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Abstract

A series summation has been developed to model the iterative scale growth and spalling process of cyclic oxidation.
Parabolic scale growth has been assumed. Interfacial spallation of a constant area fraction was stipulated to occur only
at the thickest portions. Inputs are the parabolic growth rate constant, spall area fraction, oxide stoichiometry, and cycle
duration. Outputs include the net weight change, amount of oxygen and metal consumed, and amount of oxide spalled.
Classic weight change curves are produced with an initial maximum and final linear weight loss rate. This simplicity
allowed for representation by explicit algebraic functions for all outputs and characteristic features. The maximum in
weight change varies directly with the parabolic rate constant and cycle duration and inversely with the spall fraction,
all to the 1/2 power. The ratio of the number of cycles to reach maximum and zero weight change is exactly 1:3, and
these vary only with the inverse of the spall fraction. Many similarities to and some differences with previous cyclic
models are identified.
Published by Elsevier Science Ltd on behalf of Acta Materialia.
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1. Introduction

Oxidation is an important degradation process
for high temperature materials operating in air or
oxygen. For isothermal exposures, the rate of oxi-
dation determines the rate of material consumption.
Both are generally controlled by solid state dif-
fusion through the scale layer and show approxi-
mately parabolic kinetics in which the instan-
taneous rate is inversely proportional to the
existing scale thickness. Many components, how-
ever, experience cyclic oxidation in applications
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that entail periodic start-up and shutdown. Typi-
cally, some scale spallation may occur upon coo-
ling, resulting in loss of the protective diffusion
barrier provided by a fully intact scale. Upon
reheating, the component will therefore experience
accelerated oxidation in the spalled regions
because of the inverse growth rate dependence
upon thickness.

Cyclic oxidation testing has therefore been a
mainstay of material characterization and perform-
ance ranking for high temperature materials. The
engineering response is generally characterized
nondestructively by weight change curves and sur-
face recession. A general trend of surface recession
can be linked with an empirical cyclic oxidation
weight change ‘attack parameter’, which takes into

proyster2
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Nomenclature

i oxide segment index
j number of oxidation cycles
jmax cycle number to reach maximum weight gain
jo cycle number to reach zero weight change
(�W/A) specific weight change (mg/cm2)
(�W/A)max maximum in cyclic oxidation weight change curve, (mg/cm2)
no number of oxide segments
Fa spall area fraction constant=1/no

kp parabolic growth rate (mg2/cm4 h)
t total heating time (h)
�t heating cycle duration (h)
Sc stoichiometric constant, weight fraction of oxide/oxygen
Wr weight of oxide retained after cooldown (mg/cm2)
W�r weight of oxide retained before cooldown (mg/cm2)
�Wmet cumulative amount of metal consumed (mg/cm2)
�Woxy cumulative amount of oxygen consumed (mg/cm2)
�Wspall cumulative amount of oxide spalled (mg/cm2)
Fs weight fraction of oxide spalled
TS terminal slope of weight change curve

account degradation by both scale growth and
spallation [1]. However, a direct quantitative
relationship between cyclic weight change and
material degradation (i.e., metal consumed) is not
normally measured.

One important step toward approaching this
direct relationship has been the development of
mathematical cyclic oxidation spalling models that
simulate the discreet processes that occur each time
the scale spalls upon cooling and re-grows upon
heating. In general, a scale growth law is postu-
lated with a fixed rate constant, and a spalling for-
malism is defined which dictates the type and
amount of spalling that occurs each cycle. This unit
process is formally described by means of sum-
mation series or an algorithm, by which an iterative
calculation may generate the entire cyclic oxi-
dation curve. The former has been done for the
case of interfacial spalling, where a constant area
fraction of each portion of the scale has been pro-
posed to spall each cycle [2].

The latter has been developed for the case where
a uniform external layer of specified thickness
spalls off the entire area (i.e., no discrete

segments). Here the fractional thickness that spalls
is a direct function of the existing scale thickness
[3]. This spalling criterion has been further modi-
fied to allow for non-uniform or bimodal spall-
ation, in which some portions do not spall at all on
a given cycle, while others spall some fixed ratio
of the thickness - including the possibility of total
interfacial spallation [4]. The consolidated pack-
age, termed COSP (Cyclic Oxidation Spalling Pro-
gram, available for DOS and Windows 95, 98, and
2000 [4,5]), allows for the selection of various
scale growth laws, spalling functions, and spal-
ling configurations.

Families of model curves exhibit consistent
regularity and trends with input parameters, and
characteristic features have been empirically
described in terms of these inputs [2,4,5,7]. How-
ever, precise mathematical dependencies of these
trends have eluded derivation. Indeed, the model
cyclic weight change curve itself cannot be
obtained analytically, but relies totally upon series
summations or iterative calculations.

