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Adiabatic-limit Coulomb factors for photoelectron and high-order-harmonic spectra
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A momentum-dependent Coulomb factor in the probability for nonlinear ionization of atoms by a strong
low-frequency laser field is calculated analytically in the adiabatic approximation. Expressions for this Coulomb
factor, valid for an arbitrary laser pulse waveform, are obtained and analyzed in detail for the cases of linear and
circular polarizations. The dependence of the Coulomb factor on the photoelectron momentum is shown to be
significant in both cases. Using a similar technique, the Coulomb factor for emission of high-order harmonics
by an atom in a bichromatic laser field is also calculated. In contrast to the case of a single-frequency field, for
bichromatic fields the Coulomb factor depends significantly on the harmonic energy.
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I. INTRODUCTION

Above-threshold ionization (ATI) and high-order-harmonic
generation (HHG) resulting from the interaction of intense
laser radiation with atomic and molecular systems have
remained the focus of strong field physics for more than two
decades. Furthermore, interest in these phenomena shows no
signs of saturation, for at least two reasons. First, the highly
nonlinear time-dependent dynamics of laser-driven atoms and
molecules has continued to produce new effects, most of which
are first observed experimentally and only later are explained
theoretically. The past decade has been particularly fruitful,
witnessing such “ionization surprises” [1] as the discovery of
several types of low energy structures [2–5], photoelectron
holography [6], and a low-energy plateau [7]. Second, HHG
opens a means to generate extremely short and relatively
bright pulses of UV and soft x-ray light using compact
and economical setups [8–10]. Someday HHG-based tabletop
light sources will achieve intensities sufficient for a variety
of practical applications. In particular, tailored laser pulses
enable one to control the spectral and polarization properties
of high-order harmonics. Moreover, the emerging new area of
attosecond physics [11] is based on HHG.

These experimental advances require theory for their
interpretation. The strong-field approximation (SFA) remains
an important computational tool for theory (for reviews, see
Refs. [12–15]). Its remarkable success is based on its com-
bination of analytic simplicity and predictive power. Indeed,
the celebrated Lewenstein model of HHG [16] is essentially
based on the SFA. However, since the SFA in its standard form
disregards the Coulomb interaction between a photoelectron
and its parent ion, for neutral atoms and positively charged ions
the SFA is at best only qualitatively accurate. As experiments
probe ever deeper into details of ATI and HHG processes, the
SFA becomes increasingly insufficient for their description. In
fact, all of the aforementioned ionization surprises are out of
reach of this otherwise very fruitful method.

This paper has two aims. First, using the general approach
of the so-called Coulomb-corrected SFA (CCSFA) [14,17],
we calculate analytically the momentum-dependent Coulomb
factor in the ionization probability in the adiabatic limit, γ � 1
(where γ is the Keldysh parameter [18]; see Eq. (6) below), and

analyze it for the cases of linearly polarized (LP) and circularly
polarized (CP) monochromatic fields. This result fills the gap
between the static (momentum-independent) Coulomb factor
responsible for enhancement of the ionization rate [19,20]
and the one for arbitrary γ , which can only be calculated
numerically and which requires a demanding analysis of those
trajectories that revisit the atom. Second, we use the adiabatic
approximation to calculate Coulomb factors for HHG spectra
produced by a bicircular laser field with a frequency ratio of
1:2. This second aim is motivated by the growing interest, both
experimental [21–23] and theoretical [24–27], in HHG spectra
produced by bicircular fields.

In Sec. II we provide a brief overview of theoretical methods
for treating strong field processes in order to provide a context
for the present work. In Sec. III we introduce the Coulomb-free
SFA detachment amplitude and its representation in terms of
saddle points and trajectories. We also derive approximate
expressions for the saddle-point solutions and for the classical
photoelectron action in the adiabatic limit. In Sec. IV we derive
the Coulomb correction and analyze it for LP and CP fields. In
Sec. V the adiabatic Coulomb correction for HHG spectra in
bicircular laser fields is derived. In Sec. VI we summarize our
results and our conclusions. Finally, in the Appendix we apply
the adiabatic theory to calculate detachment probabilities for
LP and CP fields. Throughout this paper we use the dipole
approximation (which is adequate for strong field processes
in moderately intense infrared laser fields) and atomic units
(h̄ = me = e = 1).

II. OVERVIEW OF THEORETICAL METHODS FOR
STRONG FIELD PROCESSES

There are few efficient theoretical methods able to treat
laser-atom interactions on a fully nonperturbative basis, which
is necessary for describing such highly nonlinear phenomena
as ATI and HHG. These methods include the numerical solu-
tion of the time-dependent Schrödinger equation (TDSE), ex-
actly solvable models such as the quasistationary quasienergy
states approach (QQES) for the zero-range potential [28],
the adiabatic approximation [29–31], the S-matrix approach
[32–35], the Keldysh theory [18,36,37] or, equivalently, the
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strong field approximation [38,39], and the simple man
(classical) model (SMM) [40]. Although exact, the TDSE
approach presents two difficulties: it is highly demanding of
computational resources, particularly for fields having long
wavelengths or polarizations other than linear, and it provides
little insight into the physics of a problem without extensive,
time-consuming additional calculations to explore the relevant
parameter space. The QQES method combined with the
effective range theory provides a model-independent almost
exact description of ATI and HHG for weakly bound systems
such as negative ions [41]. The generalization of its results to
the case of atoms has been achieved heuristically (see, e.g.,
Refs. [42–46]) in the tunneling limit, in which the Keldysh
parameter γ → 0. The SFA is rather efficient for providing
a qualitative description of the basic features of both ATI
and HHG spectra. For systems bound by short-range forces
it is quantitatively accurate and consistent with the QQES
approach (for discussions comparing the two approaches, see
Refs. [14,41]). Finally, the SMM has provided invaluable
insight into the physics of recollision processes, including
HHG, but its purely classical essence is insufficient for
calculating quantum mechanical ATI and HHG probabilities
and interference effects.

