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While not a historically problematic weed in Nebraska, Palmer amaranth has become 

increasingly problematic in many agronomic cropping systems. Throughout the state, 

several cohorts of Palmer amaranth have been found resistant to several different sites 

of action. Of major concern is a population found resistant to glyphosate the most 

common post-emergence herbicide in Nebraska. As chemical control methods are the 

most common forms of weed control throughout the state methods alternatives or 

enhancements are highly desired. Two field experiments were conducted in 2018 and 

2019 at a grower’s field near Carleton, Nebraska with the objectives to evaluate the 

effects of row spacing and herbicide programs and separately analyze the effect of 

overlapping residual herbicides on control of glyphosate-resistant (GR) Palmer 

amaranth, gross profit margin, and benefit-cost ratios of these herbicide programs. 

Evaluation of the effect on row spacing found no significant effect of narrowing row 

spacing on control, density, or biomass reduction of GR Palmer amaranth across all 

herbicide programs. Herbicide program had a higher impact on GR Palmer amaranth 

control with all PRE fb EPOST except dicamba + chlorimuron/flumioxazin followed 

by dicamba and all PRE fb EPOST+RH providing greater than 85% control from 14 d 

after EPOST (DAEPOST) to 36 DAEPOST. Evaluation of overlapping residual 



herbicides on management of GR Palmer amaranth found that 

flumioxazin/pyroxasulfone/metribuzin provided 78% to 82% control from 14 

DAEPOST to 70 DAEPOST in 2018 and 94% to 98% in 2019. Addition of dicamba + 

acetochlor EPOST to flumioxazin/pyroxasulfone/metribuzin provided 83% to 96% 

from 14 DAEPOST to 70 DAEPOST in 2018 and 99% in 2019. 

As the adoption of new application technologies, herbicide-resistant crops, and 

alternative weed control methods change with the times, surveys provide insight into 

changes in weed dynamics and crop production over time. Conducting multiple 

surveys over the course of several years provides a vital framework in developing 

future research and extension outreach. During the winter of 2019-2020, a survey of 

Nebraska stakeholders was carried to quantify crop production, weed control, and 

management practices throughout the state. In order of importance, Palmer amaranth, 

horseweed, common waterhemp, kochia, and giant ragweed were ranked the most 

problematic weeds statewide. Based on survey responses, 27% of respondents, cited 

integrated weed management systems as the primary concern for future research and 

extension outreach for the state of Nebraska. 
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CHAPTER 1: 

INTRODUCTION AND OBJECTIVES 

 

INTRODUCTION 

Palmer amaranth  

Palmer amaranth [Amaranthus palmeri (L.) Watson] has rapidly become one of the most 

concerning weeds affecting agronomic row crops in the United States (WSSA 2017). In 

Nebraska, a 2015 survey found that stakeholders ranked Palmer amaranth as the sixth most 

problematic weed (Sarangi and Jhala 2018); more recently a 2019 survey has moved Palmer 

amaranth to the number one most problematic weed in Nebraska (McDonald et al. 2021). Of 

concern is the evolution of herbicide resistance in Palmer amaranth biotypes and their 

widespread occurrence. To date several populations of Palmer amaranth in Nebraska have been 

found resistant to acetolactate synthase (ALS), hydroxyphenylpyruvate dioxygenase (HHPD), 

photosystem II (PSII) inhibitors, and glyphosate (Chahal et al. 2017, Jhala et al. 2014, Vieira et 

al. 2018).  

Endemic to the Southwestern United States, Palmer amaranth has spread across the 

continental United States since the beginning of the 20th century due to seed and equipment 

transportation and agricultural expansion (Sauer 1957; Ward et al. 2013). Several key factors that 

have led Palmer amaranth to become such a dominant row crop weed throughout the United 

States are its prolific seed production (Burkey et al. 2007, Guo and Al-Khatib 2003, Massinga et 

al. 2001, Keeley et al. 1987, Scott and Smith 2011, and Sellers et al. 2003), season long 

emergence (Jha et al. 2008, Spaunhorst et al. 2014), and rapid growth rate (Ehleringer and 

Forseth 1980). In addition to high seed proliferation, Palmer amaranth is a dioecious species, 
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primarily pollinated by wind (Franssen et al. 2001; Ward et al. 2013) that can easily transfer and 

proliferate herbicide resistance alleles via pollen-mediated gene flow (Jhala et al. 2021). 

Dicamba/Glyphosate-Resistant Soybean 

First commercialized in 2017, the dicamba/glyphosate-resistant (DGR) soybean system 

has quickly risen in popularity. Current trends in adoption of DGR soybean have risen from 

20% to almost 80% of Nebraska soybean acres (Werle et al. 2018, Jhala et al. 2019). This 

rapid adoption of DGR soybean consequently has led to an increase in dicamba usage alone or 

in mixtures for post-emergence control of broadleaf weeds largely due to widespread 

occurrence of glyphosate-resistant weeds in Nebraska particularly horseweed, waterhemp, and 

Palmer amaranth.  

Cultural Controls: Row Spacing 

As chemical control methods have long been the primary means of weed control in agronomic 

cropping systems, the increased occurrence of herbicide-resistant weeds has driven growers 

toward alternative solutions. Prior studies have demonstrated the integration of chemical 

control programs and cultural control methods such as tillage, crop rotation, crop density, row 

spacing, and cover crops can provide effective control of horseweed (Conyza canadensis L.), 

burclover (Medicago polymorpha L.), common lambsquarters (Chenopodium album L.), 

littleseed canarygrass (Phalaris minor Retz.), scarlet pimpernel (Anagallis arvensis L.), 

toothed dock (Rumex dentatus L.), and GR giant ragweed (Ambrosia trifida L.) (Bhullar et al. 

2015; Chahal and Jhala 2019; Ganie et al. 2016). By alternating the row width can affect 

several important factors attributed to plant growth such as light with increased light 

interception observed with narrower row spacings (Flénet et al. 1996). In soybean, two 

different row spacings 38 cm and 76 cm are in common usage for soybean cultivation in 
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Nebraska. Prior studies have recognized the utility of narrowed row spacings to provide 

enhanced weed control in glyphosate-resistant and glufosinate -resistant soybean as well as 

sweet potato (Bell et al. 2015, Meyers et al. 2010, Whitaker et al. 2010).  

Multiple Sites of Action & Overlapping Residuals Herbicides 

With the high cost of herbicide programs and the increased presence of herbicide-resistant 

weeds, growers have multiple concerns and constraints when it comes to weed management. 

Cost saving measures such as avoiding the usage of PRE herbicides have been employed by 

growers to the detriment of crop yield (Hall et al. 1992, Schuster and Smeda 2007). As usage of 

herbicides with multiple sites of action have higher costs associated with them, managing the 

multiple herbicide-resistant weeds is a constant challenge. As high costs can be difficult to 

justify the usage of higher priced chemical control programs to mitigate the evolution of 

herbicide-resistance, many growers will not adopt these management programs until after the 

establishment of herbicide-resistant weeds (Edwards et al. 2014, Norsworthy et al. 2012). In 

conjunction with usage of herbicides with multiple sites of action, implementation of soil-

residual herbicides mixed with foliar active herbicides in post-emergence applications have been 

encouraged for weeds with extended emergence patterns (Neve et al. 2011).  

Survey of Stakeholders 

Over the past several decades multiple surveys of growers, crop consultants, and other 

stakeholders in agronomic cropping systems have helped shaped university and extension 

research in areas of weed dynamics and management (Gibson et al. 2005, Givens et al 2009a,b, 

Norsworthy 2003, Riar et al. 2013a, b, Sarangi and Jhala 2018). With the commercialization of 

new herbicide-resistant crops, herbicide chemistries, application technology, and farming 

practices the need to detect and monitor shifts in the aforementioned weed dynamics such as the 
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rise in issues with weeds like Amaranthus spp are key to make informed decision making. As 

climates vary greatly from east to west in Nebraska so do the cropping systems and weed issues. 

Data from these stakeholder surveys provide some of the best insights into the issues of 

Nebraska’s stakeholders and provides the basis for further research and extension outreach 

conducted by the University of Nebraska-Lincoln.  

OBJECTIVES 

1. Evaluate the effects of soybean row spacing and herbicide programs on control of 

glyphosate-resistant Palmer amaranth in dicamba/glyphosate-resistant soybean. 

2. Economics of overlapping residual herbicide programs for glyphosate-resistant Palmer 

amaranth management in dicamba/glyphosate-resistant soybean. 

3. Survey Nebraska stakeholders to assess cropping systems, problem weeds, and weed 

management in Nebraska agronomic cropping systems. 
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ABSTRACT 

Glyphosate-resistant (GR) Palmer amaranth is one of the most difficult to control weeds in 

soybean production fields in Nebraska and the United States. An integrated approach is 

required for effective management of GR Palmer amaranth. Cultural practices such as narrow 

row spacing might augment herbicide efficacy for management of GR Palmer amaranth. The 

objectives of this study were to evaluate the effect of row spacing and herbicide programs for 

management of GR Palmer amaranth in dicamba/glyphosate-resistant (DGR) soybean. Field 

experiments were conducted in a grower’s field with a uniform population of GR Palmer 

amaranth near Carleton, Nebraska in 2018 and 2019. Year-by-herbicide program-by-row 

spacing interactions were significant for all variables; therefore, data were analyzed by year. 

Herbicides applied pre-emergence (PRE) controlled GR Palmer amaranth ≥ 95% in both years 

14 d after PRE (DAPRE). Across soybean row-spacing, most PRE fb early-POST (EPOST) 

herbicide programs provided 84% to 97% control of Palmer amaranth compared with most 

EPOST fb late-post (LPOST) programs, excluding dicamba in single and sequential 
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applications (82% to 95% control). Mixing microencapsulated acetochlor with a POST 

herbicide in PRE fb EPOST herbicide programs controlled Palmer amaranth ≥ 93% 14 

DAEPOST and ≥ 96% 21 DALPOST with no effect on Palmer amaranth density. Interaction of 

herbicide program-by-row spacing on Palmer amaranth control was not significant; however, 

biomass reduction was significant at soybean harvest in 2019. The herbicide programs 

evaluated in this study caused no soybean injury. Due to drought conditions during a majority 

of the 2018 growing season, soybean yield in 2018 was reduced compared to 2019. 

INTRODUCTION 

Native to the American Southwest, Palmer amaranth has spread across the continental United 

States since the beginning of the 20th century due to seed and equipment transportation and 

agricultural expansion (Sauer 1957; Ward et al. 2013). Historically, Palmer amaranth was not a 

management concern in Nebraska due to its limited geographical distribution; however, the 

prevalence of Palmer amaranth has increased since the previous decade, with confirmed 

populations in most Nebraska counties. A survey conducted in Nebraska reported Palmer 

amaranth as the fourth most troublesome weed to manage in agronomic crops in the Panhandle 

and West Central regions of Nebraska and sixth most troublesome weed across the state (Sarangi 

and Jhala 2018). Reports from this survey are similar to trends in the southeastern United States, 

where herbicide-resistant (HR), particularly glyphosate-resistant (GR), Palmer amaranth has 

progressively become a troublesome weed to manage in cotton (Gossypium hirsutum L.), corn 

(Zea mays L.), and soybean production fields (Webster and Nichols 2012). 

Palmer amaranth is a prolific seed producer despite competition with agronomic crops 

(Burke et al. 2007; Guo and Al-Khatib 2003; Massinga et al. 2001), with female plants 

producing ≥ 200,000 seeds plant–1 (Keeley et al. 1987; Scott and Smith 2011; Sellers et al. 2003). 
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Palmer amaranth has the potential to produce high numbers of seed. Keeley et al. (1987) reported 

that Palmer amaranth could produce 200,000 to 600,000 seeds plant−1, while Scott and Smith 

(2011) reported seed production from 150,000 to 200,000 seeds plant−1 when Palmer amaranth 

was grown under competition with cotton or soybean. However, (Scott and Smith 2011) 

indicated that seed production of Palmer amaranth grown without competition can exceed 1.5 

million seeds plant−1. Like waterhemp (Amaranthus tuberculatus Sauer), Palmer amaranth has an 

extended emergence period from May to September in the southeastern United States (Jha et al. 

