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Abstract 
Current BCI-AAC systems largely utilize custom-made software and displays that may 
be unfamiliar to AAC stakeholders. Further, there is limited information available ex-
ploring the heterogenous profiles of individuals who may use BCI-AAC. Therefore, in 
this study, we aimed to evaluate how individuals with amyotrophic lateral sclerosis 
(ALS) learned to control a motor-based BCI switch in a row-column AAC scanning pat-
tern, and person-centered factors associated with BCI-AAC performance. Four individ-
uals with ALS completed 12 BCI-AAC training sessions, and three individuals without 
neurological impairment completed 3 BCI-AAC training sessions. To assess person-
centered factors associated with BCI-AAC performance, participants completed both 
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initial and recurring assessment measures including levels of cognition, motor ability, 
fatigue, and motivation. Three of four participants demonstrated either BCI-AAC per-
formance in the range of neurotypical peers, or an improving BCI-AAC learning trajec-
tory. However, BCI-AAC learning trajectories were variable. Assessment measures re-
vealed that two participants presented with a suspicion for cognitive impairment yet 
achieved the highest levels of BCI-AAC accuracy with their increased levels of perfor-
mance being possibly supported by largely unimpaired motor skills. Motor-based BCI 
switch access to a commercial AAC row-column scanning may be feasible for individ-
uals with ALS and possibly supported by timely intervention. 

Keywords: amyotrophic lateral sclerosis, augmentative and alternative communica-
tion, brain–computer interface, scanning, switch, translation 

Noninvasive brain–computer interfaces (BCIs) commonly use electro-
encephalography (EEG) to provide means for accessing augmentative 
and alternative (AAC) communication devices using an individual’s neu-
rological activity alone without physical interaction (BCI-AAC; e.g., J. S. 
Brumberg et al., 2018). Such a connection through EEG circumvents the 
requirement for individuals to possess a reliable form of physical move-
ment for accessing communication. Currently, there is no clinical path-
way (assessment, selection, provision, and insurance funding) for clinical 
use of BCI-AAC devices, though some are beginning to become com-
mercially available (e.g., the Intendix speller, g.tec medical engineering), 
highlighting the need for validated clinical practices involving BCI-AAC. 
However, while ongoing research focuses on improving BCI-AAC access 
to assistive technology devices (e.g., Gosmanova et al., 2017; Thompson 
et al., 2014; Zickler et al., 2011), BCI-AAC paradigms still largely utilize 
custom-made software and displays for eliciting targeted neurological 
control signals. The lack of consistency between custom-made BCI-AAC 
software and existing AAC devices and paradigms may impede the con-
tinuity of AAC intervention across the disease course, increasing an indi-
vidual’s emotional struggle and learning demands by requiring an indi-
vidual to learn multiple forms of AAC (Blain-Moraes et al., 2012; Liberati 
et al., 2015), and possibly leading to device abandonment (Johnson et 
al., 2006). For instance, an individual may be required to learn to con-
trol and navigate a commercially available AAC system using eye-gaze 
or switch access before transitioning to BCI-AAC as motor impairment 
progress (Pitt, Brumberg, Pitt et al., 2019). 

Scanning interfaces have a long history in traditional AAC implemen-
tation for providing AAC access to adults (e.g., Beukelman et al., 2007; 
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Fried-Oken et al., 2015), and children (e.g., McCarthy et al., 2006) who 
find direct item selections via methods such as touch, or eye-gaze, in-
effective or inefficient (Beukelman & Mirenda, 2013). Broadly, during 
row-column scanning, communication items are presented by the com-
munication device, or trained communication partner, in a set pattern 
(e.g., each row is highlighted and, following a selection, each column un-
til the target item is reached). To select an item, the individual must wait 
until the communication partner or device scans to the desired item, 
and then perform a predetermined action for selection such as press-
ing a switch (Beukelman & Mirenda, 2013). Due to clinician familiarity 
with switch access, and the established history of utilizing switches for 
scanning-based AAC access in clinical practice, BCI-based access to com-
mercial AAC scanning paradigms is a logical, strong, and familiar frame-
work for translating BCI-AAC technology into clinical scenarios. Motor-
based BCI-AACs, in particular, are intuitively similar to physical switch 
access methods in which sensorimotor EEG activity related to physical, 
attempted, and imagined motor movements (i.e., motor imagery) can 
be decoded for device control. Specifically, motor-based BCI-AACs use 
event-related desynchronization (Pfurtscheller & Da Silva, 1999), char-
acterized by a decrease of power in the mu sensorimotor band and as-
sociated with cortical engagement in an imagined, attempted, or physi-
cal task, to activate the BCI-AAC switch (see Pitt et al., 2019, for a review 
of BCI-AAC methods). In this regard, Friedrich et al. (2009) investigated 
motor imagery-based BCI-AAC access for eight neurotypical participants, 
one individual with ALS who had limited upper mobility, and one indi-
vidual with thoracic outlet syndrome without motor impairment. Par-
ticipants completed a 10- session training protocol where they learned 
to select a target item from a set of four during automatic linear scan-
ning via motor imagery (i.e., mental re-creation of a task without phys-
ical execution). While individual differences between the two partici-
pants with motor impairment and the neurotypical peers were not fully 
explored, overall results found that BCI-AAC performance was variable 
both within and across participants, with the participants’ mean accu-
racy increasing from 35% (SD = 14) in session one to its peak in Session 
8 (57%, SD = 20, chance accuracy 25%). 

Building upon these foundations, motor imagery-based BCI-AAC ac-
cess to larger AAC-style matrices was subsequently assessed by both 
Scherer et al. (2015) and J. S. Brumberg et al. (2016) during single 
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training sessions. Scherer et al. (2015) evaluated single-session BCI-
AAC performance by 14 adults with cerebral palsy in a row-column 
scanning paradigm of a 3 × 3 display of graphical symbols (e.g., fruit). 
As motor imagery strategies can take time to learn, motor execution 
was used by one participant as an alternative, though brain signals 
were used for decoding and not any physical movement-related bio-
markers. They found that while three participants were unable to suc-
cessfully control the BCI-AAC, eleven participants achieved control 
above chance levels. Finally, J. S. Brumberg et al. (2016) evaluated a 
means to elicit sensorimotor rhythms using motor imagery-based ac-
cess to a commercial Tobii- Dynavox page set incorporating a 4 × 3 ma-
trix using motor imagery. Real-time feedback was not provided dur-
ing this study and predicted online accuracy was calculated offline via 
a twofold cross validation. Six neurotypical individuals and one indi-
vidual with ALS completed the BCI-AAC training session with neuro-
typical participants achieving a mean accuracy of 60% (range: 55.7–
63.55%), and the individual with ALS achieving 62.6% accuracy. Taken 
together, prior research provides strong support for continued evalu-
ation of BCI-AAC approaches that allow for switch access to scanning 
paradigms. However, more research is needed to advance translation 
and place BCI-AAC in existing AAC frameworks and bolster clinician 
familiarity. Furthermore, the largely limited durations of these stud-
ies and discussed performance variability across sessions (Friedrich 
et al., 2009) did not permit examination of learning trajectories, and 
the aforementioned studies provide limited discussion regarding cog-
nitive-sensory-motor factors that may impact BCI-AAC success. For in-
stance, factors such as attention (Geronimo et al., 2016), motivation 
(Nijboer et al., 2010), fatigue (Myrden & Chau, 2015), and energy lev-
els (Geisler & Polich, 1990) can impact BCI-AAC success. Therefore, 
taken together, further details regarding how individuals learn BCI-
AAC control, and how person-centered factors impact BCI-AAC out-
comes will help elucidate clinically based assessment guidelines (see 
K. M. Pitt & S. J. Brumberg, 2018a, for a review on factors that may in-
fluence BCI-AAC success). 