These models can describe cyclic oxidation
results when a reasonable fit has been obtained
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through adjusting the various input parameters.
The utility of such fitted curves is the ability to
predict long-term behavior, assuming that no
mechanistic changes take place. Another value is
the ability to extract the amount of metal consumed
as the most direct figure of merit regarding material
degradation. Coupled with diffusion models, solute
depletion and the transition to non-protective oxi-
dation behavior may be predicted for coatings and
alloys [6]. (Related issues have been presented in
a recent summary paper [7], along with many other
pertinent high temperature cyclic oxidation topics
[8].)

While independent measurements of the growth
rate have generally agreed with the growth rates
obtained from model fits, there is less successful
verification or prediction of the amount of scale
that should spall each cycle. At best, it has been
observed experimentally that the relative amount
of spalling increases with scale thickness. These
conclusions were made by both weight change and
surface area measurements [2,3]. However, the
actual thickness and area of the spalled segments
has not been determined.

Ideally, fracture mechanics could address the
critical stress in the scale and the type and degree
of spallation that occurs each cycle. Compressive
thermal expansion mismatch stress is commonly
accepted as the primary cause of spallation and is
additive to any growth stresses that are retained
after cooldown. Scale spallation has been defined
as a buckling instablility or wedge-driven crack
growth in an extensive review [9]. The growth and
thermal stresses generated in protective alumina
scales have been elegantly and thoroughly studied
through the use of photo-stimulated luminescence
(piezospectroscopy) [10]. Furthermore , the size of
a spall segment has been modeled from the strain
energy in the scale, the scale thickness, and interfa-
cial toughness. [11,12]. These studies are leading
the way to postulate the morphology and quantity
of spalling.

Ultimately, the relationship between cyclic
weight change (scale spallation) and mechanics-
based approaches may be drawn, as controlled by
scale (or interface) fracture toughness [13] or
stored strain energy [14]. Both approaches met
with good success, although these fitted parameters

were not independently generated. Therefore, at
the present time, empirical fitting remains the pri-
mary means by which a cyclic oxidation weight
change curve is modeled.

The purpose of the present paper is to present
the development of a simple model simulation that
assumes interfacial spallation to the bare metal sur-
face every cycle. Furthermore, this spallation is
biased toward the thickest oxide regions that have
yet to spall, as would be suggested by the previous
analyses [2–14], but does not stipulate that a criti-
cal oxide thickness be attained as a spalling cri-
terion. Some of these features have been observed
on commercial NiAl and occasionally Ni(Pt)Al
bond coatings, as well as on uncoated single crystal
superalloys [15–17]. The model simplicity propa-
gates into the mathematical formulations, allowing
for more transparent relationships between input
and outputs. Finally, through a mathematical sim-
plification, the cyclic oxidation curve is completely
described by simple algebraic functions.

2. Model development

2.1. Weight change equations.

According to basic diffusional models of oxi-
dation, a scale will grow with parabolic kinetics,
such that the sample weight (mass) gain per unit
area, �W/A, is given by

�W /A � �kpt (1)

for rate constant kp and heating duration t (see
Nomenclature for a full glossary of symbols).
According to this definition of kp, the weight
change upon heating reflects only the weight gain
of the oxygen reacted. Upon cooling, spalling may
take place, which will reflect the weight of the
oxide segment lost (metal+oxygen). (Note that the
term weight gain and loss are being used according
to a common convention, rather than mass).

Description of the spalling mode requires more
detailed specification. The present simple model
assumes a constant area fraction, FA, will spall to
the bare metal surface each cycle. The sample can
be viewed to be divided up into no equivalent seg-
ments, where no=1/FA, and each of these segments
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will have its own individual oxide growth and
spallation history. These segments, with fractional
area (FA) and with thickness (or weight) pro-
portional to the square root of its growth interval,
will be the basic cells in constructing the model.

2.1.1. Case A: primary spallation sequence
In Fig. 1, a schematic cross-section of the oxid-

ized surface is shown for the case where the area
spall fraction FA=0.1 and thus no=10 segments.
Here, the growth and spalling sequence of each ith
segment is presented for the first five cycles (j=1–
5). For the sake of simplicity, the height of each
oxide segment is represented only by its corre-
sponding growth time. After one cycle, the entire
surface has grown a scale according to Eq. (1)
(above the zero-growth line) and one segment cor-
responding to one time unit has spalled (below the
line). After two cycles, the first segment (i=1) has

Fig. 1. Schematic cross-section of intact and spalled oxide segments (above and below the line) for the first five cycles of oxide
growth and spallation. Case A: j�no. Each block corresponds to a basic unit area, FA, and growth interval, �t.

re-grown to a thickness of √kp�t. All the remaining
second segments (i=2–10), have grown to√kp2·�t,
but the second segment has now spalled. (That is,
while each segment is illustrated in terms of equal
cycle time units, it is understood that the actual
segment weight is proportional to the square root
of its total growth time.)

