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There have been many recent advancements in the field of reinforcement learning,

starting from the Deep Q Network playing various Atari 2600 games all the way to

Google Deempind’s Alphastar playing competitively in the game StarCraft. However,

as the field challenges more complex environments, the current methods of training

models and understanding their decision making become less effective. Currently, the

problem is partially dealt with by simply adding more resources, but the need for a

better solution remains.

This thesis proposes a reinforcement learning framework where a teacher or entity

with domain knowledge of the task to complete can assist the agent in finding a

policy, while also providing human observers a more understandable format for how

the agent formulates its overall policy to complete a given task. This framework is

evaluated on the Seaquest environment within the OpenAI Gym framework.
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Chapter 1

Introduction

Deep learning has been integrated in many facets of modern living. Ranging from

voice-activated digital assistants to self-driving vehicles, deep learning has found nu-

merous use cases throughout modern society. However, reinforcement learning still

struggles in the face of real-world complexity. This is in part due to the difficulty

of incorporating long-term strategies and planning, along with which can be seen in

various video games, such as Montezuma’s Revenge [23], Defense of the Ancients [11]

and Starcraft [7]. Unlike previous benchmarks for reinforcement learning, these games

showcase several parallels to the real world, including partial observability, very long-

term planning, and a myriad of ways to interact with the environment to achieve the

goal. One of many directions taken to tackle this problem involves the use of domain

knowledge, or knowledge derived from human experts, to try and guide the computer

towards better performance.

This thesis proposes a reinforcement learning framework where a teacher or entity

with domain knowledge of the task to complete can assist the agent in finding a

policy, while also providing human observers a more understandable format for how

the agent formulates its overall policy to complete a given task. This framework is

evaluated on the Atari 2600 game Seaquest to determine its efficacy against the DQN

network by Minh et al. [15].
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Historically, there have been many techniques that attempted to address the issue

of scalability present in reinforcement learning [10, 25, 9, 18]. Despite the promise

these approaches showed, they seemingly fell out of favor until the field once again

found itself approaching the wall of complexity, this time in environments like Star-

Craft [30] and Defense of the Ancients (DotA) [3].

Many modern approaches [16, 26, 28] have taken to revisiting the principles out-

lined by older papers [25, 10], but only to the extent of adapting and modifying the

approaches to fit the current trend of deep learning. As such, the choices made by

the agent remain inscrutable to human observers.

We propose a framework that seeks to include both interpretability and teach-

ability to the reinforcement learning process with minimal modifications to the ex-

isting deep reinforcement learning process. By establishing a relationship between

a “teacher”, or some entity that has domain knowledge of the task, and the agent,

the means by which information is transmitted between the two parties and the

transparency of said information, we believe this framework will provide additional

information on the policies created with minimal to no cost on the quality of policy

produced.

1.1 Thesis Contributions

This thesis makes the following contributions. The repository is available online using

the provided link.1

• Proposed a new framework to assist developers in creating a decomposition of

tasks that can be easily understood in a given environment.

1https://github.com/blackhole077/TIDQN-repository

https://github.com/blackhole077/TIDQN-repository
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• Combined auxiliary feature extractors into the DQN architecture and tested its

efficacy in policy creation.

• Attempted multiple variants of state augmentation and shaping as potential

implementations of the proposed framework to determine efficacy against a

baseline.

• Attempted to implement the Option Heads [1] approach and Bootstrapped DQN

[17] approach in the Keras RL library.

• Tested all variants of TIDQN against the baseline DQN on the Seaquest [6] envi-

ronment, using environment-specific metrics such as Total Divers per Episode,

Diver Acquisition Rate and Max Divers per Episode to better illustrate the

difference in performance.

• Determined that the current implementation of TIDQN formed a negative cor-

relation between the level of external intervention and policy performance and

provided possible causes.

1.2 Thesis Roadmap

The rest of this thesis is organized as follows. Chapter 2 will cover background infor-

mation that is necessary to understand concepts presented in the proposed approach,

along with explanations for how these concepts tie into the approach. Chapter 3

will cover works that are related to the proposed approach and the differences, if

any, between said works and the proposed approach. Chapter 4 covers the frame-

work itself, along with its components, how they interact with one another, and their

intended purpose in improving the policies created. Chapter 5 covers experimental

setup, starting with how training and testing were conducted, an explanation of all
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metrics used and the various modifications that were attempted over the course of

experimentation, along with results and observations made from said modifications.

Finally, Chapter 6 will cover the overall conclusions that can be made based on the

observations made and the future directions that the proposed approach can be taken

for further investigation.



5

Chapter 2

Background Information

This chapter covers core concepts, terms, and technologies used throughout the re-

mainder of the thesis, along with explanations for what purpose certain technologies

serve in the proposed approach.

2.1 Major Concepts

2.1.1 Reinforcement Learning

Reinforcement Learning, as defined by Sutton and Barto [24], is a sub-area of ma-

chine learning that focuses on the learning of a mapping from states to actions that

maximizes some numerical reward. More informally, it is the paradigm of machine

learning that focuses on the machine learning what to do by way of trial-and-error.

Unlike the other paradigms of machine learning, reinforcement learning makes

use of an interaction between the machine, usually defined as an agent, and the

environment it is placed in. The agent uses a policy to guide what actions to take

inside of an environment and, in turn, receives some reward from the environment.

As these actions cause changes to the environment, the agent is tasked with learning

an optimal mapping between states and actions to maximize the reward it receives

from the environment.
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In the context of a game, the concepts present in reinforcement learning are much

more intuitive. Much like a player learning to play a game to get a high score, an agent

learns to act in an environment to maximize the total reward. While the proposed

approach makes use of the Atari 2600 video game Seaquest, reinforcement learning

has use cases that extend into the real world, commonly being paired with robotics

in hopes of achieving autonomous entities.

Figure 2.1 shows the basic interaction between the agent and environment. At

some time step t, the agent will receive state information, denoted st, from the envi-

ronment. Using the state information, the agent chooses an action, denoted at, based

on its current policy π. The environment then changes based on the action taken and

returns both a new state st+1 and a reward value rt+1. Through this feedback loop, π

is optimized to find the action that maximizes the expected discounted reward value

given some state, where the expectation is with respect to the randomness in the

functions δ, r, and π. This value is described in Equation 2.1 from Mitchell [13]. In

Equation 2.1, γ is the discount factor, or some value 0 < γ < 1 that reduces the

impact of future rewards.

V π(st) ≡ E

[
∞∑
i=0

γirt+i

]
(2.1)

A general formulation of reinforcement learning problems, provided by Mitchell [13],

is the Markov Decision Process (MDP). Within an MDP, an agent is tasked with

learning some policy π : S → A, that maps each state s ∈ S to some action a ∈ A.

At some time step t, the agent will perceive state information st and select an action

at via the policy π(st) = at. Once an action is selected, the state-transition function

δ(st, at) returns the subsequent state st+1 and the reward function r(st, at) returns a
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Figure 2.1: “The agent-environment interaction in reinforcement learning” [24]. Be-
low is the order of operations that occur between an agent and environment. Figure
courtesy of Mitchell [13].

reward rt. Due to the Markov property, δ and r only rely on the information known

in the current time-step, ignoring any prior information. Note that while δ and r

only rely on what is known at the current time-step, the functions themselves can be

either deterministic or non-deterministic.

Based on the descriptions provided, the basic agent-environment interaction is

equivalent to the Markov Decision Process, as all components present in the feedback

loop are directly tied to processes in a given MDP.

However, limitations exist within the MDP framework, a major one being the lack

of temporal abstraction. In other words, due to how an MDP is formulated, movement
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through the MDP space is limited to one unit of time per decision. This limitation

becomes apparent in more complex environments where a series of decisions could be

grouped together. Sutton et al. [25] proposed the use of Semi-Markov Decision

Processes (SMDP) via ‘options’ in response to this.

A major difference between an MDP and SMDP is the use of a random variable

τ to determine how many units of time will elapse before the decision selected ter-

minates. This is done to allow an MDP formulation to work over continuous time.

Furthermore, while δ(st, at), r(st, at) remain Markovian, the inclusion of τ alongside

the current state and selected decision breaks the Markov property.

The ultimate goal within RL is to construct some optimal policy π∗ : S → A

that can output the optimal action a∗ ∈ A such that the expected discounted reward,

shown in Equation 2.1 is maximized, for any state s ∈ S. To this end, the proposed

approach utilizes Q Learning, discussed in Section 2.1.2.

2.1.2 Q Learning

There are many different methods that can be used to approach the reinforcement

learning problem. A very commonly used method is Q Learning, which makes ex-

tensive use of the action-value function or Q function, denoted Qπ(s, a). This

function is defined by Sutton and Barto [24] as the expected return starting from s,

taking the action a, and thereafter following policy π. Equation 2.2 from Mitchell [13]

shows the non-deterministic version of the Q function. Q Learning is the method that

attempts to directly learn an optimal policy π∗ by learning the optimal Q function.

Qπ(s, a) ≡ E[r(s, a)] + γ
∑
s′

P (s′|s, a) max
a′

Q(s′, a′) (2.2)
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Once a Q function is learned, it can be used to realize a policy by selecting the

action that satisfies maxaQ(st, a). Since the definition of a Q function is the expected

return from state s after taking action a and following a policy π, if an optimal Q

function is found then the policy that forms the expected return must also be optimal

as well.

One of the major advantages the Q function and, by proxy, Q Learning has is

that neither the transition function nor the reward function are required to be known,

which makes it feasible to structure reinforcement learning as a dynamic programming

problem and apply it to environments where such functions cannot be determined as

noted by Mitchell [13].

Additionally, Q Learning is considered an off-policy technique. Off-policy tech-

niques are a method where the learned action-value function Q is approximating the

optimal action-value function Q∗ independent from the current policy. This can be

seen in Equation 2.3, where the update assumes that the subsequent action is chosen

greedily, even if a different method is used by the current policy (e.g., using Epsilon-

Greedy selection to play Seaquest). Equation 2.3 is the basis for the Q Learning

algorithm provided by Sutton and Barto [24].

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)] (2.3)

As mentioned earlier, a Q function estimate, or Q value, for a given state-action pair

(denoted here as Q(st, at)) can be defined as the expected reward if, starting from

state st and taking action at, the policy π is followed to termination.

In order to update it, the following operations occur. First, the discounted ex-

pected reward (denoted as γ arg maxaQ(st+1, a)) is subtracted by the current Q value

estimate to produce the error value. The error value is then combined with the im-
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mediate reward for selecting at and multiplied by the learning rate α. Finally, this

value is combined with the current Q value estimate and the update is performed.

Minh et al. [15] combined the Q Learning technique with the function approximation

capabilities of deep neural networks such that the technique was feasible in more

complex environments.

However, as noted by Sutton and Barto [24], these changes lent themselves to

increased instability, due to the use of function approximation, bootstrapping via

Q Learning and off-policy training via Q Learning. These three components were

termed “The Deadly Triad”, whereupon having all three present seems to incur un-

stable behavior. As such, techniques like experience replay were introduced alongside

DQN [15] to try and stabilize the learning process.

