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Palmer amaranth (PA) is the most problematic weed in agronomic cropping 

systems in the United States. Acetolactate synthase (ALS) inhibitor-/glyphosate-resistant 

(GR) PA has been confirmed in Nebraska and is widespread in several counties. Soybean 

resistant to isoxaflutole/glufosinate/glyphosate has been developed to provide additional 

herbicide sites of action for control of herbicide-resistant weeds. The objectives of this 

study were to evaluate herbicide programs for control of ALS inhibitor/GR PA and their 

effect on PA density and biomass, as well as soybean injury and yield in 

isoxaflutole/glufosinate/glyphosate-resistant soybean. A PRE herbicide fb glufosinate 

controlled PA 80%–99% 21 d after late-POST in 2018 and reduced density 89%–100% 

in 2018 and 58%–100% in 2019 at 14 d after early-POST.  

Weed-crop competition models offer a significant tool for understanding and 

predicting crop yield losses due to crop-weed interference. Within current empirical 

models, weed biological characteristics are unknown, which limits understanding of weed 

growth in competition with crops and how that competition affects crop growth 



 
 

parameters. The objective of this study was to determine the effect of center-pivot and 

subsurface drip irrigation on the average evapotranspiration (ETa) of PA grown in corn, 

soybean, and fallow in south central Nebraska. Results suggest irrigation affects subplot 

ETa differences early in the growing season, but crop system and progression of plant 

growth with available water have a greater effect on ETa differences than irrigation type 

later in the growing season. Thus, crop management will likely have greater effects on 

PA ETa values than irrigation practices alone. This study provides base data on weed 

evapotranspiration and its relation to weed morphological features for future use in 

mechanistic weed-crop competition models.  

Velvetleaf is another troublesome broadleaf weed that competes with agronomic 

crops for resources such as soil moisture. The objective of this study was to determine the 

effect of degree of water stress on the growth and fecundity of velvetleaf using soil 

moisture sensors under greenhouse conditions. The results of this study demonstrate that 

velvetleaf can survive ≥ 50% field capacity (FC) continuous water stress conditions, 

although with reduced leaf number, plant height, and growth index compared to 75% and 

100% FC.  
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CHAPTER 1: INTRODUCTION AND OBJECTIVES 

 

Introduction 

Palmer amaranth. Palmer amaranth is a summer annual broadleaf weed belonging to 

the Amaranthaceae family and is one of the dioecious species among pigweeds (Steckel 

2007). Human activities in the 20th century such as agricultural development, within- and 

between-field operations, and seed and equipment transportation have led Palmer 

amaranth to spread to the northern United States (Costea et al. 2004; 2005; Culpepper 

2006). Since the first report of Palmer amaranth beyond its native habitat in the southwest 

United States, it has become one of the most problematic and troublesome weeds in 

agronomic cropping systems in the United States (Culpepper et al. 2010; Ward et al. 

2013). A multistate growers’ survey conducted in 2005–2006 reported that pigweeds 

were one of the three most problematic weeds in glyphosate-resistant corn (Zea mays L.) 

and soybean [Glycine max (L.) Merr.] production fields in the Midwest (Kruger et al. 

2009). A statewide survey of Nebraska stakeholders in 2015 found that Palmer amaranth 

ranked fourth out of the top five most difficult to control weeds in the Panhandle and 

West Central Nebraska (Sarangi and Jhala 2018). More recently, a statewide survey of 

Nebraska stakeholders found that Palmer amaranth was considered the most difficult to 

control in corn and soybean cropping systems.  

Several factors have enabled Palmer amaranth to become such a dominant and 

difficult-to-control weed, including its rapid growth rate (Ehleringer and Forseth 1980; 

Ehleringer 1985), prolific seed production (Keeley et al. 1987; Massinga et al. 2001), and 

ability to tolerate adverse environmental conditions, including disease, genetic 
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abnormalities (Franssen et al. 2001), and water stress (Chahal et al. 2018). Horak and 

Loughin (2000) reported that Palmer amaranth had the highest plant dry weight, leaf area, 

water-use efficiency, and growth rate (0.10–0.21 cm per growing degree day) compared 

to redroot pigweed (Amaranthus retroflexus L.), tumble pigweed (Amaranthus albus L.), 

and waterhemp [Amaranthus tuberculatus (Moq.) Sauer] in a two-year field study in 

Kansas. Palmer amaranth also has greater root length and root biomass compared with 

most crops, allowing it to occupy a larger soil volume and obtain soil nutrients (Wright et 

al. 1999). As a dioecious species, Palmer amaranth is an obligate outcrossing, wild 

pollinated species (Sosnoskie et al. 2012), resulting in wide genetic diversity that can lead 

to the spread of herbicide-resistant alleles (Jhala et al. 2021; Oliveira et al. 2018). Due to 

its prolific seed production, aggressive growth habit, and ability to evolve resistance to 

commonly used herbicides, it is vital to control Palmer amaranth early in the growing 

season by integrating mechanical, cultural, and chemical practices, including PRE 

herbicides with multiple sites of action (de Sanctis et al. 2021; Norsworthy et al. 2012).  

Velvetleaf. Velvetleaf (Abutilon theophrasti) is regarded as a troublesome broadleaf 

weed (Spencer 1984), causing grain yield losses in fields of corn (Zea mays L.), soybean 

[Glycine max (L.) Merr.], sorghum [Sorghum bicolor (L.) Moench], and cotton 

(Gossypium hirsutum L.) (Behrens 1979; Colton and Einhellig 1980; Eaton et al. 1976; 

Hagood et al. 1980; Higgins et al. 1984; Oliver 1979; Spencer 1984; USDA 1970). A 

multistate growers’ survey conducted in 2005–2006 reported velvetleaf as one of the 

three most problematic weeds in GR corn and soybean cropping systems in the Midwest 

(Kruger et al. 2009). A statewide survey of Nebraska stakeholders in 2015 found that 
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velvetleaf ranked the fourth most difficult to control weed in corn and soybean 

production fields (Sarangi and Jhala 2018). 

Velvetleaf possesses a number of characteristics that contribute to its success as a 

weed, including rapid root growth and the ability to produce sugars at a relatively 

efficient rate in low sunlight, allowing growth under partially shaded crop canopies 

(Roeth 1987). Velvetleaf produces 700–17,000 seeds plant−1 that have high viability and 

can persist in the soil up to 50 years (Anderson et al. 1985; Chandler and Dale 1974; 

Khedir and Roeth 1981). In addition, velvetleaf has a sporadic and continuous 

germination pattern (Burnside et al. 1981; Roeth 1987); robust seedling vigor (Hartgerink 

and Bazzaz 1984); allelopathic effects (Bhowmik and Doll 1982; Colton and Einhellig 

1980; Elmore 1980; Gressel and Holm 1964; Sterling 1987a, 1987b); is a host to several 

crop pests and pathogens (Hepperley et al. 1980; Jacques and Peters 1971); and has 

reduced susceptibility to some herbicides used in corn and soybean production (Jhala et 

al. 2021), such as dicamba (de Sanctis and Jhala 2021). 

Herbicide Resistance. Globally, glyphosate is the most widely used agricultural 

pesticide and is used extensively in glyphosate-resistant (GR) canola (Brassica napus L.), 

corn (Zea mays L.), cotton (Gossypium hirsutum L.), sugarbeet (Beta vulgaris var. 

saccharifera), and soybean in the United States (Heap and Duke 2018). Since the 

commercialization of GR crops, particularly GR corn and soybean in the midwestern 

United States and GR cotton in the southern United States, continuous use of glyphosate 

multiple times in a year, along with a decline in the use of residual herbicides (Culpepper 

2006; Young 2006), has resulted in the evolution of GR weeds (Beckie 2006). As of 

2020, 50 weeds have been confirmed resistant to glyphosate worldwide (Heap 2021), 
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including six broadleaf weeds such as common ragweed (Ambrosia artemisiifolia L.), 

giant ragweed (Ambrosia trifida L.), kochia [Bassia scoparia (L.) A. J. Scott], horseweed 

(Erigeron canadensis L.), waterhemp, and Palmer amaranth in Nebraska (Jhala 2017a). 

Palmer amaranth resistant to glyphosate was first confirmed in Georgia in 2004 

(Culpepper et al. 2006). Since then, GR Palmer amaranth has been confirmed in 28 states 

in the United States (Heap 2021; Heap and Duke 2018). Palmer amaranth resistant to 

ALS inhibitors was first confirmed in Kansas in 1994 and since then has been confirmed 

in 14 states in the United States (Heap 2021; Sprague et al. 1997). Palmer amaranth 

resistant to glufosinate, another commonly used herbicide, was recently confirmed in 

Arkansas (Barber et al. 2021).  

Palmer amaranth has evolved resistance to herbicides from at least eight herbicide 

sites of action: microtubule-, acetolactate synthase (ALS)-, 5-enolpyruvyl-shikimate-3-

phosphate synthase (EPSPS)-, photosystem (PS) II, hydroxyphenylpyruvate dioxygenase 

(HPPD)-, very long chain fatty acid (VLCFA)-, protoporphyrinogen oxidase (PPO)-, and 

synthetic auxin inhibitors (Heap 2021). In Nebraska, Palmer amaranth biotypes with 

multiple herbicide-resistance to HPPD- and PS II-inhibitors, as well as EPSPS- and PS II-

inhibitors were confirmed in 2014 and 2016, respectively (Chahal et al. 2017; Jhala et al. 

2014). In Kansas, a population of PA resistant to five herbicide sites of action including 

synthetic auxin-, EPSPS-, ALS-, PS II-, and HPPD-inhibitors was confirmed (Kumar et 

al. 2019). Herbicide-resistant Palmer amaranth reduces herbicide options for growers and 

can cause major crop yield losses if not controlled early in the growing season. Annually, 

weeds cause an estimated loss of more than US$100 billion and a 10% yield loss on a 

global scale (Appleby et al. 2000). In light of these losses, it is clear that a greater 
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understanding of crop-weed interactions is necessary to develop cost-effective and 

sustainable weed management practices. 

LibertyLink GT27TM Soybean. In order to address the growing need to control GR 

weeds in cropping systems, multiple-herbicide-resistant soybean traits have been 

developed. The recently available isoxaflutole/glufosinate/glyphosate-resistant soybean 

(LibertyLink GT27TM) provides an opportunity to use isoxaflutole applied PRE alone or 

in mixture with other residual herbicides for early-season weed control. It also provides 

an opportunity to use glufosinate as a contact, POST herbicide for control of emerged 

broadleaf and grass weeds (Jhala et al. 2017). Norsworthy et al. (2008) reported 99% 

control of GR Palmer amaranth with glufosinate. Wiesbrook et al. (2001) found that 

glufosinate in sequential applications improved control of broadleaf weeds over a single 

application. Glufosinate applied early-POST (EPOST) resulted in 73% Palmer amaranth 

control compared to 76% control with glufosinate applied EPOST and late-POST 

(LOST) (Hoffner et al. 2012).Glufosinate applied EPOST resulted in 71% control and a 

sequential LPOST application provided 76% control of GR waterhemp in glufosinate-

resistant soybean in Nebraska (Jhala et al. 2017). An additional option for POST control 

of GR Palmer amaranth in glufosinate-resistant soybean is glufosinate mixed with 

residual herbicides such as acetochlor, pyroxasulfone, or S-metolachlor (Aulakh and 

Jhala 2015). This mixture provides foliar and residual control of Palmer amaranth 

through overlapping residual activity.  

Weed and Crop Water Demands. Weed species compete with crops for a variety of 

environmental resources, including water, which is one of the most limiting factors for 

optimum crop production (Benjamin and Nielsen 2006). Weed-crop competition models 
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offer a significant tool for understanding and predicting crop yield losses due to crop-

weed interference. However, within these models, weed biological characteristics are 

unknown, limiting our understanding of weed growth in competition with crops and how 

that competition affects crop growth parameters. In terms of weed-crop competition, two 

main principles are apparent: (1) the first plant to occupy a given area has an advantage 

over later emerging plants, and (2) more aggressive plant species typically dominate in an 

intermixed community of weeds and crops (Singh et al. 2020). In general, weed species 

with similar growth patterns to crops are more competitive than weeds with a dissimilar 

growth pattern. Conversely, the competitive ability of crops depends on many factors, 

such as (1) crop type and cultivar or variety selection, sowing date, row spacing and 

tillage practices; (2) weed density and composition; (3) soil and climatic factors; and (4) 

crop rotation (Singh et al. 2020). The time and method of irrigation may also impact 

weed-crop competition as weeds are also benefitted during irrigation. As the inherent 

ability of crops to compete against weeds is weakened by climatic and soil stresses 

(Mohler 2004), various farm management practices, including irrigation, can be adjusted 

in such a way to hinder weed growth. 