Current advancements in motor-based BCI-AAC switches primarily 
focus on AAC control via motor imagery, the mental recreation of an 
action without physical execution, regardless of the individual’s phys-
ical motor abilities. However, focus group findings from Liberati et al. 
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(2015) reveal that individuals with ALS highly value AAC devices that 
can adapt to their changing sensory-cognitive-motor profile, exploit-
ing the strongest current communication channel both in the short and 
long terms. This concept of ability-based AAC design seeks to develop 
AAC devices that support access across the lifespan/ disease course 
and emphasizes the role of creating AAC systems that can adapt to 
the individual’s changing needs, instead of requiring the individual to 
adapt to the AAC technology (Light et al., 2019). The requirement for 
motor imagery only then shifts a burden to individuals that use BCI-
AAC who may have some amount of effortful or possibly unreliable vol-
untary motor ability and find motor imagery difficult to master. Fur-
thermore, physical practice may facilitate improved first-person motor 
imagery performance or attempted movements (a strategy associated 
with improved motor imagery-based BCI-AAC success; Neuper et al., 
2005) by supporting recall of the physical action from memory (Halder 
et al., 2011; Vuckovic & Osuagwu, 2013). Thus, providing timely BCI-
AAC access via motor execution early in the disease course for those 
with progressive neuromotor disorders, before motor movements be-
come severely impaired, may help provide a strong foundation for an 
individual’s transition to a motor imagery/motor attempt strategy af-
ter progressive paralysis prevents efficient physical movements (Vel-
liste et al., 2008). For instance, an individual may initially access a BCI-
AAC system via motor execution or multimodal AAC methods (e.g., 
BCI-AAC and eye-gaze) early in the disease course, with the individ-
ual choosing their method of AAC access depending upon factors such 
as fatigue, motor ability, social, and environmental factors, then tran-
sition to BCI-AAC-only as overt behavior diminishes. Thus, additional 
research is needed to evaluate motor-based BCI-AAC switch access to 
commercial AAC devices by decoding brain activity associated with re-
sidual motor movements to pursue a goal of person-centered AAC con-
tinuity. Therefore, in the present study, we (a) evaluate the individual 
learning trajectories of four participants with ALS while mastering au-
tomatic row-column scan selection control via a motor-based BCI-AAC 
switch using physical and/or imagined movements based on individ-
ual preference; and (b) explore how an individual’s initial cognitive-
sensory-motor profiles; and recurring factors (i.e., fatigue, motivation, 
and time since last meal) impact BCI-AAC performance to help inform 
BCI-AAC assessment. 
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Methods 

Participants 

Four individuals with a diagnosis of ALS (participants A1–A4, ages 38–
64, mean 52 years, 2 females, all right-handed; see Table 1 in Supplemen-
tary Materials), and three neurotypical individuals  (T1–T3, ages 23–60, 
mean 41 years, 2 females, all right-handed) completed the study. Partici-
pants did not report or demonstrate any vision or hearing loss that may 
impair BCI-AAC use. The study was approved by the University of Kan-
sas institutional review board with all participants providing informed 
consent. All participants were financially compensated. 

EEG and BCI-AAC Recording and data processing 

EEG recordings were collected at a sampling rate of 256 Hz via 62 ac-
tive electrodes (g.HIAmp, g.tec) arranged according to the 10–10 stan-
dard (Oostenveld & Praamstra, 2001), with forehead ground electrode, 
reference to the left earlobe, and a notch filter from 58 to 62 Hz to elim-
inate powerline artifacts. 

BCI-AAC calibration 

Prior to online BCI-AAC control, and similar to calibration procedures 
for eye-gaze AAC access, BCI-AAC calibration data were collected from 
90 trials that included 60 trials of motor execution during which partic-
ipants were instructed to move, or attempt to move, either their upper 
or lower limbs (e.g., 30 trials of left hand or foot and 30 trials of right 
hand or foot execution), and 30 trials of rest. The calibration data were 
then processed offline using custom routines in MATLAB (The Math-
Works, Natick, MA) for setting online BCI-AAC control parameters. Pro-
cessing included standard preprocessing (e.g., sensorimotor (8–25 Hz) 
bandpass filtering, windowing 0–2 s aligned to the instruction onset), 
common spatial filtering of the bandpass filtered EEG signal (e.g., first 
and last 3 common spatial filters selected), and decoder estimation (e.g., 
discriminant weight estimation and regularization parameter optimi-
zation). The specific frequency ranges used were tailored to each par-
ticipant, some were based on a general broadband sensorimotor range 
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(e.g., 8–25 Hz), while others were narrowband ranges (e.g., mu: approx 
8–15 Hz and beta: 15–25 Hz). A leave-one-out cross-validation proce-
dure was used to simultaneously optimize common spatial filter regu-
larization (e.g., fine to coarse spatial filters) and discriminant weights 
for the regularized common spatial pattern decoding algorithm with 
linear discriminant analysis (Lotte & Guan, 2010). Optimal parameter 
values and frequency ranges used were chosen by maximizing the area 
under the curve (AUC). While common spatial filters were data driven, 
those chosen typically had filter values that reflected sensorimotor pro-
cessing (e.g., left and right C/CP electrodes). All weights were stored for 
real-time decoding. 