Despite these issues, Q Learning remains a powerful tool for learning policies in

environments that more closely mirror the real world. Therefore, the focus of the

proposed approach is on its more modern counterpart, the Deep Q Network (DQN),

created by Minh et al. [15] which is a deep learning implementation that utilizes Q

Learning at its core, discussed in Section 3.1. The proposed approach builds off of

this network architecture due to the advantages presented by using Q Learning, as

well as utilizing the simplicity of the underlying method to determine if the proposed

approach can further expand upon it.

2.1.3 Epsilon-Greedy Approach

In reinforcement learning, the trade-off between exploration and exploitation plays a

large role in the overall quality of policies learned. Low exploration in the early stages

of policy construction can lead to stifled policy growth, whereas if exploitation is not

emphasized in the later stages of construction, the agent may not learn any optimal

strategy, thus resulting in a half-baked policy either way. Though there are multiple
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methods to balance out the two, the proposed approach utilizes the Epsilon-Greedy

approach.

The Epsilon-Greedy approach is defined by Sutton and Barto [24] as an action-

value method, or a method for selecting actions based on the estimated values.

This is different from Q Learning in that the method does not calculate any values.

Rather, it is the means by which a policy may choose to select actions based on the

values provided via functions like Q Learning.

The ‘Greedy’ portion of the method uses Equation 2.4.

at = arg max
a

Qt(a) (2.4)

Where at refers to the action at a given time step t, a refers to an action a ∈ A, and

Qt(a) refers to the estimated value of action a at time step t. The second half of

the method, ‘Epsilon’, refers to some probability εt that the action at is selected via

uniform distribution across the set of available actions A. This is done to encourage

exploration in the environment and to curtail the appearance of sub-optimal policies.

As t→∞, εt → 0, meaning that over time, then the probability of taking a “random”

action decreases to zero. As such, this technique is only used during the training

phase. During testing, or any “real-world” utilization of the policy learned, only the

greedy choice is used (i.e., ε = 0).

In the context of both Q-Learning and DQN [15], the Epsilon-Greedy method is

used for action selection inside of the Q Learning algorithm, though in the latter the

ε value is linearly annealed over the course of 1M time-steps.
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2.1.4 Seaquest

Seaquest [6] is a video game created in 1983 for the Atari 2600 system. The main

objective of the game is to, as a yellow submarine, pick up divers for rescue while

also fending off enemies, such as sharks and other submarines. Figure 2.2 illustrates

what the game looks like.

To clarify some terminology, the player “picks up” divers by simply moving their

submarine over the location of the diver, such that the two entities are touching one

another somehow. Conversely, if the player touches an enemy, or a projectile spawned

by an enemy, they will lose a life. Additionally, the player “rescues” divers by moving

up to the top of the playable area, whereupon at least one diver will be removed from

the player’s current diver count, shown at the bottom of the screen.

Moving on, there are confounding factors that add difficulty to the game. Namely,

the player has a limited oxygen capacity, represented by a bar at the bottom of the

screen. Furthermore, if the player attempts to resurface without any divers on board,

they will instead lose a life. In addition to this, the player can only have up to six

divers on board at a given time, though if a player surfaces with the maximum number

on board, they will receive a large point total of fifty points per diver. On top of this,

an additional fifty points is awarded per diver for subsequent six-diver runs, up to a

maximum of 1000 points per diver. Additionally, enemies will gain ten points, up to a

maximum of 90 points. However, if the player resurfaces with less than this amount,

no point total is awarded. Finally, the more the player resurfaces, the more difficult

the game becomes, as enemies become faster.

The reason this environment was chosen was two-fold. The simplicity of the

environment, as described above, allows for an equally simple representation to be

constructed from it, a suitable quality for exploratory work. Furthermore, polices
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Figure 2.2: An image representing the Seaquest environment.
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constructed by the DQN approach [15] seemingly do not understand focus on acquir-

ing six divers and surfacing, choosing instead to defeat as many enemies as possible

while surfacing only when absolutely necessary, sometimes failing to do even that.

Based on the how the point values scale between divers and enemies, it is obvious to

human players that divers are indeed the primary source of points and as such should

be treated as the main objective of the game.

Since the current DQN-based approach fails to construct a policy that mirrors

this knowledge, it can be inferred that the baseline policy is currently hindered by

the long-term nature of such a goal, making it easy to determine if the proposed

approach has any meaningful impact on the resulting policies.

2.2 Techniques Used

2.2.1 Transfer Learning

Transfer learning can be defined as a technique for improving the training efficiency

of a deep learning model. This technique is performed by extracting the knowledge of

a source model that was trained on a related task, and using it as a base for a related

task. In the proposed approach, this is done by directly copying the parameters of

the source model and applying them to the target model. A potential pitfall of this

type of transfer learning is the restrictions placed on model architecture, which may

prevent certain changes to the target architecture. In other words, in order for the

transfer learning to work as intended, the layers and ordering of the source model

must be preserved and present somewhere within the target model.

The proposed approach makes use of this in multiple ways. First, the base weights,

or weights of a baseline DQN model trained on the Seaquest environment for 20M

steps, was used as a base for both the proposed approach and another baseline.
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Afterwards, these two approaches were trained for an additional 5M steps before

testing. This was done to determine the efficacy of the proposed approach in ideal

conditions, while allowing time for multiple modifications described in Chapter 4.

Another use of transfer learning was in creating auxiliary feature extractors for the

environment. Similar to the previous case, a baseline DQN model was used, though

only the weights in its convolutional layers were transferred over. However, due to

dissimilarity in tasks, this approach was scrapped in favor of training a model from

scratch.

2.2.2 Reward Shaping

Reward shaping is a technique used to introduce external influences into the devel-

opment of a reinforcement learning agent’s policy. In other words, reward shaping is

done by either modifying the existing environment reward, or adding an additional

source of reward separate from the environment. This can include positive rewards

for performing certain actions, or negative rewards for entering certain states. Equa-

tion 2.5 represents the combination of the immediate reward signal from the environ-

ment rt and the external shaping signal rshaping.

rt + rshaping (2.5)

The proposed approach makes extensive use of reward shaping to try and in-

centivize behaviors outlined in the Representation of Tasks described in Chapter 4.

Furthermore, additional modifications described in Chapter 5 cover other attempts

to use reward shaping, along with general observations made by doing so.
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2.2.3 Action Shaping

Similar to reward shaping, action shaping is a technique used for introducing external

influences to the development of a reinforcement learning agent’s policy. However,

unlike reward shaping, action shaping works by modifying the actions available to

the agent As. Action shaping can be a viable alternative in situations where reward

shaping may not be a good fit, such as preventing the agent from entering undesirable

states.

In the case of the proposed approach, this is done by introducing a mask M that

is applied onto the Q values Q(s) which are produced at a given state s ∈ S. The

mask is generated by different methods described in Chapter 4, but the result is such

that Q(s) ◦M = Q′(s), where certain Q values are set to zero before an action is

selected using the Epsilon-Greedy approach described in Section 2.1.3.

The proposed approach attempts to use action shaping in conjunction with an

auxiliary feature extractor to determine the effects of heavier external influences on

the resulting policy.

2.3 Atari Learning Environment (ALE)

The Atari Learning Environment (ALE) is a wrapper around Atari emulator Stella

constructed by Yavar Naddaf [2, 12]. This environment was used as a major baseline

in the OpenAI Gym environment [5] and was used by Minh et al. for their DQN

approach [15]. Due to the general simplicity of Atari 2600 games, it was chosen as

the baseline environment for the proposed approach.
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2.4 Keras RL

Keras RL [19] is a third-party library initially developed by Matthias Plappert that

uses Keras to utilize aspects of the OpenAI gym library and environment. The library

was chosen due to it leveraging the accessible nature of Keras. It contains various

agents, including DDPG and SARSA, but for these experiments only DQN is utilized.

Keras RL makes use of Processors, which serve to execute auxiliary code at certain

steps in the feedback loop between the agent and the environment. This ranges from

logging certain values to reward shaping based on actions or custom metrics. For

experimentation, two separate processors are created to represent the baseline and

experimental processor.

For comparative purposes, two different models and processors were created. The

former, named Atari, was built to represent the basic DQN that was used by Minh

et al. and as such contains no modifications that influence the policy. The latter,

named TIDQN, was built to demonstrate the performance of policies that included

various amounts of information from a teacher against the baseline. As such, it

contains auxiliary feature extractors, as well as a conditional matrix to represent

said information. Furthermore, to allow for better comparison, the number of divers

rescued within an episode, along with a cumulative sum of divers was recorded for

both. The reason for this is that the experimental goal is to determine if the inclusion

of outside information will result in a higher quality policy which, in the context of

Seaquest, means a policy that actively rescues six divers at a time.

Over the course of experimentation, various adjustments to the knowledge pro-

vided by a teacher have been made, whether it was due to unintended consequences

of providing shaping signals based on the provided knowledge, or due to negligible

performance increase when compared to the baseline. Chapter 5 covers the results of
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these experiments.



19

Chapter 3

Related Works

This chapter covers similar approaches taken by other authors and describes the

overall points to each approach, along with either how this proposed approach is

different, or how this approach attempts to directly extend the prior work.

3.1 Human-level Control Through Deep Reinforcement

Learning

This approach by Minh et al. [15] is a fundamental paper for modern reinforcement

learning, as it describes an approach that combines Q Learning with deep learning.

This approach, termed Deep Q Network (DQN), refers to the use of a function ap-

proximator when using the Q learning function described in Section 2.1.2. This is

done to allow for scalability in the face of increasingly complex environments.

The modern architecture makes use of a convolutional stack to process images that

represent the state at some time-step, st, which is then passed to a simple feed-forward

network. Overall, the architecture effectively processes images from the environment

and converts them into Q values for all actions available to the agent. From there, the

action, at is selected by either using the action with the highest Q value, is selected

at random, per the Epsilon-Greedy method described in Section 2.1.3. From there,
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Figure 3.1: An implementation of the DQN architecture for the game Seaquest.

the agent receives a reward, rt, and the environment moves to the next state, st+1

creating the agent-environment interaction loop.

Furthermore, the authors implement a technique called experience replay to alle-

viate correlations between samples taken from the environment. Essentially, as the

agent interacts with the environment, the resulting tuples of information ((st, at, rt, st+1)

are aggregated into a large data structure. From there, batches are randomly sampled

and used to train the network, resulting in more stability during training.

As this work forms the foundation to many modern approaches [1, 17, 4, 29], the
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proposed approach naturally will be extending this work as well, by proxy.

3.2 Between MDPs and Semi-MDPs: A Framework for

Temporal Abstraction in Reinforcement Learning

As mentioned in Section 2.1.1, Sutton et al. [25] created a framework to unify mul-

tiple approaches to temporal abstraction in reinforcement learning. This framework,

termed Options, describes the general concept of a temporally extended sequence of

actions that would facilitate more complex actions in a given environment.

The approach goes on to describe what constitutes an option o ∈ O is, where O

referred to the set of all options. A given option o contains 3 components:

• An initiation set I ⊆ S where for some state st ∈ S, an option o is available if

and only if st ∈ I.

• A policy π : S × A→ [0, 1] that is followed for the duration of the option.

• A termination condition β : S+ → [0, 1] that determines the probability that a

state s′ ∈ S is in the set of terminal states s′ ∈ S+ for the option.