Nebraska growers lead the U.S. in irrigated acres at ~10 million acres [4.1 million 

ha], with roughly half a million irrigated acres added each year (USDA 2019). Sprinkler 

systems, particularly center pivot irrigation (CPI) systems, represent ~80% of Nebraska’s 

irrigation, while gravity and drip systems represent ~20% and 0.05%, respectively 

(USDA 2010). In CPI and gravity irrigation systems, a certain portion of water 

withdrawn is returned as surface water or groundwater, although much is consumed by 

evapotranspiration (ET). In comparison to CPI systems, ET from drip systems like 
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subsurface drip irrigation (SDI) has been shown to be 10% lower in certain areas. The 

reduction in ET of SDI systems translates to additional water for transpiration, potentially 

resulting in increased crop yield and weed biomass if competitive weeds are present 

(Odhiambo and Irmak 2015). Developing irrigation management strategies based on 

available soil water requires knowledge of weed and crop response to water deficit, 

which can be obtained through modeling (Paredes et al. 2014), relating biomass 

production to ET. The effects of crop ET rates on crop yield are well known – the 

challenge is determining the effect of weed ET on weed morphological features (i.e., 

biomass, leaf area index, plant height). 
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Objectives 

1. Evaluate herbicide programs for control of ALS inhibitor/GR Palmer amaranth 

and their effect on Palmer amaranth density and biomass, as well as soybean 

injury and yield in isoxaflutole/glufosinate/glyphosate-resistant soybean. 

2. Determine the effect of center-pivot and subsurface drip irrigation on the average 

evapotranspiration of Palmer amaranth grown in corn, soybean, and fallow in 

south central Nebraska. 

3. Determine the effect of degree of water stress on the growth and fecundity of 

velvetleaf using soil moisture sensors under greenhouse conditions. 
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CHAPTER 2:  

CONTROL OF ACETOLACTATE SYNTHASE INHIBITOR/GLYPHOSATE-

RESISTANT PALMER AMARANTH (AMARANTHUS PALMERI) IN 

ISOXAFLUTOLE/GLUFOSINATE/GLYPHOSATE-RESISTANT SOYBEAN 

Mausbach JM, Irmak S, Sarangi D, Lindquist J, Jhala AJ (2021) Control of acetolactate 

synthase inhibitor/glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in 

isoxaflutole/glufosinate/glyphosate-resistant soybean. Weed Technology (In press) 

 

Abstract 

Palmer amaranth is the most problematic and troublesome weed in agronomic cropping 

systems in the United States. Acetolactate synthase (ALS) inhibitor- and glyphosate-

resistant (GR) Palmer amaranth has been confirmed in Nebraska and it is widespread in 

several counties. Soybean resistant to isoxaflutole/glufosinate/glyphosate has been 

developed to provide additional herbicide sites of action for control of herbicide-resistant 

weeds. The objectives of this study were to evaluate herbicide programs for control of 

ALS inhibitor/GR Palmer amaranth and their effect on Palmer amaranth density and 

biomass, as well as soybean injury and yield in isoxaflutole/glufosinate/glyphosate-

resistant soybean. Field experiments were conducted in 2018 and 2019 in a grower’s field 

infested with ALS inhibitor/GR Palmer amaranth near Carleton, Nebraska. Isoxaflutole 

applied alone or mixed with sulfentrazone/pyroxasulfone, flumioxazin/pyroxasulfone, or 

imazethapyr/saflufenacil/pyroxasulfone provided similar control (86%–99%) of Palmer 

amaranth 21 d after PRE (DAPRE). At 14 d after early-POST (DAEPOST), isoxaflutole 

applied PRE and PRE followed by (fb) POST controlled Palmer amaranth 10% and 63%, 
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respectively. Glufosinate applied EPOST provided 75%–96% control with in both years. 

A PRE herbicide fb glufosinate controlled Palmer amaranth 80%–99% 21 d after late-

POST (DALPOST) in 2018 and reduced density 89%–100% in 2018 and 58%–100% in 

2019 at 14 DAEPOST. No soybean injury was observed from any of the herbicide 

programs tested in this study. Soybean yield in 2019 was relatively higher due to higher 

precipitation compared with 2018 with generally no differences between herbicide 

programs. This research indicates that herbicide programs are available for effective 

control of ALS inhibitor/GR Palmer amaranth in isoxaflutole/glufosinate/glyphosate-

resistant soybean. 

 

Introduction 

ALS inhibitor- and/or GR Palmer amaranth has been observed in several 

corn/soybean production fields in south-central and west-central Nebraska, in addition to 

alfalfa (Medicago sativa L.), corn, and sugarbeet fields in western Nebraska (Vieira et al. 

2018). To address the growing need to control GR weeds in cropping systems, multiple-

herbicide-resistant soybean traits have been developed. For example, 

isoxaflutole/glufosinate/glyphosate-resistant soybean has been developed to provide 

additional herbicide sites of action for control of herbicide-resistant weeds, primarily GR 

weeds; however, herbicide programs need to be developed and tested that provide 

season-long control of GR Palmer amaranth in this multiple herbicide-resistant soybean. 

The objectives of this research were to: (1) evaluate isoxaflutole- and glufosinate-based 

herbicide programs for control of ALS inhibitor/GR Palmer amaranth in 

isoxaflutole/glufosinate/glyphosate-resistant soybean, and (2) evaluate the effect of 
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herbicide programs on Palmer amaranth density and biomass, as well as soybean injury 

and grain yield. 

 

Materials and Methods 

Field Experiments. Field experiments were conducted in 2018 and 2019 in a grower’s 

field near Carleton, NE (40.30°N, 97.67°W). The field had a GR corn-soybean rotation 

with reliance on glyphosate for weed control in a no-till production system for the last 10 

years and confirmed to have an ALS inhibitor/GR Palmer amaranth population (Chahal et 

al. 2017) [(multiple herbicide-resistant (MHR) Palmer amaranth here after]. The soil at 

the experimental site was silt loam (montmorillonitic, mesic, Pachic Argiustolls) with a 

pH of 6.0 and 19% sand, 63% silt, 18% clay, and 2.6% organic matter content. Winter 

annual weeds were controlled with glyphosate at 900 g ae ha-1, 2,4-D ester at 560 g ae ha-

1, and liquid ammonium sulfate at 3% v/v two weeks prior to establishing an experiment. 

A soybean cultivar resistant to isoxaflutole/glufosinate/glyphosate was planted in a no-till 

seedbed at 345,800 seeds ha−1 in rows spaced 76 cm apart. Soybean was planted on May 

10 in 2018 and May 6 in 2019. Individual experimental plot dimensions were 3 m wide 

by 9 m long. The experimental site was in a rainfed environment with no supplemental 

irrigation. The precipitation received during both growing seasons are listed (Table 2-1). 

Treatments were arranged in a randomized complete block design with four 

replications. Herbicide programs evaluated to control MHR Palmer amaranth consisted of 

PRE, EPOST, LPOST, and PRE fb POST herbicide programs (Table 2-2). A nontreated 

control was included for comparison. Herbicides were applied with a handheld CO2-

pressurized backpack sprayer equipped with AIXR 110015 flat fan nozzles (TeeJet® 
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Technologies, Spraying Systems Co., P.O. Box 7900, Wheaton, IL) calibrated to deliver 

a 140 L ha−1 flow rate at 276 kPa at a constant speed of 4.8 km h−1. Glufosinate was 

mixed with liquid ammonium sulfate at 3% v/v (Anonymous 2017) and was applied with 

XR 11005 flat fan nozzles (TeeJet® Technologies, Spraying Systems Co., P.O. Box 7900, 

Wheaton, IL). The PRE herbicides were applied after soybean planting on the same day 

(i.e., May 10) in 2018, and four d after soybean planting (i.e., May 10) in 2019. The 

EPOST herbicides were applied 31 d after PRE (DAPRE) herbicides were applied. 

Palmer amaranth was 1–8 cm tall depending on herbicide program. Soybean was at the 

first to second trifoliate (V1–V2 growth stage). The LPOST herbicides were applied 20–

22 DAEPOST herbicide applications. Palmer amaranth was 8–25 cm tall depending on 

the herbicide program. Palmer amaranth plant height was variable because new plants 

had emerged and some plants had been partially controlled by the EPOST herbicide. 

Data Collection. Palmer amaranth control was assessed visually at 21 DAPRE, 14 

DAEPOST, and 14 and 28 DALPOST herbicide applications on a scale of 0%–100% 

(0% indicating no control of Palmer amaranth and 100% indicating complete control). 

Palmer amaranth densities were recorded 21 DAPRE, 14 DAEPOST, 14 DALPOST, and 

28 DALPOST by counting the number of Palmer amaranth plants in one 0.5 m2 quadrat 

placed randomly between two center soybean rows in each plot. Soybean injury was 

assessed visually at 14 DAPRE, 14 DAEPOST, 14 and 28 DALPOST herbicide 

applications based on a scale of 0%–100% (0% indicating no soybean injury and 100% 

indicating complete plant death). Palmer amaranth plants counted during density ratings 

were clipped at the soil surface, placed into paper bags, and placed in an oven at 65oC 

until they reached a constant weight. Aboveground biomass was converted into percent 
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biomass reduction and was compared with the nontreated control using the following 

equation (Wortman 2014): 

% Biomass reduction = �𝐶𝐶−𝐵𝐵
𝐶𝐶
� ∗ 100 

where 𝐶𝐶 is the biomass of the nontreated control and 𝐵𝐵 is the biomass of an individual 

treatment plot. Soybean was harvested from the center two rows in each plot using a plot 

combine. Grain yield was adjusted to 13% moisture content and converted into kg ha−1. 

Statistical Analysis. Data were subjected to ANOVA using the PROC MIXED 

procedure in SAS version 9.3 (SAS Institute Inc, Cary, NC). Data were tested for 

normality with the use of PROC UNIVARIATE. Palmer amaranth control, density, and 

biomass data were arcsine square-root transformed before analysis; however, back-

transformed data are presented with the mean separation based on the transformed data. 

Year and herbicide treatments were considered fixed effects, while replication was 

considered a random effect in the model. If year-by-treatment interaction was non-

significant, data from both years were combined. However, if the year-by-treatment 

interaction was significant, data were analyzed separately by year. Where the ANOVA 

indicated treatment effects were significant, means were separated at P ≤ 0.05 using 

Tukey Kramer’s pairwise comparison test. 

 

Results and Discussion 

Year-by-treatment interaction for MHR Palmer amaranth control 21 DAPRE was 

not significant (P > 0.05); therefore, data were combined for both years. Palmer amaranth 

control estimates 14 DAEPOST and 28 DALPOST, Palmer amaranth density, and 

soybean yield were significant (P ≤ 0.05); therefore, data were presented separately for 
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both years. No soybean injury was observed from any herbicide program (data not 

shown), indicating that the herbicides evaluated in this study are safe to use in 

isoxaflutole/glufosinate/glyphosate-resistant soybean when applied according to label 

instructions. Schultz et al. (2015) also reported that isoxaflutole is safe to use in 

isoxaflutole-resistant soybean. 

Temperature and Precipitation. The 2018 growing season started off warmer than 

average, with temperatures of 20.6oC and 25.0oC for May and June, respectively, 

compared with 14.8oC and 21.8oC in 2019 (Table 2-1). Monthly precipitation varied from 

the 30-yr average of 135 mm in May and 115 mm in June in both years. Below-average 

precipitation occurred in 2018, with 78 and 96 mm in May and June, respectively, while 

above-average precipitation was observed throughout the 2019 growing season (Table  

2-1). 

Palmer amaranth Control. The PRE herbicides evaluated in this study controlled MHR 

Palmer amaranth 86%–99% 21 DAPRE (Table 2-3). Although similar to other PRE 

herbicide spray timings, pyroxasulfone/sulfentrazone, flumioxazin/pyroxasulfone, and 

imazethapyr/pyroxasulfone/saflufenacil controlled Palmer amaranth 97%–99%. The 

contribution of the ALS-inhibiting herbicide (i.e., imazethapyr) was minimal; rather, the 

VLCFA-inhibitor (i.e., pyroxasulfone) and PPO-inhibitor (i.e., saflufenacil) primarily 

contributed to the control. Shyam et al. (2021) reported similar findings 14 DAPRE with 

imazethapyr/pyroxasulfone/saflufenacil, where Palmer amaranth control ranged from 

87%–97% in a two yr study in 2,4-D choline/glufosinate/glyphosate-resistant soybean. 

Sarangi and Jhala (2019) reported at least 98% Palmer amaranth control 14 and 28 
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DAPRE with imazethapyr/dimethenamid-P/saflufenacil and flumioxazin/pyroxasulfone. 

Isoxaflutole applied PRE controlled Palmer amaranth 86%–89% 21 DAPRE (Table  

2-3); however, variable control of Palmer amaranth has been reported with isoxaflutole in 

the literature. Meyer et al. (2016) and Johnson et al. (2012) reported at least 87% Palmer 

amaranth control with isoxaflutole 28 DAPRE. In contrast, Spaunhorst and Johnson 

(2016) reported 57%–70% GR Palmer amaranth control 21 DAPRE. Greater control with 

isoxaflutole occurred in a higher rainfall year, indicating the importance of moisture for 

herbicide activation (Spaunhorst and Johnson 2016). Isoxaflutole requires 12.7–25.4 mm 

of irrigation or rain to activate, although too much water can cause the herbicide to 

become diluted and leach, reducing efficacy (Jhala 2017b). If moisture is adequate, 

isoxaflutole can provide 14–21 d of residual activity for Palmer amaranth control (Chahal 

et al. 2015). 