Owing to its efficiency and qualitative accuracy, different
extensions of the SFA have been developed since the early
days of strong field physics, especially during the past decade,
aimed at improving its quantitative accuracy for atoms, ions,
and molecules. Incorporation of the Coulomb interaction into
the SFA is based on the so-called perturbation theory for the
action, suggested in the context of the ionization problem by
Perelomov and Popov [19]. The idea stems from the fact that,
within the SFA, the photoelectron motion in the continuum
is described by the Volkov function—an exact solution to
the Schrödinger equation for an electron in the field of a
plane electromagnetic wave [47–50]. The phase of the Volkov
function coincides with the classical action for an electron
moving in a laser field. After ionization the photoelectron
departs from the nucleus quickly, so that for most of its
trajectory the laser force dominates the Coulomb one. Thus the
Coulomb interaction can be taken into account as a correction
to the action due to the Coulomb energy along the photo-
electron trajectory in the laser field. Owing to the quantum
nature of strong field ionization from ground states of atoms,
such photoelectron trajectories cannot be entirely classical:
they remain Newtonian but in complex time and space. That
scheme was adopted for the semiclassical representation of
the SFA (both with and without the Coulomb field included)
and realized via the imaginary time method (ITM) [51]. In a
strong laser field, the Coulomb action calculated along such
“classical” complex space-time trajectories is complex valued
and therefore changes both the absolute value and the phase
of the ionization amplitude. Although small compared to the
laser-induced action, it is usually numerically large and causes
pronounced effects in photoelectron spectra. The trajectory-
based calculation of Coulomb corrections, extended to arbi-
trary values of photoelectron momenta and of the Keldysh
parameter, is known in the literature as the CCSFA [14,17].
Suggested at the same time with the CCSFA and based on
similar ideas, although technically different in realization, the
eikonal-Volkov approximation (EVA) [52] and the analytic R-

matrix theory (ARM) [53] are also used to describe Coulomb
effects in ATI spectra. Applying the CCSFA, EVA, and
ARM methods, several Coulomb-induced effects have been
analyzed. These include the Coulomb-induced asymmetry
of the photoelectron distributions produced by elliptically
polarized fields [54], the total photoionization rate at arbitrary
laser frequencies [55], the low-energy structures [56], the
photoelectron holographic sidelobes [6], and the attoclock
experiment [57] (see the review [14] for details). Recently, the
ARM method has been advanced to probe Coulomb effects in
HHG spectra [58].

In the general case of arbitrary photoelectron momentum
and Keldysh parameter, the application of the CCSFA meets
serious computational difficulties. The Coulomb correction
to the action along a complex-valued laser-driven trajectory
requires numerical evaluation, except in special cases. This
involves in turn a topological analysis of the Coulomb potential
energy as a function of complex time. Recent studies [7,59,60]
have demonstrated that this function is not analytic over the
entire complex plane but has poles and branch points that
make the construction of an integration contour a complicated
numerical task. One way to avoid these difficulties is to
simplify the theory by replacing complex-valued trajectories
by real ones [56,61] or by reformulating the theory in such
a way that complex trajectories do not appear from the
very beginning [62]. Such simplifications, although efficient,
obviously omit effects of “subbarrier” motion. Meanwhile,
the subbarrier contribution to the phase, which determines
the interference structure of photoelectron distributions, was
shown to be significant [63].

Yet another possibility to simplify the theory analytically
without disregarding complex-time effects consists in consid-
ering its adiabatic limit, in which case a regular expansion of
all relevant quantities in powers of γ considerably facilitates
calculations and provides sufficient accuracy despite retention
of only a few terms. Taking into account that the domain of
strong-field ionization experiments has been recently extended
to midinfrared fields with wavelengths λ � 2–10 μm, this
limit has more than academic interest. In fact, for ground
states of atoms, the true tunneling regime of ionization is only
accessible at midinfrared wavelengths.

III. DETACHMENT AMPLITUDE IN THE
ADIABATIC LIMIT

Within the SFA, the strong field detachment amplitude of
a weakly bound electron can be presented in the well-known
form [14,18,36–39] (see also Ref. [46])

A( p) = 1

2π

∫ ∞

−∞
fl( p, t)eiS( p,t)dt, (1)

S( p,t) =
∫ t

−∞

{
1

2
[ p + A(t ′)]2 + Ip

}
dt ′, (2)

where p is the photoelectron momentum at the detector, A(t)
is the vector potential of the laser field, Ip is the ionization
potential, and fl( p,t) is a smooth preexponential function,
whose explicit form depends on the spatial symmetry of
the initial electron bound state (l is the orbital momentum
of the bound state). Since our analysis is focused on the
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exponential phase (2), this explicit form is not important. For
low frequencies, we estimate the integral in (1) by the saddle
point method:

A( p) =
∑

ν

aν( p), (3)

aν( p) = fl( p,tν)eiS( p,tν )

√
2πi(V (tν) · F(tν))

, (4)

where V (t) = p + A(t) is the time-dependent photoelectron
velocity, F(t) = −∂ A(t)/∂t is the laser field strength, and the
index ν numbers the saddle points, which satisfy the equation

[ p + A(tν)]2 + 2Ip = 0. (5)

Solutions of Eq. (5) are obviously complex, tν( p) ≡ tν = tν +
i�ν , where tν and �ν are real. Only the roots tν with �ν > 0
should be included in the sum (3), since the transition to the
continuum state starts from a bound state with negative energy
−Ip [64].