BCI-AAC control 

Participants completed copy spelling tasks during online BCI-AAC con-
trol by making letter selections from a 7 × 5 keyboard display including 
letters A–Z, space, and backspace, similar to those available on commer-
cial AAC devices (see Figure 1) in an automatic row-column scanning 
pattern. Similar to existing switch-scanning AAC interfaces, the key-
board automatically advanced a blue selection box in a linear fashion 
through all possible rows in the graphical display, while the individuals 
remained at rest. Switch activation and subsequent row selection oc-
curred when the BCI-AAC detected sensorimotor brain activity related 
to an executed movement (J. Brumberg et al., 2018). Following row se-
lection, the AAC device automatically advanced the selection box in a lin-
ear fashion through all possible columns within the row, with final let-
ter selection upon a second BCI-AAC switch activation. A scanning rate 
of 2 s per item with an interstimulus duration of 1 s was employed. To 
indicate a selection was made, the blue box briefly turned dark gray, and 
the selected item appeared in the selection window located at the top of 
the display (see Figure 1). 

Sensorimotor activity utilized for BCI-AAC control was modulated 
by motor execution or imagery of the upper (for participants A1–A3), 
or lower limbs (for A4). Drawing from existing practices in AAC assess-
ment, selection of the limb used for BCI-AAC control was based upon 
participant preference, physical motor skills, and calibration results (i.e., 
predicted BCI-AAC accuracy). For instance, while unused at this time, 
A4 owned two knee switches for use with his recently purchased AAC 
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device. Therefore, in addition to having less motor impairment in his 
lower versus upper limbs, he wished to be consistent between use of 
the BCI-AAC and his physical switches to potentially increase function-
ality should the BCI-AAC system become a viable option for AAC access 
in the future. To accurately select a target item in our study, the BCI-AAC 
must accurately decode both “select” trial decisions, during which the 
individual performs motor execution and elicits a change in the senso-
rimotor rhythm, in addition to “do not select/continue scanning” trial 
decisions, where the individual remains relaxed. Visual feedback was 
provided to participants regarding how close the BCI-AAC was to mak-
ing a selection in order to help support motor learning during online 
control. This feedback was provided in the form of a circle overlaid on 
the current item that decreased in size as the BCI-AAC algorithm became 
more confident in predicting a “select” command and increased size as 
confidence decreased (see Figure 1). 

Online BCI-AAC training sessions 

Participants with a diagnosis of ALS completed a total of 12 online BCI-
AAC training sessions. For comparison of initial BCI-AAC performance, 
individuals without neurological impairment completed three BCI-AAC 

Figure 1.  Motor (imagery) BCI-AAC Interface. The motor (imagery) BCI-AAC inter-
face, depicting the third row highlighted, the feedback circle in white, and the empty 
selection window at the top of the image. 
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trainings. During each session, participants completed approximately 
300 select/no-select trials for copy spelling per session. Spelling time 
was limited to approximately 20 min. Participants began training ses-
sions with a set of words with four to five letters evenly distributed 
across the keyboard (approximately 20–30 selections per word are 
needed for perfect spelling), though we also allowed participants to 
choose words on their own to increase buy-in and motivation (e.g., par-
ticipant and study team member names, day of the week). For partici-
pants A1 and A2, training sessions were completed in the laboratory set-
ting (i.e., an electrically shielded booth, with the door open to allow for 
communication with the participant throughout the BCI-AAC session). 
However, due to travel challenges, BCI-AAC sessions for A3 and A4 were 
in a quiet room in their home setting. 

BCI-AAC learning trajectories 

BCI-AAC accuracy was determined using Cohen’s kappa, which rep-
resents the overall agreement between the BCI-AAC-decoded output, 
and targets for both select and “keep scanning” trials (Note: The lin-
ear nature of automatic row-column scanning leaves only one way to 
select a letter). Cohen’s kappa values have been previously used to as-
sess BCI-AAC outcomes (e.g., Daly et al., 2013; Zhang et al., 2019) and 
can be considered as an accuracy measure weighted by both true re-
sponse and false errors, with values of 0 to 0.20 indicating no to slight 
agreement between the BCI-AAC output and user intention, 0.21 to 0.4 
as fair agreement, 0.41 to 0.6 as moderate agreement, 0.61 to 0.8 as 
substantial agreement and .81 to 1 as almost perfect agreement (e.g., 
McHugh, 2012). Negative kappa values are possible and indicate per-
formance below chance levels. For the row-column scanning paradigm, 
Cohen’s kappa is suitable for outcome assessment as it adjusts for bias 
in trial/condition numbers, representing relative increases and de-
creases in true negatives (correct non-selects) and positives (correct 
selects), as well as false negatives (the BCI-AAC incorrectly does not 
select an item) and false positives (the BCI-AAC incorrectly selects an 
item). This consideration is important since multiple no-selection/con-
tinue scanning trials are required to scan through the nontarget let-
ters in row-column scanning and complete a target selection task. For 
auto-scanning paradigms, traditional measures of percent accuracy 
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(number of correct selects and non-selects/total trials) are weighted 
toward performance of non-selection tasks, skewing this performance 
metric. Furthermore, Cohens Kappa was chosen for this study as the 
metric reflects all accurate selections made by the participant, and not 
only correct letter selections. Utilizing a metric that will incorporate all 
accurate selections is important for establishing feasibility and gener-
alization of the proposed row-column paradigm to other switch tech-
niques (e.g., automatic linear scanning). In the row-column scanning 
paradigm utilized in this study, an individual must make two switch 
selections (row and column) to select the appropriate letter. In com-
parison, linear automatic scanning only requires the individual to ac-
tivate the switch on one occasion. The row-column scanning paradigm 
was chosen for this study as it may help increase communication rate 
(Beukelman & Mirenda, 2013). However, while metrics such as num-
ber of letters selected are an important measure for future clinical 
BCI-AAC performance, these metrics limit the assessment of switch 
performance to only displays that require two switch activations for 
letter selection and does not allow for a full representation of switch 
performance. By choosing accuracy defined by selection rates the per-
formance on our BCI-AAC may be generalized to other selection para-
digms where any number of selections are needed for final communi-
cative item choice. For instance, more selections are required to spell 
a word via an alphanumeric keyboard than a single icon representing 
a full word. Therefore, number of letters selected is representative of 
improved skill learning in the area of making item selections. Thus, 
performance metrics such as Cohen’s kappa that account for changes 
in both true positive and negative performance are ideal for reflecting 
skill learning in this BCI-AAC paradigm that generalizes to other par-
adigms that use item selections. 

To characterize the performance trajectory across the 12 training ses-
sions we assessed participants’ mean kappa value, kappa range, 95% 
confidence interval, overall performance increase and learning slope. 
Based upon prior research (e.g., Ahn & Jun, 2015), it was expected that 
BCI-AAC performance would be variable both within and between par-
ticipants. BCI-AAC performance variability means the final study session 
may not necessarily be representative of an individual’s overall perfor-
mance improvement. Therefore, performance increase was calculated 
as highest performance minus lowest performance to best characterize 
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the individual’s potential to utilize the BCI-AAC system and is inter-
preted alongside other descriptive measures to describing BCI-AAC 
performance. 