A note to make about π is that it may be limited to a given option o ∈ O.

However, as Sutton et al. attempted to merge the options framework with the base

reinforcement learning framework, the authors instead chose to denote a “policy over

options” µ : S×O → [0, 1], along with the assertion that primitive actions a ∈ A can

be seen as a special case of options. In other words, for a state s ∈ S, Os represented

all possible actions primitive and temporally extended.

This paper is fundamental in other approaches described in this chapter [1, 16] due

to the notion that the principles of options can be combined with current approaches
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to reinforcement learning to create more robust policies. Therefore, the proposed

approach will be extending this work by proxy.

3.3 Hierarchical Reinforcement Learning with the MAXQ

Value Function Decomposition

Another fundamental approach to handling the complexity of the reinforcement learn-

ing problem is the MAXQ approach described by Dietterich [10], which involves an

efficient approach to hierarchical reinforcement learning by way of decomposing the

value function. It not only describes a framework that forms the basis of hierarchical

reinforcement learning approaches, it provides several mathematical guarantees for

using the MAXQ approach.

There are some conceptual similarities between the proposed approach and the

MAXQ approach, namely in the idea of utilizing an external teacher or programmer

to construct the graphical representation of the environment, along with the notion

of reducing the complexity of the state space by way of state abstraction. Finally,

the proposed approach utilizes the concept of termination predicates to control when

a sub-task is finished in place of a supervisory network when utilizing the ‘Option

Heads’ approach described in Section 3.4.

However, unlike the MAXQ approach the proposed framework uses the notion of

‘task decomposition’ to create hypothetical policies that could be learned or utilized

via the Options framework [25]. Though Dietterich stated that a given option assumes

its policy is already learned, more recent applications of the Options framework have

reduced or removed the need for a learned policy.
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3.4 Classifying Options for Deep Reinforcement Learning

The approach described in this paper by Arukulmaran et al. [1] is an attempt to

incorporate options [25] into the structure of DQN [15] without sacrificing model per-

formance. The architecture this paper extends is the Bootstrapped DQN by Osband

et al. [17]. However, since the goals of the Bootstrapped DQN approach are largely

unrelated to the proposed approach, this paper will be used instead.

The inclusion of options within the DQN architecture is achieved through the

implementation of ‘option heads’. The term is likely derived from the idea that

instead of a single-head approach, where one dense layer outputs a number of Q

values equal to the number of actions in the environment, it takaes a multi-head

approach where multiple of these layers are created and work in parallel. These

option heads modify the output of the DQN such that multiple heads form the overall

policy created in a given environment. In other words, a policy trained on this

architecture would become π(s) = arg maxaQO(s)(s, a), where QO(s) represents a

supervisory network O(s) : S → O which determines what ‘option head’ is selected

at some state s ∈ S.

Training a supervisory network, however, requires manual control of which option

head is trained, along with separate buffers for experience replay. The authors noted

the use of an oracle during training, which also trained the proposed supervisory

network.

Due to the paper successfully including sub-policies within a singular DQN model,

there are efforts made in the proposed approach to utilize this, as options heads are a

suitable implementation of the Representation of Tasks (RoT) discussed in Chapter 4.



24

Figure 3.2: A model diagram of the proposed approach’s implementation of the Op-
tion Heads architecture. Note that each head is constructed exactly the same.

3.5 Hierarchical Reinforcement Learning for Playing a

Dynamic Dungeon Crawler Game

This paper by Niel et al. [16] outlines an approach the authors termed Dynamic

HRL (dHRL), which is based on the MAXQ framework proposed by Diettreich [10].

However, the major difference for their paper is that their framework has a “root

behavior”, or some root policy, which determines what sub-policy to choose from,

along with how different sub-policies can be trained simultaneously.

However, it seems that while the ideas underpinning the author’s approach are

similar to the proposed approach, the execution is quite different, with the largest of

these differences being that their approach is simply not a deep learning approach at

all, using only a shallow feed-forward network to simulate Q-learning, as opposed to

the DQN [15] approach the proposed approach utilizes.
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3.6 Identifying Subgoals by Local Graph Partitioning

This paper by Simsek et al. [22] describes an approach for identifying sub-goals by

seeing if sub-goals and, by proxy, their respective sub-policies can be identified auto-

matically by the model during execution. The core concept revolves around the use

of a given local transition graph, which is a state transition graph that restricts to

only the states that the agent has recently gone through. Through this, identification

of both sub-goals and potential options becomes feasible without the intervention of

an external force (i.e., a teacher).

However, there are major differences between the proposed approach and this

paper. One of these differences is that the paper is founded under the assumption

that tabular reinforcement learning, a system in which the value function is stored

using a table, is in place. However, such a system is known for not scaling to more

complex problems, unlike more modern solutions [15]. Another difference is that

the approaches themselves are different with respect to including external knowledge.

While the proposed approach is attempting to leverage domain knowledge to identify

potential sub-policies, this approach attempts to define a method such that the model

itself could perform the same task.

3.7 Strategic Attentive Writer for Learning Macro-Actions

The Strategic Attentive Writer for Learning Macro-Actions (STRAW), by Vezhn-

evets et al. [27], approaches Deep Reinforcement Learning and HRL with the notion

of implicit plans, which are plans that are defined by the network itself and up-

dated periodically depending on the environment. Furthermore, the model includes

a method for learning how long a given plan, or series of actions, should be commit-

ted to which allows more robust action in the face of unexpected circumstances or
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situations the agent has not seen before.

Despite potential applications in future extensions of the proposed framework,

there remain some major differences between the two. One difference is the assump-

tion of external knowledge. In the proposed approach, the framework establishes this

as a component that is assumed to be present, unless otherwise stated. The focus

of the authors’ work, however, resides in the fact that the agent should be able to

come up with new strategies and actions without external interference, whether it be

from a teacher or not, similar to older approaches [22]. Additionally, the idea that

the agent must perform all portions of planning is effectively antithetical to what the

proposed approach, though it is not mutually exclusive.

3.8 Deep Reinforcement Learning Boosted by External

Knowledge

Deep Reinforcement Learning Boosted by External Knowledge (DRL-EK) [4] de-

scribes a more modular approach to scalable reinforcement learning. Furthermore,

the approach taken attempts to utilize knowledge outside of what may be readily

available to the agent to boost both the training efficiency and quality of the result-

ing policy.

The authors describe their architecture as a collection of four modules, each with a

specific task to perform. The Object Recognition Module, handled by the YOLO [21]

library, takes in an image and extracts features, passing them to the next two modules.

The Reinforcement Learning module, using A3C [14] at its core, handles calcu-

lation of the value function and policy, using the input image and features from the

first module. The Knowledge Base module, comprised of Dueling DQN (DDQN) [31],

takes in only the features provided by the first module and outputs an action. The
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last module, the Action Selector module, takes in the actions suggested by both the

RL module and KB module, and uses Q-learning to select which action to take (if

either).

While there are quite a few similarities, including the idea of augmenting the input

state with external information, along with the modular approach, key differences

remain. One of these differences is the overall ‘meta-structure’ of the approaches, as

the proposed approach does not make use of any Bayesian networks and only utilizes

the base DQN architecture. Furthermore, the authors tested their work in a 3D

partially observable environment, whereas the proposed approach is only tested in

the Seaquest environment. Finally, the model does not account for human feedback,

and it is noted as a future work by the authors.

3.9 Hybrid Reward Architecture for Reinforcement Learning

Hybrid Reward Architecture for Reinforcement Learning (HRA), by van Seijen et

al. [26] describes an approach that attempts to address difficulties in finding an opti-

mal value function due to complexity in the environment’s reward function.

The approach HRA uses to address this is decomposing the reward function into

simpler functions and divvying them between multiple agents. However, the authors

note that a multi-head model would be equivalent to having multiple agents. The

authors then claim that, through this method of training, policies of similar quality

can be found with greater efficiency due to each reward function being less complex.

Finally, the authors describe methods by which to further improve the performance

of HRA by way of domain knowledge: By removing irrelevant features, identifying

terminal states and using pseudo-reward functions, which likely includes the use of

reward shaping.
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The approach has some similarities to the proposed approach. The notion of using

a multi-head model, with each head representing an option [25] has been proposed in

other papers mentioned [1, 17], which serve as the works the proposed approach is di-

rectly extending. Furthermore, the concept of leveraging domain knowledge to boost

the performance of a given agent is similar to the proposed approach. However, the

largest difference is the underlying goals. While HRA focuses on the increasing effi-

ciency by lowering the complexity of a given reward function, the proposed approach

seeks to provide a human-interpretable method for injecting domain knowledge into

a given environment.

Although the application described in the paper is limited to tabular methods,

the underlying principles can be seen in more recent works [26, 16]. Similar to more

current approaches, the proposed approach attempts a different decomposition from

the one described by Dietterich, opting instead to view an environment as a potential

collection of options. While options and the MAXQ approach are not inherently

mutually exclusive, the proposed approach bears more resemblance to the former

than the latter.
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Chapter 4

Teachable-Interpretable DQN (TIDQN)

This chapter covers the framework, termed TIDQN, created for the proposed ap-

proach along with a description of what each portion does and its intended purpose.

Furthermore, it describes the contribution it provides to reinforcement learning as a

whole.

4.1 Teachability in TIDQN

The teachability aspect of TIDQN is present in the use of a Representation of Tasks

and Completion Vector. While these tools are more conceptual additions, their im-

plementations can be added and removed freely from the base reinforcement learning

problem depending on how much external help the agent should receive. Ranging

from having no state augmentation to having the set of available actions directly

modified by a set of feature extractors trained by external sources, there are multiple

configurations that affect the amount of teaching an agent receives and, by proxy, the

policy that comes from it.
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4.2 Interpretability in TIDQN

The interpretability of TIDQN is more roundabout, though it still makes use of the

aforementioned Representation of Tasks and Completion Vector. Just as these tools

are used to introduce external influence into the reinforcement learning problem, they

can assist a human in understanding the desired outcomes an optimal policy should

reflect by presenting information about the environment in an accessible format. Nat-

urally, this strongly depends on the chosen format for the Representation of Tasks,

but graphical methods will likely retain this property.

Furthermore, it can be used to determine where a sub-optimal policy may begin

to deviate, though it may not provide context for why. An example of this would

be, in the Seaquest environment, if an agent gains the necessary six divers to surface

for extra points, but fails to move towards the surface. While the reason behind

it not doing so is not immediately apparent, the fact that it is not abiding to the

outcomes described by the Representation of Tasks remains clear. In other words,

the interpretability for humans can also be seen as a debugging tool for determining

what changes should be made to an existing approach.

4.3 Representation of Tasks

The Representation of Tasks (RoT) is an integral component to the framework

presented. It is used to describe a relationship between tasks in the form of require-

ments, such that performing the tasks in the prescribed order would result in the

overall goal of an environment being achieved. As such, a Representation of Tasks

is some abstraction with embedded domain knowledge about what the agent should

do, given the environment it is placed in.

A Representation of Tasks should additionally serve as a means by which humans
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Figure 4.1: A Representation of Tasks for the game Seaquest. It shows the main
objective of the environment, which is to rescue divers in groups of six.

can understand the agent’s tasks and goals within a given environment. Note that,

while the Representation of Tasks illustrates the overall goals an agent should have in

the environment, by initializing certain portions discussed in Section 4.3, it can also

provide an idea of what can be done in a particular state within the environment.