2008) and from May to August in the midwestern United States (Spaunhorst et al. 2014). In 

addition, Palmer amaranth is a dioecious species primarily pollinated by wind (Franssen et al. 

2001; Ward et al. 2013) that can transfer herbicide resistance alleles via pollen-mediated gene 

flow (Jhala et al. 2021). 

Glyphosate, a broad-spectrum systemic herbicide, is the most widely used agricultural 

pesticide globally (Benbrook 2016). An estimated 8.6 billion kg of glyphosate was applied 

worldwide between 1974 and 2014, with the United States accounting for 19%, or 1.6 billion kg, 

of global usage (Benbrook 2016). Glyphosate use in the United States was estimated at 18 

million kg year−1 in 1996, increasing to an estimated 125 million kg in 2013 (USGS 2020). The 

popularity of glyphosate can be attributed in large part to the widespread adoption of GR crops, 

low cost, broad spectrum of weed control, and flexibility with crop rotation without carryover 

injury (Woodburn 2000). Glyphosate was ranked as the most commonly used herbicide in GR 

corn-soybean cropping systems in Nebraska in a survey conducted in 2015 (Sarangi and Jhala 

2018). 

Increased reliance on herbicides resulting from the adoption of reduced/no-tillage 

cropping systems and continuous use of single site-of-action herbicides has led to the evolution 
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of herbicide-resistant weeds (Chahal et al. 2017, 2018). As of 2020, a total of 262 weeds have 

evolved resistance to 23 of the 26 available herbicide sites of action (Heap 2020). In the United 

States, continued use of glyphosate in agronomic cropping systems has led to the evolution of 

resistance to the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) pathway in several 

weeds, including Palmer amaranth (Gaines et al. 2011). The first instance of GR Palmer 

amaranth was confirmed in Georgia in 2004 (Culpepper et al. 2006). Since then, GR Palmer 

amaranth has been confirmed in 39 states in the United States (Heap 2020), including Nebraska 

(Chahal et al. 2017; Vieira et al. 2018). Palmer amaranth biotypes resistant to synthetic auxin 

growth regulators, acetolactate synthase (ALS), photosystem II (PSII)-, hydroxyphenylpyruvate 

dioxygenase (HPPD)-, microtubule-, long chain fatty acid-, and protoporphyrinogen oxidase 

(PPO)-inhibiting herbicides have been reported (Heap 2020). A population of dicamba-resistant 

Palmer amaranth was identified in Tennessee in 2020 (Steckel 2020). Multiple herbicide-

resistant Palmer amaranth populations have been reported in multiple states; for example, 

Schwartz-Lazaro et al. (2017) confirmed a Palmer amaranth population resistant to glyphosate, 

ALS-, PPO-, and microtubule-inhibiting herbicides in Arkansas. Jhala et al. (2014) reported 

atrazine and HPPD-inhibiting herbicide-resistant Palmer amaranth in Nebraska. Kumar et al. 

(2019) confirmed Palmer amaranth resistant to atrazine, chlorsulfuron, 2,4-D, glyphosate, and 

mesotrione in Kansas.  

While herbicides are currently the primary tool for weed control in agronomic crops in 

the United States, integration of non-chemical control methods (i.e., cultural, mechanical, and 

biological) could provide enhanced weed control. Previous studies have demonstrated the 

benefits of integrating cultural control methods such as tillage, crop rotation, crop density, row 

spacing, ground cover, and cover crops with herbicides for control of GR horseweed (Conyza 
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canadensis L.), burclover (Medicago polymorpha L.), common lambsquarters (Chenopodium 

album L.), littleseed canarygrass (Phalaris minor Retz.), scarlet pimpernel (Anagallis arvensis 

L.), toothed dock (Rumex dentatus L.), and GR giant ragweed (Ambrosia trifida L.) (Bhullar et 

al. 2015; Chahal and Jhala 2019; Ganie et al. 2016). Narrow row spacing has been shown 

previously to enhance weed control and reduce weed seed production in GR soybean, 

glufosinate-resistant soybean, and sweet potato (Bell et al. 2015; Meyers et al. 2010; Whitaker et 

al. 2010).  

The adoption of dicamba/glyphosate-resistant (DGR) soybean has been high since its 

commercialization, with Beckie et al. (2019) reporting > 50% market share in the United States 

by 2019. This trend corresponds with survey results, which reported that DGR soybean adoption 

increased from 20% in 2017 to almost 80% in 2019 in Nebraska (Chahal and Jhala 2019; Werle 

et al. 2018). Given the continued spread of HR weeds such as GR Palmer amaranth, this 

adoption trend is indicative of producers’ search for alternative weed management options in 

soybean. Due to the lack of scientific literature on integration of narrow row spacing with 

dicamba-based herbicide programs for control of GR Palmer amaranth in DGR soybean, the 

objectives of this study were to determine the effects of soybean row spacing (38 or 76 cm) and 

herbicide programs for GR Palmer amaranth control, density, and biomass as well as soybean 

injury and yield in DGR  

MATERIALS AND METHODS 

Study Site and Experimental Design 

Field experiments were conducted during the summer of 2018 and 2019 in a grower’s rainfed 

field in Thayer County, Carleton, NE (40.30oN, 97.67oW). The field was naturally infested 

with Palmer amaranth resistant to glyphosate with 37-40 fold resistance (Chahal et al. 2017). 
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The soil texture at the research site was Crete silt loam (montmorillonitic, mesic, Pachic 

Argiustolls) with a pH of 6.0, 19% sand, 63% silt, 18% clay, and 2.6% organic matter content. 

Palmer amaranth was the primary weed in the field with sporadic presence of horseweed, 

green foxtail (Setaria viridis P. Beauv.), and giant foxtail (Setaria faberi Herrm.). 

The producer’s field had been in a GR corn-soybean rotation with reliance on glyphosate for 

weed control in a no-till production system for the previous 10 yr. Corn residue from the 

previous cropping season was retained and the study conducted using no-till practices. Paraquat 

(Gramoxone® SL, Syngenta Crop Protection, Greensboro, NC 24719) at 840 g ai ha–1 plus 2,4-

D ester (Weedone® LV6, Nufarm Inc., Burr Ridge, IL 60527) at 386 g ae ha–1 plus a nonionic 

surfactant (Induce®, Helena Chemical, Collierville, TN 38017) at 0.25% v/v was applied two 

wk before soybean planting with a tractor-mounted sprayer calibrated to deliver 140 L ha–1 at 

276 kPa for control of winter annual weeds. Dicamba/glyphosate-resistant soybean (Northern 

King NK S29K3X) was planted on May 10, 2018 and May 15, 2019 at 346,000 seeds ha–1 at a 

depth of 3.0 cm.  

Treatments were arranged in a randomized split-block design with four replications (Federer 

and King 2006). Herbicide programs were assigned as the whole plot factor (Table 2-1) in a 

randomized complete block whereas row spacing (38 or 76 cm) was assigned as the subplot 

factor, which resulted in non-standard incomplete “column” blocks, each containing 15 

herbicide programs across the four replications. An incomplete blocking factor was added to 

simplify the field operation of planting soybean in 38 cm and 76 cm row spacing and reduce 

field traffic to avoid soil compaction. Plots were 3 m wide by 9 m long with four soybean rows 

spaced 76 cm apart or 6 soybean rows spaced 38 cm apart. In total, 15 herbicide programs were 

evaluated: two early-POST (EPOST), four EPOST followed by (fb) late-POST (LPOST), four 
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PRE fb EPOST, four PRE fb EPOST plus a residual herbicide (RH), and a nontreated control 

(Table 2-1). PRE herbicides were applied on the same day after planting DGR soybean, and 

EPOST herbicides were applied on June 18, 2018 and June 25, 2019 when soybean was at the 

V3 to V4 growth stage and Palmer amaranth was 7.5 to 10.5 cm tall. LPOST herbicides were 

applied on July 6, 2018 and July 2, 2019 when soybean was at the R1 growth stage. The PRE, 

EPOST, and LPOST herbicides were applied using a handheld CO2 pressurized backpack 

sprayer fitted with an AIXR 110015 flat fan or TTI 11005 flat angle nozzles (TeeJet®, 

Spraying Systems Co., P.O. Box 7900, Wheaton, IL 60139) based on label requirements and 

calibrated to deliver 140 L ha–1 at 276 kPa. 

Data Collection 

Palmer amaranth control from PRE herbicides was visually assessed 14 and 28 d after PRE 

(DAPRE) herbicide applications using a scale of 0% to 100%, with 0% representing no control 

and 100% representing complete control. Likewise, Palmer amaranth control from POST 

herbicides was visually assessed at 14 and 21 d after early-POST (DAEPOST) applications, 21 

d after late-POST (DALPOST) applications, and prior to soybean harvest using the same scale 

at which PRE herbicides were evaluated. Palmer amaranth density was recorded 14 DAPRE, 14 

DAEPOST, and 14 DALPOST by counting Palmer amaranth plants in two 0.5 m2 quadrats 

placed randomly between the two or four center soybean rows (76 or 38 cm row spacing, 

respectively) in each plot and converting to plants m-2. Soybean injury was visually assessed at 

14 DAPRE, 14 DAEPOST, and 14 DALPOST on a scale of 0% to 100%, with 0% representing 

no injury and 100% representing complete plant death. Aboveground biomass of Palmer 

amaranth was collected 14 DAEPOST and 21 DALPOST. Biomass samples were oven-dried at 
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65oC for 14 d, with Palmer amaranth aboveground biomass data converted into percent biomass 

reduction compared with the nontreated control using the following equation (Wortman 2014): 

Aboveground biomass reduction (%) = [(C-B)/C] x 100  

where C is equal to the aboveground biomass of the nontreated control plot and B is equal to 

the biomass of an individual treated plot. Soybean yield was taken from the center two or four 

rows in each plot (for 76 and 38 cm row spacing, respectively) using a plot combine (Gleaner 

K2, AGCO, 4205 River Green Parkway, Duluth, GA) and adjusted to 13% moisture content. 

Statistical Analysis 

 Statistical analysis was performed in R statistical software v. 4.0.3 (R Core Team 2018) using 

the “glmmTMB” package (Brooks et al. 2017) and “lme4” package (Bates et al. 2015), with 

subsequent contrast analysis preformed using the “gmodels” package (Warnes et al. 2018). 

Year-by-treatment and year-by-treatment-by-row spacing interactions were evaluated, and if 

significant, data were analyzed separately by year. In the models separated by year, the 

interaction of herbicide treatment and row spacing were considered fixed effects whereas the 

interaction of replication by herbicide treatment, column, and column by row spacing were 

considered random effects.  

Normality assumptions were tested for each variable using Shapiro-Wilk tests and Normal Q-Q 

plots. Total aboveground Palmer amaranth biomass reduction and Palmer amaranth control 

ratings were log(x+1) or logit-transformed and fit to generalized linear mixed-effect models 

using glmmTMB functions with gaussian (link = “identity”) and beta (link = “logit”) error 

distributions, respectively (Stroup 2015). Likewise, soybean yield and weed density data were 

log(x+1) or square root transformed and fit to linear mixed-effect models using the lmer 
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function (Kniss and Streibig 2018). Selection for final glmmTMB models was based on model 

dispersion parameter estimates and Akaike information criterion (AIC) values, with log(x+1) or 

logit transformation with beta and gaussian error distributions selected for all response 

variables, respectively. Likewise, final lmer models were selected based on restricted maximum 

likelihood (REML) criterion at convergence values and AIC values. Prior to conducting 

ANOVA, variance assumptions were tested for each variable at α = 0.05 using Bartlett and 

Fligner-Killen tests (Kniss and Streibig 2018). Variables that failed variance assumptions were 

subsequently assessed for outliers and heterogeneity of variance by plotting residual values 

(Knezevic et al. 2003; Ritz et al. 2015). 

