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Effects of mode coupling on the admittance of an AT-cut quartz
thickness-shear resonator∗
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(Received 23 June 2012; revised manuscript received 9 September 2012)

We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate
thickness-shear mode resonator. Mindlin’s two-dimensional equations for piezoelectric plates are employed. Electrically
forced vibration solutions are obtained for three cases: pure thickness-shear mode alone; two coupled modes of thickness
shear and flexure; and three coupled modes of thickness shear, flexure, and face shear. Admittance is calculated and its
dependence on the driving frequency and the length/thickness ratio of the resonator is examined. Results show that near
the thickness-shear resonance, admittance assumes maxima, and that for certain values of the length/thickness ratio, the
coupling to flexure causes severe admittance drops, while the coupling to the face-shear mode causes additional admittance
changes that were previously unknown and hence are not considered in current resonator design practice.
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1. Introduction
Piezoelectric crystals are widely used to make acoustic

wave resonators as frequency standards for time-keeping, fre-
quency operation, telecommunications, and sensing. In these
applications crystal resonators operate as elements of electri-
cal circuits for alternating currents called oscillators. Two ba-
sic properties of a crystal resonator, its resonant frequency and
its electrical admittance, are of primary interest for complete
circuit analyses of oscillators. There exist extensive theoretical
results on crystal resonators using the equations of anisotropic
elasticity or piezoelectricity, e.g., Refs. [1]–[8]. More refer-
ences can be found in a review article.[9] These analyses were
overwhelmingly for resonator-free vibration frequency analy-
sis. The admittance of a resonator, which can only be obtained
from an electrically forced vibration analysis, was studied less
often. Limited by the computational capability available, early
forced vibration analyses had limited numerical results, e.g.,
Refs. [10]–[13]. Recently, there has been growing interest in
the computation of resonator admittance, e.g., Refs. [14]–[21].
However, usually only the dependence of the admittance on
the driving frequency of the applied voltage was examined.
The dependence of the admittance on the plate aspect ratio
(length/thickness) and the related admittance drop due to mode
couplings was rarely studied, for which limited numerical re-
sults can be found in Refs. [14] and [15] for coupled thickness-
shear and flexural motions of a resonator.

From the frequency spectra[1] obtained in resonator-free

vibration frequency analysis, it can be expected that as the as-
pect ratio of a resonator changes, for certain discrete values
of the aspect ratio, the operating thickness-shear mode of the
resonator becomes coupled to other unwanted modes and the
resonator admittance dips. For the case of coupled thickness
shear and flexure, this was confirmed by the limited numer-
ical results in Refs. [14] and [15]. However, for a resonator
with a properly designed aspect ratio so that coupling to flex-
ure is avoided, sometimes unexpected and sudden changes of
admittance still occur. It has been suspected that maybe the
coupling to some other unwanted modes is involved, but this
has not been confirmed theoretically, and it is not clear specif-
ically which unwanted mode is causing the additional admit-
tance drop.

It is known[3,13] that, in the frequency range of interest
from zero to slightly above the fundamental thickness-shear
frequency, the operating thickness-shear mode is also coupled
to the face-shear mode[3,13] in addition to flexure. The cou-
pling to face shear is through the relatively small elastic con-
stant c56 and therefore is usually neglected. However, since the
face-shear mode directly contributes to the charge and current
through the piezoelectric constant e25 which is of the same
order of magnitude as the main piezoelectric constant e26 in
the most widely used AT-cut quartz resonators, the face-shear
mode is expected to have some effect on resonator admittance.
At present little is known about this effect, either qualitatively
or quantitatively. In particular, we suspect that the face-shear
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mode may be related to the so far unexplained additional ad-
mittance drops when coupling to flexure is already excluded.

Therefore, in this paper, we study the effect of resonator
aspect ratio on admittance through an electrically forced vi-
bration analysis in a manner more general and systematic than
Refs. [14] and [15]. The main difference from Refs. [14]
and [15] is that the face-shear mode is included in the present
analysis. Due to material anisotropy and piezoelectric cou-
pling, theoretical analyses of crystal resonators usually present
considerable mathematical challenges. To simplify the analy-
sis of plate resonators, in a series of papers (Refs. [10], [11],
and [22]–[24]), Mindlin and his coworkers developed and re-
fined the two-dimensional equations for motions of piezoelec-
tric plates which have been widely used for both theoretical
and numerical analyses of crystal resonators, and are also used
in the present paper.