Assessment 

Initial cognitive-sensory-motor assessment 
Before starting online BCI-AAC training, participants with ALS also 

completed a range of assessments to help elucidate their unique pro-
file. Assessments were chosen to capture a variety of cognitive, sensory 
and motor aspects, and were chosen based on current literature regard-
ing BCI-AAC assessment and clinical assessment for those with neuro-
motor disorder. All assessment protocols were administered in a quiet 
room without distraction. Assessment protocols included (a) ALS Cog-
nitive Behavioral Screen (ALS-CBS; Woolley et al., 2010), screening the 
areas of attention, concentration, tracking and monitoring, and initia-
tion and retrieval; (b) the cognitive and motor portions of the BCI-AAC 
screener from K. Pitt and Brumberg (2018b), with the cognitive section 
including the areas of comprehension and orientation, following direc-
tions, attention and working memory, cognitive motor learning/ abstract 
problem-solving, and the motor section focusing on oculomotor move-
ment, upper and lower limb movement, and positioning. We decided to 
use both the ALS-CBS and BCI-AAC screener in participant assessment 
because, as the screener focuses on BCI-AAC relevant tasks, cognitive 
scores were shown to differ between the two protocols (K. M. Pitt & J. S. 
Brumberg, 2018b). These score differences suggest the two screening 
protocols are assessing different skills. Further, participants completed 
(a) the ALS-Functional Rating Scale (ALS-FRS; Cedarbaum & Stambler, 
1997) assessing motor function in the bulbar (speech, salivation, swal-
lowing), fine motor (handwriting, cutting food, dressing and hygiene), 
gross motor (walking, climbing stairs, turning in bed and adjusting bed 
clothes), and breathing domains (Bacci et al., 2016); (b) the Bimanual 
Fine Motor Function (BFMF; Beckung & Hagberg, 2002); and (c) Man-
ual Ability Classification System (MACS; Eliasson et al., 2006). Both the 
BFMF and the MACS provide complementary assessment regarding ac-
tivity limitation due to motor impairment in the upper limbs (Elvrum 
et al., 2016). Due to the limited number of data points (n = 4) for initial 
screening measures for those with ALS, participant results will be de-
scriptively related to BCI-AAC performance. 
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Recurring measures 
Participants rated their current level of fatigue (1 being normal, to 9 

extremely fatigued) and motivation (1 being extremely unmotivated to 
9, extremely motivated to use the BCI-AAC system) on a 9-point num-
ber scale, along with indicating the time elapsed since their last meal on 
a recurring basis prior to each session since these factors may change 
over time (e.g., Thompson, 2018). Within-subject correlations across ses-
sions for these recurring measures were assessed using a within-subject 
Spearman’s rank order correlation using the 12 data points collected at 
the beginning of each online BCI-AAC training session. 

Results 

Initial cognitive assessments 

For the ALS-CBS, the maximum score is 20, with a total score of <17 in-
dicating a concern for cognitive impairment. Scores differed among par-
ticipants, with scores of 14, 15, 19, and 19 for participants A4, A1, A2, 
and A3, respectively. These ALS-CBS scores indicate a concern of cogni-
tive impairment for both participants A1 and A4. The cognitive portion 
of the BCI-AAC screener has a maximum score of 24, and participants 
A1, A2, A3, and A4 scored 22, 22, 24, and 24, respectively, indicating the 
presence of BCI-AAC-related cognitive skills for all participants. Results 
are provided in Table 2 within Supplementary Materials 

Initial functional motor control and manual ability assessments 

Motor assessment guided by the BCI-AAC screener revealed participant 
A1 was ambulatory with no impairments noted in the upper or lower 
limbs. For the upper limbs, participant A2 had limited range of motion, 
weakness, and decreased ability to grasp/ grip, with increased right-side 
impairment. For the lower limbs, participant A2 was ambulatory with 
a walker, with decreased range of motion and increased leg spasticity 
when standing. Participant A3 had a severe upper limb impairment with 
physical abilities limited to movement of her index finger on left hand, 
and limited ability to grip with the right hand. For the lower limbs, par-
ticipant A3 was not ambulatory, retaining the ability to lift her thighs and 
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move her toes. For the upper limbs, participant A4 had limited range of 
motion, weakness, and decreased ability to grasp/ grip bilaterally. Fine 
motor impairments were decreased for his left side. For the lower limbs, 
participant A4 reported minimal impairments and was ambulatory with-
out assistance. No participants had difficulties with oculomotor control. 
The ALS-FRS has a maximum score of 40, which may be broken down 
into the subdomains of bulbar (maximum score of 12), fine motor (max-
imum score of 12), gross motor (maximum score of 12), and breathing 
(maximum score of 4) (Bacci et al., 2016). Lower ALS-FRS scores indi-
cate greater motor impairment. Scores varied by severity with A3 hav-
ing the lowest total score of 15 (bulbar = 9, fine motor = 0, gross motor 
= 3, breathing = 3) and A1 having the highest total score of 33 (bulbar = 
9, fine motor = 12, gross motor = 9, breathing = 3). A2 had a total score 
of 30 (bulbar = 10, fine motor = 8, gross motor = 8, breathing = 4), and 
A4 had a total score of 26 (bulbar = 9, fine motor = 4, gross motor = 10, 
breathing = 3). For the MACS and BFMF, scores range from 1 to 5 but, in 
contrast to the ALS-FRS, higher scores indicate greater motor impair-
ments. Scores for the MACs included 1, 2, 2, and 5 for participants A1, 
A2, A4, and A3, respectively, and 1, 2, 3, and 5 on the BFMF for partici-
pants A1, A2, A4, and A3, respectively. Results are provided in Table 3 
within Supplementary Materials. 

BCI-AAC learning trajectories 

Neurotypical learning trajectories 
Neurotypical participant 1. For neurotypical participant T1, her av-

erage BCI-AAC accuracy across three sessions was 0.412 (range: 0.383–
0.447; SD = .032), reaching levels of moderate agreement. Her overall 
increase in BCI-AAC accuracy (highest performance minus lowest per-
formance) was 0.064. Cohen’s kappa values and 95% confidence inter-
vals for each session are provided in Figure 2 and Supplementary Ma-
terials Table 4. 

