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Palmer amaranth (PA) is the most problematic weed in agronomic cropping
systems in the United States. Acetolactate synthase (ALS) inhibitor-/glyphosate-resistant
(GR) PA has been confirmed in Nebraska and is widespread in several counties. Soybean
resistant to isoxaflutole/glufosinate/glyphosate has been developed to provide additional
herbicide sites of action for control of herbicide-resistant weeds. The objectives of this
study were to evaluate herbicide programs for control of ALS inhibitor/GR PA and their
effect on PA density and biomass, as well as soybean injury and yield in
isoxaflutole/glufosinate/glyphosate-resistant soybean. A PRE herbicide tb glufosinate
controlled PA 80%—-99% 21 d after late-POST in 2018 and reduced density 89%—100%
in 2018 and 58%—100% in 2019 at 14 d after early-POST.

Weed-crop competition models offer a significant tool for understanding and
predicting crop yield losses due to crop-weed interference. Within current empirical
models, weed biological characteristics are unknown, which limits understanding of weed

growth in competition with crops and how that competition affects crop growth



parameters. The objective of this study was to determine the effect of center-pivot and
subsurface drip irrigation on the average evapotranspiration (ET.) of PA grown in corn,
soybean, and fallow in south central Nebraska. Results suggest irrigation affects subplot
ET. differences early in the growing season, but crop system and progression of plant
growth with available water have a greater effect on ET. differences than irrigation type
later in the growing season. Thus, crop management will likely have greater effects on
PA ET. values than irrigation practices alone. This study provides base data on weed
evapotranspiration and its relation to weed morphological features for future use in
mechanistic weed-crop competition models.

Velvetleaf is another troublesome broadleaf weed that competes with agronomic
crops for resources such as soil moisture. The objective of this study was to determine the
effect of degree of water stress on the growth and fecundity of velvetleaf using soil
moisture sensors under greenhouse conditions. The results of this study demonstrate that
velvetleaf can survive > 50% field capacity (FC) continuous water stress conditions,
although with reduced leaf number, plant height, and growth index compared to 75% and

100% FC.
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CHAPTER 1: INTRODUCTION AND OBJECTIVES

Introduction

Palmer amaranth. Palmer amaranth is a summer annual broadleaf weed belonging to
the Amaranthaceae family and is one of the dioecious species among pigweeds (Steckel
2007). Human activities in the 20th century such as agricultural development, within- and
between-field operations, and seed and equipment transportation have led Palmer
amaranth to spread to the northern United States (Costea et al. 2004; 2005; Culpepper
2006). Since the first report of Palmer amaranth beyond its native habitat in the southwest
United States, it has become one of the most problematic and troublesome weeds in
agronomic cropping systems in the United States (Culpepper et al. 2010; Ward et al.
2013). A multistate growers’ survey conducted in 2005-2006 reported that pigweeds
were one of the three most problematic weeds in glyphosate-resistant corn (Zea mays L.)
and soybean [ Glycine max (L.) Merr.] production fields in the Midwest (Kruger et al.
2009). A statewide survey of Nebraska stakeholders in 2015 found that Palmer amaranth
ranked fourth out of the top five most difficult to control weeds in the Panhandle and
West Central Nebraska (Sarangi and Jhala 2018). More recently, a statewide survey of
Nebraska stakeholders found that Palmer amaranth was considered the most difficult to
control in corn and soybean cropping systems.

Several factors have enabled Palmer amaranth to become such a dominant and
difficult-to-control weed, including its rapid growth rate (Ehleringer and Forseth 1980;
Ehleringer 1985), prolific seed production (Keeley et al. 1987; Massinga et al. 2001), and

ability to tolerate adverse environmental conditions, including disease, genetic
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abnormalities (Franssen et al. 2001), and water stress (Chahal et al. 2018). Horak and
Loughin (2000) reported that Palmer amaranth had the highest plant dry weight, leaf area,
water-use efficiency, and growth rate (0.10-0.21 cm per growing degree day) compared
to redroot pigweed (Amaranthus retroflexus L.), tumble pigweed (Amaranthus albus L.),
and waterhemp [Amaranthus tuberculatus (Moq.) Sauer] in a two-year field study in
Kansas. Palmer amaranth also has greater root length and root biomass compared with
most crops, allowing it to occupy a larger soil volume and obtain soil nutrients (Wright et
al. 1999). As a dioecious species, Palmer amaranth is an obligate outcrossing, wild
pollinated species (Sosnoskie et al. 2012), resulting in wide genetic diversity that can lead
to the spread of herbicide-resistant alleles (Jhala et al. 2021; Oliveira et al. 2018). Due to
its prolific seed production, aggressive growth habit, and ability to evolve resistance to
commonly used herbicides, it is vital to control Palmer amaranth early in the growing
season by integrating mechanical, cultural, and chemical practices, including PRE
herbicides with multiple sites of action (de Sanctis et al. 2021; Norsworthy et al. 2012).
Velvetleaf. Velvetleaf (Abutilon theophrasti) is regarded as a troublesome broadleaf
weed (Spencer 1984), causing grain yield losses in fields of corn (Zea mays L.), soybean
[Glycine max (L.) Merr.], sorghum [Sorghum bicolor (L.) Moench], and cotton
(Gossypium hirsutum L.) (Behrens 1979; Colton and Einhellig 1980; Eaton et al. 1976;
Hagood et al. 1980; Higgins et al. 1984; Oliver 1979; Spencer 1984; USDA 1970). A
multistate growers’ survey conducted in 2005-2006 reported velvetleaf as one of the
three most problematic weeds in GR corn and soybean cropping systems in the Midwest

(Kruger et al. 2009). A statewide survey of Nebraska stakeholders in 2015 found that
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velvetleaf ranked the fourth most difficult to control weed in corn and soybean
production fields (Sarangi and Jhala 2018).

Velvetleaf possesses a number of characteristics that contribute to its success as a
weed, including rapid root growth and the ability to produce sugars at a relatively
efficient rate in low sunlight, allowing growth under partially shaded crop canopies
(Roeth 1987). Velvetleaf produces 700—17,000 seeds plant ! that have high viability and
can persist in the soil up to 50 years (Anderson et al. 1985; Chandler and Dale 1974;
Khedir and Roeth 1981). In addition, velvetleaf has a sporadic and continuous
germination pattern (Burnside et al. 1981; Roeth 1987); robust seedling vigor (Hartgerink
and Bazzaz 1984); allelopathic effects (Bhowmik and Doll 1982; Colton and Einhellig
1980; Elmore 1980; Gressel and Holm 1964; Sterling 1987a, 1987b); is a host to several
crop pests and pathogens (Hepperley et al. 1980; Jacques and Peters 1971); and has
reduced susceptibility to some herbicides used in corn and soybean production (Jhala et
al. 2021), such as dicamba (de Sanctis and Jhala 2021).

Herbicide Resistance. Globally, glyphosate is the most widely used agricultural
pesticide and is used extensively in glyphosate-resistant (GR) canola (Brassica napus L.),
corn (Zea mays L.), cotton (Gossypium hirsutum L.), sugarbeet (Beta vulgaris var.
saccharifera), and soybean in the United States (Heap and Duke 2018). Since the
commercialization of GR crops, particularly GR corn and soybean in the midwestern
United States and GR cotton in the southern United States, continuous use of glyphosate
multiple times in a year, along with a decline in the use of residual herbicides (Culpepper
2006; Young 2006), has resulted in the evolution of GR weeds (Beckie 2006). As of

2020, 50 weeds have been confirmed resistant to glyphosate worldwide (Heap 2021),
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including six broadleaf weeds such as common ragweed (Ambrosia artemisiifolia L.),
giant ragweed (Ambrosia trifida L.), kochia [Bassia scoparia (L.) A. J. Scott], horseweed
(Erigeron canadensis L.), waterhemp, and Palmer amaranth in Nebraska (Jhala 2017a).
Palmer amaranth resistant to glyphosate was first confirmed in Georgia in 2004
(Culpepper et al. 2006). Since then, GR Palmer amaranth has been confirmed in 28 states
in the United States (Heap 2021; Heap and Duke 2018). Palmer amaranth resistant to
ALS inhibitors was first confirmed in Kansas in 1994 and since then has been confirmed
in 14 states in the United States (Heap 2021; Sprague et al. 1997). Palmer amaranth
resistant to glufosinate, another commonly used herbicide, was recently confirmed in
Arkansas (Barber et al. 2021).