2. Equations for piezoelectric plates
Consider a thin piezoelectric plate with thickness 2b as

shown in Fig. 1 along with its coordinate system. The two ma-
jor surfaces of the plate at x2 = ±b are fully electroded. We
assume thin electrodes whose mechanical effects like inertia
and stiffness are negligible. We study vibrations independent
of x3 which are called straight-crested wave (modes).[1,2,6,7,10]

x

x

x

b

a

c

Fig. 1. An AT-cut quartz plate and coordinate system.

In the frequency range of interest, the three relevant waves
are governed by Mindlin’s first-order plate theory[23,25]

T (0)
13,1 = 2bρ ü(0)3 ,

T (0)
12,1 = 2bρ ü(0)2 ,

T (1)
11,1−T (0)

21 =
2b3

3
ρ ü(1)1 , (1)

where u(0)3 (x1, t) is the plate face-shear displacement,

u(0)2 (x1, t) is the flexural displacement, and u(1)1 (x1, t) is the
thickness-shear displacement. For crystals of monoclinic sym-
metry which include the most widely used AT-cut quartz as a
special case, the plate resultants T (0)

13 , T (0)
12 , and T (1)

11 describ-
ing the bending moment and various shear forces are given by
the following plate constitutive relations:[23,25]

T (0)
13 =

∫ b

−b
T13 dx2=2b(c55S(0)5 +κ1c56S(0)6 − e25E(0)

2 ),

T (0)
12 =

∫ b

−b
T12 dx2=2b(κ1c56S(0)5 +κ

2
1 c66S(0)6 −κ1e26E(0)

2 ),

T (1)
11 =

∫ b

−b
x2T11 dx2=

2b3

3
(γ11S(1)1 −ψ11E(1)

1 ), (2)

where cpq, ekp, and εkl are the usual elastic stiffness, piezo-
electric constants, and dielectric constants. The plate strains
S(0)5 , S(0)6 , and S(1)1 as well as the plate electric field E(0)

2 and

E(1)
1 are related to the plate displacements and electric poten-

tial φ (1) through[23,25]

S(0)5 = u(0)3,1, S(0)6 = u(0)2,1 +u(1)1 , S(1)1 = u(1)1,1,

E(0)
2 =−φ

(1), E(1)
1 =−φ

(1)
,1 . (3)

The plate material constants in Eqs. (2) are defined by[23,25]

γ11 = s33/(s11s33− s2
13), ψ11 = d11γ11 +d13γ13, (4)

where spq are the usual elastic compliance. dkp are piezoelec-
tric constants different from and related to ekp. κ1 in Eqs. (2)
is a parameter called the shear correction factor, given by[23,25]

κ
2
1 =

π2

12

(
1− 8

π2 k2
26

)
, k2

26 =
e2

26
ε22ĉ66

, ĉ66 = c66 +
e2

26
ε22

. (5)

With successive substitutions from Eqs. (2) and (3), equa-
tion (1) can be written as three equations for u(0)3 , u(0)2 , and

u(1)1 as follows:[23,25]

κ1c56u(0)2,11 + c55u(0)3,11 +κ1c56u(1)1,1 + e25φ
(1)
,1 = ρ ü(0)3 , (6a)

κ
2
1 c66u(0)2,11 +κ1c56u(0)3,11 +κ

2
1 c66u(1)1,1 +κ1e26φ

(1)
,1 = ρ ü(0)2 , (6b)

γ11u(1)1,11 +ψ11φ
(1)
,11 −3b−2[

κ1c56u(0)3,1 +κ
2
1 c66(u

(0)
2,1

+ u(1)1 )+κ1e26φ
(1)]= ρ ü(1)1 . (6c)

For electrically forced vibrations of a fully electroded plate,
φ (1) is related to the driving voltage V across the plate thick-
ness through[23,25]

φ
(1) =

1
2b

V exp(iωt). (7)

Therefore the spatial derivative of φ (1) in Eqs. (6) vanishes.
We note that equation (7) is for a plate driven by an electric
field in the plate thickness direction or the so-called thick-
ness field excitation (TFE). A plate can also be driven by an
in-plane electric field or the so-called lateral field excitation
(LFE).[26–28] We consider time-harmonic motions and use the
usual complex notation. All fields have the same time depen-
dence factor, which will be dropped in the following. The
equations in Eqs. (6) are a system of ordinary differential equa-
tions with constant coefficients whose solution can be found in
a standard manner. To calculate the charge on the electrodes,
we need the following electric constitutive relation:[23,25]

D(0)
2 =

∫ b

−b
D2 dx2 = 2b

(
e25S(0)5 +κ1e26S(0)6 + ε22E(0)

2

)
. (8)