Neurotypical participant 2. For neurotypical participant T2, his aver-
age BCI-AAC accuracy across three sessions was 0.689 (range: 0.657–
0.734; SD = .040), reaching substantial agreement levels, though the 95% 
confidence interval ranges extend into the range of substantial to al-
most perfect agreement for Session 3. His increase in BCI-AAC accuracy 
was 0.099. Cohen’s kappa values and 95% confidence intervals for each 
session are provided in Figure 2 and Supplementary Materials Table 4. 
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Neurotypical participant 3. For neurotypical participant T3, her av-
erage BCI-AAC accuracy across three sessions was 0.387 (range: 0.062–
0.568; SD = .283), reaching the upper levels of moderate agreement, 
though the 95% confidence interval range extends into the range of sub-
stantial agreement for Sessions 2 and 3. Her overall increase in BCI-AAC 
accuracy was 0.506, showing a large increase in BCI-AAC learning be-
tween Sessions 1 and 2. Cohen’s kappa values and 95% confidence in-
tervals for each session are provided in Figure 2 and Supplementary 
Materials Table 4. 

Learning trajectories of participants with ALS 
Participant A1. For participant A1, her average BCI-AAC accuracy 

across all 12 sessions was 0.333 (range: 0.020–0.544; SD = .151) aver-
aging fair levels of agreement, and ranging from no to mdoerate agree-
ment, though the 95% confidence interval range extends into the range 
of substantial agreement for Sessions 6 and 7. She had an overall in-
crease of 0.524 in BCI-AAC accuracy. Cohen’s kappa values and 95% con-
fidence intervals for each session are provided in Figure 2 and Supple-
mentary Materials Table 5, which shows a learning trajectory slope of 
0.0023 (kappa as a function of session) and a large increase in BCI-AAC 
learning between Sessions 1 and 2 (0.425). 

Participant A2. For participant A2, his average BCI-AAC accuracy 
across all 12 sessions was 0.139 (range: −.051– 0.340; SD = .117) aver-
aging no to slight agreement, and ranging from less than chance to fair 
agreement levels. Whereas overall his BCI-AAC performance was highly 
variable, the 95% confidence interval range extends into the range of 
moderate agreement for Sessions 1 and 4, and an overall increase of 
0.340 in BCI-AAC. Cohen’s kappa values and 95% confidence intervals 
for each session are provided in Figure 2 and Supplementary Materials 
Table 6. The learning trajectory for participant A2 was calculated with 
a slope of 0.0033. 

Participant A3. For participant A3, her average BCI-AAC accuracy 
across all 12 sessions was −0.01 (range: −.017– 0.13; SD = .096) indi-
cating below chance levels, and ranging from below chance levels to 
no–slight agreement. Her overall increase in BCI-AAC accuracy was 
0.147. Cohen’s kappa values and 95% confidence intervals for each ses-
sion are provided in Figure 2 and Supplementary Materials Table 7. Al-
though variable, visual inspection of the data in Figure 2 demonstrates 



P i t t  &  B r u m b e rg  i n  A s s i s t i v e  Te c h n o lo gy  ( 2 0 2 1 )        15

her learning trajectory began at Session 3 and is reflected by a slope of 
0.0155. However, the correlation between session number and BCI-AAC 
performance approached but did not reach significance (rs(10) = .517, 
p = .085). 

Participant A4. For participant A4, his average BCI-AAC accuracy 
across all 12 sessions was .199 (range: −0.05–0.47; SD = .177) indicat-
ing, on average, slight agreement, and ranging from below chance levels 
to moderate agreement. However, kappa values and confidence inter-
vals increased into the upper levels of moderate agreement for Sessions 
10 and 11 and an overall increase in BCI-AAC accuracy of 0.52. Cohen’s 
kappa values and 95% confidence intervals for each session are pro-
vided in Figure 2 and Supplementary Materials Table 8. For participant 
A4, session number is significantly and positively correlated to BCI-AAC 
performance (rs(10) = .699, p <.05). Based upon visual inspection of the 
graphs, an upward learning trajectory began at Sessions 3 to 4 and is re-
flected by a slope of 0.0347, which was the largest slope for all partici-
pants with ALS. 

Figure 2. BCI-AAC learning trajectory for all participants. Left: Cohen’s Kappa values 
denoting the BCI-AAC learning trajectories for participants with ALS (participants A1, 
A2, A3, and A4) across the 12 BCI-AAC training sessions. A linear regression fit to the 
trajectories is shown in black and the line equation given for all participants. Ninety-
five percent confidence intervals are shown in the shaded areas for each participant. 
Right: Cohen’s Kappa values denoting the BCI learning trajectories for neurotypical 
control participants T1, T2, and T3 across three BCI-AAC training sessions. Ninety-
five percent confidence intervals are shown in the shaded areas for each participant. 
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Recurring measures 
Participant A1. Results indicate: (a) motivation ratings on a scale from 

1 (extremely unmotivated) to 9 (extremely motivated) did not vary for 
participant 1 with a score of 9 (extremely motivated) prior to beginning 
each session; (b) fatigue ratings on a scale of 1 (normal) to 9 (extremely 
fatigued) taken prior to the start of each training session had an aver-
age rating of 3.75 (SD = 1.66), ranging from 1 (normal) to 6 (moderate– 
high), and a nonsignificant correlation (rs(10) = −0.389, p = .212) with 
BCI-AAC accuracy (Cohen’s kappa; range: 0.020–0.544; M = 0.333; SD 
= .151); and (c) time since last meal averaged 0.958 hours (range 0–3; 
SD = 1.25) with a nonsignificant correlation (rs(10) = 0.000, p = 1) with 
BCI-AAC accuracy. 

Participant A2. Results indicate: (a) motivation had an average rat-
ing of 7.33 (SD = .888), ranging from 6 (moderate–high) to 9 (extremely 
motivated) and a nonsignificant correlation (rs(10) = −0.000, p = 1) with 
BCI-AAC accuracy (range: −0.051–0.340; M = 0.139; SD = 0.117); (b) fa-
tigue had an average rating of 2.67 (SD = 1.56), from 1 (normal) to 5 
(moderate), and a nonsignificant correlation (rs(10) = −0.495, p = .102) 
with BCI-AAC accuracy; and (c) time since last meal averaged 9.72 hours 
(range: 0.41–16; SD = 6.77), and a nonsignificant correlation (rs(10) = 
−0.331, p = .293) with BCI-AAC accuracy. However, motivation ratings 
demonstrated a significant negative correlation (rs(10) = −.763, p <.05) 
with session number. 