Palmer amaranth has evolved resistance to herbicides from at least eight herbicide
sites of action: microtubule-, acetolactate synthase (ALS)-, 5-enolpyruvyl-shikimate-3-
phosphate synthase (EPSPS)-, photosystem (PS) II, hydroxyphenylpyruvate dioxygenase
(HPPD)-, very long chain fatty acid (VLCFA)-, protoporphyrinogen oxidase (PPO)-, and
synthetic auxin inhibitors (Heap 2021). In Nebraska, Palmer amaranth biotypes with
multiple herbicide-resistance to HPPD- and PS II-inhibitors, as well as EPSPS- and PS II-
inhibitors were confirmed in 2014 and 2016, respectively (Chahal et al. 2017; Jhala et al.
2014). In Kansas, a population of PA resistant to five herbicide sites of action including
synthetic auxin-, EPSPS-, ALS-, PS II-, and HPPD-inhibitors was confirmed (Kumar et
al. 2019). Herbicide-resistant Palmer amaranth reduces herbicide options for growers and
can cause major crop yield losses if not controlled early in the growing season. Annually,
weeds cause an estimated loss of more than US$100 billion and a 10% yield loss on a

global scale (Appleby et al. 2000). In light of these losses, it is clear that a greater
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understanding of crop-weed interactions is necessary to develop cost-effective and
sustainable weed management practices.

LibertyLink GT27™ Soybean. In order to address the growing need to control GR
weeds in cropping systems, multiple-herbicide-resistant soybean traits have been
developed. The recently available isoxaflutole/glufosinate/glyphosate-resistant soybean
(LibertyLink GT27™) provides an opportunity to use isoxaflutole applied PRE alone or
in mixture with other residual herbicides for early-season weed control. It also provides
an opportunity to use glufosinate as a contact, POST herbicide for control of emerged
broadleaf and grass weeds (Jhala et al. 2017). Norsworthy et al. (2008) reported 99%
control of GR Palmer amaranth with glufosinate. Wiesbrook et al. (2001) found that
glufosinate in sequential applications improved control of broadleaf weeds over a single
application. Glufosinate applied early-POST (EPOST) resulted in 73% Palmer amaranth
control compared to 76% control with glufosinate applied EPOST and late-POST
(LOST) (Hoftner et al. 2012).Glufosinate applied EPOST resulted in 71% control and a
sequential LPOST application provided 76% control of GR waterhemp in glufosinate-
resistant soybean in Nebraska (Jhala et al. 2017). An additional option for POST control
of GR Palmer amaranth in glufosinate-resistant soybean is glufosinate mixed with
residual herbicides such as acetochlor, pyroxasulfone, or S-metolachlor (Aulakh and
Jhala 2015). This mixture provides foliar and residual control of Palmer amaranth
through overlapping residual activity.

Weed and Crop Water Demands. Weed species compete with crops for a variety of
environmental resources, including water, which is one of the most limiting factors for

optimum crop production (Benjamin and Nielsen 2006). Weed-crop competition models
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offer a significant tool for understanding and predicting crop yield losses due to crop-
weed interference. However, within these models, weed biological characteristics are
unknown, limiting our understanding of weed growth in competition with crops and how
that competition affects crop growth parameters. In terms of weed-crop competition, two
main principles are apparent: (1) the first plant to occupy a given area has an advantage
over later emerging plants, and (2) more aggressive plant species typically dominate in an
intermixed community of weeds and crops (Singh et al. 2020). In general, weed species
with similar growth patterns to crops are more competitive than weeds with a dissimilar
growth pattern. Conversely, the competitive ability of crops depends on many factors,
such as (1) crop type and cultivar or variety selection, sowing date, row spacing and
tillage practices; (2) weed density and composition; (3) soil and climatic factors; and (4)
crop rotation (Singh et al. 2020). The time and method of irrigation may also impact
weed-crop competition as weeds are also benefitted during irrigation. As the inherent
ability of crops to compete against weeds is weakened by climatic and soil stresses
(Mohler 2004), various farm management practices, including irrigation, can be adjusted
in such a way to hinder weed growth.

Nebraska growers lead the U.S. in irrigated acres at ~10 million acres [4.1 million
ha], with roughly half a million irrigated acres added each year (USDA 2019). Sprinkler
systems, particularly center pivot irrigation (CPI) systems, represent ~80% of Nebraska’s
irrigation, while gravity and drip systems represent ~20% and 0.05%, respectively
(USDA 2010). In CPI and gravity irrigation systems, a certain portion of water
withdrawn is returned as surface water or groundwater, although much is consumed by

evapotranspiration (ET). In comparison to CPI systems, ET from drip systems like
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subsurface drip irrigation (SDI) has been shown to be 10% lower in certain areas. The
reduction in ET of SDI systems translates to additional water for transpiration, potentially
resulting in increased crop yield and weed biomass if competitive weeds are present
(Odhiambo and Irmak 2015). Developing irrigation management strategies based on
available soil water requires knowledge of weed and crop response to water deficit,
which can be obtained through modeling (Paredes et al. 2014), relating biomass
production to ET. The effects of crop ET rates on crop yield are well known — the
challenge is determining the effect of weed ET on weed morphological features (i.e.,

biomass, leaf area index, plant height).
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Objectives
Evaluate herbicide programs for control of ALS inhibitor/GR Palmer amaranth
and their effect on Palmer amaranth density and biomass, as well as soybean
injury and yield in isoxaflutole/glufosinate/glyphosate-resistant soybean.
Determine the effect of center-pivot and subsurface drip irrigation on the average
evapotranspiration of Palmer amaranth grown in corn, soybean, and fallow in
south central Nebraska.
Determine the effect of degree of water stress on the growth and fecundity of

velvetleaf using soil moisture sensors under greenhouse conditions.
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CHAPTER 2:
CONTROL OF ACETOLACTATE SYNTHASE INHIBITOR/GLYPHOSATE-
RESISTANT PALMER AMARANTH (AMARANTHUS PALMERI) IN
ISOXAFLUTOLE/GLUFOSINATE/GLYPHOSATE-RESISTANT SOYBEAN
Mausbach JM, Irmak S, Sarangi D, Lindquist J, Jhala AJ (2021) Control of acetolactate
synthase inhibitor/glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in

isoxaflutole/glufosinate/glyphosate-resistant soybean. Weed Technology (In press)

Abstract
Palmer amaranth is the most problematic and troublesome weed in agronomic cropping
systems in the United States. Acetolactate synthase (ALS) inhibitor- and glyphosate-
resistant (GR) Palmer amaranth has been confirmed in Nebraska and it is widespread in
several counties. Soybean resistant to isoxaflutole/glufosinate/glyphosate has been
developed to provide additional herbicide sites of action for control of herbicide-resistant
weeds. The objectives of this study were to evaluate herbicide programs for control of
ALS inhibitor/GR Palmer amaranth and their effect on Palmer amaranth density and
biomass, as well as soybean injury and yield in isoxaflutole/glufosinate/glyphosate-
resistant soybean. Field experiments were conducted in 2018 and 2019 in a grower’s field
infested with ALS inhibitor/GR Palmer amaranth near Carleton, Nebraska. Isoxaflutole
applied alone or mixed with sulfentrazone/pyroxasulfone, flumioxazin/pyroxasulfone, or
imazethapyr/saflufenacil/pyroxasulfone provided similar control (86%—-99%) of Palmer
amaranth 21 d after PRE (DAPRE). At 14 d after early-POST (DAEPOST), isoxaflutole

applied PRE and PRE followed by (fb) POST controlled Palmer amaranth 10% and 63%,
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respectively. Glufosinate applied EPOST provided 75%—96% control with in both years.
A PRE herbicide fb glufosinate controlled Palmer amaranth 80%—-99% 21 d after late-
POST (DALPOST) in 2018 and reduced density 89%—-100% in 2018 and 58%—-100% in
2019 at 14 DAEPOST. No soybean injury was observed from any of the herbicide
programs tested in this study. Soybean yield in 2019 was relatively higher due to higher
precipitation compared with 2018 with generally no differences between herbicide
programs. This research indicates that herbicide programs are available for effective
control of ALS inhibitor/GR Palmer amaranth in isoxaflutole/glufosinate/glyphosate-

resistant soybean.