Single spalled segments adjacent to that of the
previous cycle are indicated here for visual sim-
plicity, but this is not required by the mathematics
or in practice. Rather, any dispersion of any num-
ber of discrete spalled regions may be represented
by the model, as long as the total spalled area
equals that of the model ‘segment’ . Implicit in the
spalling sequence is that the next segment to spall
is always the thickest segment (or as thick as any
other equivalent segments). While, there is no criti-
cal thickness at which spallation begins, the effects
are felt progressively as the scale thickens.
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In general, the weight gain (segment height) of
oxide remaining in each intact segment is given by:

(�W /A)i,j, intact � �j·kp�t (2)

where (no�j)·FA is the relative area of the intact
portion. Again, weight gain reflects only the
amount of oxygen in the segments, implicit in the
definition of kp.

However, the amount of weight loss due to
spallation must take into account the weight of
metal in the oxide. The weight of oxide relative to
that of oxygen is given by a stoichiometric con-
stant, Sc, defined as the molecular weight ratio of
oxide to oxygen in any given oxide, e.g., Al2O3,
Cr2O3, NiO, etc. Oxide weight is obtained by mul-
tiplying the corresponding oxygen weight by Sc,
and the amount of metal in a given segment is
obtained by multiplying by (Sc�1).

By examination of these schematics or use of
simplifying notations [18], the weight gain of the
left-most segments that have spalled once and re-
grown new oxide for the time interval elapsed after
spallation is seen to be:

FA �
j�1

i � 1
�(j�i)·kp�t (3)

The weight gain of all the intact right-most seg-
ments is given by:

(no�j)FA�j·kp�t (4)

Finally, the weight change due to just the metal
lost in the spalled segments is given by:

�(Sc�1)FA��j

i � 1

�i·kp�t� (5)

The same sequence of growth and spallation can
be envisioned to occur here for up to 10 cycles
(j�no, case A), at which time the entire surface
would have spalled just one time, and the number
of cycles, j, is just equal to the number of seg-
ments, no.

2.1.2. Case B: secondary and subsequent
spallation sequences

For j�no, continued spallation produces a modi-
fication in the sequence. At j=11, the first segment

is now the thickest segment (corresponding to 10
�t) and is sequenced for its second spallation
event, as shown in Fig. 2. At j=12, the second seg-
ment spalls, also 10 time units thick. All sub-
sequent spall segments will correspond to this
maximum of 10 units (i.e., no·�t). Thus, for visual
simplicity and convenience, these secondary spall
segments are all shown as solid blocks, with a
weight loss equivalent of (Sc�1)√kp10·�t.

The continued progression of this secondary
spall sequence leads to the observation that the
total amount of retained scale remains the same,
even though the thickness over each particular area
segment changes each cycle. The oxygen gain
obtained from all the growth segments above the
zero-growth line is thus given by an invariant
quantity [18]:

FA �no�1

i � 1

�i·kp�t (6)

Similarly, the metal loss due to the first series
of spalled segments is invariant and is given by:

�(Sc�1)FA��no

i � 1

�i·kp�t�, (7)

while the series of the secondary spall segments
produces the term:

�(Sc�1)·(j�no)FA�no·kp�t (8)

By combining all the appropriate oxygen gain
and metal loss terms and simplifying the sum-
mations, the following relationships are obtained
describing cyclic oxidation net weight change
according to this model:

For cycle number j�no (Case A):

(�W /A)A � FA�kp�t�(2�Sc)�j

i � 1

�i 	 (no�j (9)

�1)�j�
And for cycle number j�no (Case B):

(�W /A)B � FA�kp�t�(2�Sc)�no

i � 1

�i 	 [(1 (10)

�Sc)(j�no)�1]�no�
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Fig. 2. Schematic cross-section of intact and spalled oxide segments (above and below the line) after the first 11 cycles of oxide
growth and spallation. Case B: j
no. Each block corresponds to a basic unit area, FA, and growth interval, �t.

Consequently, two relationships (for Case A and
B), are applied when the number of cycles, j, is
less than or greater than the number of segments,
no, to construct a full deterministic interfacial cyc-
lic oxidation spalling model (DICOSM) weight
change curve.

An example of a net weight change curve is
shown in Fig. 3 for the following input parameters:
kp=0.01 mg2/cm4 h, �t=1.0 h, FA=0.001 (i.e.,
no=1000), and Sc=2.0, for j up to 2000 h. The
classic shape and the general characteristics of a
cyclic oxidation weight change curve are produced.
Here the response follows parabolic growth
initially, gradually degrading by spallation, then
produces a maximum and eventually negative
values. When j=no, i.e., 1000, a steady state, linear
rate of weight loss is obtained and continues
indefinitely according to the sequencing example
in Fig. 2 and Eq. (10), i.e., Case B. In reality,
excessive solute depletion may eventually cause a
critical composition to be reached that triggers a
mechanism change.