The ANOVA was performed using the “car” package (Fox and Weisberg 2019). For lmer 

models, ANOVA was conducted with Type III Wald F Tests, whereas glmmTMB models used 

Type III Wald Chi-Square Tests. After conducting ANOVA, treatment estimated marginal 

means were separated using the “emmeans” package (Lenth 2019) and “multcomp” package 

(Hothorn et al. 2008). Estimated marginal means included Post-hoc Tukey P-value adjustments 

and Sidak method confidence-level adjustments, with compact letter display generated via the 

multcomp::cld function. A priori contrasts were performed using the “gmodels” package 

(Warnes et al. 2018) to compare EPOST, EPOST fb LPOST, and PRE fb EPOST herbicide 

programs. In the first set of A priori contrasts, PRE fb EPOST programs were pooled together 

regardless of the inclusion of a RH at EPOST. Following these sets of contrasts, PRE fb 

EPOST herbicide programs were further separated into PRE fb EPOST, and PRE fb EPOST 

plus RH to evaluate the addition of acetochlor as an overlapping residual herbicide. Following 

treatment means separation and contrast analysis, data were back-transformed for the 

presentation of results. 
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RESULTS AND DISCUSSION 

Year-by-herbicide program-by-row spacing interactions were significant for all experimental 

variables; therefore, data were separated and presented by year.  

Temperature and Precipitation 

 Growing conditions differed between the 2018 and 2019 growing seasons (Figure 2-1). In 

both years, field experiments were conducted under rainfed conditions. During 2018, 

cumulative precipitation received was below the 30-yr average (517 mm) for most of the 

growing season. In contrast, during 2019, cumulative precipitation received during the 

growing season exceeded the 30-yr average by 221 mm. Average daily temperatures in 2018 

exceeded the 30-yr average during the early growing season, whereas they closely resembled 

the 30-yr average in 2019 (Figure 2-1). Herbicide programs evaluated in this study displayed 

excellent safety in DGR soybean, with no observable injury across both years (data not 

shown).  

Palmer amaranth Control 

 Herbicides applied PRE controlled GR Palmer amaranth ≥ 95% in both yr 14 DAPRE 

(Table 2-2). The PRE herbicides-controlled Palmer amaranth 91% to 96% in 2018, whereas 

in 2019, flumioxazin/metribuzin/pyroxasulfone and imazethapyr/pyroxasulfone/saflufenacil 

provided 95% and 93% control, respectively, at 21 DAPRE. In 2019, dicamba plus 

chlorimuron/flumioxazin applied PRE controlled Palmer amaranth 80% compared to 45% 

control with dicamba (Table 2-2). Reduced control of Palmer amaranth with dicamba 

applied alone in 2019 can be attributed primarily to the shorter residual control by dicamba 

compared to other PRE herbicide programs evaluated as observed by Hedges et al. (2019). 

Efficacy of pre-mixed and tank-mixed PRE herbicides with multiple effective sites of action 
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on Palmer amaranth control were previously evaluated in Nebraska, with Striegel et al. 

(2020) and Shyam et al. (2021) reporting 93% to 99% control 14 and 28 DAPRE in soybean. 

Results from the current study are similar to those reported by Meyer et al. (2015), where 

flumioxazin/pyroxasulfone, metribuzin, dicamba, S-metolachlor, S-metolachlor/fomesafen, 

acetochlor, isoxaflutole, and S-metolachlor/mesotrione applied PRE provided 95% to 99% 

control of Palmer amaranth 21 DAPRE in field experiments conducted in Arkansas, Illinois, 

Indiana, Missouri, Nebraska, and Tennessee.  

At 14 DAEPOST, the interaction of herbicide program-by-row spacing and the main effect 

of row spacing for Palmer amaranth control were not significant for either year. For both 

years, EPOST and EPOST fb LPOST herbicide programs provided reduced control of 

Palmer amaranth compared with PRE fb EPOST application of dicamba or dicamba plus 

acetochlor. Imazethapyr applied EPOST provided 15% and 4% Palmer amaranth control in 

2018 and 2019, respectively. Likewise, EPOST or EPOST fb LPOST applications of 

glyphosate provided 10% to 30% control across both years. Reduced Palmer amaranth 

control with imazethapyr and glyphosate observed in this study can be attributed primarily to 

the prevalence of ALS-inhibitor resistant and GR Palmer amaranth biotype present at the 

study location (Chahal et al. 2017). In EPOST and EPOST fb LPOST herbicide programs 

where dicamba was applied, Palmer amaranth control from EPOST programs varied from 

36% to 68% in 2018 and 85% to 89% in 2019 (Table 2-3). A priori contrasts comparing the 

main effect of herbicides on Palmer amaranth control were significant (P < 0.05) 14 

DAEPOST for both years, with PRE fb EPOST herbicide programs providing 90% and 99% 

Palmer amaranth control in 2018 and 2019, respectively. The addition of acetochlor with 
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EPOST herbicides increased Palmer amaranth control 14 DAEPOST in 2018 and 2019 (88% 

vs. 93% and 83% vs. 94%, respectively). 

At 21 DAEPOST, PRE fb EPOST and PRE fb EPOST + RH (acetochlor) programs 

controlled Palmer amaranth 84% to 97% in both years, with comparable control also 

provided by most EPOST or EPOST fb LPOST dicamba applications (Table 2-3). 

Conversely, glyphosate provided 36% to 43% control in 2018 and 7% to 8% control in 2019. 

This indicates the level of glyphosate resistance and demonstrates that even two applications 

of glyphosate could not provide > 45% control. Imazethapyr applied EPOST controlled 

Palmer amaranth 58% in 2018 and 3% in 2019, whereas mixing fomesafen/S-metolachlor 

with imazethapyr improved control to 75% and 61% 21 DAEPOST in 2018 and 2019, 

respectively (Table 2-3). A priori contrasts comparing the main effects of herbicide 

programs on Palmer amaranth control were significant (P < 0.001) 21 DAEPOST, with PRE 

fb EPOST and PRE fb EPOST + RH providing the highest Palmer amaranth control. 

Averaged across PRE herbicides, mixing acetochlor with dicamba applied EPOST increased 

Palmer amaranth control 21 DAEPOST in 2018 (97%) compared to dicamba alone (92%), 

but not in 2019 (Table 2-3).  

At 21 DALPOST, most PRE fb EPOST and PRE fb EPOST + RH programs continued to 

provide 91% to 99% Palmer amaranth control in 2018, with the exception of dicamba PRE 

fb dicamba EPOST (84%), which was similar to EPOST-only programs (82%). In contrast, 

dicamba applied EPOST fb LPOST controlled Palmer amaranth 91%, similar to PRE fb 

EPOST programs. These results were similar at 21 DALPOST in 2019, with PRE fb EPOST, 

PRE fb EPOST + RH, and stand-alone applications of dicamba applied EPOST or EPOST fb 

LPOST providing 85% to 95% control of Palmer amaranth. Dicamba applied LPOST 
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following imazethapyr or imazethapyr plus fomesafen/S-metolachlor applied EPOST 

controlled Palmer amaranth 58% to 85%.  

A priori contrasts comparing the main effects of herbicide programs on Palmer amaranth 

control were significant 21 DALPOST with PRE fb EPOST herbicide programs providing ≥ 

92% Palmer amaranth control. Tank-mixing acetochlor with POST herbicides increased 

Palmer amaranth control 21 DALPOST (Table 2-3). In 2018, the interaction of herbicide 

program by row spacing was significant (P < 0.001) for Palmer amaranth control 21 

DALPOST, although comparisons of estimated marginal means across row spacing was only 

significant for EPOST applications of glyphosate, which provided 53% and 26% Palmer 

amaranth control in 38 and 76 cm row spacing, respectively (Table 2-4). In both years, 

contrasts comparing the main effects of herbicide programs on Palmer amaranth control 

were significant 21 DALPOST, with PRE fb EPOST herbicide programs providing 92% and 

88% control in 2018 and 2019, respectively. Mixing acetochlor with POST herbicides 

increased Palmer amaranth control 21 DALPOST (Table 2-3). The increased Palmer 

amaranth control via the inclusion of acetochlor as an overlapping residual herbicide is 

similar to results reported by Sarangi and Jhala (2019) in which overlapping residual 

herbicides increased Palmer amaranth control and biomass reductions in conventional 

soybean 28 DAPOST in a field study in Nebraska. 

Prior to soybean harvest, most PRE fb EPOST and PRE fb EPOST + RH programs 

controlled GR Palmer amaranth 91% to 99%, with the exception of dicamba fb dicamba in 

2018, which provided 76% control (Table 2-5). These results are similar to those reported by 

Bell et al. (2015) in a two-year study in which herbicide programs receiving PRE herbicides 

controlled Palmer amaranth ≥ 95% regardless of row spacing when evaluated prior to 
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harvest. The EPOST and EPOST fb LPOST applications of dicamba provided similar 

control to PRE fb EPOST herbicide programs, with the exception of dicamba applied 

EPOST in 2018 (72%). As observed at 21 DALPOST, imazethapyr fb dicamba and 

imazethapyr mixed with fomesafen/S-metolachlor fb dicamba provided 60% to 78% Palmer 

amaranth control. A priori contrasts comparing the main effects of herbicide programs on 

Palmer amaranth control were significant for pre-harvest Palmer amaranth control with PRE 

fb EPOST herbicide programs providing 92% to 99% Palmer amaranth control. Mixing 

acetochlor with EPOST herbicide increased Palmer amaranth control at pre-harvest in 2018, 

but not in 2019 (Table 2-5). While the effect of acetochlor applied POST in soybean is well 

documented (Bell et al. 2015; Manuchehri et al. 2017; Sarangi and Jhala 2018), the effect of 

including acetochlor with dicamba in DGR soybean applied POST for Palmer amaranth 

control is limited. The inconsistency of pre-harvest Palmer amaranth control with acetochlor 

has been reported elsewhere. For example, Spaunhorst et al. (2014) reported that the 

inclusion of acetochlor applied EPOST or LPOST did not provide additional control of 

waterhemp compared to programs without acetochlor in DGR soybean in Missouri. 

Likewise, including acetochlor in an overlapping residual herbicide program did not increase 

Palmer amaranth control compared to programs lacking acetochlor in cotton (Manuchehri et 

al. 2017). In contrast, research conducted in Nebraska with multiple HR Palmer amaranth in 

corn has indicated that acetochlor applied POST in a PRE fb POST herbicide program was 

an effective management strategy (Chahal et al. 2018). An important distinction to note is 

that the inclusion of acetochlor with POST herbicides did not result in reduced Palmer 

amaranth control (via antagonistic effects) compared to corresponding programs that did not 

include acetochlor. 
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Palmer amaranth Biomass Reduction 

The main effect of row spacing and the interaction of herbicide-by-row spacing were not 

significant 14 DAEPOST in 2018 (Table 2-6). The PRE fb EPOST and PRE fb EPOST plus 

RH programs provided the highest reduction of Palmer amaranth biomass (91% to 100%) 

compared to EPOST (23% to 78%) and EPOST fb LPOST (22% to 68%) 14 DAEPOST 

(Table 2-6). A priori contrasts in 2018 comparing the main effect of herbicide programs on 

Palmer amaranth biomass reduction were significant, with PRE fb EPOST programs 

providing the greatest reduction of Palmer amaranth biomass. The addition of acetochlor as a 

RH was not significant 14 DAEPOST in 2018 (Table 2-6). 

A priori contrasts in 2019 comparing the main effect of herbicide program on Palmer 

amaranth biomass reduction were significant 14 DAEPOST and 14 DALPOST, with PRE fb 

EPOST programs providing 97% and 90% biomass reductions, respectively. The addition of 

acetochlor as a RH was significant 14 DAEPOST in 2019 (99% vs. 94% biomass reduction), 

but not 14 DALPOST (P < 0.05) (Table 2-6). Acetochlor has been previously shown to 

provide > 80% control of Palmer amaranth up to 50 d after application (Cahoon et al. 2015), 

while mixing acetochlor with glufosinate has been shown to provide ≥ 93% biomass 

reduction of GR common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant 

soybean (Barnes et al. 2017) and ≥ 84% control applied alone or tank-mixed with 

fluometuron, diuron, fomesafen, or diuron/fomesafen (Cahoon et al. 2015).  