We assume the Keldysh parameter γ [18], defined by

γ = κω

F
, κ = √

2Ip, (6)

is small, i.e., γ � 1, which specifies the so-called adiabatic or
tunneling regime of ionization. In this limit, ω�ν � 1 [37,65]
(see also Refs. [29–31]), and we can expand Eq. (5) as a series
in the adiabatic parameter �ν . Keeping terms up to second
order, we obtain

V 2
ν − 2i�ν V ν · Fν − �2

ν

(
F2

ν − V ν · Ḟν

) + κ2 = 0, (7)

where V ν ≡ V (tν), Fν ≡ F(tν), and Ḟν ≡ ∂ F(t)/∂t |t=tν .
Separating the real and imaginary parts of Eq. (7), we obtain
an equation for tν :

V ν · Fν = 0, (8)

and an expression for �ν :

�ν = 
ν

Fν

, (9)

where


ν =
√

κ2 + V 2
ν, (10a)

Fν =
√

F2
ν − V ν · Ḟν . (10b)

Equation (8) implies that the first time derivative of the
electron’s kinetic energy in the laser field is zero [65]. Since
F2

ν − V ν · Ḟν > 0 (�ν is real), at the moment t = tν both the
electron’s kinetic energy and 
ν are minimized. Expanding
Eq. (2) as a series in �ν and keeping terms up to third order,
we obtain

S( p,tν) ≈ S( p,tν) + i

3

ν

3Fν

. (11)

The scalar product V (tν) · F(tν) in Eq. (4) also can be
simplified: expanding it up to first order in �ν and taking
into account Eq. (8), we obtain

V (tν) · F(tν) ≈ −i�νF2
ν . (12)

Collecting Eqs. (9), (11), and (12), we obtain for the partial
detachment amplitude in the adiabatic limit

aν( p) = fl( p,tν)eiS( p,tν )

√
2π
νFν

e−
3
ν /(3Fν ). (13)

This result is valid for ω�ν � 1, which requires, in addition to
being in the tunneling regime, that the electron kinetic energy
at the time of release is small, V 2

ν � p2
F , where pF = F/ω is

the characteristic electron quiver momentum in the laser field
(i.e., its field momentum). The latter follows from the estimate

ω2�2
ν ∼ γ 2 + V 2

ν/p
2
F . (14)

In practice, V 2
ν should not exceed by much the value κ2.

Consider now two simple and simultaneously common
cases of monochromatic LP and CP fields. For the LP field,
F(t) = ezF cos ωt , so that Eq. (8) becomes

pz − pF sin ωtν = 0, (15)

where pz = ( p · ez), and may be solved analytically:

ωt
(+)
ν = arcsin

pz

pF

+ 2πν, (16a)

ωt
(−)
ν = π − arcsin

pz

pF

+ 2πν. (16b)

In this case, for any ν:

V 2
lin = V 2

ν = p2
⊥ = p2 − p2

z , (17a)


lin = 
ν = κ
√

1 + (p⊥/κ)2, (17b)

Flin = Fν = F
√

1 − (pz/pF )2, (17c)

ω�lin = ω�ν = γ

√
1 + (p⊥/κ)2

1 − (pz/pF )2
. (17d)

Explicit forms of Fν and �ν show that the momentum
distribution of photoelectrons determined by |aν( p)|2 takes its
maximum value at p⊥ = 0 and pz = 0 [see Eqs. (A5), (17b),
and (17c)]. For p⊥ � κ , pz � pF , expansion of Eqs. (17b)
and (17c) respectively in powers of (pz/pF )2 and (p⊥/κ)2

shows that it has a Gaussian shape, in agreement with previous
studies [12,37,66].

For a CP field, F(t) = F {cos ωt ; sin ωt}, the equation for
tν simplifies since F(t) · A(t) = 0:

p · Fν = p||F cos(ωtν − ϕ) = 0, (18)

where ϕ is the angle between the X axis and the photoelectron
momentum projection p|| on the polarization plane. The
desired solution of Eq. (18) is

ωtν = π

2
+ ϕ + 2πν, (19)

and leads to the following result:

V 2
ν = (p|| − pF )2 + p2

⊥, Fν = F
√

p||/pF , (20a)

ω�ν =
√

γ 2 + (1 − p||/pF )2 + (p⊥/pF )2

p||/pF

, (20b)


ν =
√

κ2 + p2
⊥ + (p|| − pF )2, (20c)
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where p2
⊥ = p2 − p2

||. In contrast to the LP field case, the
partial amplitude aν( p) for the CP field has its maximum at
p|| = pF , p⊥ = 0 [see Eqs. (A9) and (A10)] in agreement with
Refs. [36,37]. Near p|| = pF the distribution is Gaussian and
axially symmetric about the laser field propagation direction.
These formulas apply if p⊥ and p|| do not deviate from
p|| = pF , p⊥ = 0 by more than several κ . Further analysis
and applications of the adiabatic approximation for LP and CP
fields are given in the Appendix.

IV. COULOMB CORRECTIONS FOR PHOTOELECTRON
MOMENTUM DISTRIBUTIONS IN THE

ADIABATIC REGIME

The phase S( p,tν) in Eq. (4) is the classical action for
an electron moving in the time-dependent field F(t) along
a trajectory satisfying Newton’s equation and defined by the
boundary conditions:(

d r(t)

dt

)2∣∣∣∣
t=tν

= −κ2, r(tν) = 0. (21)

The Coulomb interaction can be taken into account by
calculating a correction to the Coulomb-free action in Eq. (4)
along the Coulomb-free trajectory specified by conditions (21)
[19]. Detailed descriptions of this method are given in recent
reviews [12,14,15]. Here we sketch briefly the algorithm,
which has both analytical and topological parts.

The analytic part includes the following five steps.
(i) Find the Coulomb-free electron trajectories, r(t), in the

laser field, F(t), satisfying (21).
(ii) Find the points t (bp) (different from tν) in the complex

time plane at which r2(t (bp)) = 0. These complex times are
branch points of the function

√
r2(t).

(iii) Calculate the Coulomb action along the Coulomb-free
electron trajectory r(t):

δS(ζ ) =
∫
C

Z√
r2(t)

dt, (22)

where Z is the residual atomic charge (Z = 0 and 1 for
negative ions and neutral atoms, respectively). The semi-
infinite integration contour C connecting the start time (tν)
and the detection time (t → ∞) is chosen in such a way that
it avoids cuts generated by the branch points t (bp). The integral
(22) is logarithmically divergent at the saddle point, so that the
integration must start from a complex time t = ζ close to tν .
The value of ζ will be eliminated from the final result through
a regularization procedure (see the next step).