Introduction

ALS inhibitor- and/or GR Palmer amaranth has been observed in several
corn/soybean production fields in south-central and west-central Nebraska, in addition to
alfalfa (Medicago sativa L.), corn, and sugarbeet fields in western Nebraska (Vieira et al.
2018). To address the growing need to control GR weeds in cropping systems, multiple-
herbicide-resistant soybean traits have been developed. For example,
isoxaflutole/glufosinate/glyphosate-resistant soybean has been developed to provide
additional herbicide sites of action for control of herbicide-resistant weeds, primarily GR
weeds; however, herbicide programs need to be developed and tested that provide
season-long control of GR Palmer amaranth in this multiple herbicide-resistant soybean.
The objectives of this research were to: (1) evaluate isoxaflutole- and glufosinate-based
herbicide programs for control of ALS inhibitor/GR Palmer amaranth in

isoxaflutole/glufosinate/glyphosate-resistant soybean, and (2) evaluate the effect of
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herbicide programs on Palmer amaranth density and biomass, as well as soybean injury

and grain yield.

Materials and Methods

Field Experiments. Field experiments were conducted in 2018 and 2019 in a grower’s
field near Carleton, NE (40.30°N, 97.67°W). The field had a GR corn-soybean rotation
with reliance on glyphosate for weed control in a no-till production system for the last 10
years and confirmed to have an ALS inhibitor/GR Palmer amaranth population (Chahal et
al. 2017) [(multiple herbicide-resistant (MHR) Palmer amaranth here after]. The soil at
the experimental site was silt loam (montmorillonitic, mesic, Pachic Argiustolls) with a
pH of 6.0 and 19% sand, 63% silt, 18% clay, and 2.6% organic matter content. Winter
annual weeds were controlled with glyphosate at 900 g ae ha™!, 2,4-D ester at 560 g ae ha
!, and liquid ammonium sulfate at 3% v/v two weeks prior to establishing an experiment.
A soybean cultivar resistant to isoxaflutole/glufosinate/glyphosate was planted in a no-till
seedbed at 345,800 seeds ha ! in rows spaced 76 cm apart. Soybean was planted on May
10 in 2018 and May 6 in 2019. Individual experimental plot dimensions were 3 m wide
by 9 m long. The experimental site was in a rainfed environment with no supplemental
irrigation. The precipitation received during both growing seasons are listed (Table 2-1).

Treatments were arranged in a randomized complete block design with four
replications. Herbicide programs evaluated to control MHR Palmer amaranth consisted of
PRE, EPOST, LPOST, and PRE fb POST herbicide programs (Table 2-2). A nontreated
control was included for comparison. Herbicides were applied with a handheld CO»-

pressurized backpack sprayer equipped with AIXR 110015 flat fan nozzles (TeeJet®
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Technologies, Spraying Systems Co., P.O. Box 7900, Wheaton, IL) calibrated to deliver
a 140 L ha! flow rate at 276 kPa at a constant speed of 4.8 km h™!. Glufosinate was
mixed with liquid ammonium sulfate at 3% v/v (Anonymous 2017) and was applied with
XR 11005 flat fan nozzles (TeeJet® Technologies, Spraying Systems Co., P.O. Box 7900,
Wheaton, IL). The PRE herbicides were applied after soybean planting on the same day
(i.e., May 10) in 2018, and four d after soybean planting (i.e., May 10) in 2019. The
EPOST herbicides were applied 31 d after PRE (DAPRE) herbicides were applied.
Palmer amaranth was 1-8 cm tall depending on herbicide program. Soybean was at the
first to second trifoliate (V1-V2 growth stage). The LPOST herbicides were applied 20—
22 DAEPOST herbicide applications. Palmer amaranth was 825 cm tall depending on
the herbicide program. Palmer amaranth plant height was variable because new plants
had emerged and some plants had been partially controlled by the EPOST herbicide.
Data Collection. Palmer amaranth control was assessed visually at 21 DAPRE, 14
DAEPOST, and 14 and 28 DALPOST herbicide applications on a scale of 0%—100%
(0% indicating no control of Palmer amaranth and 100% indicating complete control).
Palmer amaranth densities were recorded 21 DAPRE, 14 DAEPOST, 14 DALPOST, and
28 DALPOST by counting the number of Palmer amaranth plants in one 0.5 m? quadrat
placed randomly between two center soybean rows in each plot. Soybean injury was
assessed visually at 14 DAPRE, 14 DAEPOST, 14 and 28 DALPOST herbicide
applications based on a scale of 0%—100% (0% indicating no soybean injury and 100%
indicating complete plant death). Palmer amaranth plants counted during density ratings
were clipped at the soil surface, placed into paper bags, and placed in an oven at 65°C

until they reached a constant weight. Aboveground biomass was converted into percent
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biomass reduction and was compared with the nontreated control using the following

equation (Wortman 2014):
% Biomass reduction = [%] * 100

where C is the biomass of the nontreated control and B is the biomass of an individual
treatment plot. Soybean was harvested from the center two rows in each plot using a plot
combine. Grain yield was adjusted to 13% moisture content and converted into kg ha !
Statistical Analysis. Data were subjected to ANOVA using the PROC MIXED
procedure in SAS version 9.3 (SAS Institute Inc, Cary, NC). Data were tested for
normality with the use of PROC UNIVARIATE. Palmer amaranth control, density, and
biomass data were arcsine square-root transformed before analysis; however, back-
transformed data are presented with the mean separation based on the transformed data.
Year and herbicide treatments were considered fixed effects, while replication was
considered a random effect in the model. If year-by-treatment interaction was non-
significant, data from both years were combined. However, if the year-by-treatment
interaction was significant, data were analyzed separately by year. Where the ANOVA
indicated treatment effects were significant, means were separated at P < 0.05 using

Tukey Kramer’s pairwise comparison test.

Results and Discussion
Year-by-treatment interaction for MHR Palmer amaranth control 21 DAPRE was
not significant (P > 0.05); therefore, data were combined for both years. Palmer amaranth
control estimates 14 DAEPOST and 28 DALPOST, Palmer amaranth density, and

soybean yield were significant (P < 0.05); therefore, data were presented separately for



30

both years. No soybean injury was observed from any herbicide program (data not
shown), indicating that the herbicides evaluated in this study are safe to use in
isoxaflutole/glufosinate/glyphosate-resistant soybean when applied according to label
instructions. Schultz et al. (2015) also reported that isoxaflutole is safe to use in
isoxaflutole-resistant soybean.

Temperature and Precipitation. The 2018 growing season started off warmer than
average, with temperatures of 20.6°C and 25.0°C for May and June, respectively,
compared with 14.8°C and 21.8°C in 2019 (Table 2-1). Monthly precipitation varied from
the 30-yr average of 135 mm in May and 115 mm in June in both years. Below-average
precipitation occurred in 2018, with 78 and 96 mm in May and June, respectively, while
above-average precipitation was observed throughout the 2019 growing season (Table
2-1).

Palmer amaranth Control. The PRE herbicides evaluated in this study controlled MHR
Palmer amaranth 86%-99% 21 DAPRE (Table 2-3). Although similar to other PRE
herbicide spray timings, pyroxasulfone/sulfentrazone, flumioxazin/pyroxasulfone, and
imazethapyr/pyroxasulfone/saflufenacil controlled Palmer amaranth 97%-99%. The
contribution of the ALS-inhibiting herbicide (i.e., imazethapyr) was minimal; rather, the
VLCFA-inhibitor (i.e., pyroxasulfone) and PPO-inhibitor (i.e., saflufenacil) primarily
contributed to the control. Shyam et al. (2021) reported similar findings 14 DAPRE with
imazethapyr/pyroxasulfone/saflufenacil, where Palmer amaranth control ranged from
87%—97% in a two yr study in 2,4-D choline/glufosinate/glyphosate-resistant soybean.