Prior to harvest in 2019 (e.g., 88 DALPOST), PRE fb EPOST and PRE fb EPOST plus RH 

programs reduced Palmer amaranth biomass 98% to 100%. The EPOST fb LPOST 

programs, excluding glyphosate fb glyphosate (62%), reduced Palmer amaranth biomass 

100%, whereas glyphosate and dicamba applied EPOST reduced Palmer amaranth biomass 
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only 2% and 68%, respectively (Table 2-6). A priori contrasts comparing the main effects of 

herbicide program for Palmer amaranth biomass reduction were significant, with PRE fb 

EPOST and EPOST fb LPOST programs providing similar reductions of Palmer amaranth 

biomass (Table 2-6). The interaction of herbicide program by row spacing on Palmer 

amaranth biomass reduction was significant (P = 0.026) at pre-harvest in 2019, with most 

herbicide programs providing similar biomass reductions with the exception of dicamba 

applied EPOST (97% and 40% biomass reductions for 38 and 76 cm row spacings, 

respectively) and glyphosate applied EPOST fb LPOST (76% and 48% biomass reductions 

for 38 cm and 76 cm row spacing, respectively) (Table 2-4). The effect of row spacing on 

Palmer amaranth biomass reduction in herbicide programs consisting of dicamba applied 

EPOST and glyphosate applied EPOST fb LPOST can be partially attributed to the effects 

that narrower row spacing has on achieving canopy closure more quickly compared to wider 

row spacing. With rapid canopy closure, late-emerging Palmer amaranth growth is 

suppressed, limiting biomass and seed production (Buehring et al. 2002; Jha and Norsworthy 

2009; Norsworthy et al. 2007).  

Palmer amaranth Density 

 Palmer amaranth density was higher in EPOST and EPOST fb LPOST herbicide programs 

compared to programs containing PRE herbicides 14 DAEPOST in both years (Table 2-7). 

However, the interaction of herbicide by row spacing was significant 14 DAEPOST (P = 

0.028 and P = 0.04, respectively), although after adjusting for multiple comparisons, 

estimated marginal mean groupings were similar for herbicide programs and row spacing 

(Table 2-8). This is likely attributed to the large variance in Palmer amaranth densities across 

herbicide programs and row spacings, or the conservative nature of Post-hoc Tukey P-value 
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adjustments and Sidak method confidence-level adjustments utilized during estimated 

marginal mean separation. For the analysis of main effects, A priori contrasts comparing 

Palmer amaranth density 14 DAEPOST for both years were significant with reduced Palmer 

amaranth density in PRE fb EPOST herbicide programs compared to EPOST and EPOST fb 

LPOST herbicide programs. The addition of acetochlor with a POST herbicide did not 

reduce Palmer amaranth density in PRE fb EPOST herbicide programs, indicating that a RH 

at EPOST is not needed in every field and that careful herbicide selection is necessary based 

on weed density and moisture availability to avoid extra cost (Table 2-7). 

 At 14 DALPOST in 2019 (e.g., 36 DAEPOST), density of Palmer amaranth was not 

significant by herbicide or herbicide by-row spacings. Row spacing was significant (P = 

0.002), with 1.0 Palmer amaranth plant m–2 in 38 cm row spacing compared to 15 Palmer 

amaranth plants in 76 cm row spacing across the herbicide programs evaluated. Mixing 

acetochlor did not reduce Palmer amaranth density compared to PRE fb EPOST herbicide 

programs without acetochlor (Table 2-7). Inclusively, findings from the current study at 14 

DALPOST are similar to the results of Spaunhorst et al. (2014), which reported that 

acetochlor with EPOST or LPOST herbicides did not reduce waterhemp density in DGR 

soybean in Missouri compared to EPOST and LPOST herbicides that did not include 

acetochlor. 

Soybean Yield 

 Due to drought conditions during a majority of the growing season in 2018, soybean yield 

was reduced compared with 2019 (Figure 2-1; Table 2-5). In 2018, the main effect of 

herbicide program was significant for soybean yield, whereas row spacing and the 

interaction effect of herbicide-by-row spacing were not significant. Yield was consistently 
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higher in PRE fb EPOST (695 kg ha–1) and PRE fb EPOST plus RH programs (925 kg ha–1) 

compared to most EPOST and EPOST fb LPOST herbicide programs with the exception of 

dicamba applied EPOST (655 ± 55 kg ha–1) and dicamba applied EPOST fb LPOST (564 ± 

75 kg ha–1). A priori contrasts comparing soybean yield in 2018 were significant, with the 

highest yield occurring in treatments that received PRE fb EPOST herbicides, which is 

consistent with literature indicating the economic importance of PRE fb POST herbicide 

programs (Barnes et al. 2017; Rosenbaum et al. 2013) as well as multiple applications to 

control Palmer amaranth (Cahoon et al. 2015). 

The main effects of row spacing and herbicide programs were significant for soybean yield, with 

4,607 ± 238 and 3,930 ± 203 kg ha–1 in 38 and 76 cm row spacing, respectively, in 2019 (Table 

2-5). Across row spacings, soybean yield was similar for most herbicide programs, excluding 

glyphosate applied EPOST (3,176 ± 269 kg ha–1). Wax and Pendleton (1968) reported soybean 

yield increase of 10%, 18%, and 20% in 76, 50, and 25-cm row spacing compared with the 101 

cm row spacing in field experiments conducted in Illinois. A priori contrasts comparing soybean 

yield in 2019 were significant with the highest yield in PRE fb EPOST or EPOST fb LPOST 

herbicide programs, indicating the importance of utilizing PRE herbicide programs in DGR 

soybean; however, mixing acetochlor with POST herbicides did not result in increased soybean 

yield (Table 2-5). While soybean grain yield reduction of up to 79% due to Palmer amaranth 

interference has previously been reported (Bensch et al. 2003; Klingaman and Oliver 1994; 

Monks and Oliver 1988), the control of Palmer amaranth provided by most of the herbicide 

programs in this research was substantial enough to avoid the yield reductions that occurred to 

the nontreated control (2,284 kg ± 199 kg ha–1). 

Conclusion 
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Results of this study indicate that herbicide programs and their subsequent application timing 

had a greater impact on control of GR Palmer amaranth than row spacing in DGR soybean. 

While significantly higher reductions to Palmer amaranth biomass occurred pre-harvest in 38-cm 

row spacings compared to 76-cm row spacings in EPOST applications of dicamba and EPOST fb 

LPOST programs of glyphosate, other inconsistent results in this research pertaining to Palmer 

amaranth density/main effects of row-spacing along with other variable results reported in the 

literature suggests additional research may be needed. Results from this research indicates that 

the use of PRE fb POST herbicide programs in DGR soybean provide higher levels of Palmer 

amaranth control than PRE-only herbicide programs, and also that dicamba applied POST 

provides effective control of GR Palmer amaranth. The efficacy of acetochlor applied EPOST on 

Palmer amaranth control, density, and biomass reduction varied across site-years and evaluation 

periods.  

Results of this study affirm the importance of herbicide programs that utilize multiple sites of 

action.  For example, EPOST applications of dicamba provided 68% biomass reduction at pre-

harvest when averaged across row spacings, which was a stark contrast compared to the 98% to 

100% biomass reductions that occurred in PRE fb EPOST and PRE fb EPOST plus RH 

programs. These results are similar to the findings of Cahoon et al. (2015) in DGR cotton, which 

reported that sequential applications of dicamba were more effective than a single application; 

however, selection pressure on Palmer amaranth and other weeds should be considered when 

using sequential applications of the same herbicide and such sequential applications should be 

avoided if other options are available, especially considering the recent discovery of dicamba-

resistant Palmer amaranth in Tennessee (Steckel 2020). 
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CHAPTER 3: 
ECONOMICS OF OVERLAPPING RESIDUAL HERBICIDE PROGRAMS 

FOR GLYPHOSATE-RESISTANT PALMER AMARANTH MANAGEMENT 
IN SOYBEAN 

 

ABSTRACT 

The rapid growth and extended germination window of Palmer amaranth along with the wide-

spread evolution of herbicide-resistant biotypes have complicated management programs of 

this problem weed. Field experiments were conducted in 2018 and 2019 in a grower’s field 

near Carleton, NE to evaluate the effect of pre-emergence (PRE) followed by (fb) a tank-

mixture of foliar active and residual post-emergence (POST) herbicide programs for control 

of glyphosate/ALS-inhibitor-resistant Palmer amaranth in dicamba/glyphosate-resistant 

soybean. PRE herbicides evaluated in this study provided 94%- 100% reductions in weed 

biomass 14 d after PRE (DAPRE) in 2019. At 28 DAPRE, PRE herbicides provided 80% to 

92% control of Palmer amaranth during both years. Likewise, in 2019, PRE-only, PRE fb 

POST, and PRE fb POST + RH (residual herbicide) programs provided 98% to 100% 

reductions in Palmer amaranth biomass 28 DALPOST. All herbicide programs provided 

similar control 21 DAEPOST in 2018. Herbicides applied PRE provided 94% control of 

Palmer amaranth compared to 99% control with PRE fb POST and PRE fb POST + RH 

21DAEPOST in 2019. While soybean yields did not differ across herbicide programs in 2018, 

PRE fb POST + RH programs produced higher yields (4,860 kg ha-1) than PRE-only (4,487 

kg ha-1), PRE fb POST (4,569 kg ha-1), and POST fb LPOST (4,537 kg ha-1) programs in 

2019. While programs with chlorimuron/flumioxazin/pyroxasulfone fb dicamba + acetochlor 

& flumioxazin/pyroxasulfone/metribuzin fb dicamba + acetochlor produced negative gross 
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profit margins in 2018 consequentially produced the highest overall gross profit margins 

$1,603 ha-1 and $1,658 ha-1 in 2019, respectively. 

INTRODUCTION 

Weed infestation in agronomic crop production systems has been recognized as one of the 

major threats to global food security and it continue to be an issue in modern agriculture 

(Blackman and Templeman 1938; Weber and Staniforth 1957). Competition for nutrients, 

water, space, and sunlight between crops and weeds lead to losses in crop yield (Tillman 

1990). Metanalysis conducted by Soltani et al. (2016) and (2017) reported that weed 

infestation resulted in US $48 billion in yield losses in corn and soybean in Canada and US 

combined. To mitigate economic losses to weed interference, farmers are required to consider 

a multitude of factors, including the type of crop and any associated herbicide-resistance 

traits, weed control spectrum, selectivity, cost of herbicides, environment, and fit with 

conservation agriculture (Buhler 1999; Swanton and Weise 1991). Increasing in prevalence 

with the movement of sustainable crop production, conservation agriculture consists of three 

main points: minimal soil disturbance, permanent soil cover with crop residue and or cover 

crops, and crop rotations (FAO 2017). Conservation agriculture has seen rapid growth 

globally with a 12.5% increase from an estimated 106 million ha in 2008/2009 to 180 million 

ha in 2015/2016 (Kassam et al. 2019). As of the 2017 United States Department of 

Agriculture (USDA) Ag Census, US growers reported 42,270,399 ha of crop lands under no-

till practices (USDA 2017). While there are number of benefits of no-till crop production 

system, the major limitation is weed control is primarily depends on herbicides. 