(iv) Regularize δS by matching it to the field-free Coulomb
action at ζ = tν :

�Sν( p) = lim
ζ→tν

(
δS(ζ ) + i

Z

κ
ln |κ2(ζ − tν)|

)
. (23)

(v) Calculate the Coulomb factor in the ionization am-
plitude, exp(i�Sν). If the Coulomb correction is a purely
imaginary quantity that is the same for all ν (as in the case
treated below), it gives a momentum-dependent Coulomb
factor in the ionization amplitude:

Qν( p) = e−Im�Sν ( p).

The topological part of the problem concerns the geometry
of the integration contour C. In general this is a complicated
computational problem, since it requires the mapping of all
branch points and poles of the function 1/

√
r2(t) in order to

develop a contour that lies on a single sheet of the Riemann
surface. Examples of this kind of topological analysis can
be found in Refs. [7,59,60]. Except for the saddle point tν ,
which generates a first-order pole of the Coulomb potential
energy [whose divergent contribution is safely eliminated
by the matching procedure (23)], most of the zeros of the
function r2(t) can be associated with close approaches of
the photoelectron to the parent ion due to its oscillations
in a time-dependent laser field. As shown in Ref. [7], the
contributions of these complex-time returns to the action (23)
can be significant, with a correspondingly large effect on
the photoelectron spectrum if the parameter γZ/κ > 1 (see
examples in Ref. [7]). In the adiabatic limit that we consider,
however, this value is small (owing to Z = 1,κ � 1), so that
the branch points associated with such returns do not play a
significant role. Physically, it can be justified by the increased
spreading of the photoelectron wave packet with increasing
laser period so that the electrons drift away in the lateral
direction (for a LP field), and hence close approaches become
less and less likely. Thus we disregard the branch points
generated by returns. Consequently, only one pair of branch
points remains (see below), thus allowing for a fully analytic
treatment.

For ω�ν � 1, a trajectory in the integral (22) can be
calculated by restricting the time |t − tν | to a small fraction of
the laser period and expanding in τ ≡ t − tν :

d r(t)

dt
= p + A(t) ≈ V ν − Fντ − Ḟν

τ 2

2
. (24)

Integrating Eq. (24) over τ and satisfying the initial condition
at τ = i�ν gives the trajectory

r(t) = V ν(τ − i�ν) − Fν

2

(
τ 2 + �2

ν

) − Ḟν

6

(
τ 3 + i�3

ν

)
.

(25)

For convenience, we introduce a new variable ξ , τ = iξ , so
that rc(ξ ) ≡ r(tν + iξ ) takes the form

rc(ξ ) = iV ν(ξ − �ν) + Fν

2

(
ξ 2 − �2

ν

) + i
Ḟν

6

(
ξ 3 − �3

ν

)
.

(26)

Using Eqs. (8)–(10) and (26), r2
c(ξ ) including terms up to

(ξ − �ν)4 can be presented as

r2
c(ξ ) = (ξ − �ν)2

[
κ2 + (ξ − �ν)�νF2

ν

+ (ξ − �ν)2

4

(
F2

ν − V ν · Ḟν

3

)]
, (27)

in which all terms in �ν (as well as those involving ω�ν)
have been dropped if they do not determine a leading term.
Equation (27) explicitly shows that r2

c(ξ ) behaves quadratically
at ξ → �ν ,

r2
c(ξ ) ≈ κ2(ξ − �ν)2, (28)
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Δν

t
(bp)
+,ν

t
(bp)
−,ν

Im t

Re t

tν

tν

R → ∞

FIG. 1. Map of the saddle (tν) and branch points (t (bp)
±,ν ) in the

complex plane of time t . The vertical segment with end points t
(bp)
±,ν

is a cut in the Riemann surface. Arrows show the directions in which
the saddle and the branch points move with increasing V ν . The arc
shown by a thin solid line represents a possible integration path.

and the integral (22) diverges logarithmically at ζ → tν [19].
Moreover, the function in the square bracket of Eq. (27)
becomes zero at ξ = ξ

(bp)
± :

ξ
(bp)
±,ν = −�ν

F2
ν + V ν · Ḟν/3

F2
ν − V ν · Ḟν/3

± 2

√
V 2

νF2
ν + κ2V ν · Ḟν/3

F2
ν − V ν · Ḟν/3

.

(29)

Using Eq. (10b), the denominators in Eq. (29) become

F2
ν − V ν · Ḟν

3
= 4

3

(
F2

ν − F2
ν

4

)
.

Under the condition ω�ν � 1, ξ
(bp)
±,ν is real and thus two

branch points, t
(bp)
±,ν = tν + iξ

(bp)
±,ν , for given ν are placed on

the line Re t = tν . With increasing V ν they move along this
line in positive (for the “+” solution) and negative (for the
“−” solution) directions (see Fig. 1). Thus, in order to make
1/

√
r2(t) a bijective function, we cut the complex plane by

a segment bounded by the points t
(bp)
±,ν (see Fig. 1). Since

1/
√

r2(t) ∝ 1/t for large t , we can choose any integration
path that avoids the cut, starts near the point tν , and ends at any
remote point on the real -time axis. For example, the integration
path shown in Fig. 1 consists of a straight semi-infinite line
starting from ζ ≈ tν and an arc of infinitely large radius.
Evidently, this topology of cuts, branch, and saddle points
holds only in the case F2

ν > F2
ν/4 and assumes the validity of

the cubic approximation for r(t) [cf. Eq. (26)].
In the case F2

ν < F2
ν/4, t

(bp)
−,ν is above the saddle point tν ,

while t
(bp)
+,ν is located below tν . In the special case F2

ν = F2
ν/4,

one branch point (t (bp)
−,ν ) is at infinity, while t

(bp)
+,ν is located just

below the saddle point tν in the first quadrant of the complex
plane. With decreasing V ν , the branch points move toward
each other along the vertical line t = tν , so that cuts can be

drawn as vertical lines from points t
(bp)
−,ν (straight up) and t

(bp)
+,ν

(straight down). Note that this case is interesting only from
a mathematical point of view, since it is realized only for
ω�ν > 1, so that the adiabatic approximation is inapplicable.