Palmer amaranth control varied between years with PRE fb EPOST herbicide 

programs (Table 2-3). As an EPOST application, glufosinate applied alone controlled 

MHR Palmer amaranth 95%–96% in 2018 and 75% in 2019. Glufosinate mixed with 

isoxaflutole controlled Palmer amaranth 92%–95% in 2018 and 85%–94% in 2019 

(Table 2-3). Shyam et al. (2021) reported 88% Palmer amaranth control 14 DAEPOST 

with glufosinate. Conversely, Chahal and Jhala (2015) found that glufosinate in single 

and sequential applications provided 53%–76% and 56%–77% waterhemp control, 

respectively. Sequential glyphosate applications provided no control of MHR Palmer 

amaranth in this study, indicating that the population is highly resistant to glyphosate 

(Table 2-3). Chahal et al. (2017) reported 37- to 40-fold level of glyphosate resistance in 
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MHR Palmer amaranth at this research site; therefore, no control with glyphosate was 

expected.  

At 28 DALPOST, isoxaflutole applied PRE or in sequential applications (PRE fb 

EPOST) controlled MHR Palmer amaranth 10% and 53% in 2018, respectively, while 

providing no control in 2019 (Table 2-3). This indicates isoxaflutole applied alone at 105 

g ai ha−1 will not provide effective control later in the growing season and that mixture 

with other herbicide(s) is needed to achieve economically acceptable control. In this 

study isoxaflutole was applied at 105 g ai ha−1; however, it can be applied in a range of 

140–210 g ai ha−1 in a single application with a season maximum of 210 g ai ha−1 

(Anonymous 2020). Relatively lower rate of use in this study is because the study was 

conducted before isoxaflutole was label approved in 2020. In addition, isoxaflutole is 

primarily a residual herbicide with limited foliar activity; therefore, effective control of 

emerged Palmer amaranth at the time of application should not be expected. Janak and 

Grichar (2016) reported similar findings of 51% Palmer amaranth control with a single 

application of isoxaflutole 101 DAPRE. When mixed with metribuzin, isoxaflutole has 

been shown to provide 97%–98% control of redroot pigweed (Amaranthus retroflexus) 

and Powell amaranth (Amaranthus powellii) (Smith et al. 2019). With the exception of 

isoxaflutole, PRE fb POST herbicide programs provided 80%–99% MHR Palmer 

amaranth control in 2018 and 76%–99% control in 2019 at 28 DALPOST (Table 2-3). 

Whitaker et al. (2010) reported greater than 80% late-season control of GR Palmer 

amaranth with a PRE application of flumioxazin/S-metolachlor fb fomesafen; however, 

less than 30% late-season control was achieved with flumioxazin/S-metolachlor without a 

POST application of fomesafen. A single herbicide application is less likely to provide 
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season-long control of Palmer amaranth – a PRE followed by a POST herbicide program 

is required for effective Palmer amaranth control and reducing Palmer amaranth 

seedbank (Norsworthy et al. 2012). 

Palmer amaranth Density and Biomass. Palmer amaranth density and biomass were 

affected by herbicide programs (Table 2-4). At 14 DAEPOST isoxaflutole reduced MHR 

Palmer amaranth density 0% in 2018 and 48% in 2019, while PRE fb EPOST 

applications of isoxaflutole reduced density 49% in 2018 and 53% in 2019. Similarly, 

Meyer et al. (2016) reported 62% Palmer amaranth density reduction with isoxaflutole 

applied PRE. Meyer et al. (2015) reported 78%–93% Palmer amaranth density reduction 

with flumioxazin/pyroxasulfone in soybean in a multi-year, multi-state study, while 

Sarangi et al. (2017) reported 91% and 98% density reduction of GR waterhemp with 

flumioxazin/pyroxasulfone and imazethapyr/dimethenamid-P/saflufenacil, respectively.  

PRE herbicides fb glufosinate reduced MHR Palmer amaranth density at least 

85% in 2018 and 2019. Similar findings were reported by Shyam et al. (2021) and 

Norsworthy et al. (2016). EPOST applications of glufosinate reduced MHR Palmer 

amaranth density 89% in 2018 and 58% in 2019, while glufosinate mixed with 

isoxaflutole reduced Palmer amaranth density 63%–100% in 2018 and 85%–94% in 2019 

(Table 2-4). Chahal and Jhala (2015) reported 50% density reduction of waterhemp with 

an EPOST application of glufosinate and 83% density reduction of waterhemp with 

EPOST fb LPOST applications of glufosinate 45 DALPOST in glufosinate-resistant 

soybean in Nebraska.  

At 14 DALPOST in 2019, PRE herbicide(s) fb glufosinate applied EPOST 

reduced MHR Palmer amaranth biomass 49%–97% compared to 95% biomass reduction 
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with PRE herbicide fb EPOST and LPOST applications of glufosinate (Table 2-4). 

Aulakh and Jhala (2015) reported 79%–88% weed biomass reduction with PRE 

applications of dimethenamid-P/saflufenacil, or imazethapyr/sulfentrazone fb glufosinate. 

Shyam et al. (2021) reported 100% Palmer amaranth biomass reduction with 

imazethapyr/pyroxasulfone/saflufenacil fb glufosinate and 99% biomass reduction with 

EPOST fb LPOST applications of glufosinate in 2,4-D choline/glufosinate/glyphosate-

resistant soybean. Single or sequential applications of isoxaflutole resulted in no biomass 

reduction due to poor Palmer amaranth control (Table 2-4). Chahal and Jhala (2015) 

reported 80%–91% biomass reduction with a single POST application of glufosinate and 

92%–95% biomass reduction with sequential POST applications of glufosinate in 

glufosinate-resistant soybean. Overall, a PRE herbicide with multiple sites of action fb 

glufosinate has consistently provided > 90% Palmer amaranth control and > 90% Palmer 

amaranth density and biomass reduction in most studies. 

Soybean Yield. Year-by-treatment interaction was significant (P ≤ 0.05); therefore, yield 

data are presented separately for both years (Table 2-4). Soybean yield in 2019 was 

higher compared to 2018 due to higher precipitation in 2019 that provided sufficient 

moisture for soybean growth and development (Table 2-1). Isoxaflutole mixed with 

pyroxasulfone/sulfentrazone applied PRE fb glufosinate resulted in the highest soybean 

grain yield of 2,294 kg ha─1 in 2018, which was comparable with several herbicide 

programs (Table 2-4). In 2019, several herbicide programs resulted in similar soybean 

yield in the range of 3,139–4,227 kg ha─1 (Table 2-4). Shyam et al. (2021) reported 

soybean yields with similar PRE herbicides used in combination with glufosinate.  
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Practical Implications 

A new soybean trait resistant to isoxaflutole/glufosinate/glyphosate has been 

commercially available since the 2019 growing season in the United States. Results of 

this study suggest that herbicide programs are available for effective control of MHR 

Palmer amaranth in isoxaflutole/glufosinate/glyphosate-resistant soybean. No soybean 

injury was observed with any of the herbicide programs evaluated in this study, including 

isoxaflutole applied in sequential applications. Isoxaflutole (Alite™ 27) was registered in 

2020 for application in isoxaflutole-resistant soybean; however, use of this herbicide is 

limited to certain counties in a few states. For example, isoxaflutole (Alite™ 27) is 

labeled for application in only four southwest counties (Chase, Dundy, Hitchcock, and 

Red Willow) in Nebraska (Anonymous 2020). In addition, isoxaflutole cannot be applied 

on coarse-textured soils (e.g., sandy, sandy loam, loamy sand) with less than 1.5% 

organic matter content, limiting the use of this herbicide. The majority of soybean in 

Nebraska is grown in the eastern region, so while growers can plant 

isoxaflutole/glufosinate/glyphosate-resistant soybean in this region, they cannot use 

isoxaflutole (Alite™ 27) due to label restrictions (Anonymous 2020). Therefore, adoption 

of soybean resistant to isoxaflutole/glufosinate/glyphosate in Nebraska will likely be very 

limited.  
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Table 2-1. Monthly mean air temperature and total precipitation during the 2018 and 

2019 growing seasons (March to October), along with the 30-yr average at the research 

site near Carleton, Nebraska.a 

Month Mean air temperature (oC)  Total precipitation (mm) 
 

2018 2019 30-yr average 2018 2019 30-yr average 

March 4.5 1.1 4.6 23.6 85.6 45.2 

April 5.9 11.8 10.6 26.4 16.0 66.3 

May 20.6 14.6 16.4 78.0 172.7 135.4 

June 25.0 21.8 22.3 96.0 153.2 115.1 

July 24.7 25.1 24.9 95.5 137.2 105.2 

August 23.3 23.1 23.7 92.2 154.9 94.0 

September 20.6 22.6 19.1 153.4 120.4 66.0 

October 10.6 9.6 12.1 99.8 118.1 58.4 

aData were obtained from National Oceanic and Atmospheric Administration (NOAA 
2019). 
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CHAPTER 3:  

EVAPOTRANSPIRATION OF PALMER AMARANTH (AMARANTHUS 

PALMERI S. WATSON) IN CORN, SOYBEAN, AND FALLOW UNDER 

SUBSURFACE DRIP AND CENTER-PIVOT IRRIGATION SYSTEMS 

 

Abstract 
 

Palmer amaranth (Amaranthus palmeri S. Watson) is a major biotic constraint in 

agronomic cropping systems in the United States due to its rapid growth rate and ability 

to tolerate adverse climatic conditions, among other characteristics. Weed-crop 

competition models offer a significant tool for understanding and predicting crop yield 

losses due to crop-weed interference. Research is currently dominated by empirical 

studies where crop yield loss and weed threshold values are predicted in response to 

variable weed density or biomass in certain environmental conditions. However, within 

these models, weed biological characteristics are unknown, which limits understanding of 

weed growth in competition with crops under different irrigation methods and how that 

competition affects crop growth parameters. The objective of this study was to determine 

the effect of center-pivot irrigation (CPI) and subsurface drip irrigation (SDI) on the 

average evapotranspiration (ETa) of Palmer amaranth grown in corn, soybean, and fallow 

in south central Nebraska. Field experiments were conducted in 2019 and 2020 at South 

Central Agricultural Laboratory near Clay Center, NE. Twelve Palmer amaranth plants 

were alternately transplanted one meter apart in the middle two rows of corn, soybean, 

and fallow subplots under CPI and SDI. Corn, soybean, and fallow subplots without 

Palmer amaranth were included for comparison. Watermark Granular Matrix soil 
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moisture sensors were installed at 0.3-, 0.6-, 0.9-m depths next to or between three 

Palmer amaranth and crop plants in each subplot. Soil matric potential data were 

collected hourly from the time of Palmer amaranth transplanting to crop harvest. Results 

suggest irrigation affects subplot ETa differences early in the growing season, but crop 

system and progression of plant growth with available water have a greater effect on ETa 

differences than irrigation type later in the growing season. Although there were 

irrigation differences in Palmer amaranth ETa in fallow subplots, growers typically do not 

irrigate fallow fields. Thus, crop management will likely have greater effects on Palmer 

amaranth ETa values than irrigation practices alone. This study provides baseline 

information about Palmer amaranth evapotranspiration and its relation to Palmer 

amaranth morphological features (i.e., growth index, biomass, and total leaf area) for 

future use in mechanistic weed-crop competition models. 

 

Introduction 

Research is currently dominated by empirical studies where crop yield loss (or 

crop yield) and weed threshold values are predicted in response to variable weed density 

or biomass in certain environmental conditions. Complex empirical models have been 

developed by considering variables such as multiple weed species in simultaneous 

competition (Firbank and Watkinson 1985; Pantone and Baker 1991; Park et al. 2002; 

Diggle et al. 2003), timing of weed emergence (Cousens et al. 1987; Neve et al. 2003), 

and weeds with multiple emergence patterns (Peltzer et al. 2012). However, within these 

models, weed biological characteristics are unknown, limiting our understanding of weed 

growth in competition with crops and how that competition affects crop growth 
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parameters. Crop-weed competition is a complex phenomenon, and for predictive 

purposes, a detailed mechanistic model offers greater insights than an empirical model. 

Mechanistic models take into account all underlying morphological and physiological 

processes and their dependence on each other with respect to external forces and time 

(Singh et al. 2020). However, morphological and physiological plasticity in weed species 

is a challenge for studies/models that have been developed on the basis of weed growth. 

Research on weed biology and ecology has been conducted, although additional studies 

conducted in a systematic way and under different locations/environmental conditions are 

needed to elucidate simulation models and thus weed management decisions (Van Acker 

2009; Chauhan and Johnson 2010). 

The objective of this research was to determine the effect of center-pivot and 

subsurface drip irrigation on the average evapotranspiration of Palmer amaranth grown in 

corn, soybean, and fallow in south central Nebraska. 

 

Materials and Methods 

Plant Materials. Glyphosate-resistant Palmer amaranth seed were germinated in 11.4 cm 

deep square plastic pots in a University of Nebraska-Lincoln greenhouse maintained at 

18/24 °C day/night temperatures with a 14-hr photoperiod. Glyphosate-resistant seed was 

used so that other weeds could be controlled after Palmer amaranth was transplanted in 

the field. In order to ensure the Palmer amaranth plants were glyphosate-resistant, 

glyphosate at 64 fl oz/acre mixed with liquid ammonium sulfate at 3% v/v was sprayed 

on 10–12 cm tall Palmer amaranth plants using an AIXR Teejet nozzle that applied the 

herbicide mixture at a rate of 140.3 L ha-1 at 1.0 m s-1 using a chamber track sprayer. 
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Palmer amaranth plants survived the glyphosate application, signifying the seed source 

was truly glyphosate-resistant.  

