the observed variability in N uptake for SCAL18 and 

SCAL19, respectively. The model predicted N uptake underestimated N uptake for 

SCAL18 and overestimated N uptake for SCAL19. The difference in N uptake between 

predicted and observed values were larger for SCAL18 (RMSE= -31.9 kg N ha-1) than 

SCAL19 (RMSE= 17.5 kg N ha-1). Thus, a moderate agreement between predicted and 

observed N uptake was observed for SCAL18 (RRMSE= 19.1%) and good agreement 

was observed for SCAL19 (RRMSE= 12.7%) as shown in Figure 3.4. Overall results 

showed that the Maize-N model over the two years underestimated N uptake, with the 

difference in N uptake between predicted and observed values as RMSE was -24.7 kg N 

ha-1. Consequently, the overall model showed moderate agreement (RRMSE 15.9%) 

between predicted and observed N uptake. Similar results were also reported from other 

crop model N uptake predictions (Setiyono et al., 2010). They showed that the RMSE 

was 37 kg N ha-1 between predicted and observed values and RRMSE was 15%, which is 

considered good agreement, similar to the overall RRMSE across two site years in the 

current study.   
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Figure 3.4. Predicted versus observed N uptake for uncalibrated model treatment. 

The coefficient of determination (R2), root mean square error (RMSE), and relative 

root mean square error (RRMSE) are for SCAL18 (n = 6) and SCAL19 (n = 5). The 

dashed line is the linear regression and the continuous line is a 1:1 relationship. 

 

 

Refining Model N Uptake Prediction using Sensor Information 
 

Crop sensor information was used in order to refine the Maize-N model N uptake 

prediction. Based on a statistical analysis of the Type III Tests of Fixed Effects (Table 

3.8), the p-values for SPAD and NDRE measurements were 0.3066 and 0.5740, 

respectively. These p-values indicate that treatments had no significant effect on SPAD 

or NDRE measurements, and therefore this information cannot be used to refine model 

predictions, at least for this study. This non-significant result could have arisen from the 

low number of observations used in the analysis. Increasing the number of observations is 

recommended to have a more powerful test to detect an effect for sensor measurements. 
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Table 3.8. Type III Test of Fixed Effects for site year, SPAD, and NDRE for the 

SCAL18 and SCAL19 site years. 

 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SiteYear 1 5 10.33 0.0236 

SPAD 1 5 1.30 0.3066 

NDRE 1 5 0.36 0.5740 

 
 

Observed and Predicted Soil Nitrate-N Before and After Calibration Comparison 
 

Figure 3.5 and Figure 3.6 show observed and predicted soil nitrate-N for the 

uncalibrated and calibrated Maize-N model at the R6 growth stage (maturity) for 

SCAL18 and SCAL19. For SCAL18, the uncalibrated model prediction of soil nitrate-N 

differed from observed soil nitrate-N values for all growth stages. (Figure 3.5 A). For the 

calibrated model, the prediction of soil nitrate-N differed from the observed nitrate-N for 

all growth stages except the V8 growth stage. (Figure 3.5 B).  

For SCAL19, the uncalibrated model prediction of soil nitrate-N differed from 

observed soil nitrate-N for all growth stages except the R3 growth stage (Figure 3.6 C). 

For the calibrated model, the model prediction of nitrate-N was not significantly different 

from the observed nitrate-N for all growth stages (Figure 3.6 D).   
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Figure 3.5.  Predicted and observed soil nitrate-N for model treatment for SCAL18 

(n = 5) at V8, V12, R1, R3, and R5 growth stages. Uncalibrated (A) and calibrated 

(B) model prediction at R6. Different letters indicate a significant difference at the 

95% confidence limits (alpha = 0.05). 
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Figure 3.6. Predicted and observed soil nitrate-N for model treatment for SCAL19 

(n = 4) at V8, V12, R1, and R3 growth stages. Uncalibrated (C) and calibrated (D) 

model prediction at R6. Different letters indicate a significant difference at the 95% 

confidence limits (alpha = 0.05).  
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Figure 3.7 shows the relationship between observed and predicted available soil 

nitrate-N for the uncalibrated and calibrated Maize-N model at the R6 growth stage for 

SCAL18 (top) and SCAL19 (bottom) site years. The Maize-N model explained 93% of 

variation in soil nitrate before calibration and 94% of variation in soil nitrate after 

calibration for SCAL18. For SCAL19, the Maize-N model explained 87% of variation in 

soil nitrate before calibration and 85% of the variation in soil nitrate after calibration. 

Soil nitrate-N was overestimated by Maize N for both SCAL18 and SCAL19 site 

years. The differences in soil nitrate-N between predicted and observed values were 

greater before calibration than after calibration. For SCAL18, the RMSE ranged from 

75.3 kg N ha-1 before calibration to 57.4 kg N ha-1 after calibration (Figure 3.7). For 

SCAL19, the RMSE ranged from 44.7 kg N ha-1 before calibration to 13 kg N ha-1 after 

calibration (Figure 3.7). Model predictions before and after calibration showed poor 

agreement (RRMSE >30%) for all uncalibrated and calibrated model predictions except 

the calibrated model for SCAL19, that showed moderate agreement (RRMSE <30%) as 

shown in Figure 3.7. The overall RMSE for both years reduced from 60 kg N ha-1 before 

calibration to 35.2 kg N ha-1 after calibration. Overall model prediction agreement as 

RRMSE improved from 116.6% before calibration to 64.7% after calibration. 
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Figure 3.7. Predicted versus observed soil nitrate-N for an uncalibrated and 

calibrated model for SCAL18 (n=5) (top) and uncalibrated and calibrated model for 

SCAL19 (n=4) (bottom). The coefficient of determination (R2), root mean square 

error (RMSE), and relative root mean square error (RRMSE) for both site years. 

The dashed line is the linear regression and the continuous line is the 1:1 

relationship. 
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Factors Affecting N Mineralization (Soil Nitrate-N) 

 

Maize-N model prediction of soil nitrate-N is based on mineralization of SOM. 

The amount of nitrate-N mineralized depends on the amount of SOM, the C: N ratio of 

SOM, and environmental factors such as temperature and moisture (Janssen, 1996; Leiros 

et al., 1999; Watson C.A. et al., 2002; Yin et al., 2020). In general, when the SOM of the 

site increases, predicted N mineralization increases (Myrold and Bottomley, 2008). In 

this study, SOM was the same for both SCAL18 and SCAL19 site years, with similar 

average daily air temperature. However, SCAL19 received approximately 93.6 mm more 

precipitation than SCAL18 during the growing season. Thus, N mineralization was 

expected to vary by year even when the SOM content was the same, since precipitation 

influences N mineralization and N loss (Thompson et al., 2015). The above-average 

precipitation for May and June for SCAL19 likely increased N loss, reduced N supply, 

and resulted in a higher EONR (Rutan and Steinke, 2017). The model-estimated EONR 

for SCAL19 was higher than SCAL18 by 31 kg N ha-1. The N mineralization from SOM 

for SCAL19 was lower than in SCAL18 by 27 kg N ha-1, and residual nitrate-N for 

SCAL19 was higher than in SCAL18 by 15 kg N ha-1. 

Results from the uncalibrated and calibrated model prediction showed that the 

predicted soil nitrate-N was overestimated for SCAL18 and SCAL19 site years (Figure 

3.7). In contrast, Maize-N underestimated N mineralization in a similar study conducted 

across 12 site years (Thompson et al., 2015). In this study, after calibration, the 

differences in soil nitrate-N between predicted and observed values as RMSE were 

reduced by 17.9 kg N ha-1 for SCAL18 and by 31.7 kg N ha-1 for SCAL19. As a result, 

model prediction agreement as RRMSE improved by 31% for SCAL18 and 72.7% for 
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SCAL19. The overall RMSE over both site years was reduced by 24.8 kg N ha-1 with 

calibration; thus the overall model prediction agreement over both site years was 

improved by 51.9%.  

The improvement in Maize N prediction of soil nitrate-N resulted from using 

actual values of specific input parameters instead of estimates. These included actual bulk 

density at a depth of 30 cm instead of estimated bulk density at a depth of 20 cm, and 

measured SOM for the top of 30 cm instead of measured SOM for the top 20 cm. Also, 

the calibrated model used the measured ratio of subsoil to topsoil SOM. Finally, the 

measured soil temperature (average of 15-106 cm depth) was used during the growing 

season from mid-June to the end of the season for each site year instead of air 

temperature. The use of measured soil temperature during the growing season with an 

uncalibrated model prediction at R6 reduced the differences in soil nitrate-N between 

predicted and observed values as RMSE by 3.4 kg N ha-1 and 6.9 kg N ha-1 for SCAL18 

and SCAL19, respectively. Differences between predicted and observed soil nitrate-N 

improved by 5.9 and 15.9% for SCAL18 and SCAL19, respectively. The improvements 

of the RMSE and RRMSE between predicted and observed soil nitrate-N were higher for 

SCAL19 than for SCAL18 due to the effect of using soil temperature data for two 

growing seasons than using soil temperature for one growing season.  

 

 

 

 



143 
 

 

Conclusion 
 

The Maize-N model was tested and evaluated for EONR, N uptake, and soil 

nitrate-N predictions. This study showed that Maize-N is a useful tool for the prediction 

of EONR and crop N uptake. The study provided evidence that the use of the calibrated 

Maize N model (using measured soil temperature, measured soil bulk density, measured 

SOM for the top 30cm, and the measured ratio of SOC in subsoil to topsoil) can improve 

the ability of Maize N to predict soil nitrate-N during the growing season. The Maize-N 

predicted EONR underestimated N rate recommendations by 46 kg N ha-1 for SCAL18 

and by 48 kg N ha-1 for SCAL19 compared to the calculated actual EONR, but with no 

significant differences in the yield. However, the Maize-N predicted EONR reduced 

profit by 36 $ ha-1 for SCAL18 and by 31 $ ha-1 for SCAL19 compared to the calculated 

actual EONR. Crop N uptake errors were within the range of -31.9 for SCAL18 to +17.5 

kg N ha-1 for SCAL19. Over the two site years combined, the model slightly 

underestimated observed N uptake with root mean square error (RMSE) of -24.7 kg N ha-

1 and agreement as relative root mean square error (RRMSE) of 15.9%. Crop sensor 

information was useful to monitor crop N status, but could not be used to refine model N 

uptake prediction for this study. For soil nitrate-N, Maize N overestimated soil nitrate-N 

for both SCAL18 and SCAL19 site years. The calibrated Maize-N model reduced RMSE 

of soil nitrate-N prediction by 17.9 kg N ha-1 for SCAL18 and by 31.7 kg N ha-1. The 

overall RMSE of soil nitrate-N prediction over two years was reduced by 24.8 kg N ha-1. 

Additionally, the calibrated Maize-N model improved RRMSE agreement of soil nitrate-

N prediction by 31% for SCAL18 and by 72.7% for SCAL19. The overall RRMSE of 

soil nitrate-N prediction improved by 51.9%.  
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Chapter 4: Can an Active or Passive Crop Canopy Sensor Replace the SPAD Meter 

for Scheduling Fertigation? 

Introduction 
 

Applying a portion of  N fertilizer during the growing season has the potential to 

improve N use efficiency (NUE) by attaining greater synchrony between N supply and 

crop N demand, and allows for responsive adjustments to actual field conditions 

(Thompson et al., 2015; Thompson and Puntel, 2020). Thus, in-season assessment of 

plant N status is an important component of N management to adjust additional N 

requirements. Various sampling techniques have been used to assess plant N status, such 

as destructive plant tissue testing (Fox and Walthall, 2008) and non-destructive 

measuring of crop canopy light reflectance using a crop sensor. A non-destructive 

reactive approach using a crop sensor has the potential to provide a rapid, larger sample 

size that is a more inexpensive and accurate technique than destructive sampling to 

monitor crop N status (Morris et al., 2018; Naser et al., 2020). Crop canopy reflectance 

can be used to detect N status using a crop sensor during the growing season. Because the 

majority of leaf N is contained in chlorophyll molecules, a strong linear relationship 

exists between leaf chlorophyll content and leaf N content (Shaver et al., 2010; Schmidt 

et al., 2011). As a result, a non-destructive reactive approach focused on using crop 

sensors to quantify leaf chlorophyll content to assess crop N status. Reactive approach-

based crop sensors can be effective indicators of in-season crop N need that integrate 

crop growing conditions including weather effects on the crop from the time of planting 

to near the time of sensing (Thompson et al., 2015).   

The SPAD (Soil and Plant Analysis Development) meter measures the light 
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transmittance properties of leaves in two wavelengths (650 and 940 nm) (Solari et al., 

2008), which is strongly correlated with leaf chlorophyll content (Samborski et al., 2009). 

Several studies have shown that the SPAD meter can be used as a tool to provide rapid 

and nondestructive estimates of crop chlorophyll content and N status through the entire 

corn growing season as a simple to use, reliable, and accurate tool to detect N deficiency 

(Al-Abbas et al., 1974; Scharf and Lory, 2006; Varvel et al., 2007; Scharf et al., 2011), 

which eliminates plant tissue sampling to quantify N content (Blackmer and Schepers, 

1995). Although the SPAD meter has the potential to provide a rapid in-season 

assessment of crop N status to recommend additional N fertilizer, one shortcoming is that 

the SPAD meter measurements are taken by hand and for specific plants, making this a 

non-realistic approach for variable rate N management at the field level. Additionally, the 

SPAD meter approach is labor-intensive and time-consuming with smaller sample sizes 

than canopy reflectance sensors or aerial imagery. 

Proximal and remote sensing have been used extensively for in-season N 

management that provides an estimate of crop N status over a large field area that 

accounts for spatial variability and efficiently supports decisions on N supplements 

(Morris et al., 2018; Thompson and Puntel, 2020). Canopy light reflectance properties 

can be measured by proximal sensors (active sensors) or by passive sensors mounted on 

an aerial platform. As a result, both active and passive crop canopy sensors can monitor 

and assess plant N status through the growing season.  