Substituting Eq. (27) into Eq. (22) and using Eq. (23),
we analytically calculate the integral (22) (see Ref. [67]) and
obtain in the limit ζ → tν :

�Sν = −i
Z

κ
ln

∣∣∣∣∣∣∣∣∣∣∣
4κ3

Fν

[√
1 + V 2

ν

κ2
+ 2√

3

√
1 − F2

ν

4F2
ν

]
∣∣∣∣∣∣∣∣∣∣∣
. (30)

Then we obtain the Coulomb factor Qν [= exp(i�Sν)],

Qν = Q
(ν)
statR(ν), (31)

where

Q
(ν)
stat =

(
2κ3

Fν

)Z/κ

, Fν =
√

F2
ν, (32)

R(ν) =

⎛
⎜⎜⎜⎜⎜⎝

2Fν

Fν

[√
1 + V 2

ν

κ2
+ 2√

3

√
1 − F2

ν

4F2
ν

]
⎞
⎟⎟⎟⎟⎟⎠

Z/κ

. (33)

The Coulomb correction factors in Eqs. (31)–(33) are the
main results of this work. In order to obtain the Coulomb-
corrected ionization amplitude, Ã( p), each partial amplitude
aν( p) in the sum in Eq. (3) must be multiplied by the factor
Qν :

Ã( p) =
∑

ν

Qνaν( p), (34)

where aν is given by Eq. (13). In the limit V ν → 0, R(ν) → 1,
and Q

(ν)
stat in (31) is the well-known static field Coulomb factor

[20,37], but taken for the field amplitude at the instant of
ionization. Note that the adiabatic result (30) for the Coulomb
correction is purely imaginary.

In order to obtain Coulomb factors for LP and CP fields
from the general result (33), we need an explicit expression
for the scalar product V ν · Ḟν . From Eqs. (16) and (19) it
follows that for a LP field

V ν · Ḟν = 0 (35)

and for a CP field

V ν · Ḟν = F 2

(
1 − p||

pF

)
. (36)

Using Eqs. (17), (33), (35), and the fact that for a LP field
V 2

ν = p2
⊥ and F 2

ν = F2
ν , we obtain for a LP field

R =
(

2

1 +
√

1 + (p⊥/κ)2

)Z/κ

, (37)

023406-5



FROLOV, MANAKOV, MININA, POPRUZHENKO, AND STARACE PHYSICAL REVIEW A 96, 023406 (2017)

where we have dropped the index ν as unnecessary. For
p⊥ � κ , R can be expanded in a series in p⊥/κ:

R ≈ 1 − Zp2
⊥

4κ3
+ Zp4

⊥
32κ5

(
3 + Z

κ

)
. (38)

Since for a LP field V ν has zero projection on the
polarization axis [see Eq. (29)], ξ

(bp)
±,ν < 0, and the integration

contour can be handled in a standard way: vertically down to
the real axis, and then along it [59]. The static factor Qstat has
a singularity for pz = pF :

Q
(lin)
stat =

(
2κ3

F
√

1 − (pz/pF )2

)Z/κ

. (39)

This singularity shows the limitation of the adiabatic approxi-
mation for finding saddle points. Indeed, for pz > pF Eq. (15)
cannot be solved for real times and a more accurate equation
for finding the saddle points should be used. For pz → pF , Fν

tends to zero [see Eq. (17c)] and the adiabatic approximation
breaks down [since, according to Eq. (17d), ω�ν → ∞]. In
Fig. 2(a) we show the dependence of ω�ν on pz for three
values of p⊥, while in Fig. 2(b) we show the dependence of
Q

(lin)
stat on pz. As pz increases, both ω�ν and Q

(lin)
stat gradually

increase. For a LP field, the factor Q
(lin)
stat does not depend on

p⊥, while the accuracy of the adiabatic Coulomb correction
decreases with increasing p⊥, owing to the increase in the
parameter ω�ν . Since the factor R decreases with increasing
p⊥ [and does not depend on pz, see Fig. 2(c)], the Coulomb
factor decreases with increasing p⊥.

For a CP field, using (20a), the factor R has the form

R =

⎛
⎜⎜⎜⎜⎝

2γ

ω�ν

p||
pF

+ γ

√
4p||
3pF

− 1

3

⎞
⎟⎟⎟⎟⎠

Z/κ

, (40)

where ω�ν is given by Eq. (20b). It is worthwhile to note
that the result (40) for p|| = pF coincides with R for a LP
field in Eq. (37). In contrast to the case of LP field, Qstat for a
CP field does not depend on the momentum, since F2

ν = F 2.
However, the factor R has a branch point singularity at p|| =
pF /4. For p|| � pF /4, ω�ν takes values greater than unity
and the adiabatic approximation, as well as the results in this
approximation, are invalid and require special consideration.
Furthermore, for such values of p|| the probability of ionization
is exponentially small. In Fig. 3 we present the dependence of
ω�ν andR on p|| for three values of p⊥. Neither dependence is
symmetric with respect to the momentum p|| = pF . Moreover,
the minimum in the dependence of ω�ν on p|| for fixed p⊥ is
shifted toward higher momenta with respect to p|| = pF and
also moves to the right with increasing p⊥ [see Fig. 3(a)].