Experimental Design, Site Description, and Crop Management. Field experiments 

were conducted in the 2019 and 2020 growing seasons at the University of Nebraska-

Lincoln South Central Agricultural Laboratory near Clay Center, Nebraska (40.57°N, 

98.12°W). The soil at the experimental site is a Hastings silt loam, a well-drained upland 

soil with water holding characteristics of 0.34 m3 m-3 field capacity, 0.14 m3 m-3 

permanent wilting point, and 0.53 m3 m-3 saturation point. Typical effective rooting depth 

of field corn in the experimental site is 1.2 m. Total available water holding capacity of 

the soil profile is 240 mm 1.2 m-1 (Irmak 2010). The 30-year average rainfall in the area 

during the growing season (May to August) is 112.4 mm, with significant annual and 

growing season variability in both timing and magnitude (de Sanctis and Jhala 2021). The 

2019 and 2020 growing season weather data are presented in Figure 3-1. The experiment 

used a split-plot design with irrigation as the whole-plot factor. Two methods of irrigation 

were used, including center-pivot (CPI) and subsurface drip irrigation (SDI). The CPI 

field was irrigated using a four-span hydraulic and continuous move system (T-L 

Irrigation, Hastings, Nebraska). The SDI field was irrigated with drip lines installed 0.4 

m below the soil surface. The 257 m long laterals were centered in the inter-row area of 

every other plant with drip emitters spaced about 0.46 m apart along the laterals (Net-

afim-USA, Fresno, California).  Subplots consisted of six cropping systems, including 

corn, corn with Palmer amaranth, soybean, soybean with Palmer amaranth, fallow, and 

fallow with Palmer amaranth. Soybean, corn, and fallow plots without Palmer amaranth 

were included for comparison. Each subplot measured 3 m wide by 9 m long, with four 
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rows of corn or soybean in the subplots containing these crops. The field was rolling stalk 

chopped without tillage practice. A broadcast application of 11-52-0 NPK at 168 kg ha-1 

and an in-furrow injection of 32-0-0 NPK at 201 kg ha-1 were applied before crops were 

sown. Dekalb DKS 60-87RIB corn was planted at a depth of 5.0 cm and at a rate of 

34,000 seeds acre-1 [85,000 seeds ha-1]. NK S29-K3X soybean was planted at a depth of 

3.8 cm and at a rate of 150,000 seeds acre-1 [375,000 seeds ha-1]. A premix of 

saflufenacil/imazethapyr/pyroxasulfone (Zidua PRO herbicide) was applied at 6 fl 

oz/acre to soybean, a premix of atrazine/bicyclopyrone/mesotrione/S-metolachlor 

(Acuron herbicide) was applied at 2.5 qt/acre to corn and fallow, and a POST application 

of glyphosate at 32 fl oz/acre was applied across all subplots for control of existing 

weeds. Once Palmer amaranth plants reached a height of 18–25 cm in the greenhouse, 

twelve Palmer amaranth were alternately transplanted one meter apart in the middle two 

rows of each subplot. There were 36 Palmer amaranth plants under each irrigation system 

for a total of 72 sample units each year of the study.  

Measurement of Soil Water Status and Irrigation Management. Watermark Granular 

Matrix Sensors (Irrometer Co, Riverside, California) were installed next to or between 

three Palmer amaranth plants and crop plants in each subplot to measure soil matric 

potential (SMP) on an hourly basis. The sensors were buried at 0.3-, 0.6-, and 0.9-m 

depths and data were collected from the Palmer amaranth transplant date to shortly before 

crop harvest in both years. A total of 45 and 54 sensors were installed across the subplots 

of each irrigation system in 2019 and 2020, respectively. The sensors were connected to 

Watermark Monitor dataloggers (Irrometer Co, Riverside, California). SMP 
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measurements were converted to percent volumetric soil water content (VWC) using 

predetermined soil water retention curves for the same field (Irmak et al. 2016): 

θv = (3 × 10−6 × SMP2) − (0.0013 × SMP) + 0.3764 

where θv is the volumetric soil water content (% vol or m3 m-3), and SMP is the soil 

matric potential (kPa). VWC was converted to total soil water (TSW) by adding the 

VWC values at each sensor depth and multiplying by a conversion value of 3.048 (ft to 

mm). The TSW in the complete monitored soil profile (0–0.9 m) reflects the daily 

integration of soil moisture detected at individual incremental depths throughout the 

profile. Sensor data were used to determine crop and Palmer amaranth evapotranspiration 

using the soil water balance approach and for irrigation timing. Irrigation was initiated 

under CPI and SDI when the average of the top 0.9 m SMP values was approximately 

100 to 110 kPa (Irmak et al. 2012, 2016), or when the soil-water in the crop root zone 

was depleted by 40% to 45% below field capacity (Kukal and Irmak 2019). The depletion 

criterion of 40% to 45% TSW was implemented to prevent water stress. Irrigation timing 

and amount for the 2019 and 2020 growing seasons are presented (Table 3-1).  

Seasonal Actual Evapotranspiration Using Soil-Water Balance. Crop and Palmer 

amaranth actual evapotranspiration (ETa, mm) were calculated using a general soil-water 

balance equation: 

𝑃𝑃 + 𝐼𝐼 + 𝑈𝑈 + 𝑅𝑅on = 𝑅𝑅off + 𝐷𝐷 + ∆SWS + ETa 

where P is precipitation (mm), I is irrigation water applied (mm), U is upward soil 

moisture flux (mm), Ron is surface run-on within the field (mm), Roff is surface runoff 

from individual treatments (mm), ∆SWS is change in soil water storage in the root zone 

soil profile (mm), and D is deep percolation below the crop root zone (mm). Deep 
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percolation was estimated by a soil water balance approach using a program written in 

Microsoft Visual Basic (Bryant et al. 1992). The inputs to the program are daily weather 

data (including precipitation, air temperature, relative humidity, wind speed, and 

incoming shortwave radiation), initial water content of the soil profile at crop emergence, 

irrigation date and amount, and crop- and site-specific information such as planting date, 

maturity date, maximum rooting depth, and soil parameters. The program calculated daily 

ETa and the water balance in the crop root-zone using the two-step approach (ETa =

Kc × ETo) where ETo is evapotranspiration of a grass reference crop, and Kc is the crop 

coefficient. In the program, ETo is calculated using weather data as the input to the 

Penman-Monteith equation (Monteith 1965; Monteith and Unsworth 1990), and Kc is 

used to adjust the estimated ETo for the reference crop to that of the desired crops at 

different growth stages and environments (Kukal and Irmak 2019). The daily soil water 

balance equation used for calculating deep percolation is: 

𝐷𝐷𝑗𝑗 = max�𝑃𝑃𝑗𝑗 − 𝑅𝑅𝑗𝑗 + 𝐼𝐼𝑗𝑗 − ETaj − CD𝑗𝑗−1, 0� 

where Dj is deep percolation on day j (mm), Pj is precipitation on day j (mm), Rj is 

precipitation and/or irrigation runoff from the soil surface on day j (mm), Ij is irrigation 

depth on day j (mm), ETaj is crop or Palmer amaranth actual evapotranspiration on day j 

(mm), and CDj is root zone cumulative depletion depth at the end of day j-1, estimated 

using the two-step approach (Bryant et al. 1992; Payero et al. 2009). Roff from individual 

treatments was estimated using the USDA-NRCS curve number method. According to 

the silt loam soil at the experimental site and the known land use, slope, and conservation 

tillage, curve number C = 75 was used (USDA-NRCS 1985). Assuming U and Ron are 



51 
 

 

negligible, the soil water balance equation was reduced to the following form for 

calculating crop and Palmer amaranth ETa: 

ETa = 𝑃𝑃 + 𝐼𝐼 − 𝑅𝑅off − 𝐷𝐷 ± ∆SWS 

Although the soil water balance approach is widely used for calculating ETa, this 

approach may have drawbacks if the Roff and/or D values are not accurately quantified, 

resulting in erroneous ETa calculations. This is of particular concern in humid and 

subhumid climates where Roff and/or D is greater than in arid or semiarid climates, where 

potential for runoff is minimal. Lysimetry and other surface energy balance type 

instruments (i.e., eddy covariance system) may provide more robust ETa values since 

they do not need to account for Roff and/or D; however, their use in determining 

individual plot/treatment or replication-scale ETa is not feasible. The soil water balance 

approach can be applied to each plot or replication of a given treatment, a requirement of 

this study. 

Growth Index, Plant Biomass, and Total Leaf Area Measurements. Three Palmer 

amaranth plants were selected and sampled at four removal timings according to soybean 

growth stage. Removal timings occurred at V4, R1, R3, and R5 soybean growth stages in 

2019, and at R1, R3, R5, and R6 soybean growth stages in 2020. Growth index, plant 

biomass, and total leaf area were determined at these removal timings. Growth index was 

calculated using the following equation (Irmak et al. 2004; Sarangi et al. 2015): 

𝐺𝐺𝐺𝐺 (𝑐𝑐𝑐𝑐3)  =  𝜋𝜋 𝑥𝑥 (𝑤𝑤/2)2 𝑥𝑥 ℎ 

where 𝑤𝑤 is the width of the plant calculated as an average of two widths, one measured at 

the widest point and another at 90° to the first; and ℎ is the plant height measured from 

the soil surface to the shoot apical meristem. After plant height and width measurements 
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were taken, leaves were counted and removed from each Palmer amaranth plant to 

measure total leaf area using a leaf area meter (LI-3100C Area Meter, Li-Cor, Lincoln, 

NE). Palmer amaranth plants were stored separately in paper bags and oven-dried at 65°C 

for 7 d to obtain dry biomass. 

Statistical Analysis. TSW values were analyzed using the area under the curve (AUC) 

function in R (R Foundation for Statistical Computing, Vienna, Austria). AUC values 

were calculated for each treatment group [irrigation type x (crop system x Palmer 

amaranth)] and replicate combination. AUC values obtained in R were then analyzed in 

SAS with linear models using AUC as the response variable; irrigation, crop, and Palmer 

amaranth as explanatory variables; and the split plot design in the random statement to 

account for any design effects that could cause variability across AUC values. ETa values 

were analyzed using regression models in SAS with irrigation, crop, Palmer amaranth, 

and day as fixed effects. The terms irrigation, crop, and Palmer amaranth were treated as 

categorical, while day was treated as a quantitative regression variable. The main effect 

terms of irrigation, crop, and Palmer amaranth were initially analyzed to find significant 

differences (P ≤ 0.05) between intercept terms for the regression lines. All categorical 

terms and their interactions were then interacted with a day linear term and day quadratic 

terms. The regression model was simplified by using the Type I table of fixed effects to 

remove terms one at a time that were not significant in relation to the ET response. 

Regression models were then run for each significant term in the reduced model. 

Prediction plots were also obtained by looking at a scatter plot of the raw data with an 

overlay of the regression lines from the analysis models. For the initial and reduced 

regression models, random terms were fit to account for variability due to experimental 
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design effects and for repeated measures across the days. A SP(POW) covariance 

structure was fit to both models since the day term is quantitative and unequally spaced, 

accounting for the repeated measurements between days. In order for the covariance 

parameter estimation and parameter estimation to run smoothly, ETa values were scaled 

down by a factor of ten. Additionally, regression model parameters were obtained to find 

predicted ETa values across regression lines. Regression lines for each crop system with 

and without Palmer amaranth under each irrigation type in 2019 were found using the 

parameter estimates in the following equation: 

𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 𝑥𝑥 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�

= (𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) − (𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑥𝑥 𝑖𝑖𝑖𝑖𝑖𝑖) ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + (𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑥𝑥 𝑖𝑖𝑖𝑖𝑖𝑖)

∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠2 

Regression lines for each crop system under each irrigation type were separated out by 

the presence of Palmer amaranth or no Palmer amaranth in 2020 and were found using 

the parameter estimates in the following equation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑃𝑃𝑃𝑃�

= (𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑃𝑃𝑃𝑃) + �𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑃𝑃𝑃𝑃)� ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − (𝑑𝑑𝑑𝑑𝑑𝑑

∗ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑃𝑃𝑃𝑃)) ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠2 

 Growth index, plant biomass, and total leaf area were analyzed as response 

variables in SAS. Irrigation type, crop system, and sampling date were fit as class 

variables for all models analyzed. Variable main effects and interactions were analyzed 

for significance (P ≤ 0.05). Random terms were included in the models to account for the 

split plot design. More specifically, the random terms accounted for differences between 

replicates, for differences between the split plot levels, and for the correct degrees of 
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freedom within the models. Beginning with the largest interaction, if significant terms in 

the Type III effects of fixed effects table were found, differences between variable levels 

within these interactions were analyzed. Simple effect tests were run to find differences 

between specific levels while holding the levels of other variables in the interaction 

constant. If no interactions were significant, main effects were analyzed.  