Participant A3. Results indicate: (a) motivation had an average rat-
ing of 8.58 (SD = .515), from 8 (fairly–extremely motivated) to 9 (ex-
tremely motivated) and a nonsignificant correlation (rs (10) = −0.416, 
p = .178) with BCI-AAC accuracy (range:  −0.17–0.13; M = −.01; SD = 
0.096); (b) fatigue had an average rating of 3.88 (SD = 1.63), from 1 
(normal) to 7.5 (high), and a nonsignificant correlation (rs(10) = 0.288, 
p = .365) with BCI-AAC accuracy; and (c) time since last meal averaged 
2.16 hours (range 0.33–3; SD = 1.06), with a nonsignificant correlation 
(rs (10) = 0.287, p = .365) with BCI-AAC accuracy. However, motivation 
ratings demonstrated a significant negative correlation (rs(10) = −0.857, 
p = <.001) with session number. 

Participant A4. Results indicate: (a) motivation had an average rating 
of 7.42 (SD = .792), from 6 (moderate–high) to 8 (fairly– extremely moti-
vated), and a nonsignificant correlation (rs(10) = −0.158, p = .625) with 
BCI-AAC accuracy (range: −0.05–0.47; M = .199; SD = 0.177); (b) fatigue 
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had an average rating of 5.49 (SD = 1.38), from 2 (normal–mild) to 7 
(high), and a nonsignificant correlation (rs(10) = 0.392, p = .208) with 
BCI-AAC accuracy; and (c) time since last meal averaged 1.8 hours (range 
1–3.5; SD = .634), with a nonsignificant correlation (rs(10) = 0.044, p = 
.892) with BCI-AAC accuracy. Motivation ratings demonstrated a non-
significant correlation (rs(10) = 0.118, p = .714) with session number. 

Discussion and conclusion 

Feasibility for BCI-AAC access to clinical row-column scanning 
paradigms 

Overall, findings from this project provide support for translating motor-
based BCI switch access to clinical, commercial AAC row-column scan-
ning paradigms for individuals with ALS. This finding builds upon the 
work of J. S. Brumberg et al. (2016), Scherer et al. (2015), and Friedrich 
et al. (2009), for bridging the gap between BCI-AAC research practices 
and existing approaches to AAC access. Learning trajectories for the BCI-
AAC device in the present study were variable both between and within 
participants for those with ALS. However, only participant A2 was un-
able to demonstrate either a BCI-AAC performance in the range of neu-
rotypical peers, or an improving BCI-AAC learning trajectory. In contrast, 
for more than one session, both A1 and A4 achieved levels of BCI-AAC 
control within the range of neurotypical controls, which was 0.38–0.73 
(we discounted the initial session for T3 as an outlier due to initial BCI-
AAC learning). Specifically, A1 achieved kappa performance of 0.46, 0.42, 
0.52, 0.54, and 0.43 for Sessions 2, 3, 6, 7, and 12, respectively, and A4 
achieved kappa performance of 0.41 and 0.47 for Sessions 10 and 11, 
respectively. Furthermore, A3 and A4 were able to demonstrate an im-
proving BCI-AAC learning trajectory, and while the average BCI-AAC per-
formance was low for A3 across sessions (M = −0.01, SD = .096), these 
findings highlight that an individual with severe physical impairments 
may demonstrate BCI-AAC learning. However, extensive training may 
be needed for proficiency. Further, it is important to note that, while A3 
could not spell a 4- to 5-letter word without multiple spelling errors ren-
dering the word largely unreadable, individualized adaptions to the BCI-
AAC system were not performed during training to allow for comparison 
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across participants. For instance, due to disease severity, A3 had multi-
ple muscle spasms throughout BCI-AAC calibration and training, which 
likely decreased performance. Therefore, adaptions to improve signal 
processing such as online removal of muscle artifacts and combining sig-
nals from other modalities may increase overall performance values. In-
terpreting these findings in a feature-matching framework, A3 already 
uses an eye-gaze AAC system to support communication, environmen-
tal control, and internet browsing. Therefore, a visual, sensory BCI-AAC 
system such as the visual P300-speller may provide A3 with a more fa-
miliar AAC access method along her existing strengths, and lessen the 
burden associated with BCI-AAC learning. 

Cognitive and motor skills in relation to BCI-AAC performance 

Motor skills 
While functional motor abilities have not been shown to relate to 

motor (imagery)-based BCI-AAC control (Geronimo et al., 2016; Kasa-
hara et al., 2012), one’s average amount of daily hand-arm movement 
can improve motor (imagery)-based BCI-AAC performance (Randolph 
et al., 2010; Rimbert et al., 2019). In line with the findings of Randolph 
et al. (2010) and Rimbert et al. (2019), the highest levels of perfor-
mance for our study were achieved by participants A1 and A4 who both 
demonstrated the least level of motor impairment in the limb utilized 
for BCI-AAC control (i.e., A1 upper limb, and A4 lower limb). Relevant 
differences in motor ability between participants are especially appar-
ent in the qualitative descriptions obtained by the BCI-AAC screener 
by indicating no impairment of the upper limb for A1, and A4 report-
ing his legs were “still strong,” being ambulatory without assistance. 
In comparison to the BCI-AAC screener, other measures utilized for as-
sessment of motor function were limited in elucidating differences be-
tween participants that were relevant to BCI-AAC control. Specifically, 
while the MACS and BFMF were able to quantify differences in upper 
limb ability, they do not assess function of the lower limb, which may 
be utilized for BCI-AAC control. Furthermore, the ALS-FRS assesses 
a range of functional motor abilities, including those related to up-
per, lower, and bulbar function. Therefore, while total ALS-FRS scores 
highlight that A1 had the least level of motor impairment and A3 had 
the highest level of motor impairment, overall, specific differences in 
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motor abilities between participants are less clear. When applying bul-
bar, fine motor, gross motor and respiratory domain analysis to ALS-
FRS scores (Bacci et al., 2016), further differences were highlighted 
between participants. Domain results reveal that differences in total 
scores for A2 and A4 were primarily influenced by A2’s negative per-
ception of his fine motor abilities. Fine motor skills may play a role in 
BCI-AAC performance (Hammer et al., 2012). However, while score dif-
ferences in the gross motor domain were minimal (i.e., A1 = 9, A4 = 10, 
A2 = 8, A3 = 3), they paralleled BCI-AAC performance best with A1 and 
A4 providing higher ratings (indicating less impairment) than A2 and 
A3. Nonetheless, domain scores do not clearly differentiate upper and 
lower limb functions or explore specific tasks that may be specifically 
utilized for BCI-AAC control. Therefore, taken together, these findings 
highlight the role of individualized assessment of motor function, as 
guided by tools such as the BCI-AAC screener (K. M. Pitt & J. S. Brum-
berg, 2018b), alongside existing measures of motor function. 