The charge on and the current flowing into the top electrode of
the resonator are[23,25]

Qe =−2c
∫ a

−a
D2 dx1, I = Q̇e = iωQe , (9)

047702-2
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where

D2 ∼=
D(0)

2
2b

= e25u(0)3,1 +κ1e26(u
(0)
2,1 +u(1)1 )− ε22φ

(1). (10)

Then the frequency-dependent admittance of the resonator per
unit plate area is given by[29]

Y =
1

4ac
I
V
. (11)

3. Pure thickness-shear vibration: u(1)1u(1)1u(1)1

For comparison, in this section, we consider the ideal case
of a resonator vibrating in pure thickness-shear mode with-
out coupling to flexure and face shear. Strictly speaking, pure
thickness-shear vibration can only exist in infinite plates un-
bounded in the x1 direction. For finite plates, when couplings
to other modes are weak, the plates can be considered as vi-
brating in pure thickness-shear modes approximately. For pure
thickness shear, from Eq. (6c), the boundary-value problem is

γ11u(1)1,11 +ψ11φ
(1)
,11 −3b−2(κ2

1 c66u(1)1 +κ1e26φ
(1))

=−ρω
2u(1)1 , |x1|< a, (12a)

T (0)
12 = 0, x1 =±a, (12b)

where we have included free-edge boundary conditions. The
general solution of the homogeneous form of Eq. (12a) with
φ (1) = 0 symmetric in x1 can be written as

u(1)h1 =C cosξ x1, ξ =

√
ρω2− 3

b2 κ2
1 c66

γ11
, (13)

where C is an undetermined constant. A particular solution of
the inhomogeneous form of Eqs. (12a) can be found as

u(1)p
1 =

3κ1e26V
2γ11ξ 2b3 . (14)

Then the general symmetric solution of the inhomogeneous
form of Eqs. (12a) is

u(1)1 = u(1)h1 +u(1)p
1 . (15)

Substitution of Eq. (15) into Eqs. (12b) determines C:

C =− e26V
2bcos(ξ a)

( 1
κ1c66

+
3κ1

γ11ξ 2b2

)
. (16)

Then the admittance can be calculated using Eqs. (7)–(11). If
cosξ a in the denominator of Eq. (16) is set to zero, it deter-
mines the resonant frequencies of the resonator as

ξ a = a

√
ρω2− 3

b2 κ2
1 c66

γ11
= nπ +

π

2
, n = 0,1,2, . . . . (17)

As a numerical example, we consider a resonator of a typical
thickness 2b = 0.4 mm. An unbounded plate (2a = ∞) with
this thickness has a fundamental thickness-shear frequency
ω0 = 2.599099×107 s−1. To take material damping into con-
sideration, in the numerical calculation, complex elastic stiff-
ness cpq(1 + iQ−1) and compliance spq(1− iQ−1) are used
where Q is a positive and large real number (material qual-
ity factor). Q = 103 is used in our calculation. This value

is smaller than the usual material Q of quartz which is of
the order of 105. Q = 103 is used so that resonances are
not too sharp and narrow to be shown graphically. Q = 103

may be understood as a representation of the damping of the
whole structure of the resonator including damping from the
supports or mounting and air resistance, etc. Numerical re-
sults for resonant frequencies from Eq. (17) are presented in
Fig. 2(a) versus the plate aspect ratio. For a given aspect ra-
tio, there are many (infinite) resonant frequencies as shown
in Eq. (17). Only three of them in the frequency range of
interest are shown. The nearly flat one with ω/ω0 slightly
above one with n = 0 in Eq. (17) is the fundamental mode of
main interest. Near this mode, the admittance with a unit of
S=siemens=1/Ω assumes maxima as shown in Fig. 2(b).

15 20 25
1.00

1.04

1.08

1.12

(a)

(b)

1.16

n=0
n=1
n=2

a/b

a
/b

ω/ω
0

0.99

1.00

1.01

1.02

15
16

17
18

19
20

0

10

20

Y
/
S
Sm

↩


ω
/
ω
0

Fig. 2. The pure thickness shear: (a) frequency spectra and (b)
admittance/m2.