Passive sensors use sunlight as their energy source and measure reflected light 

from the target emitted from the sun (Souza et al., 2017). Passive sensors can be carried 

and used by satellites, aircraft, and drones to obtain agricultural imagery. Several studies 
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have shown that useful information such as crop N status can be obtained from crop 

canopies with passive sensors mounted on satellite or airborne platforms (Inman et al., 

2005; Shaver et al., 2010, 2014; Erdle et al., 2011; Krienke et al., 2017; Thompson and 

Puntel, 2020). Unmanned aerial vehicles (UAV) have lately become a common platform 

for carrying and using passive sensors for agricultural research to estimate crop biomass 

and detect crop N stress. However, the angles of the sun, time of daylight, and cloud 

cover will influence reflectance and vegetation indices measured from the corn canopy 

(Souza et al., 2010). Consequently, UAV passive sensors require calibration and 

specialized software to analyze and interpret imagery.   

Active sensors were developed to overcome passive sensors' limitations and 

minimize the impacts of ambient light conditions on crop canopy reflectance readings 

(Tubaña et al., 2011). Active sensors have their own energy source and measure reflected 

light from the target emitted from the sensor; thus they require close proximity to the 

target (Thompson and Puntel, 2020). As a result, active sensors can be used at any time 

of day or night as they are not affected by ambient radiation (Naser et al., 2020). They are 

relatively inexpensive, easy to use, and small enough to mount on a fertilizer application 

boom or tractor and low flying UAV (0.5-1.5 m) (Krienke et al., 2017). Thus, the use of 

small platforms, such as active sensors (on-the-go) on the N applicator can immediately 

provide information to assess corn N status and apply varying N rates based on real-time 

reflectance data. 

Passive and active crop canopy sensor reflectance values in two or more 

wavelengths are expressed as vegetation indices (VIs) that were developed to link 

reflectance from leaves or canopies with canopy characteristics (Hatfield et al., 2008). 
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One of the most widely adopted VIs is the normalized difference vegetative index 

(NDVI) proposed by Rouse et al. (1974) to estimate canopy biomass. Another index, the 

normalized difference red-edge (NDRE) index suggested by Buschmann and Nagel 

(1993), is a reliable indicator of chlorophyll or N status because it is not subject to red 

waveband saturation as with NDVI when leaf area index is greater than three (Thompson 

et al., 2015; Naser et al., 2020). To monitor and compare crop N status across the field, 

normalizing the VIs of the target crop to the VIs of the field area receiving non-limiting 

N is required to calculate the N sufficiency index (SI) (Blackmer and Schepers, 1995; 

Thompson and Puntel, 2020). 

Several studies have compared how different active crop canopy sensors can be 

used to detect crop N status (Barker and Sawyer, 2010; Shaver et al., 2010, 2011, 2014; 

Cao et al., 2015; Nogueira Martins et al., 2020), while a few studies have compared 

active sensors to passive sensors (Hong et al., 2007; Erdle et al., 2011). No previous 

studies have compared active or passive crop canopy sensors with SPAD meter based on 

SI to detect the onset of N stress in the crop canopy in time (weekly) to supplement N 

through the irrigation system (fertigation). 

The overall goal of this study was to evaluate the possibility of replacing the 

SPAD meter by utilizing an active or passive crop canopy sensor-based SI to inform the 

decision of when to fertigate. The specific objectives were (i) to assess the correlation 

between active or passive crop canopy sensors and the SPAD meter based on sufficiency 

index (SI) values from V6 through R2 growth stages, and (ii) to determine the frequency 

of decisions that matched between active or passive crop canopy sensors and SPAD 

meter based on SI 0.95 thresholds from V6 through R2 growth stages   
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Materials and Methods 

Site Description 

This study was conducted at two sites over two growing seasons (2017 and 2018) 

at University of Nebraska-Lincoln research sites: (i) South Central Agriculture 

Laboratory (SCAL), near Clay Center, Nebraska, USA, referred to as SCAL17 and 

SCAL18 site years, respectively (ii) West Central Research and Extension Center 

(WCREC) North Platte, Nebraska, USA, and referred to as WCREC17 and WCREC18 

site years, respectively. The geo-coordinates of the fields were latitude 40° 34' 50.4114" 

N and 40° 34' 50.4726" N, longitude -98° 8' 41.118" W and -98° 8' 40.7688" W for 

SCAL2017 and SCAL18, respectively. For WCREC17 and WCREC18, the geo-

coordinates of the fields were latitude 41° 5' 22.8552" N and 41° 5' 22.8834" N, longitude 

-100° 45' 42.3714" W and -100° 45' 40.6836" W.  

The soil for both SCAL17 and SCAL18 fields was classified as Hasting silt loam 

(fine, montmorillonitic, mesic Udic Argiustolls) soil series with 0 to 1 percent slopes 

(Hammer et al.,1981). The location of the SCAL sites was characterized as a transition 

zone between sub-humid and semi-arid climates, with the total precipitation received 

during the crop growing season from April 1 to September 30 of 451 mm for SCAL17 

and 506 mm for SCAL18. The total precipitation received during the 2017 growing 

season of the same period was less than the thirty-year historical average (493 mm) and 

higher than the thirty-year historical average during the 2018 growing season. The 

average daily temperature was 18.98⁰C and 18.88⁰C for SCAL17 and SCAL18, 

respectively, the average temperature for both site years was slightly higher than the 
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thirty-years historical average (18.76 ⁰C). The average relative humidity was 69.62% and 

74.60% for SCAL2017 and SCAL18 respectively (HPRCC, 2019).  

The soil for both WCREC17 and WCREC18 sites was classified as Cozad silt 

loam (fine, silty, mixed, mesic Typic Haplustolls) soil series with 0 to 1 percent slopes 

(Bowman et al., 1978). The location of the WCREC sites was characterized as a semi-

arid climate, with average precipitation received during the crop growing season from 

April 1 to September 30 of 457 mm for WCREC17 and 453 mm for WCREC18. The 

total precipitation received during the two growing seasons of the same period was higher 

than the thirty-year historical average (376 mm). The average daily temperature was 

18.37⁰C and 17.72⁰C for WCREC17 and WCREC18 site years, respectively. The 

average temperature for WCREC17 was slightly less than the thirty-years historical 

average (17.95⁰C) and higher than the thirty-year historical average for WCREC18. The 

average relative humidity was 61.41% and 65.65% for WCREC17 and WCREC18, 

respectively (HPRCC, 2019).  

Soil samples were collected at each site each year to characterize soil chemical 

properties. Initial spring soil samples for the topsoil layer (0-20 cm) were composited 

from four to six soil cores to obtain one sample and two samples for each replication with 

a total of 8 soil samples for each site. A summary of soil properties for the topsoil layer 

and previous crop for both site years are presented in Table 4.1.  
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Table 4.1. Summary of soil properties for spring soil samples acquired at depths of 

0-20 cm for SCAL and WCREC sites in 2017 and 2018. 

                  

Site Year 

ID 

Soil 

Texture                   
pH† 

SOM‡ 

% 

CEC* 
meq 

100g-1 

NO3-N٭                   
mg  

kg-1 

P-M3ᵟ              
mg  

kg-1 

K§                         

mg 

kg-1 

Previous 

crop 

SCAL17 SiL⁺ 6.8 3.4 15.0 8.3 29.3 360.4 soybean 

WCREC17 SiL 7.9 2.0 17.8 7.0 53.1 516.4 soybean 

SCAL18 SiL 6.6 3.3 15.8 11.8 32.6 334.3 corn 

WCREC18 SiL 7.8 2.1 17.2 8.5 49.4 451.9 soybean 

⁺SiL is silt loam, †pH is 1:1 soil: water, ‡SOM is soil organic matter LOI %, *CEC is cation exchange 

capacity, ٭NO3-N is nitrate-nitrogen, ᵟP-M3 is Mehlich-3 soil phosphorus, §K is potassium extracted by 1 N 

ammonium acetate.  

 

 

Experimental Design 

This study was a part of a large fertigation project. The experimental design was a 

randomized complete block design with four treatments and four replications for each site 

each year. For the SCAL site years, individual plots were 6.1 m wide by 36.6 m length 

with eight maize rows with 0.76 m row width between rows. Dimensions of individual 

plots for the WCREC site were 12.2 m wide by 27.9 m length with sixteen rows for 

WCREC17 and 10.7 m wide by 32 m length with fourteen rows for WCREC18 with 0.76 

m row width between rows for both site years. Corn was planted at a population of 

84,000 plants ha-1 using Hybrid Fontanelle 6A327RBC on April 24 and May 2 for 

SCAL17 and SCAL18, respectively, and on May 8 for both WCREC17 and WCREC18 

site years.  

Other than N fertilizer treatment, all other agronomic activities, including pest 

control were managed according to the University of Nebraska Extension Guidelines 

(Shapiro et al., 2019). The SCAL sites were irrigated with a linear sprinkler irrigation 

system while the WCREC sites were irrigated with a center-pivot irrigation system. Both 
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irrigation systems were used for applying irrigation water and were capable of applying 

N fertilizer to crops through irrigation water (fertigation). Irrigation management was 

conducted according to the method developed by Irmak et al. (2005). Irrigation timing 

and amount were determined from a combination of soil moisture content and crop 

growth stage monitoring with the use of a Watermark soil moisture sensor (model 200SS) 

with a range of measurements from 0-239 (kPa) (IRROMETER Company, Inc., 

Riverside, CA, USA) for SCAL site years. For WCREC site years, irrigation timing and 

amount were determined using a neutron moisture meter (model CPN 503DR 

Hydroprobe) (Campbell Pacific Nuclear International Inc., Concord, CA, USA). For all 

site years, fertilizer was applied according to UNL extension guidelines (Shapiro et al., 

2019).  

Starter fertilizer was applied as ammonium polyphosphate 10-34-0 (NPK) (6.5 kg 

N ha-1 and 22 kg P2O5 ha-1) and 0.32 kg ha-1 20% Zn for both SCAL site years. For the 

WCREC site, starter fertilizer was also applied as ammonium polyphosphate 10-34-0 

(NPK) (6.5 kg N ha-1 and 22 kg P2O5 ha-1) and phosphorus applied to plots deficient in 

soil test P as triple superphosphate ranged between 83 to 184 kg ha-1 using a dry fertilizer 

spreader (Barber Engineering Company, Spokane, WA, USA) in 2017 only) (Table 4.2). 

The fertilizer was banded over the seed via the planter in both site years. 

Four treatments were evaluated as new N management practices in Nebraska. The 

treatments were categorized as a calibration treatment and three reactive treatments. A 

non-N limiting reference treatment was used as a calibration treatment to determine the 

relative N sufficiency status by normalizing sensor data and calculating the relative 
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sufficiency index (SI) of target treatments (Blackmer and Schepers, 1995) as shown in 

equation 4.1. The SI is calculated as follows: 

                                       𝑺𝑰 =
 𝐕𝐈 𝐓𝐚𝐫𝐠𝐞𝐭

 𝐕𝐈 𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞
                                                          [4.1] 

Where,  

SI is sufficiency index,  

VI Target is a sensor vegetation index obtained from unknown or target treatment,  

VI Reference is a sensor vegetation index obtained from non-limited N fertilizer 

or high N reference. 

 

The reference treatment was also used to represent maximum yield. The reference 

treatment received a non-limiting N rate of 280 kg ha-1 as urea-ammonium nitrate (UAN) 

solution (32%N) at planting to be above crop needs to ensure that total N was sufficient 

throughout the entire growing season. 

Three reactive treatments consisting of: (i) reactive-fertigation-fixed (R-F-Fixed) 

(ii) reactive-fertigation-model (R-F-Model), and (iii) reactive-fertigation-model-slow 

release (R-F-Model-SR) were labeled according to the Timing, Application Method, 

Rate, and N Source. Timing is informed by the sensor as a reactive approach that 

responds to the measured crop N needs and determines the timing of additional in-season 

N rate requirements via fertigation based on the indication of the crop N sufficiency 

status. When the SI value was equal to or less than the threshold of 0.95, supplement N 

via fertigation was applied based on VIs of the SPAD CM. The N needs were reassessed 

after two weeks using sensor SI information to determine if an additional N application 

was needed. This procedure was repeated no later than the reproductive blister (R2) 

growth stage as suggested by Hawkins et al. (2007) to avoid fertigation losses after the 

R2 growth stage.  
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The N rate was arbitrarily fixed for R-F-Fixed treatment (34 kg ha-1 as the typical 

rate of N to be applied via fertigation without injuring corn plants) (Blackmer and 

Schepers, 1995) or predicted by the Maize-N model for R-F-Model and R-F-Model-SR 

treatments. The N source for R-F-Fixed and R-F-Model treatments was urea-ammonium 

nitrate (UAN) solution (32%N) (Table 4.2) as a base rate and an additional in-season N 

applied via fertigation. Whereas the R-F-Model-SR treatment used Environment Smart 

Nitrogen (ESN – a polymer-coated form of urea, Nutrien, Ltd.) (Table 4.2), and 

additional in-season N applied as UAN via fertigation. The base rate of N fertilizer for all 

site years was applied at planting as UAN, banded to the soil between crop rows (knife 

was spaced in the middle of the row and fertilizer was injected below the soil surface) for 

all treatments except for R-F-Model-SR treatment. For R-F-Model-SR treatment, the base 

rate of N fertilizer was applied at planting as ESN (Table 4.2), which was surface 

broadcast using a dry fertilizer spreader.  



 

 

1
5
9
 

Table 4.2. Site year, treatment, planting date, starter N rate, application date, base N rate, N application date, N  

source, and method of application for N fertilizer decision strategies for SCAL and WCREC sites in 2017 and 2018. 