Cognitive skills 
ALS-CBS scores reveal that both A1 and A4 presented with a suspi-

cion for cognitive impairment, as characterized by ALS-CBS scores be-
low 17 (Woolley, 2014). However, participants A1 and A4 achieved the 
highest levels of BCI-AAC performance. The finding of greater BCI-AAC 
performance for participants with ALS who have suspicion for cognitive 
deficits contrasts with previous findings for motor-imagery BCI-AACs, 
which found diminished performance for those with lower ALS-CBS 
scores (Geronimo et al., 2016). However, participants with suspected 
cognitive impairment in our study also presented with the least physi-
cal impairment in the limb used for BCI-AAC control. It is plausible pro-
viding an individual with a motor-based BCI-AAC device before loss of 
physical movement may lower the cognitive demands associated with 
the abstract nature of motor imagery performance. Therefore, starting 
BCI-AAC intervention early, before loss of motor function, may allow time 
for an individual to begin establishing BCI-AAC mastery. Hopefully, these 
early skills will support BCI-AAC control through motor imagery strat-
egies later in the disease course, and despite possible cognitive decline. 
However, more research is needed to determine the benefits of early in-
tervention on BCI-AAC performance. 
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BCI-AAC learning 

Each participant with ALS demonstrated their own unique BCI-AAC per-
formance trajectory across the 12 training sessions. Based upon visu-
alization of participant data, all neurotypical participants and three of 
four participants with ALS were able to demonstrate growth in around 
five 20-min sessions of approximately 300 trials (with 20–30 selections). 
Therefore, along with consideration of individual preferences, requir-
ing at least five sessions to make informed decisions about motor-based 
BCI-AAC performance helps to establish research-based performance 
guidelines to inform clinical decision-making on BCI-AAC device selec-
tion. Regarding individual learning trajectories, the following charac-
teristics were associated with promising outcomes observed within the 
first five BCI-AAC training sessions: 

(1) BCI-AAC performance similar to that of neurotypical peers for at 
least two consecutive sessions (as with A1). 

(2) beginning and maintaining an improving BCI-AAC performance 
trajectory within the first five sessions (as with A3 and A4). How-
ever, an extended number of sessions may be necessary for in-
dividuals showing variable/low BCI-AAC performance (such as 
A3), allowing time for further individualization of BCI-AAC param-
eters to improve performance stability and overall performance 
magnitude. 

It is important to note these are just general guidelines based on a lim-
ited sample size, and the length of time an individual is provided for 
BCI-AAC learning should take into account factors beyond basic accu-
racy (e.g., stakeholder preferences, motivation). This means an extended 
number of sessions will likely be necessary. Furthermore, it is unclear 
whether these results generalize to other sensorimotor BCI-AAC para-
digms, which may have differing cognitive-sensory-motor demands (e.g., 
Nijboer et al., 2010). 

Recurring measures in relationship to BCI-AAC performance 

Increasing levels of fatigue may negatively impact BCI-AAC performance 
(Talukdar et al., 2019). However, for our study, no significant correlations 
were identified between an individual’s fatigue at the start of the session 
and subsequent performance. The lack of correlation between fatigue 
and BCI-AAC performance may be influenced by limited ratings of fatigue 
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(average ratings of fatigue were 3.75, 2.67, 3.88 and 5.49 for A1-A4, re-
spectively), and high levels of motivation. When considering motivation, 
on average, ratings were high for all participants with ALS. Participants 
reported a range of factors influencing their high levels of motivation, 
including the hope of using BCI-AAC as a communication method, inter-
est in BCI-AAC technology, and a desire to help science. However, motiva-
tion ratings significantly decreased across sessions for A2 and A3. This 
decrease in motivation ratings may be due to low levels of BCI-AAC con-
trol. While pre-session ratings of motivation were not significantly corre-
lated to performance in this study, possibly due to our participants’ high 
levels of baseline motivation, previous findings have identified motiva-
tion as an important aspect in achieving BCI-AAC control (e.g., Kleih & 
Kübler, 2015). Consideration of how to increase motivation during the 
early stages of motor learning may help support BCI-AAC success. For 
instance, whereas BCI-AAC studies have traditionally focused on copy 
spelling tasks, A4 reported his high levels of motivation were generally 
driven by his desire to attempt free spelling tasks and move to the next 
level of functional independence in BCI-AAC control. Free spelling tasks 
were planned for completion during this investigation once a criterion 
level of BCI-AAC accuracy was achieved through copy spelling training, 
namely, substantial levels of kappa agreement for two consecutive ses-
sions. However, no participants with ALS achieved BCI-AAC performance 
of this level. Therefore, the incorporation of functional communication 
tasks beyond copy spelling may support sustained levels of BCI-AAC mo-
tivation helping improve outcomes across sessions. Finally, further inves-
tigation on the effects of medications and food intake on BCI-AAC per-
formance over time may help elucidate why participant A2 was unable 
to establish higher levels of BCI-AAC control or a positive learning tra-
jectory. For instance, similar to P300-BCI-AAC control, it is feasible that 
pharmaceutical effects (e.g., K. M. Pitt & J. S. Brumberg, 2018a; Meador, 
1998) and decreased food consumption (Geisler & Polich, 1990) may 
have negatively impacted cognitive and BCI-AAC performance. 

Limitations 

The limited sample size of this study means further work is needed to 
confirm our findings, develop clinical guidelines for BCI-AAC devices 
based on motor execution and motor imagery, and expand results to 
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inform assessment of other BCI-AAC techniques. While our limited sam-
ple size of individuals with ALS was sufficient to lay clinical groundwork, 
additional work is needed to generalize findings to other populations of 
individuals who may use BCI-AAC as an access method (e.g., brain stem 
stroke, upper spinal cord injury, locked-in syndrome, cerebral palsy) and 
for relating selection accuracy used in this study with communication 
success in alternative paradigms (e.g., letter spelling vs word, phrase, or 
symbol selection). Finally, it is important to note that to facilitate com-
parison across participants, apart from allowing A4 to use his lower limb 
for BCI-AAC control due to increased strength, the BCI-AAC system was 
not individualized or adapted to meet individual needs. Therefore, fu-
ture research evaluating signal processing techniques, feedback meth-
ods, and training paradigms (e.g., feedback, intensity) may help support 
overall increase in BCI-AAC performance. 