4. Coupled thickness-shear and flexure: u(1)1u(1)1u(1)1 and
u(0)2u(0)2u(0)2

It can be seen from Eqs. (6) that, when the modes have x1

dependence which is usually the case for finite plates, thick-
ness shear u(1)1 and flexure u(0)2 are coupled. In this section
we examine the effect of this coupling on admittance. From
Eqs. (6b) and (6c), the boundary-value problem is:

κ
2
1 c66u(0)2,11 +κ

2
1 c66u(1)1,1 +κ1e26φ

(1)
,1 =−ρω

2u(0)2 ,

|x1|< a, (18a)

γ11u(1)1,11 +ψ11φ
(1)
,11 −3b−2[κ2

1 c66(u
(0)
2,1 +u(1)1 )+κ1e26φ

(1)]

=−ρω
2u(1)1 , |x1|< a, (18b)
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T (0)
12 = 0, T (1)

11 = 0, x1 =±a. (18c)

The general solution to Eq. (18a) with u(1)1 symmetric in x1 can
be written as

u(1)1 = A1 cos(ξ1x1)+A2 cos(ξ2x1)+ ũ(1)1 ,

u(0)2 = B1 sin(ξ1x1)+B2 sin(ξ2x1), (19)

where

ũ(1)1 =
3e26κ1V

2b3

(
ρω

2− 3
b2 κ

2
1 c66

)−1
. (20)

ξ 2
1 and ξ 2

2 are the two roots of the following quadratic equation
for ξ 2

γ11ξ
4−ρω

2
(

γ11

c66κ2
1
+1
)

ξ
2 +ρω

2
( 3

b2 −
ρω2

c66κ2
1

)
= 0. (21)

A1, A2, B1, and B2 are undetermined constants. They are re-
lated by the following two relations:

Bm = ξm

(
ρω2

κ2
1 c66
−ξ

2
m

)−1
Am, m = 1,2. (22)

Therefore there are two independent undetermined constants.
Substitution of Eq. (19) into the boundary conditions in
Eq. (18c) determines A1, A2, B1, and B2. Then the admit-
tance can be calculated using Eqs. (7)–(11). In the special case
when the driving voltage V = 0, the free vibration solution is
obtained which determines the resonant frequencies.

Figure 3(a) shows the free vibration frequencies of the
modes of interest (corresponding to the modes with n = 0 in
Eq. (17)) when ω/ω0 is slightly larger than one. Compari-
son of Fig. 2(a) and Fig. 3(a) shows that, due to the coupling
to flexure, the nearly flat curve with n = 0 in Fig. 2(a) breaks
into sections by another family of curves related to flexure.
Near the ends of each section, coupling to flexure is known
to become severe and the corresponding values of a/b should
be avoided in resonator design.[1] Figure 3(b) clearly shows
that, near the ends of the flat sections in Fig. 3(a), when cou-
pling to flexure is strong, the admittance drops significantly.
Figure 3 represents the current understanding of the effect
of mode coupling on admittance, except that we have plot-

ted Fig. 3(b) more generally, using a surface. The results of
Refs. [14] and [15] represent the intersection of the surface in
Fig. 3(b) with a plane defined by a constant ω .

15 16 17 18 19 20
0.95

0.97

0.99

1.01

1.03

1.05

ω
/
ω
0

0.99

1.00

1.01

1.02

15
16

17

18

19

20

0

10

20

(a)

(b)

a/b

a
/b

ω/ω
0

Y
/
S
Sm

↩


Fig. 3. Coupled thickness shear and flexure: (a) frequency spectra,
(b) admittance/m2.

5. Coupled thickness-shear, flexure, and face-
shear: u(1)1u(1)1u(1)1 , u(0)2u(0)2u(0)2 , and u(0)3u(0)3u(0)3

From Eqs. (6), it can be seen that both the thickness-
shear mode and the flexural mode are coupled to the face-shear
mode through the elastic constant c56. Since c56 is relatively
small,[29] this coupling was rarely studied in frequency analy-
sis. The effect of c56 on admittance is little known and will be
examined below. The boundary-value problem is:

κ1c56u(0)2,11 + c55u(0)3,11 +κ1c56u(1)1,1 + e25φ
(1)
,1 =−ρω

2u(0)3 , |x1|< a, (23a)

κ
2
1 c66u(0)2,11 +κ1c56u(0)3,11 +κ

2
1 c66u(1)1,1 +κ1e26φ

(1)
,1 =−ρω

2u(0)2 , |x1|< a, (23b)

γ11u(1)1,11 +ψ11φ
(1)
,11 −3b−2[κ1c56u(0)3,1 +κ

2
1 c66(u

(0)
2,1 +u(1)1 )+κ1e26φ

(1)] =−ρω
2u(1)1 , |x1|< a, (23c)

T (0)
13 = 0, T (0)

12 = 0, T (1)
11 = 0, x1 =±a. (23d)