This is to help create an intuitive understanding of what factors could be influencing

the agent’s behavior as it attempts to create a policy based on the RoT. To this

end, the proposed approach makes use of a directed graph to illustrate the RoT of

Seaquest, shown in Figure 4.1.
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4.3.1 Explaining a Representation of Tasks

The circular nodes in Figure 4.1 are Task Nodes, or nodes that represent a potential

policy that the agent could learn. As these nodes represent potential policies, it is

possible to create a new Representation of Tasks for a given Task Node for a more

granular description of the main RoT.

The square nodes in Figure 4.1 are Conditional Nodes, or nodes that represent

hard constraints or immutable mechanics present in the environment. In the case of

Seaquest, this can include something like the need to have at least one diver before

being able to resurface and replenish the oxygen supply. If the agent does not meet

this condition, it will lose a life and end the episode. As such, this is treated as a hard

constraint. Similarly, for the agent to receive bonus points on subsequent rescues of

six divers, the agent must surface with exactly six divers, or else receive no bonus

and lose only one diver similar to resurfacing for oxygen. While failing this Condition

Node does not explicitly end the episode, it remains a hard constraint with respect

to achieving a given result.

The diamond nodes in Figure 4.1 are Auxiliary Nodes, or nodes that are akin to

Conditional Nodes, except that they can be added and removed without impacting

the flow of the RoT. In other words, these are additional rules that a teacher may

place on the agent in order to improve the resulting policy.

Finally, the rectangular nodes, though not necessary for the RoT, show the effects

that occur within the environment after a given Task Node is completed. Multiple

effects that occur are chained together for clarity.

For all nodes present, any directed edge that connects some node A to B indicates

a precedence relationship, meaning that for B to be eligible for completion, A must

be completed. In the case of Task Nodes, all Conditional and Auxiliary Nodes must
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be true in order for it to be eligible for selection. For Seaquest, an example of this

can be seen in the Task Node “Replenish Oxygen” where, in order for the task to be

eligible for selection, its conditions “Agent has 1 ≤ x < 6 divers” and “Agent has

≤ 25% O2” must evaluate to True.

A more formal definition of the Representation of Tasks T is as follows. T is

defined as an abstraction of the root task on a given environment E , that is constructed

by some teacher that has domain knowledge about E .

For example, using the RoT derived in Figure 4.1, a teacher constructs T as

a vector of boolean values of size n = 5, representing all Conditional and Auxiliary

Nodes present. An observation E from the environment Seaquest comes as a grayscale

image, which is flattened into a vector of pixel values. The agent then receives a

concatenation of these two vectors to determine which action it will take next.

For the Seaquest environment, the Representation of Tasks will be constructed as

a directed graph. The reason for this is that, due to the simplicity of the environment,

there is no need to have a more sophisticated representation to model it. Furthermore,

it is conceptually simpler to understand where certain inclusions are located and how

these inclusions may interact with the resulting behavior the agent exhibits. However,

for more complex environments, a multitude of these representations may be necessary

to fully encapsulate both the mechanical aspects and meta-knowledge present.

4.3.2 Limitations of the Representation of Tasks

While the RoT is meant more as a tool for understanding the environment and policies

created within it, there are a few limitations that arise. Some of these limitations are

dependant on the environment, but there are others that are inherent to the chosen

means of illustrating the RoT.

In an ideal scenario, all Task Nodes would have a policy trained specifically for
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handling said task. However, this is not necessarily feasible in certain environments.

For example, in Figure 4.1 there is a Task Node for returning to the surface with

six divers in tow. Though the contents of the Task Node may be simple enough

for a policy to be created, the Condition Node complicates matters as acquiring six

divers is notably quite difficult for an agent. Furthermore, since Seaquest, like several

other environments, lacks the ability to manipulate the environment to create more

specialized scenarios, creating a policy for the Task Node becomes quite arduous.

The proposed approach implements the Representation of Tasks as a directed

graph, due to the simplicity of its corresponding environment and accessibility to those

unfamiliar with said environment. However, this particular representation does not

remain as accessible with more complex environments, even if it can be represented

in this format. Furthermore, it does not capture any non-deterministic relationships

between Condition Nodes and Task Nodes which, while not necessary in the case

of Seaquest, may be necessary for representing environments where randomness is

more pervasive. This can be addressed by simply changing what is used for the

Representation of Tasks.

4.4 Completion Vector

Another component of the framework is the Completion Vector C. The Completion

Vector contains values corresponding to Conditional Nodes and Auxiliary Nodes in

the Representation of Tasks. The purpose of the Completion Vector is to augment

the observation V (e.g., the pixel information of the four most recent game frames of

Seaquest) with the domain knowledge that is encoded in the Representation of Tasks.

By including this information, similar states can be differentiated more easily by the

agent.



35

However, the Completion Vector may have more elements present than the total

number of Conditional and Auxiliary Nodes present in the Representation of Tasks.

In the case of Seaquest, the Completion Vector utilized by the proposed approach is

a vector of eight boolean values. The first six values correspond to the number of

divers in unary. The remaining two values correspond to the Auxiliary Nodes “Diver

detected on screen” and “Oxygen below 25 percent”.

In practice, the Completion Vector can be defined as C = f(V ), where f refers to

some vector-valued function that takes an observation from E as a vector V and out-

puts information about it. In Seaquest, f takes in the pixel values of the current frame

and outputs the information described earlier. Generally speaking, C will include in-

formation defined in a Representation of Tasks T , but is not restricted by what is

present in T . For state augmentation, including C in the observation would result in

a new augmented observation V ′ = V �C, where � refers to the concatenation of the

two vectors.

In the proposed approach, the Completion Vector is predominately used for reward

shaping, discussed in Section 2.5, though discussion of its use in action shaping is

discussed in Chapter 6.

4.5 Auxiliary Feature Extractors

In an ideal scenario, all information that is present in an environment would be readily

available, even if it is not immediately utilized by the agent. However, it is more likely

that the teacher will need a piece of information that is simply unaccounted for in

the environment. In the case of Seaquest, the location of divers serves as a version of

this issue. In both cases, this information could be valuable in informing the agent’s

behavior and improving the policy, thus driving a need for some means of extracting
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this information.

To address this, an Auxiliary Feature Extractor (AFE) can be used to pull the

information from the environment. Furthermore, the Representation of Tasks can be

used as a guiding tool for determining which pieces of information should be pulled

from the environment.

A question that arises is how to incorporate Auxiliary Feature Extractors into an

existing Representation of Tasks. The proposed approach handles this by assuming

information gained through an AFE to correspond to an Auxiliary Node to simplify

the changes made. However, if the AFE is extracting information that is used to

directly evaluate an integral aspect of the game, it is reasonable to treat its output as

a Conditional Node instead. In the case of Seaquest, this distinction is made between

the ‘diver locator’ AFE and the ‘number of divers held’ AFE, respectively.

While the proposed approach utilizes multiple AFEs, the only AFE that is consid-

ered in Chapter 5 is the ‘diver locator’ AFE, which attempts to classify the positions of

divers in dynamically-sized quadrants relative to the agent’s position. However, said

AFE is used for both reward shaping and action shaping, discussed in Sections 2.2.2

and 2.2.3 respectively, and are evaluated separately to determine the impact of an

AFE on the resulting policy.

4.6 Proposed Modifications

As the goal for the game Seaquest is to rescue divers in batches of six, many modifi-

cations are centered around the acquisition and detection of divers. However, there

were other more indirect attempts to influence the agent’s policy. For all modifica-

tions, it is compared against both the baseline DQN and a baseline version of the

proposed approach that only contains the reward shaping for picking up divers when
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applicable.

4.6.1 Diver Rescue

The core issue present in the original approach is the disconnect between the agent’s

policy and the long-term goal of the environment, which is to rescue divers in batches

of six. This goal, however, is not immediately apparent as the environment does not

award any points for picking up divers nor for surfacing with any number of divers

less than six. In other words, the only reward signal the agent is likely to receive from

the environment is for defeating enemies, which do award an immediate point value.

As such, policies trained in this fashion end up skewed towards defeating enemies

efficiently, despite this not being the goal of the environment.

The proposed approach attempts to rectify this issue by using reward shaping,

described in Section 2.2.2 to shift the policy towards this goal. Hyperparameter

searching was conducted alongside building a heuristic system to find the best mag-

nitude of reward signals to ensure the resulting policy was able to perform similarly

to the original, whilst making active attempts to achieve the original goal of the

environment.

4.6.2 Removal of State Augmentation

An initial modification to the TIDQN framework is the removal of state augmenta-

tion. By removing state augmentation, the original DQN [15] architecture can be

used, though modifications such as reward shaping and the presence of other fea-

ture extractors are still feasible. This is done to determine if state augmentation, or

potentially its implementation, causes detrimental effects independent of other mod-

ifications. While it felt necessary to determine the overall impact of having state

augmentation in the first place, the ‘basic’ form of TIDQN does assume that state
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augmentation is used. Therefore, other modifications are assumed to be done on a

state-augmented TIDQN unless otherwise specified.

To differentiate this modification of TIDQN from the others, it is termed ‘No State

Augmentation’ in Chapter 5, with ‘State Augmentation Only’ referring to the ‘basic’

TIDQN counterpart.

4.6.3 Removal of Environment Reward

Due to the presence of an easily gained short-term reward within the environment

of Seaquest, it is hypothesized that the agent may not be given many opportunities

to engage with the long-term objective. In other words, the policy ends up learning

to only attack enemies and rescue divers as needed due to having significantly more

opportunities to learn the former objective.

This approach sought to remove that issue by zeroing out all rewards from the

environment such that all sources of positive and negative reward came directly from

reward shaping. By doing so, the teacher has much more granular control over what

behaviors the agent should be rewarded for and the agent has little to no ‘distraction’

from the environment. This is also done to determine the impact of using the TIDQN

to remove readily available reward sources on the resulting policy.

4.6.4 Adding Feature Extractors

To gain more granular control over the reward shaping process for an agent, it seemed

necessary to employ additional feature extractors. These Auxiliary Feature Extractors

(AFE), however, would not be directly tied to the DQN model and therefore were

not part of the state augmentation. Instead, these feature extractors were part of the

Processor, directly influencing the policy instead.
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The main feature extractor employed was one to locate divers based on their

current quadrant, illustrated in Figure 4.2. Assuming the information was correct,

then additional rewards could be provided in the form of positive reinforcement being

given when the agent moved towards a quadrant containing a diver. Below are the

different approaches taken to try and create a feature extractor that could be used

reliably for this purpose.

Figure 4.2: An example of the diver locator auxiliary feature extractor transforming
an observation V into quadrants were divers are located. The bits correspond to the
following quadrants: no divers, upper left, lower left, upper right, lower right. The
orange line shows a representation of the quadrant used to determine labels and is
not present in practice.