Fig. 3. DICOSM model curve of specific weight change vs
cycle time for the parameters kp=0.01 mg2/cm4 h, �t=1.0 h,
FA=0.001 (i.e., no=1000), and Sc=2.0. Solid line, exact model
calculation; solid circles, Good–Smialek approximation.
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2.2. Other outputs

While the weight change curve represents the
most commonly measured value in practice, there
are other terms that describe a number of signifi-
cant aspects of the cyclic oxidation process. Some
of these additional terms may also be easily
obtained from the DICOSM model described in
Figs. 1 and 2, as listed below [18]:

� Total amounts of oxygen and metal reacted
� Weight of retained oxide immediately before

and after spallation
� Total amount of oxide spalled
� Fractional amount of oxide spalled per cycle

Relations for most of these terms are listed in
Table 1. Unfortunately, there are usually two equa-
tions for each, again depending on whether or not
j
no. The total amount of oxygen reacted, �Woxy,

A, for Case A can be determined from inspection
of Fig. 1 using the terms (3)–(5), but without the
contribution of the metal stoichiometric factor
(Sc�1). The same is true for Case B, using terms
(6)–(8) along with Fig. 2. The metal reacted for
both cases is simply the amount of oxygen reacted
multiplied by (Sc�1).

The oxide retained after spalling, Wr, corre-
sponds to the weight of oxygen in all the intact
growth segments (above the line) multiplied by Sc.
Thus for Case A, the segments described by the
terms in (3) and (4) apply, but must be multiplied
by the stoichiometric factor, Sc. For Case B, the
segments in term (6) applies. The oxide retained
just before cooling (spalling), W�

r, is obtained by
adding the weight of the last spall segment to Wr.

The total amount of oxide spalled for Case A
and B can be obtained from the series in terms (5)
and (7) and (8), respectively, to account for all the
segments below the line, but multiplied by Sc.
Finally, the fraction of oxide spalled on any given
cycle is given by the weight of the current spall
segment divided by that of the total amount of
retained oxide just before spallation (cooldown),
W�

r. That is, the spalled segment after the jth cycle,
with a weight given by FA√j·kp�t (Case A) or
FA√no·kp�t (Case B), should be divided by W�r,A

or W�r,B, respectively.

Table 1
List of relationships describing DICOSM model outputs

Total amounts of oxygen and metal reacted:

�Woxy,A � FA√kp�t�2�j

i � 1

√i 	 (no�j�1)√j�
�Woxy,B � FA√kp�t�2�no

i � 1

√i 	 (j�no�1)√no�
�Wmet � (Sc�1)�Woxy

Amount of scale retained before and after spallation:

W�r,A � ScFA√kp�t��j

i � 1

√i 	 (no�j)√j�
Wr,A � ScFA√kp�t��j

i � 1

√i 	 (no�j�1)√j�
W�r,B � ScFA√kp�t��no

i � 1

√i�
Wr,B � ScFA√kp�t� �n � 1

i � 1

√i�
Total and fractional amounts of scale spalled:

�Ws,A � ScFA√kp�t��j

i � 1

√i�
�Ws,B � ScFA√kp�t��no

i � 1

√i 	 (j�n0)√no�
Fs,A �

√j

�
j

i � 1
√i 	 (no�j)√j

Fs,B �
√no

�
no

i � 1
√i

These other outputs are plotted in Fig. 4 for the
same model conditions as those in Fig. 3. The oxy-
gen and metal reacted follow similar trends as
might be expected. However, in this special case
where Sc=2, these quantities are actually identical
and equal to 1. The amount of retained oxide fol-
lows a gradual gain and becomes constant at j=no.
The amount of oxide spalled follows a gradually
increasing rate that becomes a constant at j=no. The
fractional amount of oxide spalled also follows an
increasing rate then levels at j=no to �3/2 FA, as
will be shown later.
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Fig. 4. Other DICOSM model outputs (total amount of oxy-
gen and metal reacted, amount of retained scale and fraction of
scale spalled, total amount of spalled scale) vs cycle time for
the parameters kp=0.01 mg2/cm4 h, �t=1.0 h, FA=0.001 (i.e.,
no=1000), and Sc=2.0.

3. Effects of model inputs

Characteristic trends in model weight change
curves occur as the input parameters are varied,
Figs. 5–7. A common baseline curve (Sc=2.0,
kp=0.01 mg/cm2 h, FA=0.001, and �t=1 h) is
always presented for comparison. The range of
parameters addressed was chosen to illustrate
effects in the region of ±5 mg/cm2 over about 1000
h, corresponding to the behavior of many oxidation
resistant materials.