 

Results and Discussion 

Total Soil Water. According to the Type III test of fixed effects for variable interactions 

and main effects in 2019, there were no statistical differences in the total soil water 

(TSW) of crop system with and without Palmer amaranth under center-pivot (CPI) and 

subsurface drip irrigation (SDI). However, there were differences that could impact the 

total water usage of a grower that has Palmer amaranth in their field and a grower who 

does not. According to Figure 3-2A,B, crop systems with Palmer amaranth had lower 

TSW than crop systems without Palmer amaranth under CPI and SDI, although TSW 

differences between crop systems with and without Palmer amaranth were greater under 

SDI. These results suggest that Palmer amaranth does influence TSW within corn and 

soybean systems and that early-season control is needed for optimum water savings in 

these crops. Irrigation as a main effect caused no statistical differences in TSW, although 

crop system as a main effect did cause differences in TSW in 2019 (Table 3-2). The 

largest difference in TSW occurred between corn and fallow systems (2,060 mm), 

followed by differences between corn and soybean systems (1,490 mm) under both 

irrigation types (Table 3-3).  
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Similarly in 2020, there were no statistical differences in the TSW of crop 

systems with and without Palmer amaranth under CPI or SDI. Unlike 2019, where crop 

systems with Palmer amaranth had lower TSW than crop systems without Palmer 

amaranth (Figure 3-2A,B), crop systems with Palmer amaranth in 2020 had similar or 

higher TSW values compared to crop systems without Palmer amaranth (Figure 3-3A,B). 

The only notable difference in TSW between crop systems with and without Palmer 

amaranth occurred under SDI between fallow systems in 2020 (Figure 3-3B). Irrigation 

as a main effect caused no differences in TSW, although crop system as a main effect did 

cause differences in TSW (Table 3-2). Differences in TSW between corn and fallow 

(6,870 mm) and soybean and fallow (5,470 mm) were even more pronounced than in 

2019 (Table 3-3).  

Scaled Actual Evapotranspiration. In 2019, there was a crop system effect on the 

intercepts of the reduced model (Table 3-4). Whereas corn systems with and without 

Palmer amaranth had the lowest TSW, corn systems with and without Palmer amaranth 

had the highest evapotranspiration (ETc) rates, followed by soybean with and without 

Palmer amaranth, and then fallow with and without Palmer amaranth having the lowest 

ETc rates (Figure 3-4A). There was also an irrigation by day interaction (Table 3-4). CPI 

had higher ETa rates than SDI at the beginning of the growing season and ETa differences 

leveled out 40 d after sensor installation (Table 3-5; Figure 3-5). These results suggest 

that irrigation affects ETa differences across crop systems with and without Palmer 

amaranth early in the growing season, but that crop system and progression of plant 

growth with available water have a greater effect on ETa differences under CPI and SDI.  
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 In 2020, crop and Palmer amaranth effects were greater compared to the 2019 

growing season. The reduced model indicated linear and quadratic interactions between 

crop system, irrigation and crop system, and day × day × crop system × Palmer amaranth 

(Table 3-4). In terms of the day × day × crop system × Palmer amaranth interaction, 

statistical differences in ETa between crop systems with and without Palmer amaranth at 

the beginning of the growing season were not indicated, although there were differences. 

At 24 d after sensor installation through the remainder of the growing season, differences 

in ETa between fallow systems with and without Palmer amaranth were detected (Table 

3-6). Overall, Palmer amaranth cumulative evapotranspiration (ETc) rates were higher 

under SDI than CPI, with the largest ETc differences occurring in fallow systems (Table 

3-7; Figure 3-6). These results suggest the presence of Palmer amaranth influenced 

fallow system ETa more so than corn or soybean systems under both irrigation types. In 

terms of irrigation and crop system interactions, the largest ETa differences occurred 

between soybean and fallow (32.1 mm) and corn and fallow (26.8 mm) under SDI, 

followed by differences in ETa between corn and fallow (17.4 mm) and soybean and 

fallow (16.4 mm) under CPI (Table 3-8). These results suggest a slight irrigation effect 

and major crop effect on ETa across crop systems with and without Palmer amaranth.  

Growth Index, Plant Biomass, and Total Leaf Area. In 2019 and 2020, irrigation type 

did not statistically influence Palmer amaranth growth index. However, there was a 

sampling date × crop system interaction in both years (Table 3-7). In 2019, Palmer 

amaranth growth index values in fallow were statistically greater than corn and soybean 

systems at the third and fourth sampling dates (Figure 3-7A,B). Similarly in 2020, Palmer 

amaranth growth index values in fallow were statistically greater than corn and soybean 
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systems at the fourth sampling date (Figure 3-7C,D). In addition, there was a sampling 

date × irrigation type × crop system interaction in 2020, although this three-way 

interaction was likely the result of the sampling date × crop system interaction (Table 3-

7). These results suggest crop system has a major effect on Palmer amaranth growth 

index, with greater growth index values of Palmer amaranth in fallow systems. There was 

also a slight irrigation effect in 2020, indicating that SDI may result in greater Palmer 

amaranth growth index. In terms of the sampling date effect, Palmer amaranth has 

aggressive growth characteristics; thus, a difference in Palmer amaranth growth index 

over time in well-watered conditions was expected.  

 Irrigation type did not statistically influence Palmer amaranth biomass in 2019 

and 2020. However, as expected, there was a sampling date × crop system interaction in 

both years (Table 3-8). Similar to Palmer amaranth growth index results, Palmer 

amaranth biomass was greater in fallow compared to corn and soybean systems at the 

third and fourth sampling dates (Figure 3-8A). These results are supported by the fact that 

Palmer amaranth growth over time directly affects Palmer amaranth biomass 

accumulation over time. In 2019, there was sampling date × irrigation type interaction, 

although this interaction was likely driven by the Palmer amaranth biomass differences 

across sampling dates (Table 3-8; Figure 3-8B). In 2020, there were sampling date × 

irrigation type × crop system, sampling date × crop system, and irrigation type × crop 

system interactions. Irrigation as a main effect did not statistically influence Palmer 

amaranth biomass, so the sampling date × irrigation type × crop system; and irrigation 

type × crop system interactions were likely driven by the sampling date and crop system 

effects (Table 3-8).  
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 In 2019 and 2020, irrigation type did not statistically influence Palmer amaranth 

total leaf area. In 2019, there were no variable interactions, indicating that irrigation type, 

crop system, nor sampling date caused differences in Palmer amaranth total leaf area 

(Table 3-9; Figure 3-9A,B). Despite the lack of statistical differences of Palmer amaranth 

total leaf area in corn, soybean and fallow under both irrigation types, Palmer amaranth 

total leaf area was greatest in fallow, but only at the third and fourth sampling dates 

(Figure3-9A,B). However, in 2020, there was a sampling date × irrigation type × crop 

system interaction that was likely driven by the sampling date × crop system interaction 

(Table 3-9). Similar to Palmer amaranth growth index and biomass results, Palmer 

amaranth total leaf area was greater in fallow systems compared to corn systems at the 

second, third, and fourth sampling dates, and soybean systems at the third and fourth 

sampling dates (Figure 9C-D). These results are supported by Palmer amaranth growth 

index and biomass results given the knowledge that Palmer amaranth growth index over 

time directly affects biomass accumulation and total leaf area over time.  

Practical Implications  

 This is the first study that evaluates the actual evapotranspiration (ETa) of Palmer 

amaranth in multiple crop systems under center-pivot (CPI) and subsurface drip irrigation 

(SDI) with the goal to find an irrigation effect on Palmer amaranth ETa. Irrigation 

contributes to differences in ETa between crop systems with and without Palmer amaranth 

early in the growing season, where crop systems with and without Palmer amaranth had 

higher ETa rates under CPI compared to SDI. However, the irrigation effect is likely 

overcome by differences in crop ETa, later in the growing season. Thus, irrigation and 

crop management may influence Palmer amaranth ETa rates. In regard to total soil water 
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(TSW), crop system, irrigation type, and Palmer amaranth influenced ETa rates, with 

lower TSW in crop systems with Palmer amaranth and lower TSW in center-pivot crop 

systems. Irrigation type did not cause noticeable differences among Palmer amaranth 

growth index, plant biomass, and total leaf area values. This study provides base data on 

Palmer amaranth evapotranspiration and its relation to Palmer amaranth morphological 

features (i.e., growth index, biomass, and total leaf area) for future use in mechanistic 

weed-crop competition models. Further research on weed evapotranspiration should be 

conducted at more locations under varying climatic conditions to build a robust database 

of evapotranspiration for important agronomic weed species such as Palmer amaranth, 

waterhemp, and horseweed. 
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Table 3-1. Center-pivot and subsurface drip irrigation date and amount in the 2019 and 

2020 growing seasons at South Central Agricultural Laboratory in Clay Center, NE. 

Center-pivot irrigation Subsurface drip irrigation 
Date Amount 

--mm-- 
Date Amount 

--mm-- 
2019  2019  

 7/31 32 8/2 32 
2020  2020  

7/13 32 7/15 32 
7/28 32 7/29 32 
8/7 32 8/7 32 
8/17 32 8/17 32 
8/24 32 8/24 32 
9/1 32 9/1 32 
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Table 3-2. Type III tests of fixed effects for irrigation type × crop system × Palmer 

amaranth main effects and interactions for total soil water in 2019 and 2020 in a study to 

determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow under 

subsurface drip and center-pivot irrigation systems at Clay Center, NE. 

 2019 2020 
Effect Num 

DF 
Den 
DF 

F 
Value 

Pr > F Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

Irrigation 1 4 3.09 0.1536 1 4 2.80 0.1697 
Crop 2 8 4.58 0.0473 2 8 23.60 0.0004 
Irrigation*Crop 2 8 0.15 0.8595 2 8 2.64 0.1314 
Palmer 1 8 0.81 0.3936 1 12 0.49 0.4985 
Irrigation*Palmer 1 8 0.05 0.8363 1 12 0.25 0.6260 
Crop*Palmer 1 8 0.76 0.4093 2 12 2.69 0.1080 
Irrigation*Crop*Palmer 1 8 0.00 0.9495 2 12 1.40 0.2836 

*Significance at P ≤ 0.05 
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Table 3-3. Least squares means T grouping for total soil water by crop system under 

center-pivot and subsurface drip irrigation in 2019 and 2020 in a study to determine 

evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface 

drip and center-pivot irrigation systems at Clay Center, NE. 

2019 2020 
Crop Estimate 

--mm-- 
  Crop Estimate 

--mm-- 
 

Fallow 39941   A Fallow 32208 A 
  

 
  A    

Soybean 39368 B A Soybean 26739 B 
  

 
B     B 

Corn 37882 B   Corn 25339 B 
*Least squares means (alpha = 0.05) with the same letter are not significantly different 
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Table 3-4. Type I tests of fixed effects for the irrigation type × crop system × day main 

effects and interactions in the reduced models for actual evapotranspiration in 2019 and 

2020 in a study to determine evapotranspiration of Palmer amaranth in corn, soybean, 

and fallow under subsurface drip and center-pivot irrigation systems at Clay Center, NE. 
 

2019 
Effect Num DF Den DF F Value Pr > F 
Irrigation 1 4 10.17 0.0333 
Crop 2 10 5.53 0.0241 
Day 1 416 167.42 <.0001 
Day*Irrigation 1 416 7.15 0.0078 
Day*Day 1 416 1.55 0.2142 
Day*Day*Irrigation 1 416 6.85 0.0092 
 2020 
Irrigation 1 4 1.74 0.2570 
Crop 2 8 42.25 <.0001 
Irrigation*Crop 2 8 3.64 0.0750 
PA_None 1 15 1.63 0.2206 
Crop*PA_None 2 15 2.27 0.1377 
Day 1 384 154.37 <.0001 
Day*Crop 2 384 12.03 <.0001 
Day*PA_None 1 384 0.05 0.8201 
Day*Crop*PA_None 2 384 0.18 0.8331 
Day*Day 1 384 19.66 <.0001 
Day*Day*Crop 2 384 0.73 0.4834 
Day*Day*PA_None 1 384 0.63 0.4267 
Day*Day*Crop*PA_Non 2 384 3.21 0.0413 

*Significance at P ≤ 0.05 
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Table 3-5. Least squares means T grouping for actual evapotranspiration by irrigation 

type and day in 2019 in a study to determine evapotranspiration of Palmer amaranth in 

corn, soybean, and fallow under subsurface drip and center-pivot irrigation systems at 

Clay Center, NE. 

2019 
Irrigation Day Estimate 

--mm-- 
  

Pivot 1.00 5.8416 A 
SDI 1.00 3.0755 B 
Pivot 8.00 5.4170 A 
SDI 8.00 3.1554 B 
Pivot 24.00 4.4940 A 
SDI 24.00 3.2035 B 
Pivot 31.00 4.1111 A 
SDI 31.00 3.1658 B 
Pivot 40.00 3.6376 A 
SDI 40.00 3.0647 A 
Pivot 47.00 3.2838 A 
SDI 47.00 2.9451 A 
Pivot 58.00 2.7535 A 
SDI 58.00 2.6849 A 
SDI 66.00 2.4402 A 
Pivot 66.00 2.3876 A 
SDI 74.00 2.1487 A 
Pivot 74.00 2.0383 A 
SDI 83.00 1.7649 A 
Pivot 83.00 1.6652 A 
SDI 89.00 1.4762 A 
Pivot 89.00 1.4282 A 
Pivot 98.00 1.0902 A 
SDI 98.00 0.9938 A 

*Least squares means (alpha=0.05) with the same letter are not significantly different 
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Table 3-6. Actual evapotranspiration simple effect comparisons of crop system with and 

without Palmer amaranth by day in 2020 in a study to determine evapotranspiration of 

Palmer amaranth in corn, soybean, and fallow under subsurface drip and center-pivot 

irrigation systems at Clay Center, NE. 