4.6.4.1 Heuristic Location Classifier

In order to quickly determine the location of divers, a heuristic method was initially

employed. The method used a 2 × 2 kernel, and thresholds on both the mean value

and standard deviation to determine if the kernel was centered on a diver. While

the heuristic worked quite well in most scenarios, it became inconsistent when divers

were partially obscured by enemies. Furthermore, it was clear that the approach taken

increased training time significantly and would likely not scale well, nor generalize to

other environments.

To address this issue, a computational graph was constructed such that the GPU
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would handle the bulk of the operations. Additionally, in place of threshold values

a small stack of dense layers were implemented. Despite the drop in computational

cost its performance degraded, likely due to the use of a neural network as opposed

to a purely heuristic approach. Therefore, the approach was shifted towards a deep

learning approach to see if similar performance could be gained.

4.6.4.2 Single-Label Location Classifier

In order to move away from hard-coded heuristics, it became clear that extracting

the necessary information would require the need for some sort of feature extraction

from the environment. However, Seaquest and other Atari environments do not have

such auxiliary information readily available. As such, convolutional neural networks

were utilized in the task of extracting features from the environment for use in the

conditional matrix.

The model was a direct copy of the original DQN, with additional dense and

dropout layers between the first dense layer and output layer. A more detailed

description of the model used for these experiments can be found in Appendix A.

Initially, transfer learning was attempted by loading in weights from a well-trained

vanilla DQN, but this was abandoned due to poor classification performance.

To train the feature extractor, the dataset was comprised of images of different

policies during testing. Videos taken during testing were decomposed into images at

a sample rate of 1/4 FPS (1 image per 4 seconds) and labeled by hand. The criterion

for labeling was the presence of divers with respect to the agent, with each label

corresponding to a quadrant (e.g., up-left, down-right, etc.) with an additional ‘no

divers’ label. The diver orientation (e.g., facing left vs. facing right) was disregarded

to maintain consistency in labeling. Furthermore, in the event of multiple labels being

possible, the diver that was closest to the submarine was used for determining the
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label.

This initial attempt did not have desirable results, with a potential cause being a

mismatch between the dataset and model’s construction. Upon further investigation

of examples the model consistently labeled incorrectly, it became clear that many of

these instances contained multiple divers where both the true and predicted labels

could apply. While human labeling on these instances used a heuristic of labeling the

quadrant with the diver closest to the player, the model was not able to learn this

information. Therefore, modifications to this approach were made.

4.6.4.3 Multi-Label Location Classifier

In order to better utilize the dataset, the labeling process and model were both

modified to match a multi-label problem. These changes included making use of

intermediate data structures to house applicable labels and changing the activation

function of the model to a sigmoid function. Furthermore, changes to the expected

input were modified to better match the expected input once placed inside of the

Processor described in the Keras-RL section to streamline the prediction process.

Ultimately, this approach was chosen for use in auxiliary feature extraction. While

a heuristic method was seemingly more accurate compared to the multi-label classifier,

its implementation was cost-prohibitive and could not be incorporated easily into

the overall architecture. Further investigation into the performance of the Auxiliary

Feature Extractor can be found in Appendix A.

The multi-label AFE was used for both reward shaping and action shaping, as

well as the ‘supervisory network’ for changing between heads in the Option Heads

approach described in Section 3.4.

In both cases, the set of appropriate actions was calculated by masking actions

based on the output of the AFE. In the case of reward shaping, a small positive
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Figure 4.3: A model description of the multi-label diver locator
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reward of .0001 was awarded to the agent for taking an action that was within the

set of actions described, with no additional reward otherwise. However, in the case

of action shaping, the set of appropriate actions was used as a mask over the set of

all actions, restricting the agent directly.

4.6.5 Action Shaping using Auxiliary Feature Extractors

As discussed earlier, the output of the Auxiliary Feature Extractor was used in mul-

tiple ways. While initially the AFE was used only for reward shaping, it became

clear that reward shaping may not be a good fit for the task the AFE was trained on.

Therefore, rather than using the output of the auxiliary feature extractors for reward

shaping, they would instead be converted into a Q Value mask that would restrict

the available actions.

In the case of Seaquest the diver locator, which serves as the auxiliary feature

extractor, will generate a prediction of where it thinks divers are located with respect

to the agent submarine. Assuming divers are indeed present, a boolean mask that

filters out actions that would not move the agent closer to a diver is generated. This

mask is then applied to the Q Values generated by the policy, before any action

selection can occur. Equation 4.1 shows a mathematical representation, where Q′(s)

is the Hadamard product of the original Q Values generated at state s ∈ S and the

mapping function M which takes the prediction of feature extractor E(s) to generate

the boolean mask.

Q′(s) = Q(s) ◦M(E(s)) (4.1)

Though this modification introduces much more external influence, the goal is to
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understand if such methods will result in more desirable policies. Furthermore, in the

range of methods of incorporating teachability into TIDQN, this modification has the

highest level of external intervention of the ones proposed, allowing an indirect look

into the effect different levels of teaching have on the agent.

4.6.6 Transfer Learning from vanilla DQN

Originally, both approaches were trained completely from scratch for approximately

5M steps before evaluation. However, it became clear that the vanilla agent did have

the overall capacity to achieve the intended goal without any additional modifications,

with a handful of runs reaching six divers. However, it was those runs that also made

it clear the agent had little understanding of the importance rescuing divers had, as

these moments all ended with the episode ending before the agent could surface.

As such, a different approach was proposed. By loading in the weights of a well-

performing vanilla DQN before training the resulting policy should, intuitively speak-

ing, perform much better for both approaches. This in turn would remove a potential

confounding factor of ‘insufficient training’ when comparing the resulting modifica-

tions and their impact on overall policy.

To determine the efficacy of introducing external knowledge via the Representa-

tion of Tasks and conditional matrix, we compared the performance using the DQN

network proposed by Minh et al. [15]. The reason DQN was chosen over more re-

cent and/or sophisticated architectures is the underlying simplicity of DQN discussed

in Section 2.1.2, making it a prime target for introducing new adjustments to the

framework.
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4.6.7 Modifying the DQN Architecture

A major limitation of using DQN as the basis for TIDQN, shown in Figure 4.4 is the

inability to have separate policies for a given environment. As such, all Task Nodes

in the Representation of Tasks ultimately compete against one another for relevance,

leading to a more generalized, but potentially underperforming policy. Therefore, to

Figure 4.4: The single-head TIDQN model.

address the issue surrounding implementing options within a DQN, modifications to

the original architecture were necessary. These modifications were initially proposed

and implemented in Deep Exploration with Bootstrapped DQN by Osband et al. [17],

where the original DQN structure was augmented with additional, identical heads that
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were trained independently of one another. For comparison, please refer to Figures 4.4

and 3.2 for the single-head TIDQN and multi-head TIDQN respectively.

However, this implementation treated each head as differing choices meaning that,

in the context of TIDQN, it was no different than having a single network. A subse-

quent paper by Arukulmaran et al. [1] re-framed Bootstrapped DQN to better match

the options framework by having each head specialize in a task specified by the de-

velopers, noted in Section 3.4. This particular modification proves invaluable in fully

realizing the Representation of Tasks, as it allows for Task Nodes to be trained in-

dependently while sharing common features between them. Due to a lack of openly

available implementations of either architectures in Keras, it was necessary to re-

implement within the Keras-RL library.

Additional modifications from the Option Heads framework were made for use in

the proposed approach. Namely, the inclusion of state augmentations C, along with

the use of heuristic methods instead of a supervisory network O(s) and the imple-

mentation of action shaping for the diver-related option head. These modifications

are tested against the ‘vanilla’ implementation and the baseline DQN approach to

determine efficacy.
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Chapter 5

Experimental Setup

This chapter will cover the details regarding how experimentation was carried out, in-

cluding a description of metrics used, different modifications to the proposed approach

that were taken, as well as what steps were taken to implement certain modifications.

5.1 Training Setup

In order to ensure that a fair comparison was made between the proposed approach

and original DQN, a baseline was necessary. Initially, the policies were trained from

scratch for 2M steps for early exploratory work. For assessing model performance,

however, transfer learning was used to emulate the differences in policy when both

models were trained sufficiently well.

To this end, transfer learning, described in Section 2.2.1, was used to get the base

weights of a baseline DQN model trained for 20M steps, after which the models were

trained an additional 5M steps to gauge the efficacy of each alteration made to the

proposed approach. Additionally, the base weights were tested separately without

any additional training to verify that the policy learned was of good quality.

Finally, both approaches were trained on 10 randomly selected 5-digit training

seeds, the values of which can be found in Appendix B. This was done to account for
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randomness in end performance due to choice of training seed.

5.2 Testing Setup

All approaches were tested for 100 episodes, with footage of performance taken per

episode to help analyze unusual performance in certain seeds. Similar to training,

testing occurred over 10 randomly selected 5-digit seeds, for a total of 100 different test

runs. These results are then combined and analysed to show the average performance

of each approach over various metrics discussed below.

5.2.1 10× 10 Testing

As mentioned in previous sections, 10× 10 testing, in reference to the use of multiple

training seeds and testing seeds, is used to accommodate comparative analysis of

both approaches and any additional modifications. Furthermore, since 10×10 testing

aggregates and averages any metrics tracked so as to get the overall performance, all

metrics below are described separate from the notion of 10× 10 testing.

In addition, for comparative analysis of all metrics described below the mean,

standard deviation, minimum, and maximum values of each metric are tracked to

provide a comprehensive view of how a policy using each approach would perform

overall. Furthermore, a histogram is used to graphically display the Max Divers per

Episode metric, as it was better visualized via frequency.

5.2.2 Combining Proposed Methods

Although testing individual modifications provides more concrete evidence of their

impact on policy performance, it seems unlikely that only one modification is used
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in practice. Therefore, for all non-baseline approaches, the following combinations of

modifications were tested:

• No State Augmentation

• No State Augmentation plus Action Shaping via Auxiliary Feature Extractor

• State Augmentation (i.e., baseline TIDQN)

• State Augmentation plus Reward Shaping via Auxiliary Feature Extractor

Even with different modifications, the TIDQN framework is still applicable to all

combinations listed. This is due to the fact that state augmentation is tied directly

to whether the Completion Vector is visible to the agent, the use of an AFE can be

treated as including Auxiliary Nodes to an existing RoT, and both reward shaping

and action shaping as a whole are only guided by the use of an RoT and otherwise

operate independently of an RoT. In other words, for any given modification to DQN,

as long as it does not change the set tasks that comprise the core of an environment,

then the TIDQN framework should still apply to it.

5.3 Description of Metrics

Since the overall goal of the proposed approach is not easily quantified by only the

episode reward over timestep, alternative metrics were necessary to determine the

efficacy of modifications made by a teacher. This section covers the various metrics

created, along with how these metrics are tracked.

The following metrics were chosen alongside standard reward-based metrics due

to the environment itself not providing a base reward for rescuing divers, despite it

being a core objective in this environment. Furthermore, it allows for a more gran-
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ular comparison of policies trained to determine if a given approach or modification

successfully outperforms the baseline.

5.3.1 Episode Reward

While not a custom metric, episode reward remains an important statistic for ex-

periments. This metric corresponds to the reward gained by an agent throughout a

single episode. In the case of the environment Seaquest, an episode ends when the

agent loses all lives available. Furthermore, points are only awarded in the following

circumstances:

• The agent shoots an enemy

• The agent rescues a batch of six divers

In both instances, the reward values are clipped to the range of [−1, 1]. Due to

how Keras RL implements the train and test portions of DQN, this clipping occurs at

both train and test times. Though this makes determining if the agent successfully

learns the long-term goal difficult, when combined with the other metrics, episode

reward helps demonstrate the changes the policy undergoes when using the proposed

approach.