                   

Site Year  Treatment Planting  
 Starter N⁺  

Rate  
Application 

Base N  

Rate  
N Application  N  Method of  

ID   Date  (kg N ha-1) Date (kg N ha-1) Date Source Application 

SCAL17 Reference 24 Apr.   6.5 24 Apr.  280 8-May UAN32%† Banded  

 R-F-Fixed     84     

 R-F-Model      84     

 R-F-Model-SR      95  ESN‡ Broadcast 

 
        

 
WCREC17 Reference 8-May  6.5 8-May 280 4-May UAN32% Banded  

 R-F-Fixed     78.5     

 R-F-Model     78.5     

 R-F-Model-SR     64 3-May ESN Broadcast 

 
        

 
SCAL18 Reference 2-May  6.5 2-May 280 11-May UAN32% Banded  

 R-F-Fixed     78.5     

 R-F-Model     78.5    

 R-F-Model-SR     147 10-May ESN Broadcast 

 
        

 
WCREC18 Reference 8-May  6.5 8-May 280 16-May UAN32% Banded  

 R-F-Fixed     78.5     

 R-F-Model     78.5    

  R-F-Model-SR        84 17-May ESN Broadcast 

⁺ Indicates liquid ammonium polyphosphate (10-34-0) (NPK) banded for all treatments as starter N. 

† Indicates Urea-Ammonium Nitrate solution (32%N) as a base rate.  

‡ Indicates Environment Smart Nitrogen coated urea (44% N) as a base rate. 
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Crop Canopy Sensing  
 

Crop canopy sensing information was obtained using three different sensors: 

SPAD chlorophyll meter (Spectrum Technologies Inc. Aurora, IL, USA), RapidScan CS-

45 active crop canopy sensor (Holland Scientific, Lincoln, NE, USA), and Parrot Sequoia 

passive sensor (Parrot Inc., San Francisco, CA, USA). The SPAD meter used the method 

developed by Peterson et al. (1993) and Blackmer and Schepers, (1995) that used the 

SPAD meter to schedule fertigation of irrigated corn. Additionally, evaluating the 

possibility of replacing the SPAD meter by using an active or passive sensor would result 

in the same management decisions, as the active or passive sensors are capable of rapid 

data collection with a larger spatial scale (Krienke et al., 2017).  However, in this study, 

fertigation decisions relied solely on the SI calculated using the SPAD meter. 

SPAD Meter 
 

The SPAD meter is an active handheld crop leaf sensor (active sensor using its 

own source of light and contact sensor according to the distance from the target) that 

measures light transmittance properties of leaves in two wavelengths (650 and 940 nm) 

by clamping it on the crop leaf and emitting its own light. Fifteen readings per row from 

the middle two rows (total of thirty readings) were collected (from sensing area of 9 m 

length) for each plot within each site year. Sensor measurements were taken from 

halfway between the leaf margin and the leaf midrib from the newest fully expanded 

vegetative six-leaf (V6) to vegetative tasseling (VT) growth stages, and from the ear leaf 

from VT through R2 growth stages. The SPAD meter reading values were generated and 

averaged to obtain one mean value for each plot. 
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Active Sensor 
 

The RapidScan CS-45 is an active handheld crop canopy sensor (active sensor 

with its own source of light and a proximal sensor according to distance from the target) 

that integrates a data logger, GPS, crop sensor, and power source into one small unit with 

a modulated polychromatic light source and three measurement channels: 670 nm, 730 

nm, and 780 nm. Reflectance from these three channels was used to obtain normalized 

difference red edge (NDRE) information. Sensing was conducted in the middle of each 

plot (sensing area). The sensing area of each plot consisted of the two middle rows of 

each plot with 9 m length from the V6 to VT growth stages by holding the sensor unit in 

the nadir position at the recommended height of approximately 1 meter above the corn, 

and walking directly over each row for each plot. Measurements of the sensor were 

moved to be taken between three rows instead of directly over the two rows from VT 

through R2 growth stages. The NDRE values were generated and averaged for each row 

to obtain one mean value for each plot. The NDRE calculated as follows:  

 

                      𝑵𝑫𝑹𝑬 =
 𝐍𝐈𝐑−𝐑𝐞𝐝 𝐄𝐝𝐠𝐞 

 𝐍𝐈𝐑+𝐑𝐞𝐝 𝐄𝐝𝐠𝐞
                                                  [4.2] 

Where,  

NIR is the reflectance in the near-infrared wavelength band  

Red Edge is the reflectance in the red edge wavelength band 

 

Passive Sensor 

The Parrot Sequoia is a passive multispectral sensor (relying on sunlight as the 

energy source and a remote sensor according to distance from the target) that was 

mounted on an eBee SQ senseFly UAV (Lausanne, Switzerland) and flown to 
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approxtmitly120 m. The UAV measurements were taken at the R2 growth stage for 

SCAL17; VT and R2 growth stages for SCAL18; and V18 growth stage for WCREC18. 

Reflectance measurements were collected in 4 bands (green, red, red-edge, and NIR); 

wavelengths centered at 550 ± 40 nm, 660 ± 40 nm, 735 ± 10 nm, 790 ± 40 nm. Images 

were acquired with overlapping regions over the entire study area with a spatial 

resolution of 6 cm. A downwelling radiation sensor (sunshine sensor installed on top of 

the UAV) was used for radiometric calibration. A reflectance panel was also used for 

calibration by holding the UAV sensor directly over the panel without causing shadows 

on the panel. Then, the Sequoia images were processed with Pix4D software (Lausanne, 

Switzerland). The remaining raster image processing steps were performed using ArcGIS 

10.4 (ESRI, Redlands, CA). In ArcGIS, the polygon was drawn on the sensing area for 

each plot (average of two middle rows) according to GPS coordinates from the active 

sensor. These polygons were used to clip NDRE raster by the tool (Extract by Mask). 

Two methods were applied on the clipped raster to extract statistical values. The first was 

to calculate the average NDRE value for each plot using the Spatial Analyst tool (Zonal 

Statistics as a Table). The second method was to extract all NDRE pixel values for each 

plot by converting clipped raster pixel to points to obtain NDRE values as a table. The 

table was transferred to Excel to calculate the top 5th to 10th percentile of NDRE values. 

The top 5th to10th percentile of NDRE was calculated to see how different percentile 

ranges from the average of NDRE based passive sensor compare to the average of the 

SPAD meter.  
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The SI values were calculated from active and passive sensors based on NDRE 

values as well as from SPAD meter reading values to determine the relative N sufficiency 

status (equation 4.1) and to schedule fertigation.  

 

Statistical Analysis 
 

The linear regression analysis between SPAD SI versus active and passive sensor 

SI values and between active sensor SI versus passive sensor SI values was performed 

using Microsoft Excel for each growth stage within each site year. In addition, the 

percent of N fertilizer decisions that matched between the two sensor indices was 

calculated for each treatment and growth stage within each site year using Statistical 

Analysis System (SAS) version 9.4. The same decision for two sensors was achieved 

when the SPAD SI and active or passive sensor SI values were both greater than 0.95 

thresholds or both less than or equal to 0.95 thresholds. 
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Results and Discussion 
 

Correlation between SPAD SI and Active Sensor SI 
 

The correlation between SPAD SI (average SPAD readings) and active sensor SI 

(average NDRE values) values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments 

at V6 through R2 growth stages for SCAL17, SCAL18, WCREC17, and WCREC18 site 

years, respectively, are shown in Figures 4.1 through Figure 4.4. 

For SCAL17, SPAD SI and active sensor SI values were weakly correlated at all 

crop growth stages except at the V11 stage, which showed a stronger correlation (r2 = 

0.52) as shown in Figure 4.1. For SCAL18, SPAD SI and active sensor SI values were 

weakly correlated at all crop growth stages except at the V10 and R1 growth stages, 

which showed a stronger and good correlation (r2 = 0.48 and 0.63 respectively) as shown 

in Figure 4.2. For WCREC17, poor correlation between SPAD SI and active sensor SI 

values was observed at all crop growth stages except at the V6 stage, which showed some 

correlation (r2 = 0.40) as shown in Figure 4.3. For WCREC18, SPAD SI and active 

sensor SI values were well correlated at all crop growth stages except at the V18 and R2 

growth stages, which showed weaker correlation as shown in Figure 4.4. The r2 of 

correlated values showed a high and good correlation of 0.90, 0.94, 0.85, 0.57, and 0.46 

at V6, V8, V10, V13, and R1 growth stages, respectively, which explained 90%, 94%, 

85%, 57%, and 46% of the variability in the active sensor SI values by SPAD SI values. 
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Figure 4.1. Correlation between SPAD sufficiency index (based on average SPAD 

readings) and active sensor sufficiency index (based on average NDRE values) 

values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments (n=12) at V6, V8, 

V9, V11, V14, VT, and R2 growth stages for SCAL 2017. 
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Figure 4.2. Correlation between SPAD sufficiency index (based on average SPAD 

readings) and active sensor sufficiency index (based on average NDRE values) 

values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments (n=12) at V6, V8, 

V10, V14, VT, R1, and R2 growth stages for SCAL 2018. 
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Figure 4.3. Correlation between SPAD sufficiency index (based on average SPAD 

readings) and active sensor sufficiency index (based on average NDRE values) 

values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments (n=12) at V6, V8, 

V10, V13, VT, R1, and R2 growth stages for WCREC 2017. 
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Figure 4.4. Correlation between SPAD sufficiency index (based on average SPAD 

readings) and active sensor sufficiency index (based on average NDRE values) 

values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments (n=12) at V6, V8, 

V10, V13, V18, R1, and R2 growth stages for WCREC 2018. 
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Relationship between SPAD SI and Active Sensor SI Fertigation Decisions 
 

The relationship between SPAD SI (based on average SPAD readings) and active 

sensor SI (based on average NDRE values) fertigation decisions for R-F-Fixed, R-F-

Model, and R-F-Model-SR treatments at V6 through R2 growth stages for SCAL17, 

SCAL18, WCREC17, and WCREC18 site years, respectively, are shown in Figure 4.5 

through Figure 4.8. 

For the SCAL17 site year, the relationship of fertigation decisions between SPAD 

SI and active sensor SI values was 100% for 1 out of 3 treatments at V8 and R2 growth 

stages and 2 out of 3 treatments at the V11 growth stage (Figure 4.5 A). The relationship 

of decisions was 75% for 1 out of 3 treatments at V6, V8, V11, V14, and R2 growth 

stages, respectively, 2 out of 3 treatments at the V9 growth stage, and 3 out of 3 

treatments at the VT growth stage (Figure 4.5 A). Additionally, 50% of the decisions 

matched for 1 out of 3 treatments at V8, V14, and R2 growth stages and 2 out of 3 

treatments at the V6 growth stage. There were only 1 out of 3 treatments at the V9 stage 

that showed a 25% match proportion and 1 out of 3 treatments at the V14 growth stage 

showed a 0% match proportion of the decisions (Figure 4.5 A).   

The overall average relationship for the three treatments at each growth stage is 

shown in Figure 4.5 B. The overall average relationship of fertigation decisions was 92% 

at the V11 growth stage, 75% at the V8, VT, and R2 growth stages, 58% at the V6 and 

V9 growth stages, and 42% at the V14 growth stage. As a result, the average overall 

relationship of fertigation decisions that matched between SPAD SI and active sensor SI 

values for the three treatments across all growth stages was 68% for the SCAL17.  
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Figure 4.5. Relationship between the SPAD sufficiency index (based on average 

SPAD readings) and active sensor sufficiency index (based on average NDRE 

values) fertigation decisions at V6, V8, V9, V11, V14, VT, and R2 growth stages with 

day of year (DOY) for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments (A) 

and overall proportions (B) for SCAL 2017. 
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For SCAL18, the relationship of fertigation decisions between SPAD SI and 

active sensor SI values was 100% for 1 out of 3 treatments at V14 and R2 growth stages 

and 2 out of 3 treatments at the V6 and V8 growth stages (Figure 4.6 C). The relationship 

of decisions was 75% for 1 out of 3 treatments at the V6 growth stage, 2 out of 3 

treatments at the V14 and R1 growth stages, and 3 out of 3 treatments at the V10 growth 

stage (Figure 4.6 C). 50% of the decisions matched for 1 out of 3 treatments at V8, R1, 

and R2 growth stages, and 3 out of 3 treatments at the VT growth stage. Only 1 out of 3 

treatments at the R2 stage showed a 25% match proportion of the decisions (Figure 4.6 

C).   

The overall average relationship for the three treatments at each growth stage is 

shown in Figure 4.6 D. The overall average relationship of fertigation decisions was 92% 

at the V6 growth stage, 83% at the V8 and V14 growth stages, 75% at the V10 growth 

stage, 67% at the R1 growth stage, 58% at the R2 growth stage, and 50% at the VT 

growth stage. The average overall relationship of fertigation decisions that matched 

between SPAD SI and active sensor SI values for the three treatments across all growth 

stages was 73% for SCAL18. 
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Figure 4.6. Relationship between the SPAD sufficiency index (based on average 

SPAD readings) and active sensor sufficiency index (based on average NDRE 

values) fertigation decisions at V6, V8, V10, V14, VT, R1, and R2 growth stages with 

day of year (DOY) for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments (C) 

and overall proportions (D) for SCAL 2018. 



173 
 

 

For WCREC17, the relationship of fertigation decisions between SPAD SI and 

active sensor SI values was 100% for 1 out of 3 treatments at V6, V8, and VT growth 

stages, 2 out of 3 treatments at the R2 growth stage, and 3 out of 3 treatments at R1 

growth stage (Figure 4.7 E). A 75% match proportion of the decisions was observed for 1 

out of 3 treatments at the V6, V8, V10, V13, and R2 growth stages and 2 out of 3 

treatments at the VT growth stage (Figure 4.7 E). 1 out of 3 treatments at V6, V10, and 

V13 growth stages showed a 50% relationship of decisions. There were only 1 out of 3 

treatments at V8, V10, and V13 growth stages which had a 25% relationship of decisions 

(Figure 4.7 E).  

