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Effects of Mismatched Electrodes on an AT-
Cut Quartz Resonator

Huijing He, Jinxi Liu, and Jiashi Yang

Abstract—We study thickness-shear and thickness-twist 
free vibrations of a finite AT-cut quartz resonator with mis-
matched electrodes. The equations of anisotropic elasticity are 
used with the omission of the small elastic constant c56. An 
analytical solution is obtained using Fourier series from which 
the resonant frequencies, mode shapes, and vibration confine-
ment resulting from the electrode inertia are calculated and 
examined.

I. Introduction

Electrodes are necessary parts of crystal resonators. 
They are used to electrically excite mechanical vibra-

tions. The motional capacitance of a resonator is an im-
portant design consideration and is calculated from the 
charge (or current) and voltage on the electrodes. In plate 
thickness-shear (TSh) mode resonators, the electrode 
mass is responsible for energy trapping, through which the 
vibration is confined under the electrodes and decays rap-
idly outside them, a behavior crucial to resonator mount-
ing. The electrode dimensions can be used to adjust the 
number of modes trapped under the electrodes [1], which 
lead to the important discovery of Bechmann’s number, 
which defines the maximal dimensions for an electrode 
with only one trapped mode. In resonator manufacturing, 
one electrode is pre-deposited with a predetermined thick-
ness. Then the electrode on the other side of the crystal 
plate has a thickness that is determined by the desired 
frequency of the electroded plate. This usually results in a 
crystal plate with two electrodes of different thicknesses. 
Electrodes of unequal thickness on the top and bottom 
of a plate resonator were studied in [2]–[5]. Recently, be-
cause of resonator miniaturization, the effects of electrode 
configurations have become an important design consid-
eration. Electrodes of varying thickness have been shown 
to be effective in producing strong energy trapping [6]–
[10], which provides a possible alternative to contoured 
resonators that are difficult to make. Electrode shape is 
another important factor. At present, circular and rect-
angular electrodes are still routinely used in manufactur-
ing. In [11], it was recently shown that electrodes with 
corners cause field concentration and should be avoided 
in general. An important theoretical result on electrode 

shape and size was given by Mindlin [12], who obtained a 
formula for the optimal electrode shape and size of singly-
rotated AT-cut quartz resonators using approximate two-
dimensional plate equations. The electrodes determined in 
[12] satisfy Bechmann’s number in every in-plane direc-
tion of an AT-cut quartz plate resonator. Based on the 
theoretical result of [12], numerical and graphical results 
were obtained in [13], showing that the commonly used 
rectangular and circular electrodes deviate significantly 
from the optimal electrodes, and therefore improvement 
in resonator performance may be expected using optimal 
electrodes. Optimal electrode shapes and sizes were also 
determined for doubly-rotated quartz resonators [14] and 
thin-film resonators [15].

An important and challenging issue in resonator design 
is that when the top and bottom electrodes on a plate 
resonator are mismatched, that is, when the centers of two 
identical electrodes shift away from the plate center (see 
Fig. 1 for an exaggerated and more general situation in 
which the two electrodes are not identical). There seem to 
be few theoretical results for this situation. In this paper, 
we study the effects of mismatched electrodes on the wide-
ly used TSh and thickness-twist (TT) modes in an AT-cut 
quartz plate resonator. The equations of anisotropic elas-
ticity are used instead of the approximate plate equations. 
We examine the effect of mismatched electrodes on the 
resonant frequencies, mode shapes, and energy trapping.