5.3.2 Max Divers Per Episode

As its name suggests, this metric is meant to track the highest number of divers an

agent acquires before the episode ends. This metric is reset to its initial state (0) at

the end of each episode, when the agent loses all lives. Due to its episodic nature,

this metric highlights the average performance of a given policy at rescuing six divers

within an episode.
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5.3.3 Total Divers Per Episode

This metric refers to the total number of divers picked up in an episode. Since this

total is not reset due to its per-timestep nature, this metric can also be viewed as

a cumulative sum of divers picked up during a particular test run. It is used to

determine whether the inclusion of diver-related reward shaping has any meaningful

impact on the agent’s policy.

5.3.4 Rate of Diver Acquisition

The Rate of Diver Acquisition describes the number of steps it takes an agent to

move from k to k + 1 divers in tow (e.g., from four to five divers). This metric is

slightly more complex than the others described, due to the fact that the transition

k → k+ 1 can occur multiple times within a single episode. For example, if an agent

moves from two to three divers, then loses a life, then the agent is set back to two

divers. This, in turn, means there will be at least two recordings of the number of

steps taken to move from two to three divers for that particular episode. Conversely,

if an agent never reaches some k value of divers (e.g., the agent never gets more than

three divers, therefore k = 4, 5, 6 are never reached) then there would be no step

count for those values.

To try and extract meaningful relationships between the approaches through this

metric, a few additional steps were necessary. First, to account for both possibilities

described earlier, each episode contained six bins, one for each transition possible.

Within a given bin b ∈ B, a list structure, empty by default, was used to contain the

number of steps the agent took to acquire the subsequent diver. Multiple instances

were appended to their respective lists. The equation below describes this structure.
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Table 5.1: Episode reward values over a 10 × 10 average comparing the inclusion
and exclusion of state augmentation against the baseline DQN. All non-baseline ap-
proaches in this table only used reward shaping alongside state augmentation.

Episode Reward Reward Mean Reward STD Reward Minimum Reward Maximum
Baseline DQN 152.839 5.621 140.180 166.560

No State Augmentation 102.686 3.119 95.370 109.930
State Augmentation Only 33.789 1.238 30.550 36.790

Option Heads No State Augmentation 5.565 0.568 4.737 6.879
Option Heads State Augmentation Only 4.459 0.931 2.928 6.144

B = [b1, b2, b3, b4, b5, b6]

bi = [ts1, ts2, . . . , tsn]; bi ∈ B;n, ts ∈ Z

Once the per-episode values were aggregated, they were summed together with

an auxiliary structure that tracked how many instances of each transition occurred.

This also indirectly provided corroborating evidence for the Max Divers per Episode

metric, though that metric does not account for multiple instances occurring in the

span of one episode. From this point, the summed values were divided by the auxiliary

data structure to average the values, which is done to ensure that the number of times

a transition occurs within each episode is preserved in calculation.

5.4 Results and Discussion

5.4.1 Diver Rescue

As the core task presented in Seaquest, nearly all tables presented in Chapter 5 are

centered around this particular task. As discussed earlier, all tables will include the

mean, standard deviation, minimum and maximum for each metric tracked.

For Diver Rescue, the most important metrics can be seen in Figure 5.1, alongside
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Figure 5.1: The aggregate max divers per episode over 10× 10 averaging, comparing
the inclusion and exclusion of state augmentation against the baseline. The x-axis
represents the highest number of divers found in an episode, with the y-axis repre-
senting the number of episodes recorded for a given x-value.

Figure 5.2: The aggregate max divers per episode over 10× 10 averaging, comparing
combinations of state augmentation with other modifications against the baseline
DQN and baseline TIDQN. The x-axis represents the highest number of divers found
in an episode, with the y-axis representing the number of episodes recorded for a
given x-value.
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Table 5.2: The highest number of divers rescued per episode over a 10 × 10 average
comparing the inclusion and exclusion of state augmentation against the baseline
DQN. All non-baseline approaches in this table only used reward shaping alongside
state augmentation.

Maximum Divers per Episode Mean STD Minimum Maximum
Baseline DQN 3.238 0.109 3.020 3.530

No State Augmentation 2.949 0.105 2.670 3.290
State Augmentation Only 2.310 0.100 2.080 2.550

Option Heads No State Augmentation 0.953 0.172 0.707 1.364
Option Heads State Augmentation Only 0.975 0.236 0.598 1.320

Table 5.3: Total divers rescued per episode over a 10×10 average comparing the inclu-
sion and exclusion of state augmentation against the baseline DQN. All non-baseline
approaches in this table only used reward shaping alongside state augmentation.

Total Divers per Episode Mean STD Minimum Maximum
Baseline DQN 224.726 129.532 4.430 445.750

No State Augmentation 188.981 108.740 3.770 374.500
State Augmentation Only 182.594 104.295 3.710 361.030

Option Heads No State Augmentation 62.064 31.406 1.808 117.202
Option Heads State Augmentation Only 70.271 29.455 2.072 105.577

Table 5.4: Episode reward values over a 10× 10 average comparing the various mod-
ifications to the state augmented TIDQN against the baseline DQN. All non-baseline
approaches in this table used reward shaping in addition to the modification listed.

Episode Reward Reward Mean Reward STD Reward Minimum Reward Maximum
Baseline DQN 152.839 5.621 140.180 166.560

State Augmentation Only 33.789 1.238 30.550 36.790
No Environment Reward 2.552 0.640 1.670 3.920

Diver Locator Reward Shaping 3.270 0.490 2.320 4.330
No State Augmentation Action Shaping 7.424 0.523 6.347 8.816

Option Heads No State Augmentation Action Shaping 1.078 0.193 0.781 1.656

Table 5.5: Maximum number of divers rescued per episode over a 10× 10 average for
each approach and modification.

Maximum Divers per Episode Diver Mean Diver STD Diver Minimum Diver Maximum
Baseline DQN 3.238 0.109 3.020 3.530

State Augmentation Only 2.310 0.100 2.080 2.550
No Environment Reward 1.138 0.418 0.630 1.910

Diver Locator Reward Shaping 1.135 0.303 0.760 1.760
No State Augmentation Action Shaping 1.389 0.080 1.173 1.561

Option Heads No State Augmentation Action Shaping 0.420 0.266 0.177 1.260
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Table 5.6: Total divers rescued per episode over a 10× 10 average for each approach
and modification.

Total Divers per Episode Diver Mean Diver STD Diver Minimum Diver Maximum
Baseline DQN 224.726 129.532 4.430 445.750

State Augmentation Only 182.590 104.290 3.710 364.680
No Environment Reward 68.670 26.750 2.380 110.540

Diver Locator Reward Shaping 81.200 37.720 2.600 142.610
No State Augmentation Action Shaping 98.289 53.073 1.684 174.918

Option Heads No State Augmentation Action Shaping 24.590 12.448 0.802 45.750

Table 5.7: Summary Diver Acquisition Rates over a 10 × 10 average comparing the
number of time-steps taken to move from k to k+ 1 divers for all approaches. Lower
values indicate the agent acquiring the subsequent diver faster. Italicised values
indicate the number of transitions that contributed to the value were not high enough
to indicate the policy was able to reach said transition reliably.

Average Diver Acquisition Rate 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Baseline DQN 202.649 113.626 137.163 119.895 106.364 92.524

No State Augmentation 98.301 90.315 162.562 116.435 115.712 92.497
State Augmentation Only 163.266 123.022 149.498 99.963 158.747 94.324

Option Heads No State Augmentation 356.808 97.009 137.046 133.333 1679.000 NaN
Option Heads State Augmentation Only 377.228 108.953 162.671 4063.667 NaN NaN

State Augmentation No Environment Reward 183.311 57.261 597.807 966.038 167.000 NaN
State Augmentation Diver Locator Reward 148.891 63.767 655.607 200.500 6.111 NaN

No State Augmentation Action Shaping 325.159 36.898 122.515 78.363 118.850 6.000
Option Heads No State Augmentation Action Shaping 1434.828 17.873 53.000 NaN NaN NaN

Table 5.8: Diver Acquisition Rates over a 10× 10 average comparing the number of
time-steps taken to move from k to k + 1 divers. Lower values indicate the agent
acquiring the subsequent diver faster.

Diver Acquisition Rate (Baseline DQN) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 202.649 113.626 137.163 119.895 106.364 92.524
Step STD 23.692 7.580 11.807 12.815 14.156 23.432

Step Minimum 146.440 96.969 108.151 87.868 82.174 38.300
Step Maximum 253.755 131.450 165.640 146.088 162.000 148.429

Number of Transitions Recorded 13523 14107 9304 4069 2737 1298

Table 5.9: Diver Acquisition Rates of the ‘No State Augmentation’ modification over
a 10× 10 average comparing the number of time-steps taken to move from k to k+ 1
divers. Lower values indicate the agent acquiring the subsequent diver faster.

Diver Acquisition Rate (No State Augmentation) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 98.301 90.315 162.562 116.435 115.712 92.497
Step STD 12.991 9.432 12.598 18.615 32.038 35.467

Step Minimum 72.059 65.746 130.065 79.750 23.000 11.667
Step Maximum 124.372 113.786 194.642 159.967 178.421 178.750

Number of Transitions Recorded 12478 13121 7437 2376 1574 978
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Table 5.10: Diver Acquisition Rates of the ‘No State Augmentation’ modification
over a 10× 10 average comparing the number of time-steps taken to move from k to
k + 1 divers. Lower values indicate the agent acquiring the subsequent diver faster.

Diver Acquisition Rate (State Augmentation Only) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 163.266 123.022 149.498 99.963 158.747 94.324
Step STD 10.112 38.701 15.618 31.627 142.184 71.767

Step Minimum 138.290 87.883 108.404 46.200 24.000 1.000
Step Maximum 190.397 324.109 202.887 205.571 1487.625 245.000

Number of Transitions Recorded 16841 12225 5234 1187 556 43

Table 5.11: Diver Acquisition Rates of the ‘Option Heads No State Augmentation’
modification over a 10×10 average comparing the number of time-steps taken to move
from k to k+1 divers. Lower values indicate the agent acquiring the subsequent diver
faster.

Diver Acquisition Rate (Option Heads No State Augmentation) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 356.808 97.009 137.046 133.333 1679.000 NaN
Step STD 181.899 15.104 79.874 50.476 4743.272 NaN

Step Minimum 161.935 63.800 4.000 75.000 2.000 NaN
Step Maximum 1097.600 136.294 541.666 276.000 13418.000 NaN

Number of Transitions Recorded 9194 3754 178 30 8 0

Table 5.12: Diver Acquisition Rates of the ‘Option Heads State Augmentation Only’
modification over a 10×10 average comparing the number of time-steps taken to move
from k to k+1 divers. Lower values indicate the agent acquiring the subsequent diver
faster.