The Coulomb-induced modifications of ATI spectra be-
come most apparent for longitudinal electron emission in
a LP field. In this case, the squared factor (39) increases
as (1 − p2

z/p
2
F )−Z/κ , thus slightly reducing the (negative)

slope of the spectrum. In the lateral direction, the slope
of the spectrum instead becomes more negative (37), but,
as the lateral distribution decreases much faster than the
longitudinal one, the lateral Coulomb effect is expected to be
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FIG. 2. Momentum dependence of the adiabatic parameter
and Coulomb correction factors for a monochromatic LP field.
(a) Dependence of ω�ν on pz for three values of p⊥ [see Eq. (17d)]:
Solid (red) line: p⊥ = 0; dashed (black) line: p⊥ = 0.4κ; dotted
(blue) line: p⊥ = 0.8κ . (b) Dependence of Q

(lin)
stat on pz [see Eq. (39)].

(c) Dependence of R on p⊥ [see Eq. (37)]. Calculations employed a
field intensity I = 1014 W/cm2, λ = 1.6 μm, Z = 1, κ = 1 a.u., and
γ = 0.53.

less noticeable. In order to confirm the adiabatic Coulomb
effect in photoelectron distributions along the polarization
direction, in Fig. 4 we compare experimental data on tunneling
ionization of Ne [68] and Ar [2] atoms to SFA predictions
with and without the CC. In our theoretical calculations we
used a Gaussian shape for the laser pulses and chose the peak
intensities, pulse durations, and laser wavelengths appropriate
for the two experiments, i.e., 1015 W/cm2, 50 fs, and 795 nm
for Ref. [68], and 1.5 × 1014 W/cm2, 25 fs, and 2 μm for
Ref. [2]. The theoretical results in Fig. 4(a) were integrated
over the lateral momentum and focal averaged, while those
in Fig. 4(b) were only focal averaged for p⊥ = 0. Owing to
the large difference in the absolute values of the theoretical
results with and without the CC, the results without the CC
were scaled to the results including the CC in order to match
the two results at low electron energies.

Owing to focal averaging of the electron signals in
Refs. [2,68], the experimental photoelectron spectra are
structureless, with no well-defined ATI peaks or interference
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FIG. 3. Dependence of (a) the adiabatic parameter ω�ν (20b) and
(b) the Coulomb correction factor R (40) on p|| for a monochromatic
CP field and three values of p⊥: solid (red) lines, p⊥ = 0; dashed
(black) lines, p⊥ = 0.4κ; dotted (blue) lines, p⊥ = 0.8κ . Calculations
employed a field intensity I = 1014 W/cm2, λ = 1.6 μm, Z = 1,
κ = 1 a.u., γ = 0.53, pF = 1.87 a.u., and Q

(circ)
stat = 37.47.
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FIG. 4. Comparisons of present theoretical results with ex-
perimental photoelectron spectra. (a) Longitudinal photoelectron
momentum distribution for ionization of Ne by a linearly polar-
ized laser field with λ = 795 nm and peak intensity 1015 W/cm2.
(b) Longitudinal photoelectron energy distribution for ionization of
Ar by a linearly polarized laser field with λ = 2 μm and peak intensity
1.5 × 1014 W/cm2. Structured (black) solid lines: experimental data,
in (a) from Ref. [68] and in (b) from Ref. [2]. Smooth (red) solid
lines: present focal-averaged results including the CC [cf. Eq. (34)].
Dashed (blue) lines: present focal-averaged results without the CC
[cf. Eqs. (3) and (13)].

TABLE I. Comparisons of present theoretical results with experi-
mental photoelectron spectra (a.u.) for Ne [68] and for Ar [2] for three
particular momenta in Fig. 4(a) and three particular photoelectron
energies in Fig. 4(b). The theoretical SFA results with and without
the CC factor correspond to the smooth solid (red) curve and the
dashed (blue) curve results, respectively, in Fig. 4. See the caption of
Fig. 4 and the text for details of the theoretical calculations.

p|| (a.u.) Expt. [68] With CC Without CC

0.5 5.63 5.59 5.47
1 3.00 2.83 2.68
1.5 0.90 0.79 0.68

p2/2 (a.u.) Expt. [2] With CC Without CC

0.5 3.22 3.31 3.13
1 1.43 1.45 1.28
1.5 0.52 0.64 0.57

structures. Such data are particularly useful for verifying our
theoretical results, as the monotonic decrease of the electron
yields [for p‖ > 0.4 a.u. in Fig. 4(a) and for p2/2 > 0.3 a.u.
in Fig. 4(b)] allows for a high-precision comparison of the
slopes of the spectra. [Note that the low-energy features in
the spectra in Fig. 4, i.e., the resonant ATI peaks that survive
focal averaging [68] in Fig. 4(a) and the low-energy structure
(LES) [2] in Fig. 4(b), are beyond the scope of our adiabatic
treatment, which ignores the bound atomic states responsible
for resonant structures and the soft recollisions that lead to the
emergence of the LES [56,69].] The comparisons in Fig. 4 and
Table I show that the theoretical results including our Coulomb
factor significantly improve agreement with the experimental
data over the electron energy range from a few eV (i.e., above
the positions of the resonant ATI features and the LES) and
∼up = p2

F /4. For higher photoelectron energies (beyond the
scale of Fig. 4) approaching 2up, the adiabatic approximation
fails and the factor (39) begins to overestimate the ionization
probability. In this part of the spectrum, nonadiabatic effects
related to the first photoelectron recollision come into play
and lead to a considerable modification of the Coulomb factor
[7]. These nonadiabatic effects do not allow for an analytic
treatment.

For noble gas atoms with ionization potentials close to that
of the hydrogen atom, the effective principal quantum number
that determines the magnitude of the Coulomb factors derived
above is n∗ = Z/κ � 1. As a result, the momentum-dependent
adiabatic Coulomb effects shown in Figs. 2–5 remain rather
modest. In contrast, for alkali-metal atoms, which have
relatively small ionization potentials, the effective principal
quantum numbers are relatively large (e.g., n∗ = 1.59, 1.63,
and 1.87 for Li, Na, and Cs, respectively), which magnifies the
Coulomb effect. This magnification is even larger in the case
of highly charged ions of noble gas atoms, for which n∗ � 3.