Depending on the driving frequency, the general solution to Eqs. (23) with u(1)1 symmetric in x1 can be written as


u(1)1

u(0)2

u(0)3

=



3
∑

m=1
Am cos(ξmx1)+ ũ(1)1

3
∑

m=1
Bm sin(ξmx1)

3
∑

m=1
Cm sin(ξmx1)


, when ω

2 >
3κ2

1 c66

ρb2 , (24)

047702-4
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or


u(1)1

u(0)2

u(0)3

=



2
∑

m=1
Am cos(ξmx1)

2
∑

m=1
Bm sin(ξmx1)

2
∑

m=1
Cm sin(ξmx1)


+


A3 cosh(ξ3x1)+ ũ(1)1
B3 sinh(ξ3x1)

C3 sinh(ξ3x1)

 , when 0 < ω
2 <

3κ2
1 c66

ρb2 , (25)

where ξ 2
1 , ξ 2

2 , and ξ 2
3 are the three roots of the cubic equation for ξ 2 obtained by setting the coefficient matrix of the following

linear homogeneous equations of A, B, and C to zero: −κ1c56ξ −κ1c56ξ 2 ρω2− c55ξ 2

−κ2
1 c66ξ ρω2−κ2

1 c66ξ 2 −κ1c56ξ 2

ρω2− γ11ξ 2−3b−2κ2
1 c66 −3b−2κ2

1 c66ξ −3b−2κ1c56ξ


 A

B
C

=

 0
0
0

 . (26)

Am, Bm, and Cm are undetermined constants. For each value
of m, Am, Bm, and Cm are proportional to an eigenvector of
Eq. (26) and are thus related. There are three independent un-
determined constants. Substitution of Eq. (24) or Eq. (25) into
the boundary conditions in Eq. (23d) determines Am, Bm, and
Cm.
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Fig. 4. Coupled thickness shear, flexure, and face shear: (a) fre-
quency spectra, (b) admittance/m2.

Figures 4(a) and 4(b) show the results from free and
forced vibration analyses, respectively. Comparison of
Fig. 3(a) with Fig. 4(a) shows that, due to the coupling to the
face-shear mode, there are additional curves in the frequency
spectra with what seem to be “intersections” with the nearly
flat sections and the corresponding values of a/b may be un-
desirable in design. The admittance in Fig. 4(b) shows that
along the curves related to the face shear in Fig. 4(a), the ad-
mittance has additional peaks or drops. These additional peaks
and drops are small and sharp. The main problem is that they

occur when the admittance is supposed to be smooth and the
effect of flexure is already avoided, and therefore they require
additional considerations in design. It should be noted that the
coupling to the face-shear modes may have other undesirable
implications. For example, the face-shear mode does not have
a cutoff frequency[2,25] and the related energy trapping[2,25] be-
havior. As a consequence, the unwanted coupling to the face-
shear mode may also cause energy leaking at the mounting
points.

Figure 4 represents the main contribution of the present
paper and deserves a closer look. In Fig. 5 we magnify the area
near an “intersection” between thickness shear and face shear
in Fig. 4(a). It can be seen that the “intersection” in Fig. 4(a) is
not a real intersection. The two curves in fact turn away from
each other just as a coupled theory typically predicts.
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Fig. 5. Local view of the coupling between thickness shear and
face shear.

The three-dimensional plot in Fig. 4(b) shows the overall
behavior of the admittance clearly. However, for design, it is
more convenient to have two-dimensional plots for admittance
versus a/b[14,15] like what is shown in Fig. 6. The curves in
Fig. 6 are intersections of the surface in Fig. 4(b) with planes
of constant frequency. They are sensitive to the frequency. In
addition to the major admittance drops related to the coupling
with flexure, there are additional sharp peaks and drops due to
the coupling with face shear. They occur in otherwise smooth
portions of the curves.
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Fig. 6. Admittance/m2 versus a/b for coupled thickness shear, flex-
ure, and face shear.

6. Conclusion
Quartz thickness-shear resonator admittance with cou-

plings to flexure and face shear is obtained from forced vibra-
tion analyses. Results show that at the fundamental thickness-
shear mode, admittance assumes maxima. The coupling to
flexure causes severe drops of admittance. Coupling to face
shear results in additional, small, and sharp peaks or drops.
These additional peaks or drops are within regions of the as-
pect ratio where the coupling to flexure is already avoided.
Therefore they may affect the resonator performance in ways
unexpected in current design practice. The coupling to face
shear may also affect resonator performance in other ways be-
cause face shear does not have energy trapping. Therefore val-
ues of a/b corresponding to couplings to flexure and face shear
should all be avoided in design in general.
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