Diver Acquisition Rate (Option Heads State Augmentation Only) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 377.228 108.953 162.671 4063.667 NaN NaN
Step STD 92.752 81.896 278.663 12959.726 NaN NaN

Step Minimum 217.012 20.500 4.000 4.000 NaN NaN
Step Maximum 670.148 407.520 1897.000 45167.500 NaN NaN

Number of Transitions Recorded 11583 3481 156 17 0 0

Table 5.13: Diver Acquisition Rates of the ‘State Augmentation plus No Environment
Reward’ modification over a 10 × 10 average comparing the number of time-steps
taken to move from k to k + 1 divers. Lower values indicate the agent acquiring the
subsequent diver faster.

Diver Acquisition Rate (No Environment Reward) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 183.311 57.261 597.807 966.038 167.000 NaN
Step STD 106.941 44.308 1405.747 2260.976 0.000 NaN

Step Minimum 88.607 25.483 31.000 9.000 167.000 NaN
Step Maximum 629.118 403.425 10782.000 8378.000 167.000 NaN

Number of Transitions Recorded 9280 6751 241 33 3 0
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Table 5.14: Diver Acquisition Rates of the ‘Diver Locator Reward’ modification over
a 10× 10 average comparing the number of time-steps taken to move from k to k+ 1
divers. Lower values indicate the agent acquiring the subsequent diver faster.

Diver Acquisition Rate (Diver Locator Reward) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 148.891 63.767 655.607 200.500 6.111 NaN
Step STD 21.230 37.489 3756.409 285.107 0.333 NaN

Step Minimum 110.075 18.595 1.000 4.000 6.000 NaN
Step Maximum 259.340 255.844 31415.500 761.000 7.000 NaN

Number of Times Reached 12529 5134 205 47 9 0

Table 5.15: Diver Acquisition Rates of the ‘No State Augmentation plus Action
Shaping’ modification over a 10 × 10 average comparing the number of time-steps
taken to move from k to k + 1 divers. Lower values indicate the agent acquiring the
subsequent diver faster. Since there is only one transition between five to six divers,
it is considered as a fluke rather than a consistent process.

Diver Acquisition Rate (No State Augmentation Action Shaping) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 325.159 36.898 122.515 78.363 118.850 6.000
Step STD 124.623 16.375 91.914 62.465 40.777 NaN

Step Minimum 138.574 17.302 1.000 3.000 38.000 6.0
Step Maximum 870.736 123.840 387.000 205.500 170.000 6.0

Number of Times Reached 14439 4745 117 34 15 1

Table 5.16: Diver Acquisition Rates of the ‘Option Heads with No State Augmenta-
tion plus Action Shaping’ modification over a 10× 10 average comparing the number
of time-steps taken to move from k to k + 1 divers. Lower values indicate the agent
acquiring the subsequent diver faster. Since there are only two transition between
two to three divers, it is considered as a fluke rather than a consistent process.

Diver Acquisition Rate (Option Heads NSA + AS) 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6
Step Mean 1434.828 17.873 53.000 NaN NaN NaN
Step STD 1124.080 29.533 9.899 NaN NaN NaN

Step Minimum 175.354 0.500 46.000 NaN NaN NaN
Step Maximum 5926.075 171.500 60.000 NaN NaN NaN

Number of Times Reached 4734 265 2 0 0 0



58

Tables 5.2 and 5.5, which cover the ‘Maximum Divers per Episode’ metric. This

metric directly captures the number of episodes that the agent managed to reach the

six divers needed to achieve the first half of the long-term objective, with Tables 5.1

and 5.4 a close second due to the positive correlation between diver rescue and episode

reward.

Based on Tables 5.1, 5.2, and 5.3 it is clear that TIDQN does not show any

significant gains compared to the baseline DQN approach, as the baseline DQN ap-

proach dominates the mean, minimum and maximum values for all metrics described

in Chapter 4. To highlight this disparity, in Table 5.1 the minimum reward (140.180)

still exceeds the maximum reward gained by all other approaches (109.930, 36.790,

etc.). Furthermore, using Tables 5.4, 5.5, and 5.6 a more granular degradation of

performance can be seen even as the additional modifications are used in conjunction

with state augmentation.

There is also an interesting negative trend that appears in all metrics, which

involves the level of ‘teaching’ that is enforced on the agent via TIDQN. With minimal

involvement (i.e., ‘No State Augmentation’) the results, while still worse than the

baseline, suffer only minimal degradation. However, as state augmentation and other

modifications are added to increase the external influences present, the performance

loss increases rapidly. While specific modifications and additions are discussed in their

own section, the general negative trend seems symptomatic of a larger underlying issue

with the current state of the TIDQN framework.

Looking at the Diver Acquisition Rates on Tables 5.8–5.12, a few observations

can be made about the impact of TIDQN on the average number of steps taken to

acquire divers. Namely, the implementation of the single-head TIDQN does seem to

lead to slightly faster diver acquisition, though this trend is both weak and effectively

disappears with stronger enforcement of teaching and use of state augmentation.
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However, when combined with the number of transitions recorded, it is clear

that the inclusion of any TIDQN elements drastically reduces the number of later

transitions (e.g., four to five divers, five to six divers), with some never reaching a

single transition. Interestingly, the mean number of steps at later transitions on Ta-

bles 5.8, 5.9, and 5.10, along with any modifications combined with these approaches

seems to be rather similar to one another. When combined with the drastic drop

in transition count, the hypothesis that the baseline DQN performs better due to

a stronger balance between defeating enemies and rescuing divers, whereas TIDQN

may be overvaluing the latter. This in turn may lead to the scenario observed where

TIDQN agents do not have nearly as many higher diver acquisitions.

Alongside the hypothesis of imbalanced priorities, there are several ideas regarding

the mixed performance of the TIDQN compared to the baseline. The first major

issue is how information was gathered from the environment. The major extractor of

information was based on checking the mean value of several 2× 2 kernels against a

threshold to determine the number of divers an agent has at any given time.

While the process was very simple, its simplicity meant it was vulnerable to un-

expected changes in the environment. For example, when an agent receives six divers

the divers begin to ‘flicker’ every two frames. This causes the counter to output values

similar to the following: [5, 0, 6, 6, 0, 0, 6, 6, 0, 0, . . . ]. For TIDQN, this caused many

issues in how reward shaping is handled and likely harmed the policy as a result.

Another potential issue is how state augmentation was implemented. The method

of augmentation, shown in Figures 4.4 and 3.2, could be ill-suited for the DQN ar-

chitecture. By augmenting in this fashion, it is possible that the information is

not handled properly or simply causes more harm than good, which can be seen

by comparing the performance of the ‘No State Augmentation’ against the ‘State

Augmentation Only’ rows in Tables 5.1, 5.2, and 5.3.
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5.4.2 Removal of Environment Reward

In the case of removing the environment reward entirely, it is clear that this sim-

ply harms the policy with seemingly little payoff. This can be clearly seen in Fig-

ure 5.2, where the modification’s poor performance is immediately apparent. The

corresponding Tables 5.4 and 5.5, along with Table 5.6, further corroborate this, as

the modification ranked worst in nearly all metrics listed.

Additionally, Table 5.13 shows that the diver acquisition rate seems to perform the

worst of any single-head approach with egregious variance and maximum values for

the transitions it actually reached consistently, though it remains on similar footing

to any option head approach.

The most likely explanation for this performance is due to the fact that Seaquest,

at its core, only has effectively two means of gaining points. While reward shaping

is in place for attaining one of these goals, it is neither a sufficient replacement nor a

necessary replacement.

While rescuing divers remains the main objective of Seaquest, it must be balanced

against the agent actively keeping their submarine alive. As such, it is likely better to

leave the reward values from the environment untouched to help the agent understand

this portion of gameplay. However, in environments where there are a plethora of

means to gain reward, or where the desired objective is not as long-term, this approach

may have a positive effect.

Furthermore, this type of modification could instead be converted into training

the agent in subsections of the environment, an approach that is discussed further in

Section 6.2.4 as a future direction.
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5.4.3 Use of Auxiliary Feature Extractor

The use of an AFE was demonstrated across multiple experiment setups to be a failed

modification to TIDQN. This can be seen in Tables 5.4, 5.5, and 5.6, where similar to

the ‘No Environment Reward’ modification, its performance paled in comparison to

the baseline TIDQN. However, it performed very slightly better than ‘No Environment

Reward’, reinforcing the idea that having access to the short-term reward plays some

role in reaching long-term goals.

For diver acquisition, Table 5.14 shows evidence that reward shaping was indeed

not a good fit for the data generated by the AFE, which is made more apparent when

compared to the use of the AFE for action shaping, shown in Table 5.15. While

the reward shaping approach does perform better on reaching the first transition,

its performance drops quickly thereafter, with the action shaping approach showing

generally lower mean and standard deviation.

Interestingly, both approaches reach the upper transitions very infrequently, yet

have somewhat similar performance to the baselines. Evidence of this can be seen in

the mean steps taken in Table 5.15 are slightly better than the ‘No State Augmenta-

tion’ TIDQN shown on Table 5.9 and baseline DQN shown on Table 5.8. While the

difference in sample size is still overwhelming, there is still some promise in looking

further into this particular approach.

The inclusion of auxiliary feature extractors, namely the diver locator, poses an

interesting issue. While its performance was not as poor as the ‘no environment

reward’ modification, it paled in comparison to both the state augmented and non-

state augmented baselines. While this is unexpected, it is possible this occurred due

to the sub-par performance of the feature extractor. In other words, the performance

of the feature extractor, described further in Appendix A, may have extended into
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the performance of the policy that relied upon it.

Ultimately, it may be the case that an auxiliary feature extractor may need to be

even higher quality than the resulting policy to avoid doing more harm than good for

creating a better policy. While this situation is somewhat avoidable with a single-

head approach, it is more difficult to manage with the option heads approach, which

makes direct use of the feature extractor to determine which option head to follow.

Although training high-quality models for a given environment is not necessarily

a difficult task, it remains somewhat brittle as, even with transfer learning, these

extractors likely cannot be easily swapped between environments. Furthermore, it

could be cost-prohibitive depending on the dataset necessary to train these extractors.

While environments like Seaquest are somewhat simple to acquire data from, more

complex applications may render this modification more difficult than its worth.

5.4.4 Option Heads Architecture

The Option Heads approach, which uses the approach described by Arukulmaran

et al. [1] ultimately did not perform as well as anticipated. Sitting at the bottom

of Tables 5.1, 5.2, and 5.3, the option heads approaches were well below both the

baseline DQN and single-head TIDQN in nearly all aspects. To cement the overall

performance, Tables 5.16, 5.12, and 5.16 all show similar trends of high variance and

maximum steps alongside failure to consistently transition past as few as three divers

in many cases. Compared to the single-head TIDQN, which had similar, though

inferior performance to the baseline DQN, it is clear that the policy derived via the

multi-head approach simply failed at learning the desired policy.

While these results are abysmal compared to the other approaches, these results

are not necessarily representative of the work done by Arukulmaran et al. [1]. Since

Keras RL currently lacks support for multi-head approaches and the source code for
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the original implementation of Option Heads was unobtainable, it remains entirely

possible that the current implementation of this approach remains flawed. Further

investigation of the results provided showed unusual behavior within the option heads,

though the source remains unclear.