Fig. 5. The effect of the stoichiometric constant, Sc, on the
family of DICOSM weight change curves. Baseline value of
Sc=2.0 shown as bold line (kp=0.01 mg2/cm4 h, �t=1.0 h,
FA=0.001).

Fig. 6. The effect of the growth product, kp�t, on the family
of DICOSM weight change curves. Baseline value of kp�t=0.01
mg2/cm4 shown as bold line (Sc=2.0, FA=0.001).

Fig. 7. The effect of spall area fraction, FA , on the family of
DICOSM weight change curves. Baseline value of FA=0.001
shown as bold line (Sc=2.0, kp=0.01 mg2/cm4 h, �t=1.0 h).

Fig. 5 shows the effect of increasing the stoi-
chiometric constant from 1.0 to 5.0. The limiting
value of Sc=1, (zero cation weight), indicates an
upper bound for oxides with low metal contents.
The trend with increasing metal content is a down-
ward compression of the entire curve. Most com-
mon oxides possess an Sc between 2 and 5, as listed
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in Table 2. Al2O3, for example, is relatively low
at 2.1243, with few oxides below this. Intermediate
values are observed for NiO (4.6690) and the spi-
nel NiAl2O4, (2.7603). Very high values are poss-
ible for the heaviest cations, such as ThO2

(8.2515), or for cation-rich stoichiometry, such as
Cu2O (8.9435).

The effect of increasing the growth product,
kp�t, two orders of magnitude from 0.001 to 0.1

Table 2
Stoichiometric constant, Sc, (weight of oxide to oxygen) for
many common oxides

Row Atomic Oxide Sc

number

2 3 Li2O 1.8675
4 BeO 1.5633
5 B2O3 1.4500

3 11 Na2O 3.8738
12 MgO 2.5191
13 Al2O 3 2.1243
14 SiO2 1.8777

4 22 TiO2 2.4959
23 V2O5 2.2736
24 Cr2O3 3.1666
25 Mn2O5 2.3735
25 Mn2O3 3.2892
26 Fe2O3 3.3270
26 Fe3O4 3.6178
26 FeO 4.4904
27 CoO 4.6835
28 NiO 4.6690
29 CuO 4.9718
29 Cu2O 8.9435

5 40 ZrO2 3.8509
41 Nb2O5 3.3227
42 MoO3 2.9988

6 72 HfO2 6.5780
73 Ta2O5 5.5239
74 WO3 4.8301

7 90 ThO2 8.2515

Mixed 13,14 Si2Al6O13 2.0484
13,22 TiAl2O5 2.2729
13,39 AlYO3 3.4144
13,28 NiAl2O4 2.7603
24,28 NiCr2O4 3.5421
22,28 NiTiO3 3.2201
28,73 NiTa2O6 5.3813
24,41 CrNbO4 3.2642
24,73 CrTaO4 4.6339
28,74 NiWO3 4.7897

is shown in Fig. 6. The curves show a vertical
amplification: the maximum in weight gain
increases, as does the final linear rate of weight
loss, but with no change in cycle number to
maximum or zero weight. Note that the effect of
increasing cycle duration is equivalent to that of
kp, as indicated by Eqs. (9) and (10), and so both
have been combined here into one parameter. But,
if only �t is changed and the family of curves is
plotted against total time, they exhibits an upward
trend with �t approaching that of parabolic iso-
thermal oxidation [18].

Fig. 7 presents the trend with increasing the spall
(area) fraction, FA, seen to be similar to that
observed for Sc. The downward compression of the
entire curve is apparent, but with not as strong a
dependence. An upper bound to the curves is
defined by FA=0, i.e., a continuously rising para-
bolic growth curve. A lower extreme is defined as
FA approaches unity, essentially eliminating the
apparent maximum in weight gain and commenc-
ing with a linear rate of weight loss.

4. Algebraic approximation and descriptive
parameters

This model produced all the characteristic fea-
tures and trends normally associated with cyclic
oxidation weight change curves: an initial
maximum, followed by decreasing and eventually
negative weight change, and finally a steady-state
linear rate of weight loss (concurrent with attaining
both a limiting oxide thickness and constant mass
fraction of scale spalled each cycle). Trends in
these features with input parameters have been
demonstrated in previous modeling studies. How-
ever, any mathematical descriptions have been
indirect, i.e., by trial and error fits to various func-
tions [2] or by regression analysis of the results
of many model cases [4]. Indeed, weight change
behavior has only been implicitly defined by means
of an algorithm or summation series.