Development and commercialization of herbicide-resistant crops, primarily glyphosate-

resistant (GR) crops, in the 1990s have provided simplified, flexible, and cost-effective weed 
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control option and promoted conservation agriculture by reducing deep tillage and 

maintaining crop residues on the soil surface (Carpenter and Gianessi 1999; Dill et al. 2008; 

Triplett and Dick 2008). However, given the steady reliance on glyphosate, several reports 

have expressed concerns regarding the evolution of GR weed biotypes (Chahal and Jhala 

2017, Norswothty et al 2008, Kohrt et al. 2017). As of 2020, a total of 53 weed species have 

been reported as GR globally, of those 17 have been reported in the United States (Heap 

2021), with 6 being reported in Nebraska (Jhala 2018). Given the widespread occurrence of 

GR weeds in the United States, application of residual herbicides at planting or certain 

labeled herbicides mixed with POST herbicides have been shown to aide in management of 

GR weeds (Norsworthy et al. 2012; Sarangi et al. 2017; Whitaker et al. 2010). Sarangi and 

Jhala 2018 reported 60% of NE producers use residual herbicides, similar trends were also 

observed nationally (70%) (Beckie 2018). 

An increasing evolution of GR weeds in the USA due to the widespread use of glyphosate led 

growers to look for alternative herbicides. Soybean resistant to dicamba and glyphosate was 

commercialized in 2017 providing growers an option to apply dicamba for POST weed 

control. A synthetic auxin herbicide (WSSA: Group 4), dicamba is a popular foliar-applied 

herbicide in Nebraska corn (Zea mays L.), sorghum (Sorghum bicolor L.), and wheat 

(Triticum aestivum L.) production (Sarangi and Jhala 2018). Since it’s commercialization in 

2017, dicamba/glyphosate-resistant (DGR) soybean has rapidly grown in popularity as seen 

with the adoption rate increasing from 20% in 2017 to 80% in 2019 for the state of Nebraska 

(Chahal and Jhala 2019; Werle et al. 2018). Usage of the dicamba-resistance trait is likely to 

remain steady in commercial soybean production with the recent release of 

glyphosate/dicamba/glufosinate-resistant soybean (Jhala 2019).  
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Palmer amaranth (Amaranthus palmeri) has been recognized as a major problem weed in 

agronomic crops in the United States (WSSA 2017). A survey conducted in 2015 found that 

stakeholders ranked Palmer amaranth as the sixth most problematic weed in Nebraska 

(Sarangi and Jhala 2018); however, a recent survey in Nebraska reported Palmer amaranth as 

the most common problem weed (McDonald et al. 2021). As of 2021, Palmer amaranth 

biotypes resistant to acetolactate synthase (ALS), hydroxyphenylpyruvate dioxygenase 

(HPPD), photosystem II (PSII) inhibitors, and glyphosate was confirmed in Nebraska (Chahal 

et al. 2017; Jhala et al. 2014; Vieira et al. 2018). In addition, a population of dicamba-

resistant Palmer amaranth has been confirmed in Tennessee (Steckel 2020) and glufosinate-

resistant Palmer amaranth has been confirmed in Arkansas (Barber et al 2021).  

In prior studies of season-long interference, Palmer amaranth at a density of 3.33 and 10 

plants per m of soybean row reduced grain yield by 64% and 68%, respectively (Klingaman 

and Oliver 1994). Similarly, Bensch et al. (2003) reported that Palmer amaranth interference 

at a density of 8 plants m–1 of soybean row resulted in 79% yield loss in Kansas. With wide 

emergence window of Palmer amaranth from May to September in the Southeastern United 

States (Jha et al. 2008) and May to August in the Midwestern United States (Spaunhorst et al. 

2018), effective season-long control of Palmer amaranth is necessary to reduce the impact on 

crop yield. For example, Sarangi and Jhala (2018) reported 7% to 40% higher soybean yield 

in conventional non-GMO soybeans which received a PRE fb POST + residual herbicides 

compared to PRE fb POST herbicide programs. However, due to the recent 

commercialization of DGR soybean, scientific literature examining the utility of soil-applied 

residual herbicides used in combination with PRE and POST herbicides programs is not 

available for GR Palmer amaranth management. 
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As the number of HR weeds increases consequentially the cost of herbicides to manage them 

is significant. Multiple sites of action residual PRE herbicides as well as POST herbicides are 

usually higher in cost than that of commonly used herbicides that involve single site of action 

POST herbicides. Due to high-cost constraints, growers do not adopt HR weed management 

recommendations until they notice the presence of HR weeds in their fields (Edwards et al. 

2014; Norsworthy et al. 2012). Several growers avoid using PRE herbicide and are dependent 

on POST herbicides as a cost saving measure. A consequence of avoiding PRE herbicide 

however is the establishment of early-season crop-weed competition, which often results in a 

yield penalty (Hall et al. 1992; Schuster and Smeda 2007). Therefore, it is crucial to evaluate 

the economic benefits of implementing herbicide programs with multiple sites of action for 

herbicide-resistant Palmer amaranth management. 

The objectives of this study were to (1) compare PRE-only, PRE followed by (fb) POST, 

PRE fb POST with residual herbicide (POST-RH), and EPOST fb late POST (LPOST) 

programs for control, density reduction, and biomass reduction of Palmer amaranth in DGR 

soybean; and (2) evaluate the soybean injury, yield, gross profit margin, and benefit–cost 

ratio in response to different herbicide programs. 

MATERIALS AND METHODS 

Study Site and Experimental Design 

 Field experiments were conducted on a grower’s field near Carleton, NE following a GR 

corn-soybean rotation with reliance on glyphosate for weed control in a no-till production 

system in 2018 and 2019. Corn residue from previous cropping season was retained and the 

study conducted using no-till practices. Paraquat (Gramoxone® SL, Syngenta Crop 
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Protection, Greensboro, NC 24719; at 840 g ai ha–1) plus 2,4-D ester (Weedone® LV6, 

Nufarm Inc., Burr Ridge, IL 60527; at 386 g ae ha–1) plus a nonionic surfactant (Induce®, 

Helena Chemical, Collierville, TN 38017; at 0.25% v/v) were applied two weeks before 

soybean planting with a tractor-mounted sprayer calibrated to deliver 140 L ha–1 at 276 kPa 

for control of winter annual weeds. Dicamba/glyphosate-resistant soybean (Northern King 

NK S29K3X) was planted on May 10, 2018 and May 10, 2019 at 346,000 seeds ha–1 at a 

depth of 3.0 cm. Treatments were arranged in a randomized complete block design 

containing 14 herbicide treatments including a weed free and a non-treated control with four 

replications. An individual plot was 3 m wide by 9 m long with four soybean rows spaced 76 

cm apart. Herbicide programs evaluated included: PRE-only, PRE followed by (fb) POST, 

PRE fb POST plus a residual herbicide (RH), EPOST fb late POST (LPOST), a weed free 

control, and a nontreated control (Table 3-1). PRE herbicides were applied on the same day 

after planting DGR soybean and POST herbicides were applied on June 9, 2018 and June 10, 

2019 when soybean was at the V3 to V4 growth stage and Palmer amaranth was 7.5 to 10.5 

cm tall. LPOST herbicides were applied on July 6, 2018 and July 2, 2019 when soybean was 

at the R1 growth stage and Palmer amaranth was 8 to 15 cm tall depending on treatment. 

Herbicides were applied using handheld CO2 pressurized backpack sprayer fitted with AIXR 

110015 flat fan for non-dicamba herbicides and TTI 11005 flat angle nozzles for dicamba 

applications (TeeJet®, Spraying Systems Co., P.O. Box 7900, Wheaton, IL 60139) based on 

label requirements and calibrated to deliver 140 L ha–1 at 276 kPa. 

Data Collection 

 Palmer amaranth control was visually assessed using a scale of 0% to 100%, with 0% 

representing no control and 100% representing complete control. Palmer amaranth control 
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was assessed at 14 and 28 d after PRE (DAPRE), 14, 21, 28, 42, and 70 d after POST 

(DAEPOST). Palmer amaranth density was recorded at 14 DAPRE and 14 DAPOST by 

counting Palmer amaranth plants in two 0.5 m2 quadrats placed randomly between the two 

center soybean rows in each plot and was converted to plants per m2. Soybean injury was 

visually assessed at 14 DAPRE, 14 DAEPOST, and 14 DALPOST on a scale of 0% to 

100%, with 0% representing no control and 100% representing complete control. 

Aboveground biomass of Palmer amaranth was collected at 14 DAPRE and 14 DAEPOST. 

Biomass samples were oven-dried at 65oC for 14 d, with Palmer amaranth aboveground 

biomass data converted into percent biomass reduction compared with the nontreated control 

using the following equation (Wortman 2014). 

Aboveground biomass reduction (%) = [(C-B)/C] x 100  

where C is aboveground biomass of the nontreated control plot and B is biomass of an 

individual treated plot. Soybean yield was taken from the center two rows in each plot using 

a plot combine (Gleaner K2, AGCO, 4205 River Green Parkway, Duluth, GA 30096) and 

adjusted to 13% moisture content. 

Economic Analysis 

 To assess the profitability for each weed management program, gross profit margins and 

benefit/cost ratio were calculated. Gross profit margin was calculated for each weed 

management program using the following equation: 

Gross profit margin (US$) = (𝑅𝑅 − 𝑊𝑊) 

 R is the gross revenue calculated by multiplying soybean yield for each treatment by the 

average price received for dicamba/glyphosate-resistant soybean (US$0.30 kg−1 ) and W is 
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the total weed management program cost which includes the average cost of custom 

application of herbicides and spray adjuvants for each treatment (PRE, $17.30 ha-1; non-

dicamba POST $18.94 ha-1; dicamba-containing POST $31.71 ha-1) with the weighted 

average seed cost for the soybean cultivar/trait planted. Average market price for soybean 

was derived from Nebraska cash prices reported by the USDA National Agricultural 

Statistics Service Information from September to December in 2018 and 2019 (USDANASS, 

2019).  

Price estimates for herbicides and spray adjuvants were obtained from three independent 

commercial sources in Nebraska (Central Valley Ag Cooperative, Frontier Cooperative, 

Nutrien Ag Solutions) and averaged prior to economic analysis. Custom application price 

estimates from the previously listed sources were also obtained, with an average cost of 

US$17.30 ha−1 application−1 for PRE herbicide programs, US$18.94 ha−1 application−1 

for non-dicamba POST herbicide programs, and US$31.71 ha−1 application−1 for POST 

herbicide programs containing dicamba. For each treatment, W included the weighted 

average seed costs for dicamba/glyphosate-resistant soybean used in this study, which were 

adjusted based on planting density. The benefit/cost ratios were calculated for each herbicide 

program using the following equation: 

Benefit∕Cost ratio for a program (US$∕US$) = (𝑅𝑅T − 𝑅𝑅C)∕𝑊𝑊 

RT is the overall gross revenue of each weed management program, RC is the gross revenue 

for the nontreated control, and W is equal to the cost for each weed management program 

including the cost of herbicides, spray adjuvants, custom application, and seed. 

Statistical Analysis 
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 Palmer amaranth control, density reduction, aboveground biomass reduction, and yield data 

were subjected to ANOVA using R statistical software v. 4.0.3 (R Core Team, 2018). Prior 

to conducting ANOVA, variance assumptions were tested by using Levene’s tests (Wang et 

al., 2017) with the levene Test function at α = .05. Variables that failed variance assumptions 

were transformed, fit to lmer models, and visually assessed for outliers and heterogeneity of 

variance by plotting residual values (Knezevic, Evans, Blankenship, Van Acker, & 

Lindquist, 2002; Ritz, Kniss, & Streibig, 2015). Normality assumptions were tested using 

Shapiro-Wilk tests with the shapiro.test function (Kniss & Streibig, 2018). Visual estimates 

of weed control and biomass reduction data were arc-sine square-root transformed before 

analysis as these data failed to follow normality assumptions; however, back-transformed 

data are presented with the means separated using Fisher’s protected LSD test, where α = 

0.05. In the model, treatments and years were considered fixed effects, whereas blocks were 

considered random effects. To determine the relative efficacy of the herbicide programs 

(PRE-only vs. PRE fb EPOST; PRE vs PRE fb EPOST + RH, PRE vs EPOST fb LPOST, 

PRE fb EPOST vs. PRE fb EPOST + RH, PRE fb EPOST vs. EPOST fb LPOST, and PRE 

fb EPOST + RH vs. EPOST fb LPOST) for Palmer amaranth control, density, and 

aboveground biomass reduction, along with yield, a priori orthogonal contrasts (single 

degree of freedom contrasts) were performed. 