II. Governing Equations

The equations for anisotropic crystals vary consider-
ably according to crystal symmetry. The particular cut of 
a crystal plate refers to the orientation of the plate when 
it is taken out of a bulk crystal. As a consequence, crys-
tal plates of different cuts exhibit different anisotropies 
in the plate coordinates normal and parallel to the plate 
surfaces. The widely used AT-cut quartz plate is a special 
case of rotated Y-cut quartz plates which are effectively 
monoclinic in the plate coordinate system. Consider such 
a plate, as shown in Fig. 1. The plate is unbounded in 
the x1 direction and does not vary along x1. Fig. 1 shows 
a cross section. The plate carries two different mass lay-
ers at the top and bottom surfaces. The mass layers are 
assumed to be very thin. Their inertia will be considered 
but their stiffness will be neglected. Quartz has very weak 
piezoelectric coupling. For free vibration frequency analy-
sis, the small piezoelectric coupling can usually be ne-
glected and an elastic analysis is sufficient. For monoclinic 
crystals, shear-horizontal or antiplane motions with only 
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one displacement component are allowed by the linear 
theory of anisotropic elasticity. The corresponding modes 
are called TT modes in acoustic wave devices in general 
and include TSh and face-shear (FS) modes as special 
cases. Shear-horizontal motions in rotated Y-cut quartz 
are described by

	 u u x x t u u1 1 2 3 2 3 0= = =( , , ), ,	 (1)

where u is the displacement vector. The nonzero compo-
nents of the strain tensor S and the stress tensors T are:

	 S S u S S u5 31 1 3 6 21 122 2= = = =, ,, ,	 (2)

	 T c u c u T c u c u31 55 1 3 56 12 21 56 1 3 66 12= + = +, , , ,, ,	 (3)

where c is the elastic stiffness tensor. The relevant equa-
tion of motion is

	 T T u212 31 3 1, , .+ = ρ �� 	 (4)

The equation to be satisfied by u1 is obtained by substi-
tuting (3) into (4):

	 c u c u c u u66 122 55 1 33 56 123 12, , , .+ + = ρ �� 	 (5)

For the plate in Fig. 1, the boundary condition at the 
plate’s top surface is

	T h u x h c x c
x h x c c x c21

1 2 1 3 2

2 3 1 2 3

2
0 0

= − = < <
= < < < <{ ′ ′ρ �� , , ,

, , , or 
			

		  (6)

where ρ′ and 2h′ are the density and thickness of the mass 
layer. In c1 < x3 < c2, the boundary condition in (6) rep-
resents Newton’s second law applied to the mass layer. 
Similarly, the boundary condition at the plate bottom 
surface is

	T h u x h c x c
x h x c c x c21

1 2 3 3 4

2 3 3 4 3

2
0 0

=
′′ ′′ = − < <

= − < < < <
ρ �� , , ,
, , , or {{ 			

		  (7)

where the mass layer density and thickness are indicated 
by a double prime and may be different from those of the 
top layer. The boundary conditions at the left and right 
edges are

	 T x c x h31 3 20 0= = <, , , .	 (8)

For AT-cut quartz plates, c55 = 68.81, c56 = 2.53, and 
c66 = 29.01 × 109 N/m2 [16]. c56 is very small compared 
with c55 and c66. Therefore, in the rest of this paper, we 
will make the usual approximation of neglecting the small 
c56 [17].

III. Fourier Series Solution

Consider free vibrations. Let

	 u x x t u x x i t1 2 3 1 2 3( , , ) ( , )exp( ).= ω 	 (9)

We construct the following solution from separation of 
variables:

	

u A x B x

A x B xm m m m
m

1 0 0 2 0 0 2

2 2
1

= +

+ +
=

∞

∑

cos( ) sin( )

[ cos( ) sin( )]

η η

η η ccos ,
m x

c
π 3 			

		  (10)

where A0, B0, Am, and Bm are undetermined constants, 
and
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	 ω
π

ρs h
c

= 2
66.	 (12)

Eq. (10) satisfies (5) and (8) when the small c56 is ne-
glected. ωs is the resonant frequency of the fundamental 
TSh mode in an unbounded quartz plate. Quartz resona-
tors usually have large length/thickness ratios, i.e., c ≫ 
2h. In this case, for an m that is not large, ηm

2  is positive. 
We are interested in the first few TSh and TT modes with 
no more than a few nodal points along the x3 direction, for 
which a large m is not needed. In the case when ηm

2  is 
nonpositive, the construction of the solution in (10) will 
be different. To apply the boundary conditions at the 
plate top and bottom, we need

	

T c u
c A x c B x
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21 66 12
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		  (13)