Sarangi and Jhala (2019) reported at least 98% Palmer amaranth control 14 and 28
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DAPRE with imazethapyr/dimethenamid-P/saflufenacil and flumioxazin/pyroxasulfone.
Isoxaflutole applied PRE controlled Palmer amaranth 86%—-89% 21 DAPRE (Table

2-3); however, variable control of Palmer amaranth has been reported with isoxaflutole in
the literature. Meyer et al. (2016) and Johnson et al. (2012) reported at least 87% Palmer
amaranth control with isoxaflutole 28 DAPRE. In contrast, Spaunhorst and Johnson
(2016) reported 57%—70% GR Palmer amaranth control 21 DAPRE. Greater control with
isoxaflutole occurred in a higher rainfall year, indicating the importance of moisture for
herbicide activation (Spaunhorst and Johnson 2016). Isoxaflutole requires 12.7-25.4 mm
of irrigation or rain to activate, although too much water can cause the herbicide to
become diluted and leach, reducing efficacy (Jhala 2017b). If moisture is adequate,
isoxaflutole can provide 14-21 d of residual activity for Palmer amaranth control (Chahal
et al. 2015).

Palmer amaranth control varied between years with PRE fb EPOST herbicide
programs (Table 2-3). As an EPOST application, glufosinate applied alone controlled
MHR Palmer amaranth 95%-96% in 2018 and 75% in 2019. Glufosinate mixed with
isoxaflutole controlled Palmer amaranth 92%-95% in 2018 and 85%—94% in 2019
(Table 2-3). Shyam et al. (2021) reported 88% Palmer amaranth control 14 DAEPOST
with glufosinate. Conversely, Chahal and Jhala (2015) found that glufosinate in single
and sequential applications provided 53%—76% and 56%—77% waterhemp control,
respectively. Sequential glyphosate applications provided no control of MHR Palmer
amaranth in this study, indicating that the population is highly resistant to glyphosate

(Table 2-3). Chahal et al. (2017) reported 37- to 40-fold level of glyphosate resistance in



32

MHR Palmer amaranth at this research site; therefore, no control with glyphosate was
expected.

At 28 DALPOST, isoxaflutole applied PRE or in sequential applications (PRE tb
EPOST) controlled MHR Palmer amaranth 10% and 53% in 2018, respectively, while
providing no control in 2019 (Table 2-3). This indicates isoxaflutole applied alone at 105
g ai ha™! will not provide effective control later in the growing season and that mixture
with other herbicide(s) is needed to achieve economically acceptable control. In this
study isoxaflutole was applied at 105 g ai ha™'; however, it can be applied in a range of
140-210 g ai ha ! in a single application with a season maximum of 210 g ai ha™'
(Anonymous 2020). Relatively lower rate of use in this study is because the study was
conducted before isoxaflutole was label approved in 2020. In addition, isoxaflutole is
primarily a residual herbicide with limited foliar activity; therefore, effective control of
emerged Palmer amaranth at the time of application should not be expected. Janak and
Grichar (2016) reported similar findings of 51% Palmer amaranth control with a single
application of isoxaflutole 101 DAPRE. When mixed with metribuzin, isoxaflutole has
been shown to provide 97%-98% control of redroot pigweed (Amaranthus retroflexus)
and Powell amaranth (Amaranthus powellii) (Smith et al. 2019). With the exception of
isoxaflutole, PRE fb POST herbicide programs provided 80%—-99% MHR Palmer
amaranth control in 2018 and 76%—-99% control in 2019 at 28 DALPOST (Table 2-3).
Whitaker et al. (2010) reported greater than 80% late-season control of GR Palmer
amaranth with a PRE application of flumioxazin/S-metolachlor tb fomesafen; however,
less than 30% late-season control was achieved with flumioxazin/S-metolachlor without a

POST application of fomesafen. A single herbicide application is less likely to provide
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season-long control of Palmer amaranth — a PRE followed by a POST herbicide program
is required for effective Palmer amaranth control and reducing Palmer amaranth
seedbank (Norsworthy et al. 2012).
Palmer amaranth Density and Biomass. Palmer amaranth density and biomass were
affected by herbicide programs (Table 2-4). At 14 DAEPOST isoxaflutole reduced MHR
Palmer amaranth density 0% in 2018 and 48% in 2019, while PRE fb EPOST
applications of isoxaflutole reduced density 49% in 2018 and 53% in 2019. Similarly,
Meyer et al. (2016) reported 62% Palmer amaranth density reduction with isoxaflutole
applied PRE. Meyer et al. (2015) reported 78%—93% Palmer amaranth density reduction
with flumioxazin/pyroxasulfone in soybean in a multi-year, multi-state study, while
Sarangi et al. (2017) reported 91% and 98% density reduction of GR waterhemp with
flumioxazin/pyroxasulfone and imazethapyr/dimethenamid-P/saflufenacil, respectively.

PRE herbicides b glufosinate reduced MHR Palmer amaranth density at least
85% in 2018 and 2019. Similar findings were reported by Shyam et al. (2021) and
Norsworthy et al. (2016). EPOST applications of glufosinate reduced MHR Palmer
amaranth density 89% in 2018 and 58% in 2019, while glufosinate mixed with
isoxaflutole reduced Palmer amaranth density 63%—-100% in 2018 and 85%-94% in 2019
(Table 2-4). Chahal and Jhala (2015) reported 50% density reduction of waterhemp with
an EPOST application of glufosinate and 83% density reduction of waterhemp with
EPOST tb LPOST applications of glufosinate 45 DALPOST in glufosinate-resistant
soybean in Nebraska.

At 14 DALPOST in 2019, PRE herbicide(s) tb glufosinate applied EPOST

reduced MHR Palmer amaranth biomass 49%—97% compared to 95% biomass reduction
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with PRE herbicide fb EPOST and LPOST applications of glufosinate (Table 2-4).
Aulakh and Jhala (2015) reported 79%—88% weed biomass reduction with PRE
applications of dimethenamid-P/saflufenacil, or imazethapyr/sulfentrazone fb glufosinate.
Shyam et al. (2021) reported 100% Palmer amaranth biomass reduction with
imazethapyr/pyroxasulfone/saflufenacil fb glufosinate and 99% biomass reduction with
EPOST tb LPOST applications of glufosinate in 2,4-D choline/glufosinate/glyphosate-
resistant soybean. Single or sequential applications of isoxaflutole resulted in no biomass
reduction due to poor Palmer amaranth control (Table 2-4). Chahal and Jhala (2015)
reported 80%-91% biomass reduction with a single POST application of glufosinate and
929%—-95% biomass reduction with sequential POST applications of glufosinate in
glufosinate-resistant soybean. Overall, a PRE herbicide with multiple sites of action tb
glufosinate has consistently provided > 90% Palmer amaranth control and > 90% Palmer
amaranth density and biomass reduction in most studies.

Soybean Yield. Year-by-treatment interaction was significant (P < 0.05); therefore, yield
data are presented separately for both years (Table 2-4). Soybean yield in 2019 was
higher compared to 2018 due to higher precipitation in 2019 that provided sufficient
moisture for soybean growth and development (Table 2-1). Isoxaflutole mixed with
pyroxasulfone/sulfentrazone applied PRE fb glufosinate resulted in the highest soybean
grain yield of 2,294 kg ha™! in 2018, which was comparable with several herbicide
programs (Table 2-4). In 2019, several herbicide programs resulted in similar soybean
yield in the range of 3,139—4,227 kg ha™' (Table 2-4). Shyam et al. (2021) reported

soybean yields with similar PRE herbicides used in combination with glufosinate.
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Practical Implications

A new soybean trait resistant to isoxaflutole/glufosinate/glyphosate has been
commercially available since the 2019 growing season in the United States. Results of
this study suggest that herbicide programs are available for effective control of MHR
Palmer amaranth in isoxaflutole/glufosinate/glyphosate-resistant soybean. No soybean
injury was observed with any of the herbicide programs evaluated in this study, including
isoxaflutole applied in sequential applications. Isoxaflutole (Alite™ 27) was registered in
2020 for application in isoxaflutole-resistant soybean; however, use of this herbicide is
limited to certain counties in a few states. For example, isoxaflutole (Alite™ 27) is
labeled for application in only four southwest counties (Chase, Dundy, Hitchcock, and
Red Willow) in Nebraska (Anonymous 2020). In addition, isoxaflutole cannot be applied
on coarse-textured soils (e.g., sandy, sandy loam, loamy sand) with less than 1.5%
organic matter content, limiting the use of this herbicide. The majority of soybean in
Nebraska is grown in the eastern region, so while growers can plant
isoxaflutole/glufosinate/glyphosate-resistant soybean in this region, they cannot use
isoxaflutole (Alite™ 27) due to label restrictions (Anonymous 2020). Therefore, adoption
of soybean resistant to isoxaflutole/glufosinate/glyphosate in Nebraska will likely be very

limited.
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Table 2-1. Monthly mean air temperature and total precipitation during the 2018 and

2019 growing seasons (March to October), along with the 30-yr average at the research

site near Carleton, Nebraska.?