Simple Effect Comparisons of Crop*PA_None Least Squares Means By Crop 
Simple 
Effect 
Level 
--Crop-- 

PA_None PA_None Day Estimate 
--mm-- 

Standard 
Error 

DF t Value Pr > |t| Alpha Lower Upper 

Corn None PA 1.00 -0.03075 1.0669 15 -0.03 0.9774 0.05 -2.3048 2.2433 
Fallow None PA 1.00 0.5122 1.0669 15 0.48 0.6381 0.05 -1.7618 2.7863 
Soybean None PA 1.00 -0.1530 1.0669 15 -0.14 0.8879 0.05 -2.4271 2.1210 
Corn None PA 8.00 -0.04122 0.8215 15 -0.05 0.9606 0.05 -1.7921 1.7097 
Fallow None PA 8.00 -0.2187 0.8215 15 -0.27 0.7937 0.05 -1.9696 1.5322 
Soybean None PA 8.00 0.1216 0.8215 15 0.15 0.8842 0.05 -1.6293 1.8726 
Corn None PA 24.00 -0.06850 0.5737 15 -0.12 0.9065 0.05 -1.2913 1.1543 
Fallow None PA 24.00 -1.4452 0.5737 15 -2.52 0.0236 0.05 -2.6680 -

0.2224 
Soybean None PA 24.00 0.5593 0.5737 15 0.97 0.3451 0.05 -0.6635 1.7821 
Corn None PA 31.00 -0.08192 0.5761 15 -0.14 0.8888 0.05 -1.3099 1.1461 
Fallow None PA 31.00 -1.7875 0.5761 15 -3.10 0.0073 0.05 -3.0155 -

0.5595 
Soybean None PA 31.00 0.6676 0.5761 15 1.16 0.2647 0.05 -0.5604 1.8956 
Corn None PA 40.00 -0.1005 0.6053 15 -0.17 0.8703 0.05 -1.3906 1.1896 
Fallow None PA 40.00 -2.0538 0.6053 15 -3.39 0.0040 0.05 -3.3439 -

0.7637 
Soybean None PA 40.00 0.7323 0.6053 15 1.21 0.2450 0.05 -0.5577 2.0224 
Corn None PA 47.00 -0.1160 0.6178 15 -0.19 0.8536 0.05 -1.4329 1.2009 
Fallow None PA 47.00 -2.1258 0.6178 15 -3.44 0.0036 0.05 -3.4427 -

0.8088 
Soybean None PA 47.00 0.7249 0.6178 15 1.17 0.2590 0.05 -0.5921 2.0418 
Corn None PA 58.00 -0.1421 0.5975 15 -0.24 0.8153 0.05 -1.4157 1.1315 
Fallow None PA 58.00 -1.9998 0.5975 15 -3.35 0.0044 0.05 -3.2734 -

0.7262 
Soybean None PA 58.00 0.6108 0.5975 15 1.02 0.3229 0.05 -0.6628 1.8843 
Corn None PA 66.00 -0.1625 0.5603 15 -0.29 0.7758 0.05 -1.3568 1.0318 
Fallow None PA 66.00 -1.7248 0.5603 15 -3.08 0.0076 0.05 -2.9191 -

0.5305 
Soybean None PA 66.00 0.4492 0.5603 15 0.80 0.4352 0.05 -0.7451 1.6435 
Corn None PA 74.00 -0.1841 0.5379 15 -0.34 0.7369 0.05 -1.3305 0.9624 
Fallow None PA 74.00 -1.2952 0.5379 15 -2.41 0.0294 0.05 -2.4417 -

0.1488 
Soybean None PA 74.00 0.2215 0.5379 15 0.41 0.6863 0.05 -0.9249 1.3680 
Corn None PA 83.00 -0.2097 0.6009 15 -0.35 0.7319 0.05 -1.4905 1.0710 
Fallow None PA 83.00 -0.6274 0.6009 15 -1.04 0.3130 0.05 -1.9081 0.6534 
Soybean None PA 83.00 -0.1137 0.6009 15 -0.19 0.8525 0.05 -1.3944 1.1671 
Corn None PA 89.00 -0.2277 0.7246 15 -0.31 0.7577 0.05 -1.7720 1.3167 
Fallow None PA 89.00 -0.07347 0.7246 15 -0.10 0.9206 0.05 -1.6178 1.4709 
Soybean None PA 89.00 -0.3837 0.7246 15 -0.53 0.6042 0.05 -1.9280 1.1607 
Corn None PA 98.00 -0.2558 1.0298 15 -0.25 0.8072 0.05 -2.4507 1.9390 
Fallow None PA 98.00 0.9203 1.0298 15 0.89 0.3856 0.05 -1.2746 3.1152 
Soybean None PA 98.00 -0.8584 1.0298 15 -0.83 0.4176 0.05 -3.0533 1.3365 

*Significance at P ≤ 0.05 

 

  



69 
 

 

Table 3-7. Type III tests of fixed effects for irrigation type × crop system × sampling 

date main effects and interactions for Palmer amaranth growth index in 2019 and 2020 in 

a study to determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow 

under subsurface drip and center-pivot irrigation systems at Clay Center, NE.  
 

2019 2020 
Effect Num 

DF 
Den 
DF 

F 
Value 

Pr > F Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

Irrigation 1 4 0.23 0.6560 1 4 0.91 0.3937 
Crop 2 8 18.27 0.0010 2 8 13.60 0.0027 
Irrigation*Crop 2 8 0.25 0.7870 2 8 2.71 0.1266 
Date 3 36 21.78 <.0001 3 36 8.47 0.0002 
Date*Irrigation 3 36 0.13 0.9436 3 36 1.28 0.2970 
Date*Crop 6 36 8.81 <.0001 6 36 6.09 0.0002 
Date*Irrigation*Crop 6 36 0.17 0.9840 6 36 2.35 0.0515 

*Significance at P ≤ 0.05 
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Table 3-8. Type III tests of fixed effects for irrigation type × crop system × sampling 

date main effects and interactions for Palmer amaranth biomass in 2019 and 2020 in a 

study to determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow 

under subsurface drip and center-pivot irrigation systems at Clay Center, NE. 
 

2019 2020 
Effect Num 

DF 
Den 
DF 

F 
Value 

Pr > F Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

Irrigation 1 4 0.38 0.5710 1 4 1.83 0.2473 
Crop 2 8 50.99 <.0001 2 8 58.56 <.0001 
Irrigation*Crop 2 8 0.31 0.7406 2 8 8.03 0.0122 
Date 3 35 45.01 <.0001 3 36 34.64 <.0001 
Date*Irrigation 3 35 2.54 0.0726 3 36 3.44 0.0269 
Date*Crop 6 35 24.75 <.0001 6 36 24.55 <.0001 
Date*Irrigation*Crop 6 35 1.10 0.3816 6 36 7.03 <.0001 

*Significance at P ≤ 0.05 
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Table 3-9. Type III tests of fixed effects for irrigation type × crop system × sampling 

date main effects and interactions for Palmer amaranth total leaf area in 2019 and 2020 in 

a study to determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow 

under subsurface drip and center-pivot irrigation systems at Clay Center, NE. 
 

2019 2020 
Effect Num 

DF 
Den 
DF 

F 
Value 

Pr > F Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

Irrigation 1 4 0.98 0.3776 1 4 0.21 0.6741 
Crop 2 8 1.73 0.2372 2 8 18.72 0.0010 
Irrigation*Crop 2 8 0.99 0.4113 2 8 0.04 0.9568 
Date 3 36 1.55 0.2184 3 36 8.25 0.0003 
Date*Irrigation 3 36 1.03 0.3894 3 36 0.46 0.7116 
Date*Crop 6 36 1.41 0.2384 6 36 6.00 0.0002 
Date*Irrigation*Crop 6 36 1.02 0.4291 6 36 2.27 0.0589 

*Significance at P ≤ 0.05 
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Figure 3-1. Daily rainfall in the (A) 2019 and (B) 2020 growing seasons at South Central 

Agricultural Laboratory near Clay Center, NE
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Figure 3-2. Average total soil water results of crop systems under (A) center-pivot and 

(B) subsurface drip in 2019 in a study to determine evapotranspiration of Palmer 

amaranth in corn, soybean, and fallow under subsurface drip and center-pivot irrigation 

systems at Clay Center, NE. 
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Figure 3-3. Average total soil water results of crop systems under (A) center-pivot and 

(B) subsurface drip in 2020 in a study to determine evapotranspiration of Palmer 

amaranth in corn, soybean, and fallow under subsurface drip and center-pivot irrigation 

systems at Clay Center, NE. 
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Figure 3-4. Actual evapotranspiration by crop system and irrigation type in (A) 2019 and 

(B) 2020 in a study to determine evapotranspiration of Palmer amaranth in corn, soybean, 

and fallow under subsurface drip and center-pivot irrigation systems at Clay Center, NE. 

  

A 

B 

 



76 
 

 

 

 
Figure 3-5. Least squares means plots of actual evapotranspiration by irrigation from day 

1 to day 98 after sensor installation in 2019 in a study to determine evapotranspiration of 

Palmer amaranth in corn, soybean, and fallow under subsurface drip and center-pivot 

irrigation systems at Clay Center, NE. 
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Figure 3-6. Cumulative evapotranspiration of Palmer amaranth in corn, soybean, and 

fallow systems under center-pivot and subsurface drip irrigation in 2020 in a study to 

determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow under 

subsurface drip and center-pivot irrigation systems at Clay Center, NE. 
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Figure 3-7. Mean interaction plots for Palmer amaranth growth index by crop type and 

sampling date in (A) center-pivot plots in 2019, (B) subsurface drip plots in 2019, (C) 

center-pivot plots in 2020, and (D) subsurface drip plots in 2020 in a study to determine 

evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface 

drip and center-pivot irrigation systems at Clay Center, NE. 
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Figure 3-8. Mean interaction plots for 2019 Palmer amaranth biomass by (A) sampling 

date and crop type and (B) sampling date and irrigation type in a study to determine 

evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface 

drip and center-pivot irrigation systems at Clay Center, NE. 
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Figure 3-9. Mean interaction plots for Palmer amaranth total leaf area by crop type and 

sampling date in (A) center-pivot plots in 2019, (B) subsurface drip plots in 2019, (C) 

center-pivot plots in 2020, and (D) subsurface drip plots in 2020 in a study to determine 

evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface 

drip and center-pivot irrigation systems at Clay Center, NE. 
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CHAPTER 4: 

EFFECT OF DEGREE OF WATER STRESS ON GROWTH AND FECUNDITY 

OF VELVETLEAF (ABUTILON THEOPHRASTI)  

USING SOIL MOISTURE SENSORS 

 

Abstract 

Velvetleaf (Abutilon theophrasti L.) is a troublesome broadleaf weed that competes with 

agronomic crops for resources such as soil moisture. Water stress can affect the ability of 

weed species to grow and produce seeds. The objective of this study was to determine the 

effect of degree of water stress on the growth and fecundity of velvetleaf using soil 

moisture sensors under greenhouse conditions. Velvetleaf seeds collected from a 

corn/soybean field were grown in silty clay loam soil and plants were maintained at 

100%, 75%, 50%, and 25% soil field capacity (FC) corresponding to no-, light-, 

moderate-, and high-water stress conditions, respectively. Water was regularly added to 

pots based on soil moisture levels detected by a Decagon 5TM sensor to maintain the 

desired water stress level required by treatment. Plants maintained at 100% FC had the 

maximum number of leaves (28 leaves plant−1), followed by 21 and 15 leaves plant−1 at 

75% and 50% FC, respectively. Velvetleaf at 100% and 75% FC achieved maximum 

plant height (108 to 123 cm) compared with 83 cm at 50% FC. Velvetleaf maintained at 

75% FC had the greatest growth index (79,907 cm3) followed by 72,197 cm3 at 100% FC 

and 64,256 cm3 at 50% FC. Seed production was similar at 100%, 75%, and 50% FC 

(288 to 453 seeds plant−1) compared with 2 seeds plant−1 at 25% FC. This is because the 

majority of plants maintained at 25% FC did not survive more than 77 d after 
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transplanting. Seed germination was 96%−100% at 100%, 75%, and 50% FC compared 

to 20% germination at 25% FC. The results of this study demonstrate that velvetleaf can 

survive ≥ 50% FC continuous water stress conditions, although with a reduced leaf 

number, plant height, and growth index compared to 75% and 100% FC.  

 

Introduction 

 Throughout Nebraska’s agricultural history, natural disasters such as drought have 

had an adverse effect on crop yields and the economy (USDA 2020; Wu et al. 2013). In 

the early mid-2000s and in 2012, Nebraska dealt with severe drought resulting in reduced 

crop yields (Wu et al. 2013). More recently, in August of 2020, Nebraska began 

experiencing drought conditions, and by October of 2020, 34 counties in Nebraska were 

eligible for emergency loans for drought relief (USDA 2020). Recognition of drought 

periods is important because weed species such as velvetleaf compete with crops for a 

variety of environmental resources, including water, which is one of the most limiting 

factors for optimum crop production (Benjamin and Nielsen 2006). Water stress can 

negatively affect the growth and productivity of crops and associated weed species, 

though the outcomes of competition for water depend on the crop and weed species’ 

abilities to survive under water stress conditions (Begg and Turner 1976; Patterson 1995). 