Therefore, the results are treated more as an ‘initial attempt’ at re-implementing

the architecture, compared to the other implementations of TIDQN. Whether these

flaws are in spite of or due to modifications to bridge TIDQN and Option Heads is

an investigation for future works.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusion

Many learning problems, from image recognition to text generation, have found resi-

dence within modern society through the power of deep learning. Despite this, rein-

forcement learning struggles even with the power of deep learning.

This thesis proposed a framework to try and introduce teachability in a way that

was still easily understood by a human observer, in order to improve the overall

performance of the policy that came forth. However, based on the results outlined in

Chapter 5, TIDQN returns mixed results when applied to the Seaquest environment.

Essentially, while some TIDQN-based methods did perform better than the baseline

DQN at acquiring divers quickly, it seemed to come at the cost of overall performance

in the environment.

Despite TIDQN demonstrating a negative correlation between the amount of ex-

ternal information passed to the agent through the channels outlined in Chapter 4

and performance on standard metrics, the need for an approach that facilitates teach-

ability and interpretability remains.
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6.2 Future Directions

The proposed approach is ultimately an exploratory look into ways to introduce both

teachability and interpretability into the problem of deep reinforcement learning.

While the initial results were mixed, there are many modifications and new approaches

that can be taken in light of these results.

6.2.1 Action Shaping via Completion Vector

The Completion Vector was primarily used for reward shaping. For certain Task

Nodes, like diver rescue, this was adequate. However, for other Task Nodes, such as

oxygen replenishment, reward shaping did not perform well for encouraging the agent

towards completing the task. This is likely because while certain Condition Nodes are

active, the agent should not be allowed to perform other actions outside of what is

necessary to finish a given task. Therefore, trying to use the Completion Vector more

for action shaping and figuring out if the Completion Vector needs to be adjusted to

handle this change would be a good future step.

6.2.2 Testing Alternative Representation of Tasks

The Representation of Tasks that was implemented in this thesis was a directed graph,

due to the simple nature of the environment it is tied to. However, it likely would

not remain as interpretable given environments of higher complexity, even if an RoT

can be constructed.

Therefore, an avenue of interest for furthering this work would be understanding

the use cases of other graphical representations of a given environment and investi-

gating whether those representations remain as accessible in terms of understanding

an agent’s behavior.
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To this end, Bayesian networks [8] would be a first step in this direction to de-

termine if more sophisticated representations improve the resulting policy, as it still

maintains similar properties to the RoT used in TIDQN.

6.2.3 State Augmentation with the Representation of Tasks

The TIDQN used in this work only augmented the state with the Completion Vector.

However, some information cannot be represented with a simple bit vector, such as the

dependency relation between different Task Nodes. Thus, investigating the impact

that incorporating the full Representation of Tasks would have on model performance

would would be worthwhile. While this could be done with the RoT used for Seaquest

via an adjacency matrix, more sophisticated models, such as the Bayesian Network

approach described earlier, could be integrated directly as a supplementary model to

the DQN.

6.2.4 Using Configurable Environments

While many environments, like the Atari Learning Environment, don’t actually con-

tain sub-environments that focus on only one part of a task, it would be very inter-

esting to see if training an option heads structure on this type of environment would

have more pronounced results as this guarantees that certain states can be reached

with reasonable probability.

Furthermore, there is currently an inability to capture more nuanced states with-

out introducing more auxiliary feature extractors. An example of this in Seaquest

is attempting to capture the states where an agent successfully resurfaces with six

divers. Since the only indications of successfully completing this task involve other-

wise negative indicators (e.g., oxygen meter going to zero, divers being decremented

one at a time), it becomes difficult to reconcile with the Representation of Tasks. By



67

finding a more flexible environment it may be feasible to fully utilize the RoT without

issue.

6.2.5 Utilizing Bayesian Networks as Supervisory Network

Currently, the option heads architecture does not use any supervisory network, but

uses the completion vector directly to determine which head should be used. How-

ever, this is somewhat limiting and may hinder performance in certain environments.

However, using a Bayesian network [8] that can incorporate not only the comple-

tion vector but other state information and feature extractors would not only allow

for more flexibility in selecting which option head to use, but retain some degree of

interpretability by humans compared to a standard deep neural network.

6.2.6 Improving Auxiliary Feature Extractor Performance

The current hypothesis is that the performance of TIDQN is impacted by the quality

of any auxiliary feature extractors such that poor performance propagates to the pol-

icy learned by the agent. Therefore, it is important to verify whether this hypothesis

is correct by constructing a feature extractor that performs significantly better than

the one used by the proposed approach.

6.2.7 Inclusion of Constraints

The field of RL Safety prioritizes policies that adhere to certain safety requirements

placed upon them over raw performance. Techniques that fall into this area include

the use of hard constraints, or rules that terminate an episode if broken, such as the

work by Quint et al. [20].

As a future direction, it would be interesting to see if including the use of hard

and soft constraints as new additions to the Representation of Tasks would result in
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better policies that also have properties described in Chapter 4.

6.2.8 Testing Alternatives to Including State Augmentation

As discussed in Chapter 4, state augmentation is a basic component of the TIDQN

framework. Furthermore, the seemingly detrimental impact of state augmentation

that was performed by TIDQN was discussed in Chapter 6, where it was hypothesized

that concatenation of the state information was ill-suited for the DQN architecture.

Therefore, testing alternative methods, such as directly feeding the raw state augmen-

tation to the output layer of the DQN (i.e., removing concatenation) or performing

additional processing by feeding through a sub-network tied to the DQN architecture

would be interesting future directions.
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Appendix A

Investigation of the Performance of the Auxiliary Feature

Extractor

A.1 Problem Outline

As mentioned in Chapter 4, there were multiple approaches to the Auxiliary Fea-

ture Extractor (AFE), with each approach having its own challenges. Ultimately, a

multiclass, multilabel approach was selected for use, despite having less than ideal

test performance. This appendix seeks to investigate the overall performance of the

network selected and understand more concretely where the potential performance

issues are. Furthermore, this appendix seeks to give more evidence regarding the

impact a poor-quality AFE has on a policy that utilizes it.

A.2 Description of Metrics

A.2.1 Subset Accuracy

For multi-label classification problems, subset accuracy is used to determine the over-

all performance of a given model. However, it is also the strictest measure, as pre-

dictions are only treated as correct if and only if said prediction matches the true

label exactly, described in Equation A.1. To this end, accuracy could be seen as a
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lower bound of overall model performance, as it does not capture instances where the

model correctly predicted at least one of the labels. In the context of the AFE, it is

treated as the base ‘accuracy’ of the model and compared against the Hamming Loss.

Note that the equation calculates the accuracy across the set of predicted values and

corresponding true labels.

Asubset = Σn
i=0yi,true ∧ yi,pred (A.1)

A.2.2 Hamming Loss

Since subset accuracy is calculated as whether the prediction exactly matches the

ground truth, it may not fully capture the performance of the model. Hamming Loss,

calculated using Equation A.2 where n refers to the number of classes present in

the multi-label problem and ⊕ is the logical XOR operation, is different as the loss

is based on individual differences or, in other words, it has lenience with respect to

partially correct predictions. Note that this equation only accounts for one prediction

versus one true label.

Lhamming =
1

n
Σn
i=0yi,true ⊕ yi,pred (A.2)

A.2.3 F1 Score

The F1 score, or F-measure, is a metric that combines the precision () and recall (i.e.,

the ability to detect positive instances) of a given binary classifier. In the case of

multi-label classification, the classifier can be treated instead as n binary classifiers,

where n refers to the number of total labels.
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A.3 Testing Method

To determine the average values described, 10-fold cross validation was used. For each

fold, a new model was trained and a multi-label confusion matrix, or a list of 2x2

confusion matrices for each label possible, for each model was generated on the test

set for that fold. These confusion matrices were then aggregated before the metrics

were calculated, also known as the micro-average strategy.

However, for the Hamming Loss metric, which is calculated for each fold, the

macro-average method, which averages the metrics themselves, was used. Therefore,

for Hamming Loss the mean, standard deviation, minimum and maximum values are

recorded instead.

A.4 Results and Discussion

Tables A.1 and A.2 contains the aforementioned metrics generated by running the

10-fold cross validation.

Table A.1: Table describing the micro-average metrics for each label used in the
multi-label diver locator. Values in bold indicate the label which had the highest
value for that particular metric.

True Positive Rate True Negative Rate F1 Score
No Diver 0.9283 0.7890 0.9473
Up Left 0.8939 0.7681 0.8671

Down Left 0.8603 0.7175 0.8634
Up Right 0.8965 0.7809 0.8741

Down Right 0.8658 0.7354 0.8711

According to the results presented, it can be determined that, while the accuracy of

each fold is somewhat low, the Hamming Loss is also low, both in value and variance.

This indicates that there are several instances where the model has a partially correct

prediction which, as mentioned earlier, is not reflected in the accuracy metric. For
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Table A.2: Table describing the macro-average metrics for each label used in the
multi-label diver locator. Values were generated from 10-fold cross validation of the
model.

Mean STD Minimum Maximum
Hamming Loss 0.1570 0.0126 0.1432 0.1816

Subset Accuracy 0.5687 0.0284 0.5240 0.6160

the policy, this is likely adequate as partial correctness is still sufficient for guiding

the agent towards desired goals, even if action shaping that is contingent on the AFE

is used.

Table A.1 shows that each label has a high True Positive Rate (TPR), indicating

that the model is capable of correctly identifying samples that contain divers in the

expected quadrant. However, this conclusion comes under question upon looking at

the True Negative Rate (TNR) of all labels. Given the large gap between the TPR

and TNR, it can be inferred that the model may have simply learned to predict

positive for any label more often than not, which would point towards a potential

dataset imbalance.

To support this hypothesis of dataset imbalance, the ‘No Diver’ label seems to

perform the best according to Table A.1. This could be due to the fact that it is

the only label that is mutually exclusive to all other labels present, meaning it would

have plenty of instances that the label is not true. This is more apparent in the

scenario where action shaping is utilized, as a more conservative feature extractor

might prevent the agent from trying to move towards divers that do not actually

exist.
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A.5 Conclusion

Based on these results, there is reason to believe that there are insufficient negative

instances for a given quadrant, a problem that could normally be solved by training

separate binary classifiers in a ‘One v. Rest’ method. However, since the problem is

also multi-label, such an approach would not work without modifications. Therefore,

methods that operate on a per-label basis or apply label-based weighting might help

resolve this possible imbalance.

As for determining if the quality of the AFE used by the model is impacting

the quality of the policy, it remains in the air. While there are potential dataset

imbalances that are causing the model to behave more optimistically than it should,

the fact that it still performs well enough at detecting the presence of divers leaves

the conclusion unclear. It could be that, due to the implementation of action shaping

and fail-safe of assuming ‘no divers’ if the corresponding bit is flipped regardless of

the other bits may mitigate any issues caused by false positives being raised.
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Appendix B

Seeds Used for Training and Testing

Table B.1: Train and Test values used in the 10× 10 comparisons.

Train Seeds Test Seeds
94202 94106
30978 93247
34731 87396
57962 85452
61252 66531
65417 54820
76019 46725
86705 19825
87903 16844
9989 15069
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