RESULTS AND DISCUSSION 

Year-by-herbicide program interactions were significant for all experimental variables; therefore, 

data were separated and presented by year. 

Average Daily Temperature and Precipitation 
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 Growing conditions differed widely between the 2018 and 2019 growing seasons (Figure 3-

1). In 2018, cumulative precipitation received was below 30-year average (517 mm) for the 

duration of the growing season. In contrast, cumulative precipitation in 2019 exceeded the 

30-year average by 221 mm. Likewise, average daily temperatures for the 2018 exceeded the 

30-year average for the duration of the growing season, whereas the 2019 closely resembled 

the 30-year average (Figure 3-1). In both site-years, field experiments were conducted under 

dry-land conditions without access to irrigation, resulting in drought-like conditions in which 

soybean growth and development was limited in 2018 compared with the 2019 growing 

season. 

Palmer amaranth Control, Density, and Biomass Reduction 

 PRE herbicides controlled Palmer amaranth 85% to 99% 14 DAPRE and was reduced to 

63% to 84% 28 DAPRE in 2018. In 2019, efficacy of PRE herbicides was higher, with all 

PRE herbicides providing ≥ 98% Palmer amaranth control 14 and 28 DAPRE (Table 3-2). 

Similarly, field studies in Kansas and Nebraska have shown greater than 97% control of 

Palmer amaranth 14 and 28DAPRE with chlorimuron-ethyl/flumioxazin/metribuzin, 

saflufenacil/imazethapyr + dimethenamid-P, flumioxazin/pyroxasulfone, and 

sulfentrazone/metribuzin (Hay 2017, Sarangi and Jhala 2018). In common waterhemp, a 

closely related species to Palmer amaranth, Sarangi et al. (2017) found similar levels (>92%) 

of control using saflufenacil/imazethapyr + dimethenamid-P, flumioxazin/chlorimuron-ethyl, 

and flumioxazin/pyroxasulfone. It is emphasized that PRE-applied residual herbicides 

provide a critical base for early-season weed control in soybean for Palmer amaranth (Ward 

et al. 2013) Improved efficacy in 2019 compared to 2018 can be partially attributed to 

adequate precipitation in 2019. PRE herbicides reduced Palmer amaranth density to ≤ 6 
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plants m–2 which was similar to the nontreated control (13 plants m–2) at 14 DAPRE in 2018 

(Table 3-2). In 2019 PRE herbicides reduced the density of Palmer amaranth to 0 plants m–2. 

The significant reduction in Palmer amaranth density with PRE herbicide programs resulted 

in a 100% reduction of Palmer amaranth biomass (Table 3-2). 

Through 14 DAEPOST to 21 DAEPOST control of Palmer amaranth was maintained at 94% 

to 99% in PRE, PRE fb POST, and PRE fb POST + RH (Table 3-3). PRE fb POST and PRE 

fb POST + RH treatments retained >90% control through the duration of the growing season 

up to 70 DAEPOST. Two studies point to improved Palmer amaranth control with PRE fb 

POST herbicide programs in soybean (Butts et al. 2016, Whitaker et al. 2010), though it is 

expected that the extended emergence period of Palmer amaranth will allow later-emerging 

cohorts to escape in-crop POST treatments. Addition of very-long-chain fatty acid 

(VLCFA)-inhibiting herbicides in POST herbicide programs has long been cited as effective 

means of extended season long control of small-seed broadleaf weeds, like Palmer amaranth 

(Geier et al. 2006, Grey et al. 2014, Hay 2017, Sarangi et al 2015b, 2017, 2018, Neve et al. 

2011) At 14 DAEPOST (28 DAPRE), all PRE, PRE fb EPOST, and PRE fb EPOST + RH 

programs reduced Palmer amaranth density compared to the nontreated control in 2018 (317 

plants m–2) and 2019 (408 plants m–2) (Table 3-4). Weed density at POST application 

timings plays a key role in determining the efficacy of herbicides and weed survival 

(Dieleman et al 1999). Across PRE fb EPOST herbicide programs, density ranged from 3 to 

64 plants m–2 in 2018, whereas in 2019 density ranged from 0 to 9 plants m–2 (Table 3-4). 

Contrast analysis examining the inclusion of acetochlor at EPOST as a RH were significant 

vs PRE fb EPOST in 2018 and significant vs EPOST fb LPOST in 2019. However, the use 

of PRE herbicides significantly reduced Palmer amaranth density compared to glyphosate 
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applied EPOST fb LPOST (281 and 390 plants m–2) or dicamba (207 and 119 plants m–2) in 

2018 and 2019, illustrating the utility of PRE herbicides (Table 3-4). Reductions to Palmer 

amaranth density in 2019 correlated to 96 to 100% reductions in Palmer amaranth biomass 

for all PRE and PRE fb EPOST programs in 2019 (Table 3-4). In contrast, EPOST fb 

LPOST programs of glyphosate (9% biomass reduction) or dicamba (66% biomass 

reduction) had less biomass reduction compared to programs which included the use of PRE 

herbicides. 

Yield and Gross Revenue 

 The adverse weather conditions in 2018 resulted in drought-like conditions for a majority of 

the growing season and yield and gross revenue in 2018 was reduced compared to 2019 

(Table 3-5). In 2018, soybean grain yield ranged from 641 kg ha–1 for 

flumioxazin/pyroxasulfone to 215 kg ha–1 in plots which received glyphosate fb glyphosate 

which yielded 215 50 kg ha–1. Reduced yield potential in 2018 resulted in gross revenue of ≤ 

$225 ha–1 across herbicide programs. In 2019, yields (2,128 kg ha-1 to 4,951 kg ha-1) were 

statistically similar for PRE, PRE fb EPOST, PRE fb EPOST + RH, and EPOST fb LPOST 

programs. Contrast analysis comparing yield in PRE fb EPOST and PRE fb EPOST + RH 

programs were significant (P < 0.001), with higher yield (4,860 kg ha–1) obtained when 

acetochlor was included as a RH in comparison to PRE fb EPOST programs (4,569 kg ha–1) 

(Table 3-5). Due to higher yield potential observed in 2019, gross revenue exceeded $1,375 

ha–1 for all programs, with the highest gross revenue observed in PRE fb EPOST + RH 

programs ($1,526 to $1,856 ha–1). A similar study indicated higher net returns with PRE fb 

POST herbicide programs containing multiple sites of action despite them having 

significantly higher program costs (Chahal et al. 2018). 
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Weed Management Program Costs, Gross Profit Margin and Benefit-Cost Ratio 

Average cost of herbicide programs were $69.5 ha-1 for PRE-only, $148 ha-1 for PRE fb 

EPOST, $188 ha-1 for PRE fb EPOST+RH, and $120 ha-1 for EPOST fb LPOST. PRE-only 

programs (2018, 75 – 153 $ ha-1; 2019, 1,305 – 1,414 $ ha-1) consistently provided higher 

gross profit margins (GPM) compared to PRE fb EPOST (2018, 12 – 61 $ ha-1; 2019, 1,282 

– 1,341 $ ha-1) programs in 2018 and 2019. In 2019, two PRE fb POST+RH programs 

(chlorimuron/flumioxazin/pyroxasulfone fb dicamba + acetochlor and 

flumioxazin/pyroxasulfone/metribuzin fb dicamba + acetochlor, 1,603 and 1,657 $ ha-1 

respectively) had higher gross profit margins (GPM) than all PRE-only and PRE fb EPOST 

programs despite higher program costs. In contrast, chlorimuron/flumioxazin/pyroxasulfone 

fb dicamba + acetochlor; and flumioxazin/pyroxasulfone/metribuzin fb dicamba + acetochlor 

had negative GPMs (-14 and -47 $ ha-1 respectively) in 2018. In 2018, all programs except 

PRE-only provided positive benefit cost ratios (0.16 – 1.28) compared to PRE fb EPOST (-

0.39 - -0.03), PRE fb EPOST + RH (-0.57 - -0.17), and EPOST fb LPOST (-0.67 - -0.91). In 

2019, PRE-only maintained the highest overall benefit/cost ratios (2.06 - 4.17). While poor 

performing in 2018, chlorimuron/flumioxazin/pyroxasulfone fb dicamba + acetochlor and 

flumioxazin/pyroxasulfone/metribuzin fb dicamba + acetochlor had higher performances in 

2019 with benefit/cost ratios of 2.32 and 2.51, respectively compared to all PRE fb EPOST 

programs. 
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CHAPTER 4: 
A 2019 SURVEY OF STAKEHOLDERS IN NEBRASKA TO ASSESS PROBLEM 

WEEDS AND MANAGEMENT PRACTICES IN AGRONOMIC CROPPING SYSTEMS 

 

ABSTRACT 

Stakeholders from across the state of Nebraska were surveyed in 2019 to assess problem weeds 

and their management practices in agronomic crops. A total of 416 complete responses were 

obtained across four Nebraska extension districts (Northeast, Panhandle, Southeast, and West 

Central). Accumulated across the state, 65.5% of farmed or scouted crop ground in Nebraska 

were under no-till production, with major crops corn and soybean representing 39.3% and 30.7% 

of Nebraska crop production area, respectively. Palmer amaranth, horseweed, waterhemp, 

kochia, and giant ragweed were ranked the most problematic weeds statewide. The most 

commonly used preplant herbicides were 2,4-D, glyphosate, and dicamba. A majority of growers 

(69%) reported the usage of a PRE herbicide for early season weed control. Atrazine applied 

alone or in a mixture with acetochlor, bicyclopyrone, clopyralid, mesotrione, or S-metolachlor 

were the most commonly applied PRE herbicides in corn, whereas the most commonly used PRE 

herbicides in soybean were metribuzin/sulfentrazone, flumioxazin/pyroxasulfone, and 

sulfentrazone/chloransulam-methyl. Glyphosate was the most frequent choice of the survey 

respondents as a POST herbicide in glyphosate-resistant corn and soybean; 2,4-D was the most 

commonly used POST herbicide in grain sorghum and wheat. Majority of the respondents (77%) 

were aware of the new multiple herbicide–resistant crops, and 86% of them listed physical drift 

and volatility of the auxinic herbicides as their primary concern. Twenty-three percent of survey 

respondents identified integrated pest management as a primary research and extension priority 

for profitable crop production. 
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INTRODUCTION 

The rapid adoption of glyphosate-resistant (GR) crops since their introduction in 1996 has 

greatly impacted the herbicide use pattern in modern agriculture (Benbrook 2016). From 1974 to 

2014, an estimated 8.6 billion kg of glyphosate has been applied worldwide, with the United 

States accounting for 19% of the global usage or 1.6 billion kg (Benbrook 2016). Usage of 

glyphosate in the United States was estimated at a total of 18 million kg year−1 in 1996, 

increasing to an estimated 125 million kg in 2013 (USGS 2020). In large part, the popularity of 

glyphosate can be attributed to the widespread adoption of GR crops given its low application 

cost and broad-spectrum of weed control (Woodburn 2000). As of 2021, six weeds have been 

confirmed resistant to glyphosate in Nebraska (Jhala 2021). Despite the increasing number of GR 

weeds and their widespread occurrence in the United States, growers continue to use glyphosate.  

As multiple herbicide-resistant crops came to market in recent years, the options for selecting 

herbicide for POST weed control has increased. Since commercialization in 2017, 

dicamba/glyphosate-resistant soybean has rapidly grown in popularity as seen with the adoption 

rate increasing from 20% of soybean planting in 2017 to 80% in 2019 in Nebraska (Chahal and 

Jhala 2019; Werle et al. 2018). As the adoption of GR crops increased in popularity there has 

been a shift towards reduced usage of tillage for weed control (Sarangi and Jhala 2018).  