Month Mean air temperature (°C) Total precipitation (mm)
2018 2019 30-yr average 2018 2019 30-yr average

March 4.5 1.1 4.6 23.6 85.6 45.2
April 59 11.8 10.6 26.4 16.0 66.3
May 20.6 14.6 16.4 78.0 172.7 135.4
June 25.0 21.8 223 96.0 153.2 115.1
July 24.7 25.1 24.9 95.5 137.2 105.2
August 233 23.1 23.7 92.2 154.9 94.0
September 20.6 22.6 19.1 153.4 120.4 66.0
October 10.6 9.6 12.1 99.8 118.1 58.4

?Data were obtained from National Oceanic and Atmospheric Administration (NOAA

2019).
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CHAPTER 3:
EVAPOTRANSPIRATION OF PALMER AMARANTH (AMARANTHUS
PALMERI S. WATSON) IN CORN, SOYBEAN, AND FALLOW UNDER

SUBSURFACE DRIP AND CENTER-PIVOT IRRIGATION SYSTEMS

Abstract
Palmer amaranth (Amaranthus palmeri S. Watson) is a major biotic constraint in
agronomic cropping systems in the United States due to its rapid growth rate and ability
to tolerate adverse climatic conditions, among other characteristics. Weed-crop
competition models offer a significant tool for understanding and predicting crop yield
losses due to crop-weed interference. Research is currently dominated by empirical
studies where crop yield loss and weed threshold values are predicted in response to
variable weed density or biomass in certain environmental conditions. However, within
these models, weed biological characteristics are unknown, which limits understanding of
weed growth in competition with crops under different irrigation methods and how that
competition affects crop growth parameters. The objective of this study was to determine
the effect of center-pivot irrigation (CPI) and subsurface drip irrigation (SDI) on the
average evapotranspiration (ETa,) of Palmer amaranth grown in corn, soybean, and fallow
in south central Nebraska. Field experiments were conducted in 2019 and 2020 at South
Central Agricultural Laboratory near Clay Center, NE. Twelve Palmer amaranth plants
were alternately transplanted one meter apart in the middle two rows of corn, soybean,
and fallow subplots under CPI and SDI. Corn, soybean, and fallow subplots without

Palmer amaranth were included for comparison. Watermark Granular Matrix soil
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moisture sensors were installed at 0.3-, 0.6-, 0.9-m depths next to or between three
Palmer amaranth and crop plants in each subplot. Soil matric potential data were
collected hourly from the time of Palmer amaranth transplanting to crop harvest. Results
suggest irrigation affects subplot ET, differences early in the growing season, but crop
system and progression of plant growth with available water have a greater effect on ETa
differences than irrigation type later in the growing season. Although there were
irrigation differences in Palmer amaranth ET, in fallow subplots, growers typically do not
irrigate fallow fields. Thus, crop management will likely have greater effects on Palmer
amaranth ET, values than irrigation practices alone. This study provides baseline
information about Palmer amaranth evapotranspiration and its relation to Palmer
amaranth morphological features (i.e., growth index, biomass, and total leaf area) for

future use in mechanistic weed-crop competition models.

Introduction

Research is currently dominated by empirical studies where crop yield loss (or
crop yield) and weed threshold values are predicted in response to variable weed density
or biomass in certain environmental conditions. Complex empirical models have been
developed by considering variables such as multiple weed species in simultaneous
competition (Firbank and Watkinson 1985; Pantone and Baker 1991; Park et al. 2002;
Diggle et al. 2003), timing of weed emergence (Cousens et al. 1987; Neve et al. 2003),
and weeds with multiple emergence patterns (Peltzer et al. 2012). However, within these
models, weed biological characteristics are unknown, limiting our understanding of weed

growth in competition with crops and how that competition affects crop growth
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parameters. Crop-weed competition is a complex phenomenon, and for predictive
purposes, a detailed mechanistic model offers greater insights than an empirical model.
Mechanistic models take into account all underlying morphological and physiological
processes and their dependence on each other with respect to external forces and time
(Singh et al. 2020). However, morphological and physiological plasticity in weed species
is a challenge for studies/models that have been developed on the basis of weed growth.
Research on weed biology and ecology has been conducted, although additional studies
conducted in a systematic way and under different locations/environmental conditions are
needed to elucidate simulation models and thus weed management decisions (Van Acker
2009; Chauhan and Johnson 2010).

The objective of this research was to determine the effect of center-pivot and
subsurface drip irrigation on the average evapotranspiration of Palmer amaranth grown in

corn, soybean, and fallow in south central Nebraska.

Materials and Methods

Plant Materials. Glyphosate-resistant Palmer amaranth seed were germinated in 11.4 cm
deep square plastic pots in a University of Nebraska-Lincoln greenhouse maintained at
18/24 °C day/night temperatures with a 14-hr photoperiod. Glyphosate-resistant seed was
used so that other weeds could be controlled after Palmer amaranth was transplanted in
the field. In order to ensure the Palmer amaranth plants were glyphosate-resistant,
glyphosate at 64 fl oz/acre mixed with liquid ammonium sulfate at 3% v/v was sprayed
on 10—12 cm tall Palmer amaranth plants using an AIXR Teejet nozzle that applied the

herbicide mixture at a rate of 140.3 L ha™' at 1.0 m s™! using a chamber track sprayer.
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Palmer amaranth plants survived the glyphosate application, signifying the seed source
was truly glyphosate-resistant.

Experimental Design, Site Description, and Crop Management. Field experiments
were conducted in the 2019 and 2020 growing seasons at the University of Nebraska-
Lincoln South Central Agricultural Laboratory near Clay Center, Nebraska (40.57°N,
98.12°W). The soil at the experimental site is a Hastings silt loam, a well-drained upland
soil with water holding characteristics of 0.34 m® m™ field capacity, 0.14 m> m?
permanent wilting point, and 0.53 m® m™ saturation point. Typical effective rooting depth
of field corn in the experimental site is 1.2 m. Total available water holding capacity of
the soil profile is 240 mm 1.2 m™' (Irmak 2010). The 30-year average rainfall in the area
during the growing season (May to August) is 112.4 mm, with significant annual and
growing season variability in both timing and magnitude (de Sanctis and Jhala 2021). The
2019 and 2020 growing season weather data are presented in Figure 3-1. The experiment
used a split-plot design with irrigation as the whole-plot factor. Two methods of irrigation
were used, including center-pivot (CPI) and subsurface drip irrigation (SDI). The CPI
field was irrigated using a four-span hydraulic and continuous move system (T-L
Irrigation, Hastings, Nebraska). The SDI field was irrigated with drip lines installed 0.4
m below the soil surface. The 257 m long laterals were centered in the inter-row area of
every other plant with drip emitters spaced about 0.46 m apart along the laterals (Net-
afim-USA, Fresno, California). Subplots consisted of six cropping systems, including
corn, corn with Palmer amaranth, soybean, soybean with Palmer amaranth, fallow, and
fallow with Palmer amaranth. Soybean, corn, and fallow plots without Palmer amaranth

were included for comparison. Each subplot measured 3 m wide by 9 m long, with four
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rows of corn or soybean in the subplots containing these crops. The field was rolling stalk
chopped without tillage practice. A broadcast application of 11-52-0 NPK at 168 kg ha'!
and an in-furrow injection of 32-0-0 NPK at 201 kg ha™! were applied before crops were
sown. Dekalb DKS 60-87RIB corn was planted at a depth of 5.0 cm and at a rate of
34,000 seeds acre! [85,000 seeds ha']. NK S29-K3X soybean was planted at a depth of
3.8 cm and at a rate of 150,000 seeds acre™' [375,000 seeds ha™']. A premix of
saflufenacil/imazethapyr/pyroxasulfone (Zidua PRO herbicide) was applied at 6 fl
oz/acre to soybean, a premix of atrazine/bicyclopyrone/mesotrione/S-metolachlor
(Acuron herbicide) was applied at 2.5 qt/acre to corn and fallow, and a POST application
of glyphosate at 32 fl oz/acre was applied across all subplots for control of existing
weeds. Once Palmer amaranth plants reached a height of 18-25 c¢m in the greenhouse,
twelve Palmer amaranth were alternately transplanted one meter apart in the middle two
rows of each subplot. There were 36 Palmer amaranth plants under each irrigation system
for a total of 72 sample units each year of the study.