V. COULOMB CORRECTIONS FOR HHG IN THE
ADIABATIC REGIME

The adiabatic analysis presented above for the Coulomb
correction for nonlinear laser ionization processes can also be
used to analyze HHG spectra and high-energy electrons in ATI
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FIG. 5. Dependence on the harmonic energy (E = � − Ip) of
the Coulomb correction factors (a) Q

(ν)
stat and (b) R(ν) for HHG in a

bicircular laser field for each of the four most significant trajectories
ν. The color gradient of each curve shows the relative contribution
of each trajectory ν. Calculations were performed for Ip = 13.65 eV
and for a bicircular field (48) with ω = 0.775 eV, I = 1014 W/cm2,
and N = 3.

processes. The physics of both of these laser-induced processes
is well described by the rescattering scenario [11,40,70,71],
which is based on analyzing the contributions of closed
photoelectron trajectories. These trajectories start at time ti
and return at time tf , when the photoelectron either recombines
with emission of a photon or rescatters to form the high-energy
ATI plateau. The Coulomb correction for closed trajectories
requires (i) an additional regularization of an integral similar
to (22) at the moment of recombination (tf ) and (ii) a more
detailed topological analysis of the saddle and branch points.
Our analysis is in progress and will be presented elsewhere.
Nevertheless, it can be shown that, for a low-frequency laser
field and either a high-energy photon or electron, the returning
part of a closed trajectory gives a negligible contribution into
the imaginary part of the Coulomb correction to the action.
Indeed, the integration contour for the Coulomb correction in
this case connects two points in the complex plane, ti and
tf , with the imaginary part of tf much smaller than that
of ti . Due to analyticity of the integrand in Eq. (22), we
can deform the contour so that it comprises two paths: the
first path (ionization) starts at the saddle point ti and goes
to infinity, while the second path (return or recombination)
starts from infinity and arrives at tf . As noted in Sec. IV,
in the adiabatic limit the major contribution to the Coulomb
integral is accumulated in the vicinity of saddle points. This
contribution is determined by the behavior of r2(t) in that part
of the complex time plane: for the saddle point ti , r2(t) ≈
−κ2(t − ti)2 and thus the ionization path integral is given by
the scaling factor Z/(iκ) [see Eq. (30)] and is purely imaginary,
while for the saddle point tf , r2(t) ≈ ṙ2(tf )(t − tf )2 and the
corresponding scaling factor is given by the Sommerfeld

parameter Z/

√
ṙ2(tf ), which is real and, for high-energy

harmonics or electrons, is of order Zω/F < 1. Thus the
contribution to the Coulomb integral from the returning path is
mostly real and therefore is not expected to have a significant
effect on HHG and ATI spectra. This qualitative analysis is
supported by the fairly good agreement of calculated TDSE
results with analytic results [42–46], in which the Coulomb
effects are accounted for heuristically in the ionization and
recombination (or rescattering) steps. Below, we focus on the
Coulomb correction for HHG spectra.

The real part of the complex times ti , t i = Re ti , and tf
(neglecting the imaginary part of tf ) satisfy the equations [72]

∂

∂t i
K 2

i = 0, (41a)

K 2
f = 2E, (41b)

where E = � − Ip, � is the harmonic frequency, and

K i = A(t i) − 1

tf − t i

∫ tf

t i

A(ξ )dξ, (42)

K f = A(tf ) − 1

tf − t i

∫ tf

t i

A(ξ )dξ. (43)

The saddle point ti associated with tunneling has the imaginary
part, � = Im ti [72]:

� =
√

K 2
i + κ2

F , F =
√

1

2

∂2 K 2
i

∂t
2
i

, (44)

From Eq. (41a), one finds that F satisfies the same equation
as for ionization [cf. Eq. (10b)]:

F =
√

F2
i − K i · Ḟi , (45)

where Fi ≡ F(t i) and Ḟi = ∂ Fi/∂t i . To an accuracy up to
∼�3, a trajectory satisfying the initial condition (21) has the
form (25)

r(t) = V i(τ − i�) − Fi

2
(τ 2 + �2) − Ḟi

6
(τ 3 + i�3), (46)

where τ = t − t i and

V i = K i + i�
K i

tf − t i
− �2

2

K i

(tf − t i)2
≈ K ie

i �
tf −t i . (47)

In contrast to the case of ionization, V i has a small imaginary
part [cf. V ν (7)], which is not surprising, because V i is not
an observable. Since ω� � 1 and tf − t i ∼ ω−1, in practical
calculations we can neglect the imaginary part of V i . Thus the
Coulomb factor is given by Eq. (31) with these substitutions:
Fν → Fi , V ν → V i , and Fν → F .

According to Eq. (41a), for a one-dimensional (1D) field
(e.g., a linearly polarized laser pulse or a multicolor field
with components linearly polarized in the same direction),
ionization events happen at instants for which Ki = 0, and
thus the Coulomb factor coincides with the static one [see
Eq. (32) with Fν → Fi]. This result justifies the ad hoc
generalization of the ionization factor for an electron in a
short-range potential to that for an electron in an atom that
was used in Refs. [42–44,73].
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To test the accuracy of Qstat for a more complicated 2D
case, we calculate it for the geometry of HHG in a bicircular
laser field. We parametrize the vector potential of the bicircular
field (thus ensuring there is no dc component) as follows:

A(t) = A1(t) + A2(t), Ai = ∂

∂t
Ri(t), (48)

Ri = Fi

ω2
i

e
−2 ln 2 t2

τ2
i (ex cos ωit + eyηi sin ωit), (49)

where ω1 = ω, ω2 = 2ω, F1 = F2 = F , τ1 = τ2 = 2πN/ω,
and η1 = −η2 = 1. Our calculation is for an intensity
I = cF 2/(8π ) = 1014 W/cm2 and a wavelength λ = 1.6 μm
(h̄ω = 0.775 eV). The dependence of Q

(ν)
stat and R(ν) [see

Eqs. (31)–(33)] on the photoelectron energy E at the instant
of recombination is shown in Fig. 5 for each of the four
most significant trajectories ν. Our calculations show that the
Coulomb factors decrease gradually with increasing harmonic
energy. This fact is related to the increasing velocity V i at the
moment of ionization. We note that in the 2D case the Coulomb
factor can be approximated with good accuracy by its static
counterpart only in a narrow range of harmonic energies.