The overall average relationship for the three treatments at each growth stage is 

shown in Figure 4.7 F. The overall average relationship of fertigation decisions was 

100% at the R1 growth stage, 92% at the R2 growth stage, 83% at the VT growth stage, 

75% at the V6 growth stage, 67% at the V8 growth stage, and 50% at the V10 and V13 

growth stages. As a result, the average overall relationship of fertigation decisions that 

matched between SPAD SI and active sensor SI values for the three treatments across all 

growth stages was 74% for WCREC17. 
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Figure 4.7. Relationship between the SPAD sufficiency index (based on average 

SPAD readings) and active sensor sufficiency index (based on average NDRE 

values) fertigation decisions at V6, V8, V10, V13, VT, R1, and R2 growth stages with 

day of year (DOY) for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments (E) 

and overall proportions (F) for WCREC 2017.      



175 
 

 

For WCREC18, the relationship of fertigation decisions between SPAD SI and 

active sensor SI values was 100% for 1 out of 3 treatments at V10, V13, and R1 growth 

stages and 2 out of 3 treatments at the V6 and V8 growth stages (Figure 4.8 G). The 

relationship of decisions was 75% for 1 out of 3 treatments at the V6, V13, and R2 

growth stage and 2 out of 3 treatments at the V10 and V18 growth stages (Figure 4.8 G). 

Additionally, a 50% relationship of decisions was observed for 1 out of 3 treatments at 

V8, V13, V18, and R2 growth stages and 2 out of 3 treatments at the R1 growth stage. 

Only 1 out of 3 treatments at the R2 growth stage showed a 25% match proportion of the 

decisions (Figure 4.8 G).   

The overall average relationship for the three treatments at each growth stage is 

shown in Figure 4.8 H. The overall average relationship of fertigation decisions was 92% 

at the V6 growth stage, 83% at the V8 and V10 growth stages, 75% at the V13 growth 

stage, 67% at the V18 and R1 growth stages, and 50% at the R2 growth stage. The 

average overall relationship of fertigation decisions that matched between SPAD SI and 

active sensor SI values for the three treatments across all growth stages was 74% for 

WCREC18. 
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Figure 4.8. Relationship between the SPAD sufficiency index (based on average 

SPAD readings) and active sensor sufficiency index (based on average NDRE 

values) fertigation decisions at V6, V8, V10, V13, V18, R1, and R2 growth stages 

with day of year (DOY) for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments 

(G) and overall proportions (H) for WCREC 2018. 
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Correlation between SPAD SI and Passive Sensor SI 
 

The correlation between SPAD SI (based on average SPAD readings) and passive 

sensor SI (based on average NDRE values and based on 90-95 percentile NDRE values) 

values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments at R2 growth stage for 

SCAL17, at VT and R2 growth stages for SCAL18, and at the V18 growth stage for 

WCREC18, respectively, are shown in Figure 4.9 through Figure 4.11.  

For SCAL17, poor correlation was observed between SPAD SI and passive sensor 

SI (based on average NDRE values) (Figure 4.9 A) and between SPAD SI and passive 

sensor SI (based on 90 percentile NDRE values) (Figure 4.9 B) at the R2 growth stage. 

For SCAL18, good correlation with r2 = 0.61 and 0.71 was observed between SPAD SI 

and passive sensor SI (based on average NDRE values) (Figure 4.10 C) and between 

SPAD SI and passive sensor SI (based on 95 percentile NDRE value) (Figure 4.10 D), 

respectively at the VT growth stage. At the VT growth stage, 61% and 71% of the 

variability in the passive sensor SI values was explained by SPAD SI values. At the R2 

growth stage, a weak correlation was observed between SPAD SI and passive sensor SI 

(based on average NDRE values) (Figure 4.10 E) and between SPAD SI and passive 

sensor SI (based on 90 percentile NDRE value) (Figure 4.10 F). Likewise, weak 

correlation was observed between SPAD SI and passive sensor SI (based on average 

NDRE values) (Figure 4.11 G) and between SPAD SI and passive sensor SI (based on 90 

percentile NDRE value) (Figure 4.11 H) at the V18 growth stage for the WCREC18 site 

year. Percentile of 90-95 NDRE values was used to avoid tassel interference with canopy 

reflectance. This resulted in improving the correlation between SPAD SI and passive 
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sensor SI values using 90-95 percentile NDRE values over average NDRE values for all 

site years except for SCAL17 as shown in Figure 4.9.   

 

Figure 4.9. Correlation between SPAD sufficiency index (based on average SPAD 

readings) and passive sensor sufficiency index (based on average NDRE values) 

values (A) SPAD sufficiency index and passive sensor sufficiency index (based on 90 

percentile NDRE value) values (B) for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments (n=12) at R2 growth stage for SCAL 2017. 

 

 

Figure 4.10. Correlation between SPAD sufficiency index (based on average SPAD 

readings) and passive sensor sufficiency index (based on average NDRE values) 

values (C and E) SPAD sufficiency index and passive sensor sufficiency index (based 
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on 95-90 percentile NDRE values) values (D and F) for R-F-Fixed, R-F-Model, and 

R-F-Model-SR treatments (n=12) at VT and R2 growth stages for SCAL 2018. 

 

 

 

Figure 4.11. Correlation between SPAD sufficiency index (based on average SPAD 

readings) and passive sensor sufficiency index (based on average NDRE values) 

values (G) SPAD sufficiency index and passive sensor sufficiency index (based on 90 

percentile NDRE value) values (H) for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments (n=12) at V18 growth stage for WCREC 2018. 

 

 

Relationship between SPAD SI and Passive Sensor SI Fertigation Decisions 
 

Table 4.3 shows the proportion of fertigation decisions that matched between 

SPAD SI (based on average SPAD readings) and passive sensor SI (based on average 

NDRE values) values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments at R2, 

VT, R2, and V18 growth stages for SCAL17, SCAL18, and WCREC18, respectively. For 

SCAL17, the % of decisions that matched between SPAD SI and passive sensor SI values 

was 25% for 1 out of 3 treatments, 75% for 1 out of 3 treatments, and 50% for 1 out of 3 

treatments, respectively at the R2 growth stage. As a result, the overall average of 

matched decisions was 50%. For the SCAL18 site year, 25% of decisions matched for 3 

out of 3 treatments at the VT growth stage. Overall, 25% of decisions matched. At the R2 

growth stage, 2 out of 3 treatments matched 25%, and 1 out of 3 treatments matched 50% 

of the time. Overall, 33% of decisions matched. Therefore, the overall average match for 
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VT and R2 growth stages was 29%. For WCREC18, 25% of decisions matched for 1 out 

of 3 treatments, 75% for 1 out of 3 treatments, and 0% for 1 out of 3 treatments, 

respectively at the V18 growth stage. As a result, overall 33% of decisions matched. 

Table 4.3. Relationship between SPAD sufficiency index (based on average SPAD 

readings) and passive sensor sufficiency index (based on average NDRE values) 

fertigation decisions for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments at 

R2, VT, R2, and V18 growth stages for SCAL2017, SCAL 2018, and WCREC 2018, 

respectively.     

      
      Treatment  

  

Site Year  
Growth 

Stage 

R-F-

Fixed 

R-F-

Model 

R-F-Model-

SR 

Matching Fertigation Decisions  Overall 

SCAL 2017  R2 0.25 0.75 0.50 0.50 

SCAL 2018  VT 0.25 0.25 0.25 0.25 

SCAL 2018  R2 0.25 0.50 0.25 0.33 

WCREC 

2018 
 V18 0.25 0.75 0.00 0.33 

 

 

Table 4.4 shows the proportion of decisions that matched between SPAD SI 

(based on average SPAD readings) and passive sensor SI (based on 90-95 percentile 

NDRE values) for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments at R2, VT, R2, 

and V18 growth stages for SCAL17, SCAL18, and WCREC18, respectively. For 

SCAL17, the match proportion of decisions that matched between SPAD SI and passive 

sensor SI values was 25% for 1 out of 3 treatments, 100% for 1 out of 3 treatments, and 

50% for 1 out of 3 treatments, respectively at the R2 growth stage. Therefore, 58% of 

fertigation decisions matched. For SCAL18, 75% of decisions matched for 1 out of 3 

treatments, and 50% matched for 2 out of 3 treatments at the VT growth stage. Overall, 

58% of decisions matched. At the R2 growth stage,1 out of 3 treatments matched 25% of 
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the time, 1 out of 3 treatments 50%, and 1 out of 3 treatments matched 75% of the time. 

Overall, 50% of fertigation decisions matched. Therefore, the overall average match for 

VT and R2 growth stages was 54%. For WCREC18, the match proportion of decisions 

was 25% for 1 out of 3 treatments, 75% for 1 out of 3 treatments, and 0% for 1 out of 3 

treatments respectively at the V18 growth stage. The overall relationship was 33%. 

Results showed that using 90-95 percentile NDRE values (Table 4.4) over average 

NDRE values (Table 4.3.) to obtain passive sensor SI improved the relationship between 

SPAD SI and passive sensor SI fertigation decisions except WCREC18. 

Table 4.4. Relationship between SPAD sufficiency index (based on average SPAD 

readings) and passive sensor sufficiency index (based on 90-95 percentile NDRE 

values) fertigation decisions for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments at R2, VT, R2, and V18 growth stages for SCAL2017, SCAL 2018, and 

WCREC 2018, respectively. 

       
    Treatment 

  

Site Year  
Growth 

Stage 

R-F-

Fixed 

R-F-

Model 

R-F-Model-

SR 

Matching Fertigation Decisions Overall 

SCAL 2017†  R2 0.25 1.00 0.50 0.58 

SCAL 2018ᵟ  VT 0.75 0.50 0.50 0.58 

SCAL 2018†  R2 0.25 0.50 0.75 0.50 

WCREC 

2018† 
 V18 0.25 0.75 0.00 0.33 

 † Passive SI value-based on 90 percentile NDRE value  

 ᵟ Passive SI value-based on 95 percentile NDRE value 

 
  

Weak correlations were observed between SPAD SI and active sensor SI in 

different growth stages within each site year (Figure 4.1 through Figure 4.4) or SPAD SI 

versus passive sensor SI values (Figure 4.9 through Figure 4.11) and between active 

sensor SI or passive sensor SI values (Appendix C: Figure C.1 through Figure C.3). This 

depends on growth stages and is likely the result of the different sensor types, methods, 
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and timing of measurement (Krienke et al., 2017). Also, this is expected as the field of 

view is different for the three types of sensors and the design is very different. SPAD 

measurements were taken from a single location of a small area on the leaf to represent a 

characteristic of the entire plant and the measurements did not incorporate any direct 

measure of plant architecture (Hong et al., 2007). In contrast, active or passive crop 

canopy sensor reflectance measurements were taken to integrate the entire canopy. 

Additionally, active or passive sensor measurements can be affected by the amount of 

non-plant pixels (soil pixels), especially early in the season. However, passive sensor 

measurements in this study were taken later in the season at V18 to R2 growth stages, 

with full crop canopies and for the most part eliminated the impact of soil pixels on 

passive sensor measurements. Nevertheless, passive sensor measurements can be 

impacted by multiple factors such as the time of day when the measurements were taken, 

cloud cover, and reflectance correction based on the quality of the downwelling radiation 

sensor (Souza et al., 2010). Similar results were observed by Bastos and Ferguson, (2016) 

that passive and active NDRE values were weakly correlated at V13, VT, and R4 growth 

stages. These results were different from a study conducted by Hong et al. (2007) that 

canopy reflectance measurements with passive and active sensors were closely correlated 

with SPAD meter measurements at V6-7, V8-9, and at flowering growth stages. 

However, the measurements of the study conducted by Hong et al. (2007) were collected 

with different active and passive sensors and different vegetation indices than active and 

passive sensors and vegetation indices used in this study to compare with the SPAD 

meter measurements.      
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The r2 of the correlation between SPAD SI and active or passive sensor SI values 

measured how close the data was to the fitted regression line and how much variability 

was explained by the model. The high or weak correlation at any growth stage did not 

always lead to the same fertigation decision regarding N application as the same decision 

for two sensors can be achieved if both sensor's SI values are greater than 0.95 thresholds 

or both less than or equal to 0.95 thresholds. As a result, in general, for any correlation, 

all the points located in the top right quadrant or bottom left quadrant of each relationship 

led to the same fertigation decision. Otherwise, all the points for any correlation located 

in the top left quadrant or bottom right quadrant of each relationship led to different 

fertigation decisions. These results explained how correlation was different from 

matching fertigation decisions in terms of N application. The matching fertigation 

decisions between SPAD SI and active sensor SI were higher than the matching 

fertigation decisions between SPAD SI and passive sensor SI. Therefore, the matching of 

fertigation decisions between SPAD SI and active sensor SI has a greater potential of 

replacing the SPAD meter by utilizing an active crop canopy sensor to inform the 

decision of when to fertigate than passive sensor SI.  
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Conclusion 
 

The performance of active (RapidScan CS-45) and passive (Parrot Sequoia) crop 

canopy sensors compared to SPAD meter were evaluated in terms of assessing in-season 

corn N status. The high or weak correlation at any growth stage did not always lead to the 

same fertigation decision regarding N application, as the same decision for two sensors 

can be achieved if both sensor's SI values are greater than 0.95 thresholds or both less 

than or equal to 0.95 thresholds. The overall proportion of fertigation decisions that 

matched between SPAD SI and active sensor SI values across all growth stages and site 

years was 72%. The overall proportion of fertigation decisions that matched between 

SPAD SI and passive sensor SI values across all growth stages and site years was 48% 

(for passive sensor SI calculated from 90-95 percentile NDRE values) and 37% (for 

passive sensor SI calculated from average NDRE values). The matching fertigation 

decisions between SPAD SI and active sensor SI were higher than the matching 

fertigation decisions between SPAD SI and passive sensor SI. However, one to two 

growth stages of passive sensor data were used compared to seven growth stages of 

active sensor data to evaluate sensor similarity in assessing crop N status. The matching 

of fertigation decisions between SPAD SI and active sensor SI has a greater potential 

than passive sensor SI of replacing the SPAD meter to inform the decision of when to 

fertigate. 
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Chapter 5: General Summary and Future Suggestions  

The overall objective for this research was to evaluate and develop a new strategy 

for in-season nitrogen (N) management using an integration of reactive sensor and 

proactive Maize-N model approaches via fertigation in corn. To address this overall 

objective, three studies were conducted to better understand crop canopy sensor and 

Maize-N model use and investigate the possibility of integrating a reactive sensor with a 

proactive Maize-N model.  