Measurement of Soil Water Status and Irrigation Management. Watermark Granular
Matrix Sensors (Irrometer Co, Riverside, California) were installed next to or between
three Palmer amaranth plants and crop plants in each subplot to measure soil matric
potential (SMP) on an hourly basis. The sensors were buried at 0.3-, 0.6-, and 0.9-m
depths and data were collected from the Palmer amaranth transplant date to shortly before
crop harvest in both years. A total of 45 and 54 sensors were installed across the subplots
of each irrigation system in 2019 and 2020, respectively. The sensors were connected to

Watermark Monitor dataloggers (Irrometer Co, Riverside, California). SMP
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measurements were converted to percent volumetric soil water content (VWC) using
predetermined soil water retention curves for the same field (Irmak et al. 2016):

8, = (3 x 107 x SMP?) — (0.0013 X SMP) + 0.3764
where 0y is the volumetric soil water content (% vol or m* m), and SMP is the soil
matric potential (kPa). VWC was converted to total soil water (TSW) by adding the
VWC values at each sensor depth and multiplying by a conversion value of 3.048 (ft to
mm). The TSW in the complete monitored soil profile (0—0.9 m) reflects the daily
integration of soil moisture detected at individual incremental depths throughout the
profile. Sensor data were used to determine crop and Palmer amaranth evapotranspiration
using the soil water balance approach and for irrigation timing. Irrigation was initiated
under CPI and SDI when the average of the top 0.9 m SMP values was approximately
100 to 110 kPa (Irmak et al. 2012, 2016), or when the soil-water in the crop root zone
was depleted by 40% to 45% below field capacity (Kukal and Irmak 2019). The depletion
criterion of 40% to 45% TSW was implemented to prevent water stress. Irrigation timing
and amount for the 2019 and 2020 growing seasons are presented (Table 3-1).
Seasonal Actual Evapotranspiration Using Soil-Water Balance. Crop and Palmer
amaranth actual evapotranspiration (ET,, mm) were calculated using a general soil-water
balance equation:

P+1+4+ U+ Ry, = Rogs + D + ASWS + ET,

where P is precipitation (mm), / is irrigation water applied (mm), U is upward soil
moisture flux (mm), Ron is surface run-on within the field (mm), Rofr is surface runoff
from individual treatments (mm), ASWS is change in soil water storage in the root zone

soil profile (mm), and D is deep percolation below the crop root zone (mm). Deep
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percolation was estimated by a soil water balance approach using a program written in
Microsoft Visual Basic (Bryant et al. 1992). The inputs to the program are daily weather
data (including precipitation, air temperature, relative humidity, wind speed, and
incoming shortwave radiation), initial water content of the soil profile at crop emergence,
irrigation date and amount, and crop- and site-specific information such as planting date,
maturity date, maximum rooting depth, and soil parameters. The program calculated daily
ET. and the water balance in the crop root-zone using the two-step approach (ET, =
K. X ET,) where ET, is evapotranspiration of a grass reference crop, and K. is the crop
coefficient. In the program, ET, is calculated using weather data as the input to the
Penman-Monteith equation (Monteith 1965; Monteith and Unsworth 1990), and K. is
used to adjust the estimated ET, for the reference crop to that of the desired crops at
different growth stages and environments (Kukal and Irmak 2019). The daily soil water
balance equation used for calculating deep percolation is:

D; = max(P; — R; + I; — ET,; — CD;_4,0)
where D is deep percolation on day j (mm), P; is precipitation on day j (mm), R; is
precipitation and/or irrigation runoff from the soil surface on day j (mm), /; is irrigation
depth on day j (mm), ETj; is crop or Palmer amaranth actual evapotranspiration on day j
(mm), and CD; is root zone cumulative depletion depth at the end of day j-1, estimated
using the two-step approach (Bryant et al. 1992; Payero et al. 2009). Ryt from individual
treatments was estimated using the USDA-NRCS curve number method. According to
the silt loam soil at the experimental site and the known land use, slope, and conservation

tillage, curve number C = 75 was used (USDA-NRCS 1985). Assuming U and Ro, are
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negligible, the soil water balance equation was reduced to the following form for
calculating crop and Palmer amaranth ETa:

ET, =P +1— Ry — D £ ASWS
Although the soil water balance approach is widely used for calculating ET,, this
approach may have drawbacks if the Rofr and/or D values are not accurately quantified,
resulting in erroneous ET, calculations. This is of particular concern in humid and
subhumid climates where Rofr and/or D is greater than in arid or semiarid climates, where
potential for runoff is minimal. Lysimetry and other surface energy balance type
instruments (i.e., eddy covariance system) may provide more robust ET, values since
they do not need to account for R and/or D; however, their use in determining
individual plot/treatment or replication-scale ETs is not feasible. The soil water balance
approach can be applied to each plot or replication of a given treatment, a requirement of
this study.
Growth Index, Plant Biomass, and Total Leaf Area Measurements. Three Palmer
amaranth plants were selected and sampled at four removal timings according to soybean
growth stage. Removal timings occurred at V4, R1, R3, and R5 soybean growth stages in
2019, and at R1, R3, RS, and R6 soybean growth stages in 2020. Growth index, plant
biomass, and total leaf area were determined at these removal timings. Growth index was
calculated using the following equation (Irmak et al. 2004; Sarangi et al. 2015):

Gl (cm3®) = mx (w/2)?xh

where w is the width of the plant calculated as an average of two widths, one measured at
the widest point and another at 90° to the first; and h is the plant height measured from

the soil surface to the shoot apical meristem. After plant height and width measurements
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were taken, leaves were counted and removed from each Palmer amaranth plant to
measure total leaf area using a leaf area meter (LI-3100C Area Meter, Li-Cor, Lincoln,
NE). Palmer amaranth plants were stored separately in paper bags and oven-dried at 65°C
for 7 d to obtain dry biomass.

Statistical Analysis. TSW values were analyzed using the area under the curve (AUC)
function in R (R Foundation for Statistical Computing, Vienna, Austria). AUC values
were calculated for each treatment group [irrigation type x (crop system x Palmer
amaranth)] and replicate combination. AUC values obtained in R were then analyzed in
SAS with linear models using AUC as the response variable; irrigation, crop, and Palmer
amaranth as explanatory variables; and the split plot design in the random statement to
account for any design effects that could cause variability across AUC values. ETa values
were analyzed using regression models in SAS with irrigation, crop, Palmer amaranth,
and day as fixed effects. The terms irrigation, crop, and Palmer amaranth were treated as
categorical, while day was treated as a quantitative regression variable. The main effect
terms of irrigation, crop, and Palmer amaranth were initially analyzed to find significant
differences (P < 0.05) between intercept terms for the regression lines. All categorical
terms and their interactions were then interacted with a day linear term and day quadratic
terms. The regression model was simplified by using the Type I table of fixed effects to
remove terms one at a time that were not significant in relation to the ET response.
Regression models were then run for each significant term in the reduced model.
Prediction plots were also obtained by looking at a scatter plot of the raw data with an
overlay of the regression lines from the analysis models. For the initial and reduced

regression models, random terms were fit to account for variability due to experimental
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design effects and for repeated measures across the days. A SP(POW) covariance
structure was fit to both models since the day term is quantitative and unequally spaced,
accounting for the repeated measurements between days. In order for the covariance
parameter estimation and parameter estimation to run smoothly, ET, values were scaled
down by a factor of ten. Additionally, regression model parameters were obtained to find
predicted ET, values across regression lines. Regression lines for each crop system with
and without Palmer amaranth under each irrigation type in 2019 were found using the
parameter estimates in the following equation:
Predicted Avg Scaled ETyy 5 Crop
= (irr + crop) — (day(irr) x irr) x Days + (day * day(irr) x irr)
* Days?
Regression lines for each crop system under each irrigation type were separated out by
the presence of Palmer amaranth or no Palmer amaranth in 2020 and were found using
the parameter estimates in the following equation:
Predicted Avg Scaled ETirr crop,pa
= (irr = crop + crop * PA) + (day(crop * PA)) * Days — (day
* day(crop * PA)) = Days?