 The adoption of conservation tillage and changes in weed management practices 

significantly altered weed population dynamics (Nichols et al. 2015), with a major shift towards 

smaller seeded broadleaf weeds such as Amaranthaceae family (Kruger et al. 2009). Surveys 

have been conducted over the past two decades to determine the perceptions of stakeholders in 

areas of agronomics and weed management, as well as look at the dynamics of weed issues since 

the adoption of GR crops in the United States (Gibson et al. 2005, Givens et al. 2009a, 
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Norsworthy 2003, Riar et al. 2013a, b, Sarangi and Jhala 2018). Sarangi and Jhala (2018) 

completed a statewide survey and provided a base looking at the distinct differences in problem 

weeds in Nebraska, weed dynamics, and management practices adopted by growers in the 

diverse climates of Nebraska.  

The Nebraska Extension, comprising 83 county offices and four extension centers serving 

93 counties throughout the state, has an enormous impact on the state’s youth, families, farms 

and ranches, communities, and economy. A survey was developed for participants (growers, 

certified crop advisors, crop consultants, certified pesticide applicators, cooperative managers, 

and industry representatives) attending the Nebraska Extension’s winter annual meetings and 

extension portal cropwatch.unl.edu. The objectives of this survey were to identify stakeholders’ 

perceptions about problematic weeds and assess their attitudes and perceptions about agronomic 

and weed management practices in agronomic crops in Nebraska and monitor any differences 

that may have arisen since the previous Nebraska stakeholder survey in 2015. 

MATERIALS AND METHODS 

The survey was distributed online (www.cropwatch.unl.edu) as well as in person at several 

locations during summer and winter extension meetings organized by the Nebraska Extension in 

2019. Survey responses were separated by county representing four major extension districts 

defined by the Nebraska Extension based on their agroclimatic characteristics, soil texture, and 

cropping systems (Figure 4-1). Paper questionnaires were distributed to in-person participants 

while online participants received a web-based format; questions were mostly short answer, but 

some closed questions were also included. Prior to release, the questionnaire was reviewed by 10 

people, including weed scientists, agronomy undergraduate and graduate students, to assess its 

acceptability and readability. The final questionnaire (Table 4-1) was divided into four sections:  
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1. Crop Production and Problem Weeds  

2. Herbicide Use  

3. Herbicide Resistant Weed Management  

4. Weed Management Research and Extension Priorities 

Respondents were asked to state their primary occupation, county, and state of residence. 

Respondents that were not directly in farm management/operations or agribusiness decision 

making were disqualified along with individuals that did not reside in state. In Section 1, 

respondents were asked about the total of acres they farmed or scouted (Question 1.1 in Table 4-

1); responses were later converted into hectares. In the same section, respondents were directed 

to rank the five most problematic weeds according to their personal experience (Question 1.3). In 

Section 2, respondents were directed to list the top three commonly used preplant, pre-

emergence (PRE), and post-emergence (POST) herbicides used in fields they manage or advise 

(Questions 2.1 to 2.3). Section 3 included questions regarding different methods of managing 

herbicide-resistant (HR) weeds and delaying the evolution of HR weeds. This section consisted 

of several Yes/ No questions, as well as a ranked slider-scale question (Question 3.8) about 

management approaches for managing the evolution of HR weeds at the field level. In Section 4, 

respondents were asked to identify extension or research priorities for improved future weed 

management practices in Nebraska (Table 4-1). In total, 416 valid responses were collected and 

processed from the statewide survey. Respondents were categorized based on their occupation 

into three groups: growers, crop consultants, and others. Growers were separated from those that 

owned or directly participate in farm operations and or decision making. Respondents that 

reported an occupation of agronomist certified crop advisor, or crop consultant were categorized 
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as crop consultants. Those that did not fit in the grower or crop consultant category such as 

pesticide applicators, cooperative managers, or industry representatives were assigned as 

“others”. Out of 416 respondents, 48%, 32%, and 20% were listed as growers, crop consultants, 

and others, respectively (Table 4-2). Total number of responses were tabulated from each of the 

extension districts with the Southeast district (n= 209), followed by the Northeast (n= 106), West 

Central (n= 76), and Panhandle (n= 25) districts. Data were imported to R (R Core Team 2020) 

and the results interpreted based on the frequency distribution for most of the questions, with a 

mean (average) and median calculated wherever possible. To rank the most problematic weeds 

and most used herbicides in Nebraska, a relative problematic/importance points system was used. 

For example, five, four, three, two, and one problematic point was assigned to rank #1, #2, #3, 

#4, and #5 problem weeds, respectively (Question 1.3 in Table 4-1), and the relative problematic 

point (RP) was calculated for each weed species using the equation: 

Equation 1: 𝑅𝑅𝑅𝑅 = ∑ 𝐹𝐹𝐹𝐹
𝑛𝑛

5
𝑟𝑟=1  

where F is the number of respondents choosing a rank (r) for a certain weed species, X is the 

problematic points associated with that rank, and n is the total number of responses for that rank, 

including all the weed species. The top five most problematic weeds were reported at the state 

and district levels in Nebraska, and similarly for the most common use preplant burndown, PRE, 

and POST herbicides (Questions 2.1 to 2.3 in Table 4-1) were ranked based on their level of 

importance, where three, two, and one importance points were assigned to rank #1, #2, and #3 of 

the most common use herbicides, respectively. The relative importance point for an herbicide 

were calculated using Equation 1, with an r value ranging from 1 to 3. 

RESULTS AND DISCUSSION 
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Crop Production and Problem Weeds 

Average farmed areas reported by the growers for the 2019-2020 season were 760, 780, 850, and 

920 ha in the Northeast, Panhandle, Southeast, and West Central districts, respectively, and the 

state average was 798 ha (Table 4-3). It is evident that some of the larger values for per capita 

farm areas led to a relatively higher average value. In 2012 the Census of Agriculture conducted 

by the United States Department of Agriculture (USDA) found that the average Nebraska farm 

was 367 ha; however, the USDA census data included farm areas under row crops and other 

commodity production systems such as livestock operations (USDA-NASS 2014), in contrast to 

our survey where respondents were mostly row crop producers. Crop consultants participating in 

this survey scouted average areas ranging between 3,267 and 6,154 ha in different districts, with 

a state average of 4,828 ha (Table 4-3). The maximum area in no-till production was reported 

from the Southeast district (74.6%), followed by the Northeast (67.2%), West Central (56.1%), 

and Panhandle (48.8%) districts, and the state average for no-till production area was 65.5%. 

Under the 2012 Census of Agriculture each Nebraska farm consisted of an average of 57% no-

till production (USDA-NASS 2014). 

Areas Under Different Crops 

The survey results showed that corn and soybean were the major crops in Nebraska, with 39.3% 

and 3.07% of the total farmed or scouted area reported, respectively (Table 4-3). The USDA data 

from the 2014 growing season reported up to 75% of Nebraska cropland was under corn and 

soybean production (USDA-NASS 2015). Survey results indicated that the maximum corn 

growing regions were the Southeast district (48.2% of total farmed or scouted areas), followed 

by the Northeast (46.5%), West Central (26%), and Panhandle (26%) districts. Maximum 
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soybean growing regions are ranked as the Northeast (41%), Southeast (39.3%), West Central 

(33%), and Panhandle (18%) districts. The Panhandle district was the only district to get 

responses for dry edible bean (Phaseolus vulgaris L.) and sugarbeet (Beta vulgaris L.) 

production consisting of 5% and 12%, respectively (Table 4-3). Results also indicated that the 

areas in Nebraska under grain sorghum (Sorghum bicolor), wheat (Triticum aestivum L.), and 

alfalfa (Meticago satvia) production were 2.7%, 4.9%, 4.1%, respectively. Other crops including 

hay, cereal rye (Secale cereal L.), and oat (Avena satvia L.) accounted for 3.6% of the agronomic 

crop production in Nebraska. 

Problem Weeds  

The top five most difficult to control weeds across Nebraska were Palmer amaranth, horseweed, 

waterhemp, kochia, and giant ragweed (Table 4-4). Higher relative problematic points (ranging 

between 3.1 and 3.6 out of a maximum possible 5.0 points) for Palmer amaranth, horseweed, and 

waterhemp showed that majority of respondents listed them as the most problematic weeds. A 

2016 survey by the Weed Science Society of America (WSSA) ranked Palmer amaranth as the 

most troublesome weed in the United States (Van Wychen 2016a). Of the top five most 

problematic weed species, Palmer amaranth, horseweed, waterhemp, kochia, and giant ragweed 

have confirmed glyphosate-resistant population in Nebraska (Chahal et al. 2017; Rana and Jhala 

2016; Sandell et al. 2011; Sarangi et al. 2015; Sarangi and Jhala 2017), which likely has led to 

the outcome of them being the most challenging weeds to manage. In a multistate growers’ 

survey conducted in 2005–2006, Kruger et al. (2009) reported that waterhemp, velvetleaf, and 

foxtails were the three most problematic weeds in GR corn and soybean rotation in Nebraska; 

however, due to the evolution of resistance to glyphosate and multiple herbicides in recent years, 

horseweed, kochia, and waterhemp top the list. In the Southeast district, Palmer amaranth, 
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horseweed, and waterhemp were identified as extremely concerning to manage, whereas 

respondents from the Panhandle district listed kochia and Palmer amaranth as the most 

problematic weeds. In parity with the Southeast district, Palmer amaranth was listed as the most 

problematic weed both the Northeast and West Central districts.  

Glyphosate-Resistant Weeds  

A majority of stakeholders suspected the presence of glyphosate-resistant weeds in their 

agronomic crop fields in Nebraska. Only a small number of responses (n=25) were recorded 

from the Panhandle district, so results were not reported (Table 4-5). In the Northeast district, 

71%, 65%, 25%, and 12% of respondents suspected the presence of GR waterhemp, horseweed, 

Palmer amaranth, and giant ragweed, respectively (Table 4-5). Reports of suspected glyphosate-

resistance correlates with some of the most problematic weeds in this region (Table 4-4). Several 

respondents reported presence of the suspected waterhemp biotype with stacked resistance to 4-

hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors and ALS inhibitors as well as 

indications of resistance to synthetic auxin-based herbicides in Palmer amaranth, waterhemp, and 

horseweed in the Northeast, Southeast, and West Central districts (data not shown). Prior field 

sampling of waterhemp biotypes from the Northeast district (Platte County) have confirmed 

resistant to HPPD-inhibiting herbicides (Oliveira et al. 2017b). Most of the survey respondents in 

the Southeast and West Central districts listed glyphosate-resistant weeds as the primary 

herbicide-resistance concern. In the Southeast district, 61%, 49%, 44%, and 4% of respondents 

reported the presence of suspected GR Palmer amaranth, horseweed, waterhemp, and giant 

ragweed, respectively (Table 4-5). A Palmer amaranth biotype from Southeast Nebraska (Thayer 

County) was confirmed to be 40-fold resistant to glyphosate as well as resistant to ALS-

inhibiting herbicides and atrazine (Chahal et al. 2017). While the 2015 survey reported Palmer 
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amaranth as the sixth most troublesome weed in Nebraska as of this survey Palmer amaranth has 

rapidly became the most troublesome weed in Nebraska as of 2020. In the West Central district, 

63%, 48%, 37%, and 24% of respondents reported suspected GR Palmer amaranth, kochia, 

horseweed, and waterhemp, respectively (Table 4-5). 

Herbicide Usage 

Preplant Herbicide Usage 

The 2012 Census of Agriculture found that 82% of Nebraska cropland was treated with at least 

one herbicide (USDA-NASS 2014a). Effective weed management has long recommended the 

control of standing vegetation before planting in no-till crop production systems (Stougaard et al. 