The first study evaluated the integration of reactive sensor (SPAD meter) and 

proactive Maize-N model for determining the timing and rate of in-season N via 

fertigation in two site years. The SPAD meter was used weekly from V6 to R6 growth 

stages to monitor crop and determine the crop N sufficiency index (SI) to detect the onset 

of N stress in time to supplement N via fertigation. The N rate was fixed or calculated by 

the UNL algorithm and H-S algorithm or predicted by the Maize-N model.  

Results from this study showed that either reactive or proactive fertigation 

approaches or a combination of both approaches reduced total N applied. This resulted in 

an increase in nitrogen use efficiency (NUE) and partial profit compared to the proactive 

sidedress UNL algorithm and the reactive sidedress H-S algorithm with no significant 

difference in yields. Additionally, both approaches reduced residual soil nitrate-N 

compared to the proactive sidedress UNL algorithm. These results suggest that using a 

sensor or model or an integration of both has the potential to be an effective approach to 

direct fertigation to improve NUE and profit while minimizing environmental impact. 
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The second study evaluated the Maize-N model for predicting economic optimum 

N rate (EONR), N uptake, and soil nitrate-N using default, measured parameters, and 

crop sensors. Optimum N rate (ONR) was estimated from yield response to N rate and 

actual EONR was calculated from modeled yield with cost of fertilizer and price of corn 

to compare with EONR predicted by Maize-N. Additionally, biomass was collected from 

V8 to R6 growth stages to calculate total aboveground N uptake to compare with 

predicted N uptake. Soil samples were collected from V8 to R5 growth stages to quantify 

soil nitrate-N to compare with predicted soil nitrate-N. To improve Maize-N soil nitrate-

N prediction, measured soil temperature, measured soil bulk density, measured soil 

organic matter (SOM) for the top 30 cm, and the measured ratio of soil organic carbon 

(SOC) in the subsoil to topsoil was used to calibrate the model. A crop sensor was used to 

monitor and refine N uptake predictions.  

Results from this study showed that Maize-N predicted EONR underestimated N 

rate recommendations compared to the calculated actual EONR, but with no significant 

differences in yield. However, Maize-N predicted EONR reduced profit compared to the 

calculated actual EONR. Results also showed that the model prediction slightly 

underestimated N uptake while overestimating soil nitrate-N. Crop sensor information 

was a useful tool to monitor crop N status, but could not be used to refine model N 

uptake predictions for this study. A calibrated model greatly reduced differences between 

predicted and observed soil nitrate-N, but still overestimated soil nitrate-N. This study 

showed that Maize-N is a useful tool for the prediction of EONR and crop N uptake. 
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The third study evaluated the performance of active and passive crop canopy 

sensors compared to the SPAD meter in terms of assessing in-season corn N status and 

managing N fertigation. Crop canopy reflectance measurements were taken using two 

crop canopy sensors: an active crop canopy sensor (RapidScan CS-45) from V6 to R2 

growth stages and a passive crop canopy sensor (Parrot Sequoia) from V18 to R2 growth 

stages to compare with SPAD meter measurements. SI values were calculated from each 

sensor to assess crop N status. Results from this study showed that even reasonable 

correlation at any growth stage did not always lead to the same fertigation decision 

regarding N application, as the same decision for two sensors can be achieved if both 

sensor's SI values are greater than 0.95 thresholds or both less than or equal to 0.95 

thresholds. There was a higher proportion of fertigation decisions that matched between 

SPAD SI and active sensor SI than between passive sensor SI and SPAD SI values. This 

indicates the matching of fertigation decisions between SPAD SI and active sensor SI has 

a greater potential of replacing the SPAD meter by utilizing an active crop canopy sensor 

to inform the decision of when to fertigate than passive sensor SI. This provided evidence 

of the possibility of replacing the SPAD meter by using an active crop canopy sensor that 

is capable of rapid data collection with a larger spatial scale. 

The outcomes of this research showed that the reactive sensor approach was an 

effective indicator of in-season crop N needs that integrated crop growing conditions 

including weather effects on the crop from the time of planting to the time of sensing. 

The proactive Maize-N model approach showed great potential to account for spatial 

variability among fields and temporal variability between years by combining soil, crop, 

and management information with current and long-term weather to estimate corn N 



193 
 

 

demands. This research developed new N application methods using either sensor or 

model approaches, or the combination of both approaches to determine the timing and 

rate of in-season N requirements via fertigation in corn resulted in improving NUE, 

increasing profit, and minimizing environmental impact. 

The investigation of using a reactive sensor approach combined with a proactive 

Maize-N model approach should be continued to make more accurate N rate and timing 

decisions. Additionally, future investigations on using crop sensors and model simulation 

should be focusing on extension and educating farmers about what crop canopy sensors 

and model simulation are and how they can be used under different environmental 

conditions. 
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Appendix A 
 

Table A.1. In-season N application rates for eight N application methods for all site years. Mean estimates by site and 

year for average grain yield, partial factor productivity of N (PFPN), agronomic efficiency of N (AEN), the aboveground 

biomass recovery efficiency of N (REN), partial profit, and residual soil nitrate-N (RSN) for all site years in SCAL and 

WCREC. All mean values in this table showed and explained in figure for each variable in chapter 2.  

                  

 Treatment 

Site Year ID Check Reference P-SD-UNL R-SD-HS R-F-Fixed R-F-Model R-F-SR-Model P-F-Model 

 In-season N application rate (kg ha-1)  

SCAL17 0 0 84 56 34 37 20 30 

WCREC17 0 34 41 46 0 46 33 43 

SCAL18 0 0 136 58 0 0 0 30 

WCREC18 0 0 64 17 42 22 38 93 

 
Grain Yield (Mg ha-1) 

SCAL17 11.17b 16.18a 15.30a 15.46a 15.47a 14.73a 15.51a 14.88a 

WCREC17 12.74a 14.14a 13.24a 13.91a 14.02a 14.06a 13.89a 13.57a 

SCAL18 9.33b 13.80a 14.28a 13.90a 14.56a 14.17a 13.71a 14.36a 

WCREC18 8.49b 13.23a 12.88a 12.72a 11.68a 12.78a 13.04a 13.28a 

 Partial Factor Productivity of N (PFP)  

 
(kg grain kg N applied-1) 

SCAL17 - 56.40c 87.59b 105.42ab 124.50a 115.46a 127.13a 123.12a 

WCREC17 - 44.11d 104.64c 106.20c 164.93a 107.36c 134.89b 106.35c 

SCAL18 - 48.09e 64.70de 97.35c 171.33a 166.74a 89.35cd 124.58b 

WCREC18 - 46.13e 81.55cd 114.80ab 97.87bcd 125.67a 105.13abc 74.55d 

 Agronomic Efficiency of N (AEN)  

 
(kg grain increase kg N applied-1) 
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SCAL17 - 17.46b 23.68ab 29.28ab 34.62a 27.94ab 35.59a 30.74ab 

WCREC17 - 4.37a 3.95a 8.97a 15.09a 10.12a 11.18a 6.55a 

SCAL18 - 15.58d 22.44d 32.00cd 61.60a 57.01ab 28.55cd 43.66bc 

WCREC18 - 16.53b 27.77ab 38.16a 27.00ab 39.75a 37.02a 26.87ab 

 Aboveground Biomass Recovery Efficiency of N (REN)  

 
(kg N uptake increase kg N applied-1) 

SCAL17 - 0.48a 0.48a 0.59a 0.59a 0.60a 0.60a 0.60a 

WCREC17 - 0.35a 0.27a 0.50a 0.47a 0.19a 0.57a 0.30a 

SCAL18 - 0.51a 0.61a 0.67a 0.79a 0.53a 0.66a 0.77a 

WCREC18 - 0.45c 0.73abc 1.07ab 0.56c 1.17a 0.64bc 0.79abc 

 Partial Profit ($ ha-1)  

SCAL17 1513.37b 1917.14a 1909.56a 1958.86a 1982.05a 1878.63a 1960.46a 1905.68a 

WCREC17 1726.80a 1606.14a 1675.94a 1763.28a 1823.55a 1783.81a 1768.05a 1720.55a 

SCAL18 1358.90b 1759.46a 1889.87a 1904.30a 2054.10a 1997.07a 1808.78a 1997.12a 

WCREC18 1236.46b 1676.96a 1741.35a 1760.89a 1594.06a 1773.09a 1758.17a 1781.66a 

 
Residual soil nitrate (kg ha-1)  

SCAL17 7.66c 17.99a                           10.40bc                      9.18bc                       8.07c                            11.17b                              10.08bc                            9.16bc                           

WCREC17 - - - - - - - - 

SCAL18 3.33c 10.10b 15.03a 3.42c 3.37c 2.79c 4.25c 3.79c 

WCREC18 3.59b 24.23a 6.94b 5.99b 6.50b 5.17b 5.61b 7.58b 
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Table A.2. User input Maize-N model settings for model treatment for SCAL17 site 

year at planting.  

      

SCAL17      

USER INPUT SETTINGS    

    

Weather data 

20170424-SCAL-

MaizeN_Weather_All_Trt.w

th† 

 

 

    
The Maize Crop    
Hybrid relative maturity (days) 107   
Date of planting 04/24/17   

Plant population 34 

   

           

x1000/acr

e  

Price of maize 3.46  /bu 

An average yield of last 5 years N/A   

    
Last Crop    
Type of crop Soybean   
Economic yield 70  bu/acre 

Total N applied 0  lb/acre 

User-set last crop fertilizer recover rate, 

% N/A 

 

 
Date of maturity 09/30/16   
Amount of residues left in the field All   
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50% 

 

 

    
Nitrogen Fertilizer Management    
N already applied    
  Dates 05/01/17   
  Amount 6  lb N/acre 

N to be applied    
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate        

(UAN32%) 

 

 
  N content of the fertilizer 32  % 

  Price of the fertilizer 288  /ton 

User-set overall fertilizer recover rate, % N/A   
N from irrigation water 8  lb N/acre 

Applied slow-release N fertilizer    
N/A    

    
Tillage    
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Type of tillage No-till   
Date of tillage operation 04/16/17   

    
Soil properties    
Top-soil organic matter content 3.3  % 

Top-soil bulk density 1.3  g/cm3 

Average soil texture of root zone Silt Loam   
Soil pH Neutral   
 Soil root zone depth 48  inch 

    
Manuring    
N/A    

    
Measured Soil Nitrate to 1.2 m Depth    
Amount 34  lb N/acre 

Date of soil sampling 04/05/17    

† Long term weather data was used to predict the amount of N mineralization for the 

remainder of the season. 
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Table A.3. Maize-N model output for model treatment for SCAL17 site year at 

planting.  

      

SCAL17     

N rate recommendation for maize   
Date: 04/26/17   
   
Overall economically optimal N rate (EONR) 113 (±29) lb N/acre 

N doses:   
   Total N already applied 6 lb N/acre 

   N to be applied 106 lb N/acre 

Total fertilizer cost 51 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 53 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 32 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 241 (±24) bu/acre 

Attainable yield at EONR (Ya) 205 bu/acre 

Yield without N fertilizer (Y0) 141 bu/acre 

Total N uptake demand: 179 lb/acre 

N uptake from indigenous sources, total: 112 lb/acre 

   From N-leftover 1 lb N/acre 

   From SOM mineralization 90 lb N/acre 

   From crop residues mineralization 15 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  0 lb N/acre 
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Table A.4. User input Maize-N model settings for model treatment for WCREC17 

site year at planting. 

  

WCREC17     

USER INPUT SETTINGS   
   

Weather data 

20170424-WCREC-

MaizeN_Weather_All_Trts.wt

h  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 05/01/17  

Plant population 34 

          

x1000/acr

e 

Price of maize 3.46 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Soybean  
Economic yield 60 bu/acre 

Total N applied 0 lb/acre 

User-set last crop fertilizer recover rate, 

% N/A  
Date of maturity 10/03/16  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 05/01/17  
  Amount 6 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate 

(UAN32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 288 /ton 

User-set overall fertilizer recover rate, % N/A  
N from irrigation water 1 lb N/acre 

Applied slow-release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
Date of tillage operation 11/30/16  
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Soil properties   
Top-soil organic matter content 2 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Alkaline  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 67 lb N/acre 

Date of soil sampling 04/14/17   
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Table A.5. Maize-N model output for model treatment for WCREC17 site year at 

planting.  

      

WCREC17     

N rate recommendation for maize   
Date: 04/26/17   
   
Overall economically optimal N rate (EONR) 114 (±43) lb N/acre 

N doses:   
   Total N already applied 6 lb N/acre 

   N to be applied 108 lb N/acre 

Total fertilizer cost 51 /acre 

   
Recovery Efficiency (RE) of fertilizer 0.54 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize(PE) 52 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 28 lb maize/lb fertilizer-N 

Yield potential (Yp) 247 (±31) bu/acre 

Attainable yield at EONR (Ya) 210 bu/acre 

Yield without N fertilizer (Y0) 153 bu/acre 

Total N uptake demand: 184 lb/acre 

N uptake from indigenous sources, total: 122 lb/acre 

   From N-leftover 19 lb N/acre 

   From SOM mineralization 84 lb N/acre 

   From crop residues mineralization 19 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 1 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  0 lb N/acre 
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Table A.6. User input Maize-N model settings for model treatment for SCAL17 site 

year at the V9 stage. 