Growth index, plant biomass, and total leaf area were analyzed as response
variables in SAS. Irrigation type, crop system, and sampling date were fit as class
variables for all models analyzed. Variable main effects and interactions were analyzed
for significance (P < 0.05). Random terms were included in the models to account for the
split plot design. More specifically, the random terms accounted for differences between

replicates, for differences between the split plot levels, and for the correct degrees of
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freedom within the models. Beginning with the largest interaction, if significant terms in
the Type III effects of fixed effects table were found, differences between variable levels
within these interactions were analyzed. Simple effect tests were run to find differences
between specific levels while holding the levels of other variables in the interaction

constant. If no interactions were significant, main effects were analyzed.

Results and Discussion
Total Soil Water. According to the Type III test of fixed effects for variable interactions
and main effects in 2019, there were no statistical differences in the total soil water
(TSW) of crop system with and without Palmer amaranth under center-pivot (CPI) and
subsurface drip irrigation (SDI). However, there were differences that could impact the
total water usage of a grower that has Palmer amaranth in their field and a grower who
does not. According to Figure 3-2A,B, crop systems with Palmer amaranth had lower
TSW than crop systems without Palmer amaranth under CPI and SDI, although TSW
differences between crop systems with and without Palmer amaranth were greater under
SDI. These results suggest that Palmer amaranth does influence TSW within corn and
soybean systems and that early-season control is needed for optimum water savings in
these crops. Irrigation as a main effect caused no statistical differences in TSW, although
crop system as a main effect did cause differences in TSW in 2019 (Table 3-2). The
largest difference in TSW occurred between corn and fallow systems (2,060 mm),
followed by differences between corn and soybean systems (1,490 mm) under both

irrigation types (Table 3-3).
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Similarly in 2020, there were no statistical differences in the TSW of crop
systems with and without Palmer amaranth under CPI or SDI. Unlike 2019, where crop
systems with Palmer amaranth had lower TSW than crop systems without Palmer
amaranth (Figure 3-2A,B), crop systems with Palmer amaranth in 2020 had similar or
higher TSW values compared to crop systems without Palmer amaranth (Figure 3-3A,B).
The only notable difference in TSW between crop systems with and without Palmer
amaranth occurred under SDI between fallow systems in 2020 (Figure 3-3B). Irrigation
as a main effect caused no differences in TSW, although crop system as a main effect did
cause differences in TSW (Table 3-2). Differences in TSW between corn and fallow
(6,870 mm) and soybean and fallow (5,470 mm) were even more pronounced than in
2019 (Table 3-3).

Scaled Actual Evapotranspiration. In 2019, there was a crop system effect on the
intercepts of the reduced model (Table 3-4). Whereas corn systems with and without
Palmer amaranth had the lowest TSW, corn systems with and without Palmer amaranth
had the highest evapotranspiration (ET.) rates, followed by soybean with and without
Palmer amaranth, and then fallow with and without Palmer amaranth having the lowest
ET. rates (Figure 3-4A). There was also an irrigation by day interaction (Table 3-4). CPI
had higher ET, rates than SDI at the beginning of the growing season and ET. differences
leveled out 40 d after sensor installation (Table 3-5; Figure 3-5). These results suggest
that irrigation affects ET, differences across crop systems with and without Palmer
amaranth early in the growing season, but that crop system and progression of plant

growth with available water have a greater effect on ET, differences under CPI and SDI.
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In 2020, crop and Palmer amaranth effects were greater compared to the 2019
growing season. The reduced model indicated linear and quadratic interactions between
crop system, irrigation and crop system, and day % day x crop system X Palmer amaranth
(Table 3-4). In terms of the day x day % crop system x Palmer amaranth interaction,
statistical differences in ET. between crop systems with and without Palmer amaranth at
the beginning of the growing season were not indicated, although there were differences.
At 24 d after sensor installation through the remainder of the growing season, differences
in ET. between fallow systems with and without Palmer amaranth were detected (Table
3-6). Overall, Palmer amaranth cumulative evapotranspiration (ET.) rates were higher
under SDI than CPI, with the largest ET. differences occurring in fallow systems (Table
3-7; Figure 3-6). These results suggest the presence of Palmer amaranth influenced
fallow system ET. more so than corn or soybean systems under both irrigation types. In
terms of irrigation and crop system interactions, the largest ET, differences occurred
between soybean and fallow (32.1 mm) and corn and fallow (26.8 mm) under SDI,
followed by differences in ET. between corn and fallow (17.4 mm) and soybean and
fallow (16.4 mm) under CPI (Table 3-8). These results suggest a slight irrigation effect
and major crop effect on ET, across crop systems with and without Palmer amaranth.
Growth Index, Plant Biomass, and Total Leaf Area. In 2019 and 2020, irrigation type
did not statistically influence Palmer amaranth growth index. However, there was a
sampling date x crop system interaction in both years (Table 3-7). In 2019, Palmer
amaranth growth index values in fallow were statistically greater than corn and soybean
systems at the third and fourth sampling dates (Figure 3-7A,B). Similarly in 2020, Palmer

amaranth growth index values in fallow were statistically greater than corn and soybean
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systems at the fourth sampling date (Figure 3-7C,D). In addition, there was a sampling
date x irrigation type X crop system interaction in 2020, although this three-way
interaction was likely the result of the sampling date x crop system interaction (Table 3-
7). These results suggest crop system has a major effect on Palmer amaranth growth
index, with greater growth index values of Palmer amaranth in fallow systems. There was
also a slight irrigation effect in 2020, indicating that SDI may result in greater Palmer
amaranth growth index. In terms of the sampling date effect, Palmer amaranth has
aggressive growth characteristics; thus, a difference in Palmer amaranth growth index
over time in well-watered conditions was expected.

Irrigation type did not statistically influence Palmer amaranth biomass in 2019
and 2020. However, as expected, there was a sampling date x crop system interaction in
both years (Table 3-8). Similar to Palmer amaranth growth index results, Palmer
amaranth biomass was greater in fallow compared to corn and soybean systems at the
third and fourth sampling dates (Figure 3-8A). These results are supported by the fact that
Palmer amaranth growth over time directly affects Palmer amaranth biomass
accumulation over time. In 2019, there was sampling date x irrigation type interaction,
although this interaction was likely driven by the Palmer amaranth biomass differences
across sampling dates (Table 3-8; Figure 3-8B). In 2020, there were sampling date X
irrigation type X crop system, sampling date x crop system, and irrigation type X crop
system interactions. Irrigation as a main effect did not statistically influence Palmer
amaranth biomass, so the sampling date X irrigation type X crop system; and irrigation
type % crop system interactions were likely driven by the sampling date and crop system

effects (Table 3-8).
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In 2019 and 2020, irrigation type did not statistically influence Palmer amaranth
total leaf area. In 2019, there were no variable interactions, indicating that irrigation type,
crop system, nor sampling date caused differences in Palmer amaranth total leaf area
(Table 3-9; Figure 3-9A,B). Despite the lack of statistical differences of Palmer amaranth
total leaf area in corn, soybean and fallow under both irrigation types, Palmer amaranth
total leaf area was greatest in fallow, but only at the third and fourth sampling dates
(Figure3-9A,B). However, in 2020, there was a sampling date X irrigation type x crop
system interaction that was likely driven by the sampling date x crop system interaction
(Table 3-9). Similar to Palmer amaranth growth index and biomass results, Palmer
amaranth total leaf area was greater in fallow systems compared to corn systems at the
second, third, and fourth sampling dates, and soybean systems at the third and fourth
sampling dates (Figure 9C-D). These results are supported by Palmer amaranth growth
index and biomass results given the knowledge that Palmer amaranth growth index over
time directly affects biomass accumulation and total leaf area over time.