4.1. The Good–Smialek approximation

To express the cyclic response curves more
explicitly, an attempt was made to find a substi-
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tution for the term �√i appearing in all the

DICOSM functions by Dr. Brian Good and the use
of the math program, Mathematica [19]. An
expansion in the terms j1/2, j2/2, j3/2, j4/2, j5/2+K was
found, producing the Good approximation (GA):

�j

1

�iGA � aj1/2 	 bj2/2 	 cj3/2 	 dj4/2 (11)

	 ej5/2 	 K

where the coefficients produced by linear
regression were identified as: a=0.48957,
b=0.0012181, c=0.66660, d=1.8489×10�6,
e=�1.90171x10�9, K=�0.169614.

This equation has yielded an extremely accurate
expression for any j
10, and a maximum error of
only 1.2% at j=1. The excellent agreement over a
large range of values for j can be seen in Fig. 8 (as
the large open circles). For purposes of subsequent
analyses, however, this 6-term function is cumber-
some. Thus, because of the small coefficients for
three of the terms (b, d, and e), the expression was
further simplified, using just a, c, and K, to yield
the Good–Smialek approximation (GSA):

�j

i � 1

�iGSA�
1
2

j1/2 	
2
3

j3/2 (12)

Now the error is 162 / 3% at j=1, primarily due
to ignoring the term K. But this error is quickly
reduced to �1% for j�10, and to �0.1% for j
50

Fig. 8. Comparison of Good–Smialek approximations to

�j

i � 1

√i.

[19]. At j=1000 the error is only 0.001%. Thus,
for a reasonable number of cycles corresponding
to most tests, the simple expression in Eq. (12) pro-
vides an excellent approximation as shown by the
small filled circles in Fig. 8.

4.2. Explicit weight change relation.

Substitution of Eq. (12) into the relations for
�W/A, Eqs. (9) and (10) and all the other output
equations (Table 1) yields a new set based on the
GSA, where A and B again refer to the portions
of the curve where j�n o and j�no:

(�W /A)GSA, A�FA�kp�t�1
2
(2no�Sc)(j)1/2 (13a)

	
1
3

(1�2Sc)(j)3/2�
(�W /A)GSA, B�FA�kp�t��(1�Sc)j (13b)

�
1
2

Sc�(no)1/2 	
1
3

(1 	 Sc)(no)3/2�
The utility of these new expressions is that the

weight change and all the other model outputs can
be easily and directly calculated for any particular
cycle and any desired combination of the model
parameters (Sc, kp, �t, FA, [no]), as listed in Table
3. No iterative calculations or programmed sol-
utions are required.

The results of the GSA calculations [Eq. (13)]
is shown for the baseline model in Fig. 1 as sym-
bols. Note that there is virtually no difference com-
pared to the exact DICOSM calculations (solid
line). The numerical data for these two models also
shows complete agreement to four decimal places
[19]. In fact, it is only in the extreme cases that
any differential can be discerned, such as for Sc=5
and FA=0.1. Here appreciable errors (25%) have
been produced in the first few cycles, but even
these diminish to less than 1% in 10 cycles [19].
Thus, the GSA substitution for the DICOSM
relations is mathematically robust for most practi-
cal cases.
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Table 3
List of relations describing DICOSM model outputs using the
Good-Smialek Approximation

Cumulative total weight of oxygen or metal reacted:

�WGSA
oxy,A � FA√kp�t�noj1/2 	

1
3

j3/2�
�WGSA

oxy,B � FA√kp�t�jn1/2
o 	

1
3

n3/2
o �

�WGSA
met � (Sc�1)�WGSA

oxy

Weight of retained scale, before (W�r) and after (Wr)
spallation:

W�GSA
r,A � ScFA√kp�t��no 	

1
2�j1/2�

1
3

j3/2�
WGSA

r,A � ScFA√kp�t��no�
1
2�j1/2�

1
3
j3/2�

W�GSA
r,B � ScFA√kp�t�1

2
n1/2

o 	
2
3

n3/2
o �

Cumulative total weight of oxide spalled (�Ws) after j
cycles; Fractional weight of oxide spalled (Fs) on cycle j:

�WGSA
s,A � ScFA√kp�t�1

2
j1/2 	

2
3

j3/2�
�WGSA

s,B � ScFA√kp�t��j 	
1
2�n1/2

o �
1
3

n3/2
o �

Fs,A �
1

1
2

	 no�
1
3

j

Fs,B �
1

1
2

	
2
3

no

Equivalent spall constant from COSP model for j
no:

Qo � �Sc√FAkp�t� 1
2

	
2
3

no�2�

4.3. Descriptive parameters

4.3.1. Explicit relations
The various descriptive parameters that define

the typical characteristics of a cyclic oxidation
curve may now be determined analytically, such as
the maximum in weight gain, time to reach
maximum and zero weight, and final rate of weight
loss. The time to maximum gain is determined by
differentiating (�W/A)A with respect to j in (13a),

setting dW/dj equal to zero, and solving for jmax.
The maximum gain is determined by substituting
jmax into Eq. (13a). Finally the time to zero weight
is determined by setting (�W/A)A equal to zero and
solving for jo. Note that because only Eq. (13a)
was used in these derivations, Eqs. (14)–(16a),
apply only to Case A, j�no.