      

SCAL17     

USER INPUT SETTINGS (setting file: 20170625-SCAL-

MaizeN_v2017_InputSettings_All-Trt-8.stg) 

   

Weather data 

20170625-SCAL-

MaizeN_Weather_All_Trt.wt

h  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 04/24/17  

Plant population 34 

         

x1000/acr

e 

Price of maize 3.46 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Soybean  
Economic yield 70 bu/acre 

Total N applied 0 lb/acre 

User-set last crop fertilizer recover rate, % N/A  
Date of maturity 09/30/16  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 04/24/17, 05/08/17  
  Amount 6, 75 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate  

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 288 /ton 

User-set overall fertilizer recover rate, % N/A  
N from irrigation water 8 lb N/acre 

Applied slow-release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
Date of tillage operation 04/16/17  
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Soil properties   
Top-soil organic matter content 3.3 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Neutral  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 34 lb N/acre 

Date of soil sampling 04/05/17   
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Table A.7. Maize-N model output for model treatment for SCAL17 site year at the 

V9 stage.  

      

SCAL17     

N rate recommendation for maize   
Date: 06/26/17   
   
Overall economically optimal N rate (EONR) 108 (±29) lb N/acre 

N doses:   
   Total N already applied 81 lb N/acre 

   N to be applied 27 lb N/acre 

Total fertilizer cost 49 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 52 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 31 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 241 (±24) bu/acre 

Attainable yield at EONR (Ya) 205 bu/acre 

Yield without N fertilizer (Y0) 144 bu/acre 

Total N uptake demand: 179 lb/acre 

N uptake from indigenous sources, total: 115 lb/acre 

   From N-leftover 1 lb N/acre 

   From SOM mineralization 92 lb N/acre 

   From crop residues mineralization 15 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  3 lb N/acre 
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Table A.8. User input Maize-N model settings for sensor + model-I treatment for 

SCAL17 site year at the V12 stage. 

      

SCAL17     

USER INPUT SETTINGS   
   

Weather data 

20170702-SCAL-

MaizeN_Weather_All_Trt_6.

wth  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 4/24/2017  

Plant population 34.0 

          

x1000/acr

e 

Price of maize 3.46 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Soybean  
Economic yield 70 bu/acre 

Total N applied 0 lb/acre 

User-set last crop fertilizer recovery rate, 

% N/A  
Date of maturity 9/30/2016  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 4/24/2017, 5/8/2017  
  Amount 6, 75 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate  

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 288 /ton 

User-set overall fertilizer recovery rate, 

% N/A  
N from irrigation water 8 lb N/acre 

Applied slow-release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
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Date of tillage operation 4/16/2017  
   
Soil properties   
Top-soil organic matter content 3.3 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Neutral  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 34 lb N/acre 

Date of soil sampling 4/5/2017   
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Table A.9. Maize-N model output for sensor + model-I treatment for SCAL17 site 

year at the V12 stage.  

      

SCAL17     

N rate recommendation for maize   
Date: 07/02/2017   
   
Overall economically optimal N rate (EONR) 114 (±29) lb N/acre 

N doses:   
   Total N already applied 81 lb N/acre 

   N to be applied 33 lb N/acre 

Total fertilizer cost 46 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 52 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 31 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 241 (±24) bu/acre 

Yield at EONR (Y_EONR) 205 bu/acre 

Yield without N fertilizer (Y0) 148 bu/acre 

Total N uptake demand: 179 lb/acre 

N uptake from indigenous sources, total: 118 lb/acre 

   From N-leftover 0 lb N/acre 

   From SOM mineralization 98 lb N/acre 

   From crop residues mineralization 14 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  4 lb N/acre 

Long-term average N leaching loss of the same period  7 lb N/acre 
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Table A.10. User input Maize-N model settings for sensor + model-II treatment for 

SCAL17 site year at the V12 stage. 

      

SCAL17     

USER INPUT SETTINGS   
   

Weather data 

20170702-SCAL-

MaizeN_Weather_All_Trt_7.

wth  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 4/24/2017  

Plant population 34.0 

          

x1000/acr

e 

Price of maize 3.46 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Soybean  
Economic yield 70 bu/acre 

Total N applied 0 lb/acre 

User-set last crop fertilizer recovery rate, 

% N/A  
Date of maturity 9/30/2016  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 4/24/2017  
  Amount 6 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate  

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 288 /ton 

User-set overall fertilizer recovery rate, 

% N/A  
N from irrigation water 8 lb N/acre 

Applied slow-release N fertilizer   
Date applied 5/8/2017  
Amount 85 lb N/acre 

   
Tillage   
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Type of tillage No-till  
Date of tillage operation 4/16/2017  
   
Soil properties   
Top-soil organic matter content 3.3 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Neutral  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 34 lb N/acre 

Date of soil sampling 4/5/2017   
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Table A.11. Maize-N model output for sensor + model-II treatment for SCAL17 site 

year at the V12 stage.  

      

SCAL17     

N rate recommendation for maize   
Date: 07/02/2017   
   
Overall economically optimal N rate (EONR) 24 (±19) lb N/acre 

N doses:   
   Total N already applied 6 lb N/acre 

   N to be applied 18 lb N/acre 

Total fertilizer cost 10 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 0 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 0 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 241 (±24) bu/acre 

Yield at EONR (Y_EONR) 205 bu/acre 

Yield without N fertilizer (Y0) 209 bu/acre 

Total N uptake demand: 179 lb/acre 

N uptake from indigenous sources, total: 186 lb/acre 

   From N-leftover 0 lb N/acre 

   From SOM mineralization 98 lb N/acre 

   From crop residues mineralization 14 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 68 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  2 lb N/acre 

Long-term average N leaching loss of the same period  4 lb N/acre 
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Table A.12. User input Maize-N model settings for sensor + model-I and model 

treatments for WCREC17 site year at the V8 stage. 

      

WCREC17     

USER INPUT SETTINGS (setting file: 20170626-WCREC-

MaizeN_v2017_InputSettings Trts 6 and 8.stg) 

   

Weather data 

20170626-WCREC-

MaizeN_Weather_All_Trts.wt

h  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 05/08/17  

Plant population 34 

          

x1000/acr

e 

Price of maize 3.46 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Soybean  
Economic yield 60 bu/acre 

Total N applied 0 lb/acre 

User-set last crop fertilizer recover rate, 

% N/A  
Date of maturity 10/03/16  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 05/04/17, 05/08/17  
  Amount 70, 6 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate  

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 288 /ton 

User-set overall fertilizer recover rate, % N/A  
N from irrigation water 1 lb N/acre 

Applied slow-release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
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Date of tillage operation 11/30/16  
   
Soil properties   
Top-soil organic matter content 2 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Alkaline  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 67 lb N/acre 

Date of soil sampling 04/14/17   
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Table A.13. Maize-N model output for sensor + model-I and model treatments for 

WCREC17 site year at the V8 stage. 

      

WCREC17     

N rate recommendation for maize   
Date: 06/28/17   
   
Overall economically optimal N rate (EONR) 114 (±47) lb N/acre 

N doses:   
   Total N already applied 76 lb N/acre 

   N to be applied 

41, 

38 lb N/acre 

Total fertilizer cost 51 /acre 

   
Recovery Efficiency (RE) of fertilizer 0.54 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize (PE) 52 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 28 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 247 (±34) bu/acre 

Attainable yield at EONR (Ya) 210 bu/acre 

Yield without N fertilizer (Y0) 153 bu/acre 

Total N uptake demand: 184 lb/acre 

N uptake from indigenous sources, total: 122 lb/acre 

   From N-leftover 19 lb N/acre 

   From SOM mineralization 85 lb N/acre 

   From crop residues mineralization 18 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 1 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  0 lb N/acre 
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Table A.14. User input Maize-N model settings for sensor + model-II treatment for 

WCREC17 site year at the V8 stage. 

      

WCREC17     

USER INPUT SETTINGS (setting file: 20170626-WCREC-

MaizeN_v2017_InputSettings_Trts_7.stg) 

   

Weather data 

20170626-WCREC-

MaizeN_Weather_All_Trts.wt

h  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 05/08/17  

Plant population 34 

          

x1000/acr

e 

Price of maize 3.46 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Soybean  
Economic yield 60 bu/acre 

Total N applied 0 lb/acre 

User-set last crop fertilizer recover rate, 

% N/A  
Date of maturity 10/03/16  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 05/08/17  
  Amount 6 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate  

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 288 /ton 

User-set overall fertilizer recover rate, % N/A  
N from irrigation water 1 lb N/acre 

Applied slow-release N fertilizer   
Date applied 05/03/17  
Amount 57 lb N/acre 

   
Tillage   
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Type of tillage No-till  
Date of tillage operation 11/30/16  
   
Soil properties   
Top-soil organic matter content 2 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Alkaline  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 67 lb N/acre 

Date of soil sampling 04/14/17   
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Table A.15. Maize-N model output for sensor + model-II treatment for WCREC17 

site year at the V8 stage.  

      

WCREC17     

N rate recommendation for maize   
Date: 06/28/17   
   
Overall economically optimal N rate (EONR) 35 (±47) lb N/acre 

N doses:   
   Total N already applied 6 lb N/acre 

   N to be applied 29 lb N/acre 

Total fertilizer cost 13 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.5

4 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 45 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 24 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 247 (±34) bu/acre 

Attainable yield at EONR (Ya) 210 bu/acre 

Yield without N fertilizer (Y0) 197 bu/acre 

Total N uptake demand: 184 lb/acre 

N uptake from indigenous sources, total: 168 lb/acre 

   From N-leftover 19 lb N/acre 

   From SOM mineralization 85 lb N/acre 

   From crop residues mineralization 18 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 46 lb N/acre 

   From irrigation water 1 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  0 lb N/acre 
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Table A.16. User input Maize-N model settings for model treatment for SCAL18 site 

year at planting.  

       

SCAL18     

USER INPUT SETTINGS   
   

Weather data 

2018 05 02-SCAL-

MaizeN_Weather_Trts_All.wt

h  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 5/2/2018  

Plant population 34.0 

          

x1000/acr

e 

Price of maize 3.72 /bu 

Average yield of last 5 years N/A  
   
Last Crop   
Type of crop Corn  
Economic yield 236 bu/acre 

Total N applied 123 lb/acre 

User-set last crop fertilizer recovery rate, 

% N/A  
Date of maturity 9/28/2017  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 5/2/2018  
  Amount 5 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate  

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 260 /ton 

User-set overall fertilizer recovery rate, 

% N/A  
N from irrigation water 8 lb N/acre 

Applied slow release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
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Date of tillage operation 5/2/2018  
   
Soil properties   
Top-soil organic matter content 3.3 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt loam  
Soil pH Neutral  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 56 lb N/acre 

Date of soil sampling 4/19/2018   
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Table A.17. Maize-N model output for model treatment for SCAL18 site year at 

planting.  

      

SCAL18     

N rate recommendation for maize   
Date: 05/02/2018   
   
Overall economically optimal N rate (EONR) 130 (±29) lb N/acre 

N doses:   
   Total N already applied 5 lb N/acre 

   N to be applied 125 lb N/acre 

Total fertilizer cost 53 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 54 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 32 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 245 (±24) bu/acre 

Yield at EONR (Y_EONR) 209 bu/acre 

Yield without N fertilizer (Y0) 133 bu/acre 

Total N uptake demand: 183 lb/acre 

N uptake from indigenous sources, total: 105 lb/acre 

   From N-leftover 13 lb N/acre 

   From SOM mineralization 89 lb N/acre 

   From crop residues mineralization -4 lb N/acre 

   From manure 0 lb N/acre 

   From slow release fertilizer 0 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  2 lb N/acre 
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Table A.18. User input Maize-N model settings for model treatment for WCREC18 

site year at planting.  

   
WCREC18     

USER INPUT SETTINGS   
   

Weather data 

20180508-WCREC-

weather-input.wth  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 5/8/2018  

Plant population 34.0 

       

x1000/acr

e 

Price of maize 3.72 /bu 

Average yield of last 5 years N/A  
   
Last Crop   
Type of crop Soybean  
Economic yield 60 bu/acre 

Total N applied 0 lb/acre 

User-set last crop fertilizer recovery rate, % N/A  
Date of maturity 10/3/2017  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 5/8/2018  
  Amount 5 lb N/acre 

N to be applied   

  Type of fertilizer for in-season applications 

Urea ammonium nitrate 

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 260 /ton 

User-set overall fertilizer recovery rate, % N/A  
N from irrigation water 1 lb N/acre 

Applied slow release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
Date of tillage operation 5/8/2018  
   
Soil properties   
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Top-soil organic matter content 2.1 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt loam  
Soil pH Alkaline  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 49 lb N/acre 

Date of soil sampling 5/7/2018   
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Table A.19. Maize-N model output for model treatment for WCREC18 site year at 

planting.  

      

WCREC18     

N rate recommendation for maize   
Date: 5/8/2018   
   
Overall economically optimal N rate (EONR) 151 (±47) lb N/acre 

N doses:   
   Total N already applied 5 lb N/acre 

   N to be applied 146 lb N/acre 

Total fertilizer cost 61 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.5

4 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 54 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 29 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 247 (±34) bu/acre 

Yield at EONR (Y_EONR) 210 bu/acre 

Yield without N fertilizer (Y0) 131 bu/acre 

Total N uptake demand: 184 lb/acre 

N uptake from indigenous sources, total: 103 lb/acre 

   From N-leftover 11 lb N/acre 

   From SOM mineralization 75 lb N/acre 

   From crop residues mineralization 16 lb N/acre 

   From manure 0 lb N/acre 

   From slow release fertilizer 0 lb N/acre 

   From irrigation water 1 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  0 lb N/acre 
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Table A.20. User input Maize-N model settings for model treatment for SCAL18 site 

year at the VT stage. 

      

SCAL18     

USER INPUT SETTINGS   
   

Weather data 

2018 07 09-SCAL-

MaizeN_Weather_Trts_8.wth  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 5/2/2018  

Plant population 34 

          

x1000/acr

e 

Price of maize 3.72 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Corn  
Economic yield 236 bu/acre 

Total N applied 123 lb/acre 

User-set last crop fertilizer recovery rate, 

% N/A  
Date of maturity 9/28/2017  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 5/2/2018, 5/11/2018  
  Amount 5, 70 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate  

(UAN 32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 260 /ton 

User-set overall fertilizer recovery rate, % N/A  
N from irrigation water 8 lb N/acre 

Applied slow-release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
Date of tillage operation 5/2/2018  
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Soil properties   
Top-soil organic matter content 3.3 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Neutral  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate   
Amount 56 lb N/acre 

Date of soil sampling 4/19/2018   
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Table A.21. Maize-N model output for model treatment for SCAL18 site year at the 

VT stage.  