Compared to C4 weed species such as Amaranthus palmeri and Portulaca oleracea that 

have water stress resistance mechanisms (e.g., drought avoidance, drought tolerance, 

drought recovery, or drought escape), C3 weed species such as velvetleaf are not able to 

maintain the same level of growth and development under water stress conditions (Kumar 

et al. 1984; Pearcy and Ehleringer 1984; Sung and Krieg 1979; Ward et al. 2001). Hinz 
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and Owen (1994) found that velvetleaf under water stress conditions caused leaf water 

and osmotic potential to decrease linearly over time. Munger et al. (1987a; 1987b) 

indicated that as leaf water potential decreased in velvetleaf plants, stomatal conductance, 

photosynthetic, and transpiration rates decreased.  

In addition to growth and development, seed germination is an important 

component of weed establishment and is influenced by environmental factors such as 

water availability, water temperature, light quality, and light duration during seed 

development (Baskin and Baskin 1998; Fenner 1991). Velvetleaf seed germination is 

sensitive to varying degrees of water stress and was completely inhibited by an osmotic 

potential of -600 kPa (Sadeghloo et al. 2013; Xiong et al. 2018). Despite these findings, 

scientific literature is not available on the effect that water stress throughout velvetleaf’s 

growth period has on growth and fecundity. Bathke et al. (2014) projected a 5%−10% 

decrease in soil moisture for Nebraska under a high emissions scenario, indicating the 

potential for increased water stress and plant water competition in Nebraska plant 

populations. Despite projected increases in precipitation events in the eastern Great 

Plains, soil moisture is expected to decrease most near the soil surface due to evaporative 

loss from warmer temperatures (Bathke et al. 2014; Berg et al. 2016). While some plant 

developmental processes in leaves, roots, and reproductive structures are conserved 

across species, most plant responses are variable within and between species and are 

dependent on the developmental stage (Gray and Brady 2016).  

 Research evaluating a plant’s response to water stress is typically performed 

under greenhouse or controlled environment conditions. The plants are often grown in 

pots to maintain certain water stress levels or soil field capacity (FC) for a limited growth 
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period or until the plant has reached maturity. A common method for maintaining desired 

FC in similar studies has been to weigh pots regularly to determine water lost from the 

soil and then add the appropriate amount of water (Chandi et al. 2013; Chauhan 2013; 

Chauhan and Johnson 2010; Earl 2003; Sarangi et al. 2015). However, it is not possible 

to determine the weight of the plant and pot separately using this method, resulting in 

inaccurate soil water content (Chahal et al. 2018). This could result in errors when adding 

water, especially as plants accumulate more biomass. Moreover, this approach is time-

consuming and labor intensive since the pots must be lifted and weighed at regular 

intervals until completion of the study. By incorporating soil moisture sensors such as 

Decagon 5TM sensors (Decagon Devices, 2365 NE Hopkins Court, Pullman, WA), the 

labor required to weigh and add water to pots can be reduced. The Decagon 5TM sensor 

is a frequency-domain reflectometry sensor that measures soil water content directly as 

percent volume, determining soil moisture stress in real time with increased accuracy 

(Chahal et al. 2018). Soil moisture sensors allow researchers to measure soil water 

content more frequently and maintain FC within a narrow, predetermined range (Irmak et 

al. 2016) in loam and silt-loam soils (Paudel et al. 2016; Zhu 2016). Thus, the objective 

of this study was to determine the effect of degree of water stress on growth and 

fecundity of velvetleaf using soil moisture sensors.  

 

 

Materials and Methods 

Plant Materials. Velvetleaf seeds were collected from fields under corn-soybean rotation 

at the South Central Agricultural Laboratory in Clay County, Nebraska (40.57°N, 
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98.14°W). The seeds were stored in a refrigerator at 5°C until used in this study. 

Velvetleaf seeds were planted in germination trays containing silty clay loam soil with a 

particle size distribution of 53% silt, 28% clay, 19% sand, and 2% organic matter content 

and a pH of 6.7. The soil used in this study was collected from a field near Lincoln, NE 

with no herbicide use in the last 10 yr. Germination trays were kept under greenhouse 

conditions at the University of Nebraska-Lincoln maintained at 27/21°C day/night 

temperatures. Overhead metal-halide lamps with 600 mmol photon m−2 s−1 light intensity 

were used to provide supplemental light in the greenhouse to maintain a 16-h 

photoperiod. Velvetleaf seedlings 6 to 8 cm in height were transplanted into round, free-

draining pots (20-cm diam and 30-cm ht) containing 10 kg of the same soil used in the 

germination trays, with one plant per pot. Pots were already at the desired moisture stress 

level of 100%, 75%, 50%, and 25% FC when velvetleaf seedlings were transplanted, 

minimizing the risk of transplant shock. Treatments were arranged in a completely 

randomized design with six replications. 

Soil Water Content. The soil used in this study had a permanent wilting point and 

saturation point of 17.7% and 34.7% volumetric, respectively. The soil had a bulk density 

of 1.4 g cm-3 and a volumetric FC of 39.2% based on soil test reports (American 

Agricultural Laboratory, Inc., McCook, NE). Gravimetric FC was 28% and was 

calculated using the following equation (Hillel 1998):  

𝜃𝜃𝑔𝑔 =  𝜃𝜃𝑣𝑣/𝜌𝜌𝑏𝑏      

where 𝜃𝜃𝑔𝑔 is the percent gravimetric soil water content, 𝜃𝜃𝑣𝑣 is the percent volumetric soil 

water content, and 𝜌𝜌𝑏𝑏 is the soil bulk density in grams per cubic cm.  
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 The study included four soil water stress treatments: 100%, 75%, 50%, and 25% 

of the soil FC, corresponding to no-, light-, moderate-, and high-water stress levels, 

respectively (Chahal et al. 2018; Sarangi et al. 2015). Soil water content in the pots was 

measured using Decagon 5TM soil moisture sensors and Em50 data loggers (Figure 4-1). 

The sensors were installed at a 45° angle at a 15 cm depth in each pot. Because the soil 

had a gravimetric FC of 28%, 2.8 L of water (28% of 10 kg soil) was added to each pot at 

12 and 4 d before transplanting in 2019 and 2020, respectively, to maintain 100% 

gravimetric FC. Likewise, 2.3 L (75% of 2.8 L), 1.6 L (50% of 2.8 L), and 0.9 L (25% of 

2.8 L) of water were added to maintain 75%, 50%, and 25% soil FC, respectively, with a 

range of ±2% actual volumetric water content set for water stress treatments. Soil 

moisture data from Decagon data loggers were recorded once a day, and the required 

amount of water was added evenly on top of the soil to maintain treatment soil FC.  

Data Collection. Velvetleaf height, number of leaves per plant, and growth index were 

determined at 7-d intervals beginning 7 d after transplanting (DAT) until plants were 

harvested upon maturity at 84 DAT during both years. Growth index can be defined as a 

quantitative indicator of plant growth rate used to compare plants grown under different 

soil water conditions and was calculated using the following equation (Irmak et al. 2004; 

Sarangi et al. 2015): 

𝐺𝐺𝐺𝐺 (𝑐𝑐𝑐𝑐3)  =  𝜋𝜋 𝑥𝑥 (𝑤𝑤/2)2 𝑥𝑥 ℎ           

where 𝑤𝑤 is the width of the plant calculated as an average of two widths, one measured at 

the widest point and another at 90° to the first; and ℎ is the plant height measured from 

the soil surface to the shoot apical meristem (Sarangi et al. 2015). Upon maturity, leaves 
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were counted and removed from each stem to measure the total leaf area for each plant 

using a leaf area meter (LI-3100C Area Meter, Li-Cor, Lincoln, NE).  

During harvest, plant stems were clipped at the soil surface and roots were 

removed from the pots; stems and roots were washed with water in a container and air-

dried for 24 h. The leaves, shoots, and roots from each plant were stored separately in 

paper bags and oven-dried at 65°C for 7 d. Seed heads were collected and the number of 

seeds per plant counted; seeds were then weighed and stored in the dark at room 

temperature until used in germination tests. Seed dormancy was interrupted in velvetleaf 

seeds by soaking them in boiling water for five seconds (Sadeghloo et al. 2013). Fifty 

seeds from each plant were placed on a piece of moist Whatman No. 4 filter paper (GE 

Healthcare UK, Amersham Place, Little Chalfont, Buckinghamshire HP7 9NA, UK) in a 

petri dish. Petri dishes were stored for 21 d in a growth chamber maintained at 35/28°C 

day/night temperatures with a 16-h photoperiod, and an appropriate amount of water 

were added each day to keep the filter paper wet. Fluorescent bulbs were used to produce 

a light intensity of 85 mmol m−2 s −1. The total number of germinated seeds was counted 

and converted to percent germination based on the total seed number in each petri dish.  

Statistical Analysis. Three parameter log-logistic models were fit to velvetleaf height, 

leaf number per plant, and growth index using the drc package in R (R Foundation for 

Statistical Computing, Vienna, Austria) (Knezevic et al. 2007): 

𝑌𝑌 = � 𝑑𝑑
1+𝑒𝑒𝑒𝑒𝑒𝑒 [𝑏𝑏(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)]

�  

where 𝑌𝑌 is plant height, leaf number per plant, or growth index; 𝑥𝑥 is days after 

transplanting; 𝑑𝑑 is the estimated maximum plant height, leaf number per plant, or growth 

index; 𝑒𝑒 is the time taken to achieve 50% of plant height, leaf number per plant, or 
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growth index; and 𝑏𝑏 represents the relative slope around the parameter 𝑒𝑒. A t-test was 

used to determine whether the water stress treatments significantly affected maximum 

estimates, rate of change, and time taken to achieve 50% of plant height, leaf number per 

plant, or growth index. Velvetleaf stem, leaf, and root biomass per plant (g), total leaf 

area per plant (cm2), seed number per plant, and percent seed germination were subjected 

to ANOVA and LSD tests using the agricolae and LSD procedures in R, respectively. 

Experimental year and replication were considered fixed effects to determine whether 

velvetleaf stem, leaf, aboveground and root biomasses, total leaf area, seed number, and 

percent seed germination were significant by year or replication, and whether there was a 

year by replication interaction. Velvetleaf stem, aboveground, and root biomass were 

significant by year, so ANOVA and LSD tests were performed for these parameters by 

year, while leaf biomass, total leaf area, seed number, and percent seed germination were 

grouped together by year. Where the ANOVA indicated treatment effects were 

significant, means were separated at P ≤ 0.05.  

 

Results and Discussion 

 Leaf Number. Velvetleaf responded to increasing water stress by senescing the oldest 

leaves, resulting in a reduced number of leaves with increasing water stress level (Table 

4-1). Similarly, Schmidt et al. (2011) reported senescence of older leaves in velvetleaf 

under drought conditions. Velvetleaf maintained at 100% FC had a maximum of 28 

leaves plant−1, followed by 21 and 15 leaves plant−1 at 75% and 50% FC, respectively 

(Table 4-1, Figure 4-2A). Chadha et al. (2019) reported similar results in prickly lettuce 

(Lactuca serriola L.), where leaf numbers were higher in 100% (52 leaves plant−1) and 
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75% FC (49 leaves plant−1) compared to 50% FC (41 leaves plant−1). In contrast, 

Mahajan et al. (2018) reported a similar leaf number plant−1 in two African turnip weed 

(Sisymbrium thellungii O.E. Schulz) biotypes at 100%, 75%, and 50% FC. Kaur et al. 

(2016) also reported a similar number of leaves plant-1 in giant ragweed (Ambrosia trifida 

L.) at 100%, 75%, and 50% FC. A significant reduction in leaf number in Sisymbrium 

thellungii (Mahajan et al. 2018) and Ambrosia trifida L. (Kaur et al. 2016) at 25% FC 

were reported, similar to the results of this study, where velvetleaf plants maintained at 

25% FC had a maximum of 7 leaves plant−1 before plant death (Figure 4-2A). The log-

logistic model estimated that velvetleaf grown at 100%, 75%, and 50% FC took a similar 

amount of time [3.3 to 4.3 weeks after transplanting (WAT)] to achieve 50% of 

maximum leaf number. Similarly, there was no difference in the time it took for 

Ambrosia trifida L. to achieve 50% of maximum leaf number at 100%, 75%, and 50% FC 

(6 to 9 WAT) (Kaur et al. 2016).  

Plant Height. Velvetleaf maintained at 100% and 75% FC achieved a height of 108 cm 

and 123 cm compared with a height of 83 cm at 50% FC (Table 4-1, Figure 4-2B). These 

results suggest that available soil moisture at ≥ 75% FC is sufficient to achieve maximum 

velvetleaf height and that a visible decrease in plant height at 50% FC could be a result of 

reduced cell enlargement due to low turgor pressure at 50% FC water stress level (Farooq 

et al. 2009; Jaleel et al. 2009). Similar results were reported by Chadha et al. (2019), in 

which Lactuca serriola had the greatest plant height at 75% FC (115 cm) and 100% FC 

(104 cm) compared with 77 cm at 50% FC. Kaur et al. (2016) also reported that 

Ambrosia trifida L. had the greatest plant height at 75% FC (140 cm) and 100% FC (125 

cm) compared with 112 cm at 50% FC. In contrast, Mahajan et al. (2018) reported the 
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greatest plant height at 50% FC (65 cm) compared to 75% FC (53 cm) and 100% FC (56 

cm) of the St. George biotype of Sisymbrium thellungii. Karimi et al. (2015) reported the 

greatest plant height in sweetleaf (Stevia rebaudiana Bertoni) at 90% FC, and decreased 

height with increasing water stress up to 45% FC. The model estimated that velvetleaf 

grown at 100%, 75%, and 50% FC took a similar amount of time (5.7 to 6.2 WAT) to 

achieve 50% of maximum plant height. Similarly, Kaur et al. (2016) reported that 

Ambrosia trifida L. grown at 100%, 75%, and 50% FC took 6 WAT to reach 50% of 

maximum plant height. 