Substitution of (10) and (13) into (6) and (7) gives (14) 
and (15), see next page. We multiply both sides of (14) by 

Fig. 1. A rotated Y-cut quartz plate with mismatched and unequal elec-
trodes.
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cos (nπx3/c) (n = 0, 1, 2, …) and integrate the resulting 
expression over (0, c) to obtain

	

c c A h B h

h A h B
66 0 0 0 0 0

2
0 0 0 02

η η η

ρ ω η η
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		  (16)
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where
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Similarly, from (15) we can obtain
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where Dmn is given by (18) and (19) with c1 and c2 re-
placed by c3 and c4. Eqs. (16), (17), (20), and (21) are 
linear homogeneous equations for A0, B0, Am, and Bm. 
For nontrivial solutions, the determinant of the coefficient 
matrix must vanish, which determines the resonant fre-
quencies. The nontrivial solutions of A0, B0, Am, and Bm 
determine the corresponding modes. This is a complicated 
eigenvalue problem because the eigenvalue or the resonant 
frequency is present in every ηm. As nontrivial solutions to 
homogeneous equations, A0, B0, Am, and Bm can be mul-
tiplied by an arbitrary constant. For the modes that we 
are interested in, B0 is the major component; therefore, we 
will fix B0 = 1, which effectively determines the arbitrary 
constant.

IV. Numerical Results

For quartz, ρ = 2649 kg/m3 [16]. We also introduce

	 ω ω
ρ ρ
ρs s= − =

′ ′ + ′′ ′′
( ), .1 R R

h h
h 	 (22)

ωs is the resonant frequency of the fundamental thickness-
shear mode in an unbounded quartz plate fully covered by 
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electrodes. R is the mass ratio between the electrodes and 
the plate. The resonant frequencies of the modes we are 
interested in are within ωs < ω < ωs. We consider a reso-
nator with c = 40 mm and 2h = 1 mm.

A. Identical Electrodes Without Mismatch

First, we consider the case of two identical electrodes 
without a mismatch as a reference. Both electrodes are 
15 mm in length, located at the center with c1 = 12.5 mm, 
c2 = 27.5 mm, c3 = 12.5 mm, and c4 = 27.5 mm. We 
choose R = 3%, which is larger than common electrodes 
to make their effects more obvious. In this case, there are 
three frequencies in the interval of ωs < ω < ωs. When 
using 17 (n = 16) and 18 (n = 17) terms in the series, the 
three frequencies are always found to be

	
ω ω ω ω
ω ω

1 2

3

0 974032 0 983082
0 996098

/ /
/

s s

s

= =
=

. , . ,
. .

	 (23)

Numerical tests show that A0, B0, An, and Bn are very 
sensitive to the frequencies. Six significant figures are used 
to ensure sufficient accuracy of the frequencies. In this 
case, the corresponding modes also converge very well, 
without noticeable differences. Therefore, all calculations 
below are based on 18 terms in the series. In this case, ηn

2 
is positive. Twenty-seven (n = 26) or more terms will 
make ηn

2 negative.
The modes corresponding to the three frequencies are 

shown in Fig. 2, which is not drawn to scale. The first 
mode has no nodal points along the x3 direction, which is 
the mode of interest and the one most useful in applica-
tions. It is a transversely varying TSh mode. The second 
and the third modes have one and two nodal points along 
the x3 direction and are TT modes. For all of the modes 
in Fig. 2, the vibration is large in the central region and 
small near the plate edges at x3 = 0, c. In other words, 
the vibration is mainly under the electrodes and decays 
outside them. This is the so-called energy trapping of TSh 
and TT modes.

We plot the plate top and bottom surface displace-
ments of the first mode in Fig. 3(a). Their absolute values 
should be identical because the motion is antisymmetric 
about x2 = 0. The difference of the absolute values of the 
two curves in Fig. 3(a) is shown in Fig. 3(b). The displace-
ments in Fig. 3(a) are of the order of 1 and their differ-
ence in Fig. 3(b) is of the order of 10−8, which should be 
treated as zero numerically.