Conclusion 

Considering BCI-AAC access to commercial AAC devices may help sup-
port AAC access for individuals with severe physical impairments across 
the lifespan, with motor (imagery)-based BCI-AAC switches showing 
feasibility as an input method for AAC control via scanning paradigms. 
Two participants with concern for cognitive impairment, but largely in-
tact motor abilities demonstrated the greatest levels of BCI-AAC per-
formance. Placed into a clinical context, that improved motor abilities 
may aid BCI-AAC outcomes supports consideration of timely interven-
tion strategies for BCI-AAC assessment and intervention, similar to com-
mercial AAC access. However, to integrate BCI-AAC into existing clinical 
frameworks such as feature matching, further research needs to be com-
pleted regarding the development of feature matching-based assessment 
tools for BCI-AAC (K. M. Pitt & J. S. Brumberg, 2018b), and how an indi-
vidual’s profile (e.g., medications, food intake) impacts BCI-AAC learning. 
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Supplementary Materials 

Table 1  

Participant information for those with a diagnosis of ALS 
 

Participant 

Number 

Diagnosis Time since 

diagnosis 

(years.months) 

Sex  Age 

(years) 

Primary 

communication 

method 

Medications 

A1 Bulbar ALS 0.7 F 64 Verbal Diabetes  

A2 Spinal ALS 1.11 M 38 Verbal Radicava infusions, 

Riluzole from 12/16-

12/18, muscle 

relaxants, as needed 

A3 Spinal ALS 10.4 F 48 Verbal and eye-

gaze (as 

needed) 

Muscle relaxants, as 

needed 

A4 Spinal ALS 3.5 M 57 Verbal Riluzole 2x/day, 

muscle relaxants, as 

needed 

 
  



Table 2 

Cognitive scores for participants with ALS. The ALS-CBS has a maximum score of 20, with a 

total score of <17 indicating a concern for cognitive impairment. The BCI-AAC screener has a 

maximum score of 24 with lower scores possibly indicting an increased concern for the presence 

of BCI-AAC related skills. 

Participant ALS-CBS 

(total/20) 

BCI 

Screener 

(/24) 

A1 15                      22 

A2 19 22 

A3 19 24 

A4 14 24 

 

 

 

 

 

 

 

 

 

 

 



Table 3 

Participant with ALS results for motor control and manual ability. The ALS- Functional Rating 

Scale (ALS-FRS) has a maximum score of 40, with higher scores indicate decreased motor 

impairment. In comparison, for the Manual ability classification systems (MACS) and Bimanual 

fine motor function classification system (BFMF) both have a high score of 5, with lower scores 

indicate decreased motor impairment. ROM = range of motion 

Participant ALS-FRS MACS 

 

BFMF 

 

BCI screener: upper 

limb 

BCI screener: lower limb 

A1 33 1 1 No impairment  No impairment  

A2 30 2 2 Limited ROM. 

Decreased fine motor 

control and ability to 

grasp/grip 

Limited ROM and 

weakness 

Ambulatory with 

assistance  

Limb spasticity 

A3 15 5 5 Highly limited finger 

movement and ability 

to grasp  

Non-ambulatory 

Minimal movement of 

legs and thighs  

A4 26 2 3 Limited ROM. 

Decreased fine motor 

control and ability to 

grasp/grip 

Ambulatory without 

assistance. Participant 

reported legs as ‘still 

strong’  



Table 4 

Neurotypical participants Cohen’s Kappa values and 95% confidence intervals  
 

Participant Session 

Number 

Cohen’s Kappa 95% CI upper 

bound 

95% CI lower 

bound 

T1 1 0.3825 0.4994 0.2757 

 2 0.4465 0.5661 0.3268 

 3 0.406 0.5079 0.304 

T2 1 0.6751 0.7932 0.5571 

 2 0.6574 0.7637 0.5511 

 3 0.7339 0.8141 0.6537 

T3 1 0.0615 0.2008 -0.0778 

 2 0.5679 0.688 0.4478 

 3 0.532 0.6485 0.4155 

Note: Cohen’s Kappa values and 95% confidence intervals (CI) for each of the three BCI-AAC 

training sessions for neurotypical participants T1–T3. 

 

 

 

 

 

 

 

 



Table 5 

Cohen’s Kappa values and 95% confidence intervals for participant A1 
 

Session Number Cohen’s Kappa 95% CI upper bound 95% CI lower bound 

1 0.020 0.122 -0.082 

2 0.445 0.582 0.308 

3 0.423 0.552 0.293 

4 0.377 0.520 0.235 

5 0.289 0.407 0.171 

6 0.522 0.641 0.403 

7 0.544 0.654 0.431 

8 0.223 0.325 0.122 

9 0.195 0.286 0.104 

10 0.243 0.354 0.132 

11 0.285 0.397 0.174 

12 0.425 0.560 0.290 

Note: Cohen’s Kappa values and 95% confidence intervals (CI) for each BCI-AAC training 

session for participant A1.  

 

 

 

 
 



Table 6 

Cohen’s Kappa values and 95% confidence intervals for participant A2 
 

Session Number Cohen’s Kappa 95% CI upper bound 95% CI lower bound 

1 0 0.438 -0.438 

2 0.17 0.283 0.059 

3 -0.051 0.069 -0.171 

4 0.340 0.551 0.249 

5 0.221 0.346 0.096 

6 0.087 0.197 -0.024 

7 0.134 0.241 0.026 

8 0.222 0.355 0.089 

9 0.046 0.173 -0.080 

10 0.179 0.331 0.027 

11 0.126 0.249 0.003 

12 0.131 0.241 0.021 

 

Note: Cohen’s Kappa values and 95% confidence intervals (CI) for each BCI-AAC training 

session for participant A2. 

 

 

 

 

 

 

 



Table 7 

Cohen’s Kappa values and 95% confidence intervals for participant A3 
 

Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 -0.016 0.306 -0.339 

2 -0.172 0.203 -0.546 

3 -0.036 0.051 -0.125 

4 -0.146 0.005 -0.297 

5 0.085 0.237 -0.068 

6 -0.092 0.194 -0.378 

7 0.059 0.167 -0.049 

8 -0.018 0.173 -0.21 

9 0.0289 0.1767 -0.1188 

10 0.1079 0.2843 -0.0685 

11 -0.0446 0.2508 -0.34 

12 0.1256 0.2643 -0.013 

 

Note: Cohen’s Kappa values and 95% confidence intervals (CI) for each BCI-AAC training 

session for participant A3. 

 

 

 

 

 

 



Table 8 

Cohen’s Kappa values and 95% confidence intervals for participant A4 

Session Number Cohen’s Kappa 95% CI upper bound 95% CI lower bound 

1 0 0.021 -0.021 

2 -0.051 0.051 -0.152 

3 -0.044 0.091 -0.179 

4 0.158 0.333 -0.017 

5 0.156 0.315 -0.002 

6 0.253 0.356 0.151 

7 0.373 0.488 0.258 

8 0.278 0.409 0.146 

9 0.312 0.409 0.215 

10 0.407 0.511 0.302 

11 0.468 0.591 0.345 

12 0.078 0.213 -0.057 
 
 

Note: Cohen’s Kappa values and 95% confidence intervals (CI) for each BCI-AAC training 

session for participant A4. 
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