Plant Growth Index. Velvetleaf maintained at 75% FC had the greatest growth index 

(79,907 cm3) compared with a growth index of 72,197 cm3 at 100% FC and 64,256 cm3 at 

50% FC (Table 4-1, Figure 4-2C). Results suggest that available soil moisture at 75% FC 

is sufficient for maximum growth of velvetleaf, and that available soil moisture at 100% 

FC might actually hinder plant growth due to root saturation (Ashraf 2012). Similarly, 

Kaur et al. (2016) reported that Ambrosia trifida L. maintained at 75% FC had the 

greatest growth index (588 cm3), followed by 416 cm3 at 100% FC and 274 cm3 at 50% 

FC. The time to achieve 50% of maximum growth index was similar across water stress 

levels (4.6 to 5.7 WAT) (Table 4-1). In contrast, Kaur et al. (2016) reported that the time 

for Ambrosia trifida L. to achieve 50% of maximum growth index was longer at 75% FC 

(6 WAT) compared to 100% and 50% FC (4 WAT). 

Velvetleaf maintained at 25% FC did not survive more than 77 DAT during both 

years, although one plant produced a small number of seeds; therefore, root, leaf, and 

stem biomass, total leaf area, number of seeds per plant, and percent seed germination are 

presented (Table 4-2). The permanent wilting point of soil used in this study was 17.7% 
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by volume, corresponding to 45.2% FC. The soil water available to velvetleaf plants at 

25% FC was below the permanent wilting point that resulted in plant death.  

Plant Stem and Root Biomass. Year by treatment interactions were significant for stem 

and root biomass; therefore, data were separated (Table 4-2). Velvetleaf plants 

maintained at 75% FC were the tallest; however, they resulted in similar root, stem, or 

leaf biomass as 100% FC during both years. In 2019, stem biomass was similar (10−14 g 

plant−1) at 100%, 75%, and 50% FC and root biomass was reduced at 100% FC (1.5 g 

plant−1) and 25% FC (0.08 g plant−1) compared with 2.4 to 3.4 g plant−1 at 75% and 50% 

FC. Similarly, no differences were reported in Ambrosia trifida L. (Kaur et al. 2016) and 

Sisymbrium thellungii (Mahajan et al. 2018) stem biomass at 100%, 75%, and 50% FC. 

Other studies reported that velvetleaf (Vaughn et al. 2016) and Stevia rebaudiana 

(Karimi et al. 2015) aboveground biomass increased as water supply increased and was 

generally greatest at full transpiration and 90% FC, respectively. Studies also reported 

that velvetleaf (Vaughn et al. 2016) and Ambrosia trifida L. (Kaur et al. 2016) root 

biomass were greatest at full transpiration and 100% FC, respectively, but that was not 

the case in this study, as root biomass was reduced at 100% FC in 2019. Root biomass at 

100% FC was likely reduced due to waterlogging of the soil, inhibiting root system 

elongation and potentially leading to adventitious root formation (Ashraf 2012; Steffens 

and Rasmussen 2016). In 2020, stem biomass (0.05 to 0.3 g plant−1) and root biomass 

(0.01 to 0.07 g plant−1) were reduced at 50% and 25% FC compared to stem biomass (1.2 

to 1.3 g plant−1), and root biomass (0.16 to 0.17 g plant−1) at 100% and 75% FC. Chadha 

et al. (2019) reported similar results in which aboveground biomass of Lactuca serriola 

was greatest at 100% and 75% FC (19.4 to 22.4 g plant−1) compared to 50% and 25% FC 
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(17.2 to 17.5 g plant−1). On the contrary, Karkanis et al. (2011) reported no effect on root 

biomass due to water stress.  

Total Leaf Area. The total leaf area per plant increased with increasing water stress, with 

the highest value at 50% FC (86.7 cm2 plant−1) and the value reduced to 5.5 cm2 plant−1 at 

25% FC (Table 4-2). However, total leaf area values were statistically similar (56 to 86.7 

cm2 plant−1) across 100%, 75%, and 50% FC. In contrast, Chadha et al. (2019) reported 

the greatest leaf area of Lactuca serriola at 75% FC, followed by 50%, 100%, and 25% 

FC. Vaughn et al. (2016) and Manivannan et al. (2007) reported reduced total leaf area 

with decreased water availability in velvetleaf and Helianthus annus.  

Seed Production. Water stress influenced the number of velvetleaf seeds produced per 

plant. Velvetleaf at 75% FC produced the highest number of seeds (453 seeds plant−1), 

followed by 100% (406 seeds plant−1), 50% (288 seeds plant−1), and 25% FC (2 seeds 

plant−1) (Table 4-2). Results suggest that although velvetleaf plant growth may be 

reduced by 50% FC, a considerable number of seeds are still produced. Thus, early-

season control of velvetleaf is crucial for avoiding a large infestation later in the growing 

season. Similarly, Kaur et al. (2016) reported that seed production of Ambrosia trifida L. 

was influenced by degree of water stress, with the highest number of seeds produced at 

75% FC, followed by 100%, 50%, and 25% FC. In contrast, Chadha et al. (2019), Chahal 

et al. (2018), Mahajan et al. (2018), and Sarangi et al. (2015) reported decreased seed 

production with increased water stress in Lactuca serriola, Sisymbrium thellungii, 

waterhemp (Amaranthus tuberculatus), and Palmer amaranth (Amaranthus palmeri S. 

Watson), respectively, indicating their sensitivity to water stress compared with 

velvetleaf.  
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Seed Germination. Velvetleaf seed germination was similar (96% to 100%) at 100%, 

75%, and 50% FC compared with 20% germination at 25% FC. Similarly, Chahal et al. 

(2018) reported no difference in Amaranthus palmeri seed germination at 100%, 75%, 

and 50% FC, and no seeds were produced at 25% FC, signifying that Amaranthus 

palmeri seed production is more sensitive to water stress than velvetleaf. In contrast, 

Chadha et al. (2019) reported no difference in the germination ability of Lactuca serriola 

seeds produced under water stress conditions, demonstrating a higher tolerance to water 

stress compared to velvetleaf. These findings imply that velvetleaf can survive and 

produce viable offspring at water stress levels as low as 50% FC, prompting the need for 

early-season control.  

Practical Implications 

 This is the first study that evaluates the response of velvetleaf to the degree of 

water stress using soil moisture sensors that more frequently and accurately maintain a 

precise level of water stress throughout the growth period. Plant height and leaf number 

per plant were sensitive to water stress than total leaf area, stem, leaf, and root biomass, 

seed production, and seed germination. Seeds of velvetleaf used in this study were 

collected from a field under continuous corn-soybean rotation in Clay County, NE. The 

growth characteristics of velvetleaf observed in this study could vary if velvetleaf 

biotypes were collected from different cropping systems or rotations. Waselkov et al. 

(2020) found that agriculturally prevalent Amaranthus tuberculatus from the Mississippi 

Valley and Plains regions had higher relative performance than waterhemp from the 

Northeast region, where waterhemp is less of an agricultural weed. The results of this 

study could also vary under field conditions because velvetleaf plants were not able to 
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grow to their full potential due to limited pot size and pest infestation under greenhouse 

conditions. In 2020, stem and root biomass were significantly lower compared to 2019, 

likely due to white fly (Aleyrodidae) infestation. In addition, a single velvetleaf plant was 

grown in each pot without inter- or intra-specific competition; thus, plants growing with 

crops might produce flowers earlier or later in the growing season depending on the 

competitive nature of the crops, resulting in higher or lower seed formation. Water stress 

treatments were imposed throughout the growth period in this study, while duration of 

water stress can also play an important role in determining velvetleaf’s growth response. 

Therefore, it is expected that velvetleaf grown under field conditions will have a better 

chance of survival and higher seed production due to possibly limited periods of water 

stress because of rain/irrigation compared with the continuous water stress conditions 

imposed in this study. 

Water stress may also influence the duration of the critical weed-free period for 

various crops. Light to moderate water stress (75% to 50% FC) would not likely impact 

the critical weed-free period of velvetleaf in crops, although high water stress (25% FC) 

might reduce the critical weed-free period of velvetleaf compared with saturated 

conditions (Coble et al. 1981; Jackson et al. 1985). Velvetleaf is a temperate climate 

species and is typically absent from environments where dry climate and high 

evapotranspiration rates restrict growth. Munger et al. (1987a) and Vaughn et al. (2016) 

have shown that crops such as soybean and corn, respectively, have higher transpiration 

efficiency (TE) compared with velvetleaf under short-term water stress conditions. The 

higher TE of corn and soybean is likely due to earlier leaf senescence in velvetleaf during 

short-term water stress; however, the velvetleaf response to long-term water stress may 
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be advantageous, where early conservation of available soil moisture and early leaf 

senescence could result in maintaining enough water for transpiration later and 

potentially producing seeds (Schmidt et al. 2011). Hagood et al. (1980) reported a greater 

reduction in soybean growth due to velvetleaf competition during a dry year compared to 

a wet year, indicating potential competition for moisture between two species. The 

growth characteristics of velvetleaf at ≤75% FC in this study could indicate its 

competitive ability under long-term water stress conditions. For these reasons, this 

information could be useful for evaluating weed-crop interaction using competition 

models, as well as for developing climate simulation models to understand the effect of 

drought, rising atmospheric CO2 concentrations, rising global temperatures, reductions in 

annual soil and groundwater recharge, and increasing frequency of extreme weather 

events on crop and weed species.  
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Table 4-1. Parameter estimates and test of lack of fit at 95% level for the three-parameter 

log-logistic functiona fit to velvetleaf leaves per plant, plant height, and growth index 

under differing degrees of water stress at 84 d after treatment (DAT) in a greenhouse 

study at University of Nebraska-Lincoln. 

Water stress treatmentb,c d±SEb,c,d e (weeks)c,d bc,d Lack of fite 

 Leaves plant-1 

100% FC (no water stress) 28 ± 7 a 4.3 ± 1.3 a ‒ 2.4 ± 1.6 a 1.0 
75% FC (light water stress) 21 ± 1.4 b  3.4 ± 0.47 a ‒ 4.9 ± 2.5 a 0.3 
50% FC (moderate water stress) 15 ± 1.8 c 3.3 ± 0.6 a ‒ 2.5 ± 1.2 a 0.4 
 Plant height (cm) 
100% FC (no water stress) 108 ± 10.7 a 5.7 ± 0.4 a ‒ 4.7 ± 1.7 a 0.9 
75% FC (light water stress) 123 ± 12.3 a 6.0 ± 0.4 a ‒ 4.8 ± 1.6 a 0.9 
50% FC (moderate water stress) 83 ± 11.6 b 6.2 ± 0.6 a ‒ 4.8 ± 2.1 a 0.9 
 Growth index (cm3)f 

100% FC (no water stress) 72,197 ± 8,310 b 5.1 ± 0.4 ab ‒ 6.6 ± 3.1 a 0.9 
75% FC (light water stress) 79,907 ± 7,072 a 4.6 ± 0.3 a ‒ 10.1 ± 5.6 a 0.9 
50% FC (moderate water stress) 64,256 ± 8,398 c 5.7 ± 0.4 ab ‒ 8.3 ± 4.5 a 1.0 

 

aY={d/1+exp[b(logx-loge)]}, where Y is the leaves per plant, plant height, or growth index; x is days after 
transplanting; d is the estimated maximum leaves per plant, plant height, or growth index; e is the time 
taken to achieve 50% of leaves per plant, plant height, or growth index; and b is the relative slope around 
parameter e. 
bAbbreviation: FC, field capacity; SE, standard error. 
cOnly one velvetleaf plant maintained at 25% soil FC survived more than 77 DAT, and the three-parameter 
log-logistic model did not provide a good fit for leaves per plant, plant height, or growth index; therefore, 
data are not presented. 
dMeans within columns with no common letter(s) are significantly different at P ≤ 0.05. 
eA test of lack of fit at the 95% level was not significant for any of the curves tested for the water stress 
treatments, indicating that the fitted model was correct. 
fGrowth index = π * (w/2)2 * h, where w is the width of the plant calculated as an average of two widths; 
and h is the plant height measured from the soil surface to the apical meristem. 
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Figure 4-1. Soil moisture content in pots was measured using (A) Decagon 5TM 

moisture sensors and (B) Em50 data loggers to determine degree of water stress on 

velvetleaf in a greenhouse study conducted at the University of Nebraska–Lincoln. 

  

(A) 

(B) 
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Figure 4-2. Effect of degree of water stress on (A) leaves per plant, (B) plant height, and 

(C) growth index of velvetleaf after 84 DAT during both years. 100%, 75%, 50%, and 

25% field capacity (FC) treatments correspond to no-, light-, moderate-, and high-water 

stress, respectively. Only one velvetleaf plant maintained at 25% FC survived more than 

77 DAT during both years, and the three-parameter log-logistic model did not provide a 

good fit for leaves per plant, plant height, or growth index; therefore, curves are 

presented for 25% FC, although only for visual sake.   
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