      

SCAL18     

N rate recommendation for maize   
Date: 7/9/2018   
   
Overall economically optimal N rate (EONR) 102 (±29) lb N/acre 

N doses:   
   Total N already applied 75 lb N/acre 

   N to be applied 27 lb N/acre 

Total fertilizer cost 41 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 52 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 31 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 245 (±24) bu/acre 

Yield at EONR (Y_EONR) 209 bu/acre 

Yield without N fertilizer (Y0) 152 bu/acre 

Total N uptake demand: 183 lb/acre 

N uptake from indigenous sources, total: 121 lb/acre 

   From N-leftover 14 lb N/acre 

   From SOM mineralization 105 lb N/acre 

   From crop residues mineralization -4 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  17 lb N/acre 
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Figure A.1. A timeline view of average SI values and N applied for the reactive-fixed fertigation (top left), model 

fertigation (top right), reactive-model fertigation (bottom left), and slow-release reactive-model fertigation (bottom 

right) treatments with the check and UNL treatments used as comparisons for the SCAL site in 2017 
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Figure A.2. A timeline view of average SI values and N applied for the reactive-fixed fertigation (top left), model 

fertigation (top right), reactive-model fertigation (bottom left), and slow-release reactive-model fertigation (bottom 

right) treatments with the check and UNL treatments used as comparisons for the WCREC site in 2017. 
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Figure A.3. A timeline view of average SI values and N applied for the reactive-fixed fertigation (top left), model 

fertigation (top right), reactive-model fertigation (bottom left), and slow-release reactive-model fertigation (bottom 

right) treatments with the check and UNL treatments used as comparisons for the SCAL site in 2018. Error bar is the 

standard error for four replications. 
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Figure A.4. A timeline view of average SI values and N applied for the reactive-fixed fertigation (top left), model 

fertigation (top right), reactive-model fertigation (bottom left), and slow-release reactive-model fertigation (bottom 

right) treatments with the check and UNL treatments used as comparisons for the WCREC site in 2018. Error bar is 

the standard error for four replications.
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Appendix B 
 

Table. B.1 User input Maize-N model settings for model treatment for SCAL18 site 

year at planting.  

     

SCAL18     

USER INPUT SETTINGS   
   

Weather data 

2018 05 10-SCAL-

MaizeN_Weather_All_Trt.wt

h†  
   
The Maize Crop   
Hybrid relative maturity (days) 107  
Date of planting 05/02/2018  

Plant population 34 

  

           

x1000/acr

e  

Price of maize 3.72 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Corn  
Economic yield 237 bu/acre 

Total N applied 107 lb/acre 

User-set last crop fertilizer recover rate, 

% N/A  
Date of maturity 9/28/2017  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 05/02/2018  
  Amount 5 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate        

(UAN32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 260 /ton 

User-set overall fertilizer recover rate, % N/A  
N from irrigation water 8 lb N/acre 

Applied slow-release N fertilizer   
N/A   
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Tillage   
Type of tillage No-till  
Date of tillage operation 05/02/2018  
   
Soil properties   
Top-soil organic matter content 3.3 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Neutral  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate to 1.2 m Depth   
Amount 56 lb N/acre 

Date of soil sampling 04/19/2018   

† Long term weather data was used to predict the amount of N mineralization for the 

remainder of the season. 
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Table. B.2 Maize-N model output for model treatment for SCAL18 site year at 

planting.  

      

SCAL17     

N rate recommendation for maize   
Date: 05/10/18   
   
Overall economically optimal N rate (EONR) 125 (±29) lb N/acre 

N doses:   
   Total N already applied 5 lb N/acre 

   N to be applied 120 lb N/acre 

Total fertilizer cost 51 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 54 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 32 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 245 (±24) bu/acre 

Attainable yield at EONR (Ya) 209 bu/acre 

Yield without N fertilizer (Y0) 136 bu/acre 

Total N uptake demand: 183 lb/acre 

N uptake from indigenous sources, total: 107 lb/acre 

   From N-leftover 13 lb N/acre 

   From SOM mineralization 92 lb N/acre 

   From crop residues mineralization -4 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  0 lb N/acre 

Long-term average N leaching loss of the same period  2 lb N/acre 
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Table. B.3 User input Maize-N model settings for model treatment for SCAL19 site 

year at planting.  

     

SCAL18     

USER INPUT SETTINGS   
   

Weather data 

2019 05 22-SCAL-

MaizeN_Weather_All_Trt.wt

h  
   
The Maize Crop   
Hybrid relative maturity (days) 109  
Date of planting 05/14/2019  

Plant population 34 

  

           

x1000/acr

e  

Price of maize 3.81 /bu 

An average yield of last 5 years N/A  
   
Last Crop   
Type of crop Corn  
Economic yield 221 bu/acre 

Total N applied 125 lb/acre 

User-set last crop fertilizer recover rate, 

% N/A  
Date of maturity 10/03/2018  
Amount of residues left in the field All  
Soil moisture of entire rooting depth at 

maturity as % of field capacity 50%  
   
Nitrogen Fertilizer Management   
N already applied   
  Dates 05/14/2019  
  Amount 5 lb N/acre 

N to be applied   
  Type of fertilizer for in-season 

applications 

Urea ammonium nitrate        

(UAN32%)  
  N content of the fertilizer 32 % 

  Price of the fertilizer 255 /ton 

User-set overall fertilizer recover rate, % N/A  
N from irrigation water 8 lb N/acre 

Applied slow-release N fertilizer   
N/A   
   
Tillage   
Type of tillage No-till  
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Date of tillage operation 05/14/2019  
   
Soil properties   
Top-soil organic matter content 3.3 % 

Top-soil bulk density 1.3 g/cm3 

Average soil texture of root zone Silt Loam  
Soil pH Neutral  
 Soil root zone depth 48 inch 

   
Manuring   
N/A   
   
Measured Soil Nitrate to 1.2 m Depth   
Amount 38 lb N/acre 

Date of soil sampling 04/17/2019   
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Table. B.4 Maize-N model output for model treatment for SCAL19 site year at 

planting.  

      

SCAL17     

N rate recommendation for maize   
Date: 05/22/19   
   
Overall economically optimal N rate (EONR) 154 (±29) lb N/acre 

N doses:   
   Total N already applied 5 lb N/acre 

   N to be applied 148 lb N/acre 

Total fertilizer cost 61 /acre 

   

Recovery Efficiency (RE) of fertilizer 

0.6

0 N-uptake/N-applied 

Physiological efficiency of N-uptake from fertilize 

(PE) 56 lb maize/lb N-uptake 

Agronomic Efficiency of fertilizer-N (AE) 33 

lb maize/lb fertilizer-

N 

Yield potential (Yp) 249 (±24) bu/acre 

Attainable yield at EONR (Ya) 212 bu/acre 

Yield without N fertilizer (Y0) 120 bu/acre 

Total N uptake demand: 185 lb/acre 

N uptake from indigenous sources, total: 93 lb/acre 

   From N-leftover 8 lb N/acre 

   From SOM mineralization 82 lb N/acre 

   From crop residues mineralization -3 lb N/acre 

   From manure 0 lb N/acre 

   From slow-release fertilizer 0 lb N/acre 

   From irrigation water 6 lb N/acre 

This season up-to-date N leaching  2 lb N/acre 

Long-term average N leaching loss of the same period  3 lb N/acre 
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Table B.5. Site year, sampling date, growth stage, predicted N uptake, and observed 

N uptake for Maize-N model treatment for SCAL18 and SCAL19.  

Site Year 

ID 

Sampling 

Date 

Growth 

Stage 

Predicted N Uptake  

(kg ha-1) 

Observed N Uptake  

(kg ha-1) 

SCAL18 2018/06/19 V8 59.7 62.0 

 2018/07/02 V12 97.1 115.3 

 2018/07/16 R1 135.1 166.2 

 2018/08/01 R3 166.9 201.0 

 2018/08/13 R5 184.4 225.3 

 2018/09/08 R6 190.5 234.8 
   

  

SCAL19 2019/07/02 V8 83.4 54.4 

 2019/07/16 V12 124.4 130.5 

 2019/07/29 R1 155.0 144.5 

 2019/08/20 R3 188.5 165.3 

  2019/09/15 R6 193.8 194.8 
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Table B.6. Site year, sampling date, growth stage, predicted soil nitrate-N, and 

observed soil nitrate-N for Maize-N model treatment for SCAL18 and SCAL19. 

Site Year 

ID 

Sampling 

Date 

Growth 

Stage 

Predicted Soil 

Nitrate-N (kg ha-1) 

Observed Soil 

Nitrate-N (kg ha-1) 

SCAL18 2018/06/18 V8 178.9 113.0 

 2018/07/03 V12 148.8 95.9 

 2018/07/17 R1 124.6 36.1 

 2018/07/31 R3 107.8 21.8 

 2018/08/17 R5 98.6 21.2 
     

SCAL19 2019/07/01 V8 122.1 77.7 

 2019/07/15 V12 94 37.8 

 2019/07/29 R1 73.9 41.5 

  2019/08/19 R3 59.8 17.4 
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Table B.7. Site year, sampling date, growth stage, and observed soil nitrate-N by 

depth for Maize-N model treatment for SCAL18 and SCAL19. 

Site Year ID Sampling Date Growth Stage 

Observed Soil Nitrate-N (kg ha-1) 

Depth (cm) 

30 60 90 120 

SCAL18 2018/06/18 V8 45.6 29.5 18.7 19.3 

 2018/07/03 V12 51.7 12.8 15.1 16.4 

 2018/07/17 R1 13.5 6.7 7.7 8.2 

 2018/07/31 R3 9.6 3.5 4.1 4.7 

 2018/08/17 R5 13.2 3.1 2.2 2.7 
       

SCAL19 2019/07/01 V8 27.5 15.8 19.5 14.8 

 2019/07/15 V12 10.6 6.2 9.4 11.6 

 2019/07/29 R1 13.0 9.0 8.6 11.0 

  2019/08/19 R3 9.5 3.5 1.8 2.6 
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Appendix C 
 

 

Figure C.1. Correlation between active sensor sufficiency index (based on average 

NDRE values) and passive sensor sufficiency index (based on average NDRE values) 

values (A) active sensor sufficiency index and passive sensor sufficiency index (based 

90 percentile NDRE value) values (B) for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments (n=12) at R2 growth stage for SCAL 2017.  

 

 

Figure C.2. Correlation between active sensor sufficiency index (based on average 

NDRE values) and passive sensor sufficiency index (based on average NDRE values) 

values (C and E) active sensor sufficiency index and passive sensor sufficiency index 

(based 95 and 90 percentile NDRE values) values (D and F) for R-F-Fixed, R-F-

Model, and R-F-Model-SR treatments (n=12) at VT and R2 growth stages for SCAL 

2018.  
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Figure C.3. Correlation between active sensor sufficiency index (based on average 

NDRE values) and passive sensor sufficiency index (based on average NDRE values) 

values (G) active sensor sufficiency index and passive sensor sufficiency index 

(based 90 percentile NDRE value) values (H) for R-F-Fixed, R-F-Model, and R-F-

Model-SR treatments (n=12) at V18 growth stage for WCREC 2018.  
 
 
 

Table C.1. Relationship between active sensor sufficiency index (based on average 

NDRE values) and passive sensor sufficiency index (based on average NDRE values) 

fertigation decisions for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments at 

R2, VT, R2, and V18 growth stages for SCAL2017, SCAL 2018, and WCREC 2018, 

respectively. 

      
    Treatment 

  

Site Year  
Growth 

Stage 

R-F-

Fixed 

R-F-

Model 

R-F-Model-

SR 

Matching Fertigation Decisions  Overall 

SCAL 2017  R2 0.75 0.50 0.50 0.58 

SCAL 2018  VT 0.25 0.75 0.75 0.58 

SCAL 2018  R2 0.25 0.00 0.50 0.25 

WCREC 

2018 
 V18 0.50 0.00 0.25 0.25 
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Table C.2. Relationship between active sensor sufficiency index (based on average 

NDRE values) and passive sensor sufficiency index (based on 90 and 95 percentile 

NDRE values) fertigation decisions for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments at R2, VT, R2, and V18 growth stages for SCAL2017, SCAL 2018, and 

WCREC 2018, respectively. 

      
    Treatment 

  

Site Year  
Growth 

Stage 

R-F-

Fixed 

R-F-

Model 

R-F-Model-

SR 

Matching Fertigation Decisions Overall 

SCAL 2017†  R2 0.75 0.75 0.50 0.67 

SCAL 2018ᵟ  VT 0.25 0.50 1.00 0.58 

SCAL 2018†  R2 0.25 0.50 0.50 0.42 

WCREC 

2018† 
 V18 0.50 0.00 0.25 0.25 

† Passive SI value-based on 90 percentile NDRE value  

ᵟ Passive SI value-based on 95 percentile NDRE value 
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Table C.3. SPAD SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for SCAL17. 

                    

   Growth Stage 

   V6 V8 V9 V11 V14 VT R2 

Plot     Trt Rep SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI 

106 R-F-Fixed 1 0.97 0.91 1.00 0.93 0.91 0.97 0.98 

104 R-F-Model 1 0.99 0.96 0.96 0.91 0.92 0.99 0.99 

105 R-F-Model-SR 1 0.91 0.93 1.01 0.91 0.95 0.96 0.98 

207 R-F-Fixed 2 0.90 0.93 0.92 0.89 0.90 0.93 0.96 

203 R-F-Model 2 0.99 0.98 0.95 0.96 0.99 0.99 0.99 

202 R-F-Model-SR 2 0.92 0.92 0.93 1.00 0.96 0.99 0.99 

308 R-F-Fixed 3 1.01 0.96 0.97 0.93 0.89 0.88 0.96 

301 R-F-Model 3 0.96 0.99  0.91 0.92 0.92 0.92 

304 R-F-Model-SR 3 0.97 0.93 0.93 0.89 0.96 0.94 0.99 

407 R-F-Fixed 4 0.90 0.94 0.92 0.94 0.96 1.01 0.93 

405 R-F-Model 4 0.89 0.95 0.96 0.93 0.94 1.05 0.96 

406 R-F-Model-SR 4 0.86 0.92 0.92 0.92 0.96 1.05 0.96 
The red color of SI values indicates SI values were equal to or less than the 0.95 thresholds.  
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Table C.4. Active sensor SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for SCAL17. 