(�W /A)GSA,max�
FA�kp�t

3 � (2no�Sc)3/2

(2(2Sc�1))1/2� (14)

jmax�
2no�Sc

2(2Sc�1)
(15)

jo,A�
3(2no�Sc)
2(2Sc�1)

(16a)

jo,B�
2(Sc 	 1)no�3Sc

6(Sc�1)
(16b)

It can be seen that the first three relations contain
some function of the term (2no�Sc)/(2Sc�1). The
ratio of jo/jmax produces a simple integer, equal to
exactly 3.0, the ratio produced by the numerical
model and close to those found (3.3, 3.3, and 3.4)
for Al2O3 scales by three previous models [2,4,5].

4.3.2. Trends in characteristic features
Trends in the characteristic features are

presented in Figs. 9–11, where the baseline case
for Sc=2.0 is shown as a bold curve. The depen-

Fig. 9. The effect of spall area fraction, FA, on the normalized
maximum weight change, (�W /A)max /√kp�t, using the GSA
solution in the DICOSM model. (Lines refer to GSA solution,
symbols refer to actual DICOSM calculations.)
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Fig. 10. The effect of spall area fraction, FA, on the number
of cycles, jmax, to reach the maximum weight change using the
GSA solution in the DICOSM model. (Lines refer to GSA sol-
ution, symbols refer to actual DICOSM calculations.)

Fig. 11. The effect of spall area fraction, FA, on the number
of cycles, j0, to reach zero weight change using the GSA sol-
ution in the DICOSM model. (Lines refer to GSA solution,
symbols refer to actual DICOSM calculations.)

dence of (�W/A)max with Sc and FA [Eq. (14)] is
shown in Fig. 9. Here (�W/A)max is normalized by
the term (kp�t)1/2 to collapse the results for all
values of the growth product onto one curve. It is
seen that (�W/A)max varies nearly as (FA)-1/2 for
FA�0.1, i.e., most typical values. A few exact
DICOSM calculations [Eq. (9)] are shown as sym-
bols and agree well with GSA results for FA�0.1
in this and the following figures.

The dependence of the number of cycles, jmax,
to reach maximum weight [Eq. (15)] is shown in

Fig. 10. For FA�0.1, jmax varies essentially as
(FA)�1. Increasing Sc decreases the number of
cycles to maximum weight gain. As an extreme
example, increasing Sc by a factor of 10 over its
theoretical limits of 1 to 10 has the effect of
decreasing jmax by a factor of �20.

The same trends are found for the number of
cycles, jo, to reach zero weight, Fig. 11 [Eqs.
(16a,b)]. While generally similar to the family of
curves for jmax, there is one difference that could
affect the ratio of jo/jmax and the overall shape of
the cyclic oxidation curve. This exception occurs
when Case B applies (j
no) before �W/A reaches
zero weight change, found by setting jo,B
no in Eq.
(16b), yielding Sc �8no/(4no+3). This critical Sc is
less than �2.0 (specifically, 1.860, 1.985, or 1.999
for no=10, 100, or 1000, respectively). Conversely,
Eq. (16a) (Case A) or (16b) (Case B) must be used
to obtain jo, yielding two sets of curves in Fig. 11
depending on whether Sc�2 (lower) or Sc�2
(upper), respectively. This special case applies
only for SiO2 (1.878), Li2O (1.868), BeO (1.563),
and B2O3 (1.450), Table 2. In terms of the cyclic
oxidation curve, this means that a linear terminal
slope is reached before the weight reaches zero
(Sc�2, Case B). Also the simple ratio of jo/jmax=3
no longer applies because eqn.16a no longer
applies.

The final linear slope of the cyclic oxidation
curve by differentiating the DICOSM model Eq.
(10) [or GSA model Eq.(13b)] with respect to j:

TS � �(Sc�1)FA�nokp�t (17)

where TS means terminal slope. Since FA=1/no,
Eq. (17) can be restated as:

TS � �(Sc�1)�FAkp�t (18)

It is therefore apparent that the severity of the
final slope increases with Sc, F1/2

A , k1/2
p , and (�t)1/2

on a per cycle basis, or with (�t)�1/2 on a per
hour basis.