B. Mismatched Electrodes

Consider the case when the two electrodes are identical 
(15 mm in length) but the top electrode is shifted to the 
right from the center by 2.5 mm and the bottom electrode 
is shifted to the left by 2.5 mm. In this case c1 = 15 mm, 
c2 = 30 mm, c3 = 10 mm, and c4 = 25 mm. We still use 
R = 3%. In this case, the following three frequencies are 
found:

	
ω ω ω ω
ω ω

1 2

3

0 975396 0 986455
0 996121

/ /
/

s s

s

= =
=

. , . ,
. ,

	 (24)

which are higher than those in (23). For the first frequen-
cy, the difference between (24) and (23) is 0.001364, which 
is significant in resonator applications, for which relative 
frequency shifts are measured in parts per million. The 
three modes still look like those in Fig. 2. For a closer 
look, we plot the plate top and bottom surface displace-
ments of the first mode in Fig. 4(a); they look identical, 
as in Fig. 3(a), but the difference of their absolute values 
shown in Fig. 4(b) is of the order of 0.01, much larger than 
that in Fig. 3(b) and cannot be treated as zero numeri-

Fig. 2. Identical electrodes without mismatch: three trapped modes.
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cally. In addition, Fig. 4(b) is antisymmetric about x3 = 
c/2, which is consistent with the fact that the top and 
bottom electrodes have shifted in opposite directions and 
introduced some antisymmetry in the structure.

C. Electrodes of Unequal Length

Electrodes with different lengths are also of concern in 
design and the effects are little known. Consider the case 
in which the top electrode is 10 mm long and the bot-
tom electrode is 20 mm long. The total length of the two 
electrodes is 30 mm, the same as the two previous cases. 
Both electrodes are at the centers of the plate surfaces. 
In this case c1 = 15 mm, c2 = 25 mm, c3 = 10 mm, and 
c4 = 30 mm. For the same R = 3%, the three resonant 
frequencies are found to be exactly the same as those in 
(24). The top and bottom surface displacements and the 
difference of their absolute values are shown in Figs. 5(a) 
and 5(b), respectively. The magnitude of the displacement 
difference is of the order of 0.01, and it is symmetric about 
x3 = c/2, as expected.

D. Comparison

In Fig. 6, we compare the plate top surface displace-
ment of the first mode for the three electrode configura-
tions considered here. The case of mismatched electrodes 
and the case of electrodes with unequal length are indis-
tinguishable. It can be seen that the displacement is more 
confined to the center when the electrodes are mismatched 
or with unequal length. It seems that for mismatched elec-
trodes, energy trapping is mainly dependent on the over-
lapped region of the electrodes, which is shorter than the 
electrode length; for electrodes of unequal length, energy 
trapping mainly depends on the shorter electrode. The 
fact that the vibration is more confined for mismatched 
or unequal electrodes is consistent with the slightly higher 
frequencies in these two cases.

V. Conclusion

A Fourier series solution was obtained for TSh and TT 
vibrations of an AT-cut quartz resonator with a pair of 

Fig. 3. Identical electrodes without mismatch: (a) plate top and bottom 
surface displacements. (b) Difference of the absolute values of the plate 
top and bottom surface displacements.

Fig. 4. Mismatched electrodes of the same length: (a) plate top and bot-
tom surface displacements. (b) Difference of the absolute values of the 
plate top and bottom surface displacements.
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arbitrary electrodes. Numerical results calculated from 
the solution show that mismatched electrodes raise the 
resonant frequencies in the order of 0.001 for relative 
frequency shifts and make a difference in the plate top 
and bottom surface displacements in the order of 0.01. 
Electrodes of unequal length have similar effects. For mis-
matched electrodes, energy trapping is mainly dependent 
on the overlapped region of the electrodes; for electrodes 
of unequal length, energy trapping mainly depends on the 
shorter electrode.
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Fig. 5. Unequal electrodes without mismatch: (a) plate top and bottom 
surface displacements. (b) Difference of the absolute values of the plate 
top and bottom surface displacements.

Fig. 6. Comparison of the plate top displacements of the first mode in 
different cases.
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