             

   Growth Stage 

   V6 V8 V9 V11 V14 VT R2 

Plot     Trt Rep 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

106 R-F-Fixed 1 0.95 0.99 0.98 0.95 1.01 1.00 1.01 

104 R-F-Model 1 0.90 0.95 0.95 0.94 1.00 0.98 0.98 

105 R-F-Model-SR 1 0.89 0.94 0.94 0.93 0.97 1.02 1.00 

207 R-F-Fixed 2 0.89 0.90 0.91 0.92 0.95 0.98 0.96 

203 R-F-Model 2 0.99 0.98 0.97 0.96 0.95 1.02 0.99 

202 R-F-Model-SR 2 0.90 0.94 0.94 0.95 0.97 1.04 0.99 

308 R-F-Fixed 3 0.90 0.96 0.94 0.93 0.96 0.93 0.93 

301 R-F-Model 3 0.87 0.95 0.93 0.93 1.04 0.96 0.97 

304 R-F-Model-SR 3 0.83 0.93 0.90 0.93 1.01 0.97 1.00 

407 R-F-Fixed 4 0.86 0.94 0.93 0.94 1.03 0.99 0.99 

405 R-F-Model 4 0.88 0.93 0.92 0.94 1.06 0.99 0.99 

406 R-F-Model-SR 4 0.83 0.93 0.92 0.93 0.99 1.00 0.99 
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Table C.5. SPAD SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for SCAL18. 

                    

   Growth Stage 

   V6 V8 V10 V14 VT R1 R2 

Plot      Trt Rep SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI 

103 R-F-Fixed 1 1.02 1.00 1.00 0.94 0.97 1.02 0.99 

106 R-F-Model 1 1.02 1.02 1.02 1.00 1.00 1.01 0.99 

107 R-F-Model-SR 1 1.02 0.99 1.00 1.03 0.99 1.00 1.02 

204 R-F-Fixed 2 0.98 0.96 0.96 0.92 1.09 0.97 0.95 

205 R-F-Model 2 0.91 0.97 0.97 0.94 1.12 0.99 0.98 

202 R-F-Model-SR 2 0.97 1.00 0.96 0.98 1.11 0.96 0.95 

301 R-F-Fixed 3 1.05 0.98 1.00 1.02 0.97 0.97 0.99 

302 R-F-Model 3 1.06 1.01 1.01 1.01 0.92 0.98 1.01 

306 R-F-Model-SR 3 1.01 0.98 0.93 0.98 0.94 0.95 0.98 

405 R-F-Fixed 4 1.03 1.03 1.05 1.05 1.04 1.13 1.00 

408 R-F-Model 4 1.09 1.01 0.98 1.02 1.09 1.08 0.94 

404 R-F-Model-SR 4 1.09 1.01 1.03 1.03 0.99 1.09 0.96 
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Table C.6. Active sensor SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for SCAL18. 

                    

   Growth Stage 

   V6 V8 V10 V14 VT R1 R2 

Plot     Trt Rep 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

103 R-F-Fixed 1 0.97 0.95 1.00 1.00 1.04 0.98 0.98 

106 R-F-Model 1 1.04 0.99 1.03 1.02 1.01 0.97 0.97 

107 R-F-Model-SR 1 1.05 1.01 1.03 1.02 1.04 1.00 0.99 

204 R-F-Fixed 2 0.99 0.94 0.95 0.95 1.00 0.94 0.93 

205 R-F-Model 2 0.96 0.97 0.95 0.95 0.96 0.95 0.93 

202 R-F-Model-SR 2 1.00 0.96 0.98 0.98 0.95 0.95 0.97 

301 R-F-Fixed 3 1.09 1.05 1.03 1.05 0.94 1.00 0.96 

302 R-F-Model 3 1.05 1.03 1.05 1.02 0.98 0.98 0.96 

306 R-F-Model-SR 3 1.02 1.00 1.00 1.00 1.00 0.96 0.95 

405 R-F-Fixed 4 1.07 1.06 1.05 1.00 0.92 1.03 0.98 

408 R-F-Model 4 1.02 1.01 1.03 0.95 0.94 1.00 0.99 

404 R-F-Model-SR 4 1.02 1.01 1.03 1.00 0.98 1.03 0.95 
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Table C.7. SPAD SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for WCREC17. 

             

   Growth Stage 

   V6 V8 V10 V13 VT R1 R2 

Plot     Trt Rep SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI 

107 R-F-Fixed 1 0.91 0.87 0.93 0.94 0.99 0.97 0.96 

105 R-F-Model 1 0.90 0.94 0.93 0.94 0.94 0.96 0.96 

106 R-F-Model-SR 1 0.88 0.93 0.93 0.95 0.98 1.00 0.98 

208 R-F-Fixed 2 1.00 1.03 0.96 0.98 1.02 0.97 0.98 

204 R-F-Model 2 1.04 0.93 0.93 0.97 1.02 0.96 0.97 

202 R-F-Model-SR 2 0.95 0.92 0.92 0.94 1.00 0.97 0.96 

309 R-F-Fixed 3 1.03 0.98 0.96 0.98 1.01 1.03 0.97 

301 R-F-Model 3 0.98 0.85 0.99 0.98 1.00 0.99 0.97 

304 R-F-Model-SR 3 1.01 0.92 0.93 0.97 1.02 1.01 1.00 

408 R-F-Fixed 4 0.97 0.96 0.99 1.02 1.03 0.98 1.00 

405 R-F-Model 4 0.91 0.96 0.96 0.99 1.03 0.99 0.97 

407 R-F-Model-SR 4 0.92 0.95 0.94 0.97 1.02 0.99 0.95 
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Table C.8. Active sensor SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for WCREC17. 

             

    Growth Stage 

   V6 V8 V10 V13 VT R1 R2 

Plot     Trt Rep 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

107 R-F-Fixed 1 0.97 0.94 0.97 0.97 0.96 0.98 0.99 

105 R-F-Model 1 0.98 0.93 0.97 1.00 0.98 1.02 1.00 

106 R-F-Model-SR 1 0.89 0.86 0.89 0.99 0.97 1.00 0.97 

208 R-F-Fixed 2 1.05 1.03 1.03 1.00 0.96 0.97 0.98 

204 R-F-Model 2 0.99 1.00 1.02 0.99 0.99 0.99 1.03 

202 R-F-Model-SR 2 0.92 0.90 0.99 0.98 0.95 0.99 1.03 

309 R-F-Fixed 3 1.05 1.06 1.02 0.99 0.97 1.02 0.98 

301 R-F-Model 3 1.02 1.03 0.98 0.98 0.99 1.02 1.00 

304 R-F-Model-SR 3 0.96 0.97 0.97 0.98 1.00 1.00 0.98 

408 R-F-Fixed 4 0.92 0.99 1.00 1.00 1.01 0.99 0.99 

405 R-F-Model 4 0.85 0.92 0.95 0.95 1.00 0.98 0.97 

407 R-F-Model-SR 4 0.84 0.90 0.90 0.93 0.96 0.98 0.96 
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Table C.9. SPAD SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for WCREC18. 

             

   Growth Stage 

   V6 V8 V10 V13 V18 R1 R2 

Plot      Trt Rep SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI SPAD SI 

108 R-F-Fixed 1 0.81 0.88 0.88 0.92 0.92 0.94 0.94 

103 R-F-Model 1 0.92 0.98 0.97 0.91 0.95 0.99 1.02 

106 R-F-Model-SR 1 0.81 0.86 0.90 0.91 0.93 0.95 0.97 

206 R-F-Fixed 2 0.92 0.97 1.00 0.97 0.99 0.96 0.96 

202 R-F-Model 2 0.90 0.85 0.96 0.96 0.96 0.92 0.95 

203 R-F-Model-SR 2 1.07 1.03 1.06 1.04 1.05 0.99 1.01 

301 R-F-Fixed 3 0.92 0.96 0.93 0.92 0.89 0.94 0.92 

308 R-F-Model 3 1.12 1.12 1.05 1.02 0.98 0.98 0.99 

305 R-F-Model-SR 3 1.03 1.00 0.97 0.90 0.92 0.94 0.94 

407 R-F-Fixed 4 0.91 0.95 0.98 0.96 0.96 0.95 0.95 

405 R-F-Model 4 1.00 1.00 1.03 1.00 0.98 0.97 0.98 

406 R-F-Model-SR 4 0.84 0.89 0.95 0.92 0.94 0.94 0.97 
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Table C.10. Active sensor SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR treatments with plot number and 

replications at V6 through R2 growth stage for WCREC18. 

                    

   Growth Stage 

   V6 V8 V10 V13 V18 R1 R2 

Plot      Trt Rep 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

Active 

sensor SI 

108 R-F-Fixed 1 0.77 0.85 0.89 0.88 0.90 0.92 0.91 

103 R-F-Model 1 0.98 1.02 1.00 0.98 0.92 0.98 0.99 

106 R-F-Model-SR 1 0.87 0.85 0.91 0.92 0.95 0.96 0.94 

206 R-F-Fixed 2 0.94 0.94 1.00 0.99 1.01 0.95 0.94 

202 R-F-Model 2 0.86 0.85 0.93 0.94 0.96 0.93 0.94 

203 R-F-Model-SR 2 1.10 1.02 1.06 1.03 0.97 0.99 1.04 

301 R-F-Fixed 3 0.94 0.92 0.92 0.92 0.90 0.98 0.97 

308 R-F-Model 3 1.26 1.19 1.09 1.01 0.90 1.00 0.99 

305 R-F-Model-SR 3 1.09 1.00 0.96 0.95 0.90 0.96 1.00 

407 R-F-Fixed 4 0.91 0.95 0.93 0.95 0.91 0.94 0.95 

405 R-F-Model 4 1.05 1.02 1.00 0.98 0.92 0.96 0.93 

406 R-F-Model-SR 4 0.89 0.87 0.91 0.91 0.96 0.92 0.94 
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Table C.11. Passive sensor SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments with plot number and replications at V6 through R2 growth stage for 

SCAL17. 

        

   Growth Stage 

   R2 R2 

Plot         Trt Rep Passive sensor SI
†

 Passive sensor SI
ᵟ
 

106     R-F-Fixed 1 0.89 0.89 

104     R-F-Model 1 0.99 0.97 

105     R-F-Model-SR 1 0.92 0.92 

207     R-F-Fixed 2 0.97 0.99 

203     R-F-Model 2 0.95 0.98 

202     R-F-Model-SR 2 0.95 0.98 

308     R-F-Fixed 3 0.88 0.89 

301     R-F-Model 3 0.86 0.88 

304     R-F-Model-SR 3 0.91 0.92 

407     R-F-Fixed 4 0.98 0.99 

405     R-F-Model 4 1.00 0.99 

406     R-F-Model-SR 4 0.99 1.02 
† Passive SI value-based on average NDRE values.  

ᵟ Passive SI value-based on 90 percentile NDRE value. 
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Table C.12. Passive sensor SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments with plot number and replications at V6 through R2 growth stage for 

SCAL18. 

              

   Growth Stage 

   VT VT R2 R2 

Plot      Trt Rep 

Passive 

sensor SI
†

 

Passive 

sensor SI
٭

 

Passive 

sensor SI
†

 

Passive 

sensor SI
ᵟ
 

103  R-F-Fixed 1 0.94 0.98 0.91 0.94 

106  R-F-Model 1 0.98 1.00 0.86 1.03 

107  R-F-Model-SR 1 0.99 0.99 0.87 0.88 

204  R-F-Fixed 2 0.78 0.83 1.12 1.02 

205  R-F-Model 2 0.82 0.86 1.23 1.14 

202  R-F-Model-SR 2 0.84 0.93 1.01 0.95 

301  R-F-Fixed 3 1.06 1.14 0.77 0.84 

302  R-F-Model 3 1.03 1.12 0.80 0.81 

306  R-F-Model-SR 3 1.01 1.11 0.81 0.98 

405  R-F-Fixed 4 0.93 0.98 1.02 1.01 

408  R-F-Model 4 0.93 0.96 0.93 1.04 

404  R-F-Model-SR 4 0.86 0.97 1.04 1.02 
† Passive SI value-based on average NDRE values.  

 .Passive SI value-based on 95 percentile NDRE value٭

ᵟ Passive SI value-based on 90 percentile NDRE value. 
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Table C.13. Passive sensor SI values for R-F-Fixed, R-F-Model, and R-F-Model-SR 

treatments with plot number and replications at V6 through R2 growth stage for 

WCREC18. 

          

   Growth Stage 

   V18 V18 

Plot       TRT Rep Passive sensor SI
†

 Passive sensor SI
ᵟ
 

108   R-F-Fixed 1 0.92 1.02 

103   R-F-Model 1 1.07 1.03 

106   R-F-Model-SR 1 1.10 1.20 

206   R-F-Fixed 2 0.90 0.99 

202   R-F-Model 2 0.73 0.80 

203   R-F-Model-SR 2 0.68 0.73 

301   R-F-Fixed 3 0.98 1.00 

308   R-F-Model 3 1.18 1.06 

305   R-F-Model-SR 3 1.01 0.97 

407   R-F-Fixed 4 0.93 0.91 

405   R-F-Model 4 1.00 0.98 

406   R-F-Model-SR 4 0.99 0.98 
† Passive SI value-based on average NDRE values.  

ᵟ Passive SI value-based on 90 percentile NDRE value. 
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