1984; VanGessel et al. 2001). Across the state, 70% of respondents reported the usage of at least 

one preplant herbicide prior to planting (data not shown). Participant responses across all 

occupational classes (growers, crop consultants, and others) were compiled together to rank the 

most commonly used preplant herbicides in Nebraska, with the results showing that 2,4-D, 

glyphosate, and dicamba were the top three common use preplant burndown herbicides in 

Nebraska (Table 4-6), followed by saflufenacil (data not shown). Several multistate surveys that 

included Nebraska also reported that glyphosate and 2,4-D were the most popular choices among 

growers for preplant herbicides (Givens et al. 2009a, b; Prince et al. 2012a). Additionally, Prince 

et al. (2012a) reported that synthetic auxins (e.g., 2,4-D) and PPO inhibitors were mostly used to 

control GR weeds. 

PRE Herbicide Usage 

Over half (69%) of growers reported the usage of a PRE herbicide for early season weed control 

(data not shown). Sufficient responses for PRE herbicide usage were not obtained from the 
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Panhandle district; therefore, survey results indicating PRE herbicide usage were not included 

(Table 4-7). In Nebraska, the three most commonly used PRE herbicides in corn were 

atrazine/bicyclopyrone/mesotrione/S-metolachlor (Acuron), acetochlor/clopyralid/mesotrione 

(Resicore), and isoxaflutole/thiencarbazone-methyl (Corvus) (Table 4-7). Other major corn 

herbicides were atrazine plus S-metolachlor, and atrazine (data not shown). Results of the top 

five most commonly used PRE herbicides in corn clearly show the dominance of atrazine-based 

herbicides and premixes for early season weed control. Results from a 2016 multistate survey of 

corn-producing states including Nebraska reported atrazine as the most commonly used corn 

herbicide, applied in more than half (60%) of corn production fields (USDA- NASS 2017). The 

most commonly used PRE herbicides in soybean were metribuzin/sulfentrazone, 

flumioxazin/pyroxasulfone, and sulfentrazone/chloransulam-methyl (Table 4-7). In sorghum, 

atrazine-based herbicides dominated the top three spots with atrazine/S-metolachlor/mesotrione, 

atrazine, and atrazine/S-metolachlor (Table 4-7). Results suggest that soybean growers are highly 

reliant on PRE herbicides containing ALS inhibitors, very long chain fatty acid (VLCFA) 

inhibitors, and PPO inhibitors, in contrast to the more diverse PRE usage in corn.  

POST Herbicide Usage 

Most of the growers (73%) reported applying a POST herbicide(s) for weed control in row crops 

(data not shown), with glyphosate being the most commonly used POST herbicide for weed 

control in GR corn and soybean (Table 4-7). A multistate survey also noted that more than 95% 

of the GR crop growers in 22 corn-, soybean-, and cotton-growing states including Nebraska 

applied glyphosate as their primary POST herbicide (Prince et al. 2012). In corn, the most 

commonly used POST herbicides after glyphosate were dicamba/diflufenzopyr (Status), and 

mesotrione (Callisto) (Table 4-7). While glyphosate remains the most commonly used POST 
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herbicide in soybean, with the release of dicamba/glyphosate-resistant soybean, dicamba has 

rapidly become a popular POST herbicide for weed management in dicamba-resistant soybean. 

Glyphosate was applied to over 85% of soybean-producing ground as reported from the 

Agricultural Chemical Use Survey in 2015 (USDA-NASS 2016). The most commonly used 

POST soybean herbicides after glyphosate and dicamba were glufosinate (Liberty), S-

metolachlor (Dual II Magnuam), and fomesafen (Flexstar) (relative importance points ranging 

between 0.3 and 1.2; data not shown). Inadequate responses for sorghum and wheat POST 

herbicides were reported in the Northeast district, therefore, results were not included. In the 

West Central district, 2,4-D, dicamba, and bromoxynil plus pyrasulfotole (Huskie) were the three 

most commonly used POST herbicides in sorghum; while 2,4-D, atrazine, and dicamba were the 

highest ranked for the Southeast district, respectively (Table 4-7). Respondents ranked 2,4-D, 

chlorsulfuron/metsulfuron-methyl, and halauxifen-methyl/florasulam as the top three commonly 

used POST herbicides in wheat (Table 4-6).  

Cost of Weed Management in GR Crops 

With the growing concern of GR weeds in Nebraska, usage of PRE herbicides and the usage of 

more diverse POST-applied tank mixes has increased in popularity, which consequentially has 

led to the increased cost of weed management programs (Sarangi and Jhala 2018). Along with 

the increased diversification of chemical control programs usage of tillage and manual weed 

removal can have been used in conjunction with chemical control. Averaged across districts, the 

cost of weed management in GR corn and soybean were $101 and $115 ha−1, respectively (Table 

4-8). 

Herbicide-Resistant Weed Management 
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The Problem of Herbicide-Resistant Weeds 

Results indicated that 80% of growers in Nebraska suspected the presence of at least one HR 

weed species on their farms. Respondents were asked to rate the problem of HR weeds on a scale 

of 0 to 10, with 0 meaning not at all a problem and 10 meaning highly problematic (Question 3.1 

in Table 4-1). Averaged across districts, respondents indicated that there was high concern 

(average score of 8.1 with a median 8.3) about the problem of GR weeds in Nebraska (Figure 4-

2). In the West Central district, respondents rated GR weeds as their biggest problem (average 

score of 8.9 with a median 9.2) compared to other districts, possibly explainable by the results 

showing that weeds like GR Palmer amaranth was the highest ranked in the West Central district 

(Table 4-5). Palmer amaranth is well documented as being a major challenge in row crop 

agriculture in recent time. Several studies have shown the extended emergence pattern of Palmer 

amaranth can create major hurdles in management (de Sanctis 2021). It has been recommended 

that mixing residual herbicide such as acetochlor or pyrozasulfone with POST herbicide can aid 

in management by providing overlapping residual activity (Hartzler et al. 2004; Jha and 

Norsworthy 2009), particularly in non-GMO conventional soybean (Sarangi and Jhala 2019). 

Non-GR Crop Production Systems  

Overall, 32% of growers in Nebraska responded positively toward rotating GR crops with non-

GR crops (Table 4-8). Unique from all other districts, respondents in the Panhandle district 

showed that growers are more likely (68%) to rotate GR crops with non-GR crops compared to a 

range of 28% to 33% in other districts. Survey results indicated that the highest crop diversity 

(56.6% of total farmed or scouted areas under crops other than corn, sugarbeet) was reported in 

the Panhandle district (Table 4-3), which was believed to have led to the highest percentage of 

non-GR crops being planted in the Panhandle district. 
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Field Scouting and Late-Season Weed Control  

Scouting for weeds both prior to and after herbicide application is a key tenant of an integrated 

weed management program, reducing the risks of herbicide-resistance evolution in weed species 

(Norsworthy et al. 2012; Young 2017). Averaged across districts, 95% of respondents reported 

they either have scouted or advised scouting farms before and after herbicide application (Table 

4-9). Of concern is the relatively low response to controlling weed escapes late in season 

specifically in the Panhandle district with slightly over half (51%) of respondents controlling 

weed escapes. In contrast to the Panhandle district, 71% to 77% of growers reported practicing 

late-season weed management in other three districts (Table 4-9). Late-season weed escapes can 

be often disregarded by growers, take more labor, and rarely affect crop yields; however, long-

term biological, ecological, and economic benefits of late-season weed management are benefits 

that cannot be overlooked. Several weed species, such as waterhemp and Palmer amaranth, 

exhibit prolonged emergence pattern (Hartzler et al. 2004; Jha and Norsworthy 2009), delayed 

emergence can lead to late season weed escapes, as most POST herbicides in row crops are made 

early in the season and have residuals that last only part way through the growing season. 

Mechanical and/or manual removal weed management was practiced by 17% of the respondents 

for late season weed control (data not shown). 

Use of Herbicides with Multiple Sites of Action  

This statewide survey showed a high degree of familiarity (93%) with herbicide sites of action 

(SOA), with 93% using at least two SOAs in their herbicide programs (Table 4-9). High 

prevalence of ALS inhibitor–resistant and GR weeds in Nebraska was likely a major contributor 

towards growers using herbicides with multiple SOAs. In crops like corn, a major contributor to 
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diversifying herbicide SOAs, can be attributed to the more commonly used PRE and POST 

herbicides being premixes of different SOAs (Table 4-7.) 

Weed Management Practices to Delay the Evolution of Herbicide Resistance 

Seven management practices that are believed to slow the rate of herbicide resistance weed 

evolution were listed in Question 3.6 in Table 4-1. Survey participants were directed to indicate 

their perception of the effectiveness of those management practices on a scale of 1 to 10 (with 1 

meaning not at all effective and 10 meaning highly effective). Respondents’ perception of the 

effectiveness of herbicide applications following the label instructions (correct label rates and 

weed types and growth stages) was among the highest rated (average rating of 9 with the median 

9.2) (Figure 4-2). Similarly reported in perceived effectiveness was PRE herbicides containing a 

residual herbicide followed by (fb) POST application of glyphosate mixed with other herbicide 

(average rating of 9 with the median 8.8). Several studies reported that PRE fb a POST herbicide 

program using mixtures of two or more herbicides was considered the most effective measure to 

control GR weeds in GR crops (Ganie et al. 2016, Sarangi et al. 2017a). Among the weed 

management practices listed, cover crops were considered the least effective (average rating of 

6.5 with the median 5.8) option for GR weed management (Figure 4-2). 

Adoption of New Multiple Herbicide–Resistant Crops 

Survey results showed that 77% of respondents were aware of new stacked herbicide-resistant 

crops that came to the marker recently or set to be released in the near future (Table 4-9). Along 

with awareness of new herbicide-resistant crop lines is the willingness to adopting these new 

technologies. Of respondents, 67% noted a willingness to adopt new crop technologies a year or 

two after product release (data not shown). A majority of respondents had a high degree of 
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willingness to adopt new crop technologies with 94% stating willingness to adopt within two 

years of product release (data not shown). Since the commercial release of dicamba/glyphosate-

resistant soybean in 2017, off-target injury issues have become a significant concern for 

stakeholders with 86% of respondents reporting physical drift/volatility concerns (Figure 4-3). 

Off target movement of synthetic auxins has been of increasing concern as a survey from the 

southern United States in 2011 reporting 77% of crop consultants were concerned with off-target 

movement of synthetic auxins with the adoption of synthetic auxin resistant crops (Riar et al. 

2013). A major portion of respondents (38%) indicated a growing concern with legal issues 

specifically regarding synthetic auxin herbicides such as dicamba. Given the relative proximity 

of sensitive crops to mid-season applications of synthetic auxins, a growing concern of disputes 

between neighbors has been noted by survey respondents. As shown by survey responses, 

movement of synthetic auxins is of major interest and concern to stakeholders with 45% looking 

for education about proper applications and identifying the signs of temperature inversions 

(Figure 4-3). Along with a major concern of related issues with synthetic auxin herbicides, 22% 

of survey respondents had concerns that new technologies may lead to reliance a small handful 

of herbicides used in POST applications, leading to an evolution of herbicide-resistant weeds 

(Figure 4-3). A wide variety of other concerns were reported, with 27% of respondents 

expressing concerns such as application technologies associated with new herbicide-resistant 

crops, market issues, extension/research concerns, among others. 

Weed Management Research and Extension Priorities 

Survey participants were directed to list several research and extension priorities to improve 

future weed management in Nebraska (Question 4.1 in Table 4-1). Of the 130 responses, the 

largest portion (23%) indicated the need for integrated pest management research conjoining 
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popular chemical control options with other biological and mechanical management methods 

(Figure 4-3). Few survey participants (17%) noted that additional herbicide SOAs are needed to 

control increasing number of weeds resistant to multiple herbicides in row crops along with 

testing new formulations. No corn/soybean herbicide belonging to a new SOA has come to the 

marketplace in the last three decades (Duke 2012), and there is little possibility of 

commercialization of a new SOA herbicide in the near future. Other areas highlighted by 

respondents cited interest in research areas of application technology, cover crops, and drift 

management as their top priorities (Figure 4-3). 
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