VI. SUMMARY AND CONCLUSIONS

In this work we have derived general analytic expressions
[see Eqs. (31)–(33)] for the Coulomb factor in the probability
amplitude for nonlinear ionization by a low-frequency intense
laser field for the case in which the Keldysh parameter
γ is small. We have also presented detailed applications
of our general formulas to the important special cases of
LP and CP laser fields. Our analytic expressions, obtained
in the adiabatic approximation, fill the need for reliable
Coulomb correction factors in the gap between the static field
(momentum-independent) Coulomb factor responsible for the
enhancement of the total ionization rate [19,55] and the one
for arbitrary γ and p, which requires a demanding numerical
calculation within the CCSFA or ARM methods. Application
of our general formulas to the benchmarking cases of LP and
CP fields shows that a noticeable dependence of the Coulomb
factor on the photoelectron momentum survives even in the
adiabatic limit.

The method developed in this paper has also allowed us to
calculate the Coulomb factor in the probability for HHG. Here
we predict that, in contrast to the case of a quasimonochromatic
LP pulse, the HHG spectrum in a bicircular laser field is rather
strongly modified by the Coulomb interaction.
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APPENDIX: STRONG FIELD DETACHMENT
PROBABILITY IN THE ADIABATIC APPROXIMATION

To specify the momentum distributions for LP and CP
fields, we consider a rectangular temporal envelope f (t) for a
laser pulse with an N -cycle flat part:

f (t) =
{

1, 0 � t � 2πN,

0, otherwise.

For a LP laser field, F(t) = ezFf (t) cos ωt , the real part of
the saddle points in the adiabatic approximation is given by
Eq. (16). Thus with this electric field we can calculate S( p,tν)
analytically:

S+ ≡ S( p,t
(+)
ν ) = −3Fpz

4ω2

√
1 −

(
pz

pF

)2

+ 1

ω

(
p2

2
+ Ip + up

)(
arcsin

pz

pF

+ 2πν

)
, (A1a)

S− ≡ S( p,t
(−)
ν ) = 3Fpz

4ω2

√
1 −

(
pz

pF

)2

+ 1

ω

(
p2

2
+ Ip + up

)(
π − arcsin

pz

pF

+ 2πν

)
,

(A1b)

where up = F 2/(4ω2). In order to calculate the detachment
probability, we must specify fl( p,tν) in Eq. (13). For an initial
s state, the function f0( p,tν) has the form [37]

f0( p,t
(±)
ν ) = Cκ 0

2π

√
κ

2
, (A2)

while for a p state its form depends on the azimuthal quantum
number m [37]:

f1( p,t
(±)
ν ) = ∓ Cκ 1

2π

√
3κ

2

[
1 +

(p⊥
κ

)2
]
, m = 0,

(A3)

f1( p,t
(±)
ν ) = −m

Cκ 1

2π

√
3κ

4

p⊥
κ

, m = ±1, (A4)

where Cκ l is the dimensionless asymptotic coefficient of the
bound state ψ0:

ψ0(r)|κr�1 ≈ √
κCκ l

e−κr

r
Yl,m(r̂).

Substituting Eqs. (17) and (A1)–(A4) into (13), we obtain
the detachment amplitude (3) in the form

A( p) = |fl( p,t
±
ν )|e− 
3

lin
3Flin

+iS++iπα

√
2π
linFlin

[(−1)l + ei(S−−S+)]

× sin(2πNα)

sin(πα)
, (A5)
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where l = 0,1 and α = (p2/2 + Ip + up)/ω. The differential
(in pz and p⊥) detachment probability is then found to be

d2P( p)

d p
= |A( p)|2

= 2l + 1

(2π )3
C2

κ l

[1+(p⊥/κ)2]l−|m|−1/2

[1−(pz/pF )2]1/2F

(p⊥
2κ

)2|m|
e
− 2
3

lin
3Flin

× [1 + (−1)l+m cos(S− − S+)]

[
sin(2πNα)

sin(πα)

]2

.

(A6)

For large N we can approximate[
sin(2πNα)

sin(πα)

]2

≈ 2Nω
∑

n

δ

(
p2

2
+ Ip + up − nω

)

= T ω2

2π

∑
n

δ

(
p2

2
+ Ip + up − nω

)
,

(A7)

where n is an integer number and T = 4πN/ω. We notice
that the limiting case of a dc field can be obtained from (A6)
by setting N = 1/2 and taking the limit ω → 0 and hence

pF → ∞. In this case the third line of (A6) is equal to 1,√
1 − (pz/pF )2 → 1, 
lin → κ , and Flin → F .
For a CP field, F(t) = Ff (t)(ex cos ωt + ey sin ωt), the

action S( p,tν) has a simple form:

S( p,tν) =
(

p2

2
+ Ip + 2up

)
tν . (A8)

For the case of an initial s state, the differential (in p|| and p⊥)
detachment probability takes the form

d2P( p)

d p
= C2

κ 0

2(2π )3

√
pF /p||
F


exp

[
−2κ3

F

3

√
pF

p||

]

×
[

sin(2πNα)

sin(πα)

]2

, (A9)

where α = (p2/2 + Ip + 2up)/ω and


 =
√

1 + (p⊥/κ)2 + (p|| − pF )2/κ2. (A10)

Near its maxima, d2P( p)/d p has a Gaussian distribution that
is independent of the angle ϕ and has cylindrical symmetry
with respect to the axis perpendicular to the polarization plane
[36,37].
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