The fractional amount of scale spalled each
cycle also reaches a terminal value (Table 1):

Fs,B �
�no

�
no

i � 1
�i

(19)
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which is simplified by using the GSA substi-
tution to:

Fs,B � �1
2

	
2
3
no��1

�
3
2
FA (20)

That is to say that the scale mass fraction spalled
per cycle or per hour approaches 1.5 times the area
fraction spalled, invariant with scale type, growth
rate, or cycle duration.

5. Comparison to other models

These trends are similar to those presented in
previous models. An earlier interfacial spalling
model also presumed that a constant area fraction
spalled to bare metal each cycle [2]. However,
instead of biasing the spallation event to only the
thickest oxide segment, this model assumed that
each new segment also spalls the same area frac-
tion. This leads to an extremely complex model
scale structure, with 2j total segments and corre-
spondingly complex summation equations. How-
ever, for most systems of interest, the spall fraction
is rarely greater 1% of the area each cycle, such
that area of successive spall fractions, (FA)j

becomes correspondingly minute. It is very similar
to the DICOSM model, and similar relations
describe the trends in characteristic features [2].

The models described in COSP are more versa-
tile and completely developed [3–5]. This program
may simulate spallation from the entire outer sur-
face as a uniform layer or as discrete segments
detached at the interface. The latter method
involves a randomized probability (Monte Carlo)
technique to determine whether a given segment
spalls or remains intact (bimodal) on any given
cycle. Both methods are governed by one basic for-
mula defining the weight fraction of spalled oxide
on a given cycle:

Fs � QoW�ar (21)

where Fs is the weight fraction of scale spalled, Qo

is a spall constant, W�r is the weight of intact scale
prior to cooling, and the exponent a is a constant,
usually taken to be 1.0.

The baseline DICOSM curve is shown as a bold

curve in Fig. 12 along with three COSP curves for
uniform layer spallation corresponding to the same
Sc, kp and �t. The first COSP curve was generated
so that the cycles to zero weight matched the
DICOSM curve. Reasonable agreement occurs up
to jo, but some deviation accrues for the steady
state linear loss portion. The second COSP curve
was produced by matching the spall fraction, Fs,
and shows better agreement in the steady state loss
region, but less agreement in the initial portion,
j�jo. The third COSP curve has the same final
slope as the DICOSM plot, but is offset. These
attempts to match the constant spall area fraction
model (DICOSM) with the uniform layer spalling
model (COSP) produced similar, but not entirely
congruent, curves.

This exercise was repeated for the bimodal,
interfacial (Monte Carlo) spalling format within
COSP. In Fig. 13 two COSP models were adjusted
to give the best overall visual fit. One used a Qo

value near those used in the uniform spalling cases.
It produced a reasonably close value of jo and final
slope, TS. (Fluctuations in the curve are produced
by the randomized Monte Carlo spalling process.)
Other attempts used a spall fraction exponent, a,
of 0.5 and 0.0 and produced successively better
matching with similar output parameters [18]. The
DICOSM model appears close to the bimodal
COSP model, but without the Monte Carlo varia-

Fig. 12. Matching attempts of three uniform spalling layer
COSP model cases to baseline DICOSM curve on the basis
of (1) jo, (2) Fs, and (3) TS (for Sc=2.0, kp=0.01 mg2/cm4 h,
�t=1.0 h).
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Fig. 13. Matching attempts of two bimodal (interfacial
segments) Monte Carlo COSP model cases to baseline
DICOSM curve on the basis of the terminal slope, TS (for
Sc=2.0, kp=0.01 mg2/cm4 h, �t =1.0 h).

bility element. These discrepancies are expected
from the reported divergence between uniform
layer and bimodal spalling configurations [4].

6. Summary

A model for cyclic oxidation has been
developed, predicated on parabolic scale growth
and a constant area fraction of spallation. Spall-
ation is interfacial and selected only for the thickest
segment of intact oxide (deterministic). The weight
change behavior can be described by a two-part
equation, for the portions where the number of
cycles is either less than or greater than the number
of area segments. Model curves exhibit typical
characteristics: a maximum in weight gain fol-
lowed by a decrease to zero weight gain and an
eventual linear (steady state) rate of weight loss.
The effects of stoichiometric constant, parabolic
growth rate, spall parameter, and cycle duration all
produce regular trends in the response, with
reasonable similarities to previous models.

An inherent asset of the present model is its
mathematical simplicity. An approximation for the
summation series of the square root of an integer
was developed and used in DICOSM. It repro-
duced all the features of the original spalling model

with negligible error and enabled the formulation
of descriptive parameters as direct functions of the
input parameters. Consequently, the maximum
weight gain, the number of cycles to reach
maximum, the number of cycles to reach zero
weight, and the final rate of weight loss may all
be calculated directly, allowing for easy analysis
of cyclic oxidation data.
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