Practical Implications

This is the first study that evaluates the actual evapotranspiration (ET.) of Palmer
amaranth in multiple crop systems under center-pivot (CPI) and subsurface drip irrigation
(SDI) with the goal to find an irrigation effect on Palmer amaranth ET,. Irrigation
contributes to differences in ETa between crop systems with and without Palmer amaranth
early in the growing season, where crop systems with and without Palmer amaranth had
higher ET, rates under CPI compared to SDI. However, the irrigation effect is likely
overcome by differences in crop ET,, later in the growing season. Thus, irrigation and

crop management may influence Palmer amaranth ET, rates. In regard to total soil water
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(TSW), crop system, irrigation type, and Palmer amaranth influenced ET, rates, with
lower TSW in crop systems with Palmer amaranth and lower TSW in center-pivot crop
systems. Irrigation type did not cause noticeable differences among Palmer amaranth
growth index, plant biomass, and total leaf area values. This study provides base data on
Palmer amaranth evapotranspiration and its relation to Palmer amaranth morphological
features (i.e., growth index, biomass, and total leaf area) for future use in mechanistic
weed-crop competition models. Further research on weed evapotranspiration should be
conducted at more locations under varying climatic conditions to build a robust database
of evapotranspiration for important agronomic weed species such as Palmer amaranth,

waterhemp, and horseweed.
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Table 3-1. Center-pivot and subsurface drip irrigation date and amount in the 2019 and

2020 growing seasons at South Central Agricultural Laboratory in Clay Center, NE.

Center-pivot irrigation Subsurface drip irrigation
Date Amount Date Amount
--mm-- --mm--
2019 2019
7/31 32 8/2 32
2020 2020
7/13 32 7/15 32
7/28 32 7/29 32
8/7 32 8/7 32
8/17 32 8/17 32
8/24 32 8/24 32

9/1 32 9/1 32
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Table 3-2. Type III tests of fixed effects for irrigation type x crop system X Palmer

amaranth main effects and interactions for total soil water in 2019 and 2020 in a study to

determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow under

subsurface drip and center-pivot irrigation systems at Clay Center, NE.

2019 2020
Effect Num Den F | Pr>F Num Den F Pr>F
DF DF Value DF DF Value
Irrigation 1 4 3.09  0.1536 1 4 2.80  0.1697
Crop 2 8 4.58  0.0473 2 8 23.60 = 0.0004
Irrigation*Crop 2 8 0.15  0.8595 2 8 2.64 0.1314
Palmer 1 8 0.81 | 0.3936 1 12 0.49  0.4985
Irrigation*Palmer 1 8 0.05 0.8363 1 12 0.25  0.6260
Crop*Palmer 1 8 0.76 = 0.4093 2 12 2.69  0.1080
Irrigation*Crop*Palmer 1 8 0.00 | 0.9495 2 12 1.40 0.2836

*Significance at P <0.05
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Table 3-3. Least squares means T grouping for total soil water by crop system under
center-pivot and subsurface drip irrigation in 2019 and 2020 in a study to determine
evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface

drip and center-pivot irrigation systems at Clay Center, NE.

2019 2020
Crop Estimate Crop Estimate
--mm-- --mm--
Fallow 39941 A Fallow 32208 A
A

Soybean 39368 B A Soybean 26739 B

B B
Corn 37882 B Corn 25339 B

*Least squares means (alpha = 0.05) with the same letter are not significantly different
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Table 3-4. Type I tests of fixed effects for the irrigation type X crop system x day main
effects and interactions in the reduced models for actual evapotranspiration in 2019 and
2020 in a study to determine evapotranspiration of Palmer amaranth in corn, soybean,

and fallow under subsurface drip and center-pivot irrigation systems at Clay Center, NE.

2019
Effect Num DF Den DF F Value Pr>F
Irrigation 1 4 10.17 0.0333
Crop 2 10 5.53 0.0241
Day 1 416 167.42 <.0001
Day*Irrigation 1 416 7.15 0.0078
Day*Day 1 416 1.55 0.2142
Day*Day*Irrigation 1 416 6.85 0.0092
2020
Irrigation 1 4 1.74 0.2570
Crop 2 8 42.25 <.0001
Irrigation*Crop 2 8 3.64 0.0750
PA None 1 15 1.63 0.2206
Crop*PA_None 2 15 2.27 0.1377
Day 1 384 154.37 <.0001
Day*Crop 2 384 12.03 <.0001
Day*PA_ None 1 384 0.05 0.8201
Day*Crop*PA_ None 2 384 0.18 0.8331
Day*Day 1 384 19.66 <.0001
Day*Day*Crop 2 384 0.73 0.4834
Day*Day*PA_None 1 384 0.63 0.4267
Day*Day*Crop*PA Non 2 384 3.21 0.0413

*Significance at P <0.05



Table 3-5. Least squares means T grouping for actual evapotranspiration by irrigation
type and day in 2019 in a study to determine evapotranspiration of Palmer amaranth in
corn, soybean, and fallow under subsurface drip and center-pivot irrigation systems at

Clay Center, NE.

2019
Irrigation Day Estimate
—-Mm--

Pivot 1.00 5.8416 A
SDI 1.00 3.0755 B
Pivot 8.00 5.4170 A
SDI 8.00 3.1554 B
Pivot 24.00 4.4940 A
SDI 24.00 3.2035 B
Pivot 31.00 4.1111 A
SDI 31.00 3.1658 B
Pivot 40.00 3.6376 A
SDI 40.00 3.0647 A
Pivot 47.00 3.2838 A
SDI 47.00 2.9451 A
Pivot 58.00 2.7535 A
SDI 58.00 2.6849 A
SDI 66.00 2.4402 A
Pivot 66.00 2.3876 A
SDI 74.00 2.1487 A
Pivot 74.00 2.0383 A
SDI 83.00 1.7649 A
Pivot 83.00 1.6652 A
SDI 89.00 1.4762 A
Pivot 89.00 1.4282 A
Pivot 98.00 1.0902 A
SDI 98.00 0.9938 A

*Least squares means (alpha=0.05) with the same letter are not significantly different
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Table 3-6. Actual evapotranspiration simple effect comparisons of crop system with and

without Palmer amaranth by day in 2020 in a study to determine evapotranspiration of

Palmer amaranth in corn, soybean, and fallow under subsurface drip and center-pivot

irrigation systems at Clay Center, NE.

Simple Effect Comparisons of Crop*PA None Least Squares Means By Crop

Simple PA None = PA None Day | Estimate =~ Standard | DF = tValue Pr>|tf = Alpha  Lower  Upper
Effect --mm-- Error
Level
--Crop--
Corn None PA 1.00 | -0.03075 1.0669 | 15 -0.03 | 0.9774 0.05  -2.3048 @ 2.2433
Fallow None PA 1.00 0.5122 1.0669 | 15 0.48 = 0.6381 0.05  -1.7618 @ 2.7863
Soybean = None PA 1.00 -0.1530 1.0669 | 15 -0.14  0.8879 0.05  -2.4271 @ 2.1210
Corn None PA 8.00 | -0.04122 0.8215 | 15 -0.05 = 0.9606 0.05 = -1.7921 | 1.7097
Fallow None PA 8.00 -0.2187 0.8215 | 15 -0.27 | 0.7937 0.05  -1.9696 @ 1.5322
Soybean = None PA 8.00 0.1216 0.8215 | 15 0.15 | 0.8842 0.05  -1.6293 = 1.8726
Corn None PA 24.00 = -0.06850 0.5737 | 15 -0.12 = 0.9065 0.05  -1.2913 | 1.1543
Fallow None PA 24.00 -1.4452 0.5737 | 15 -2.52 0.0236 0.05 = -2.6680 -
0.2224
Soybean = None PA 24.00 0.5593 0.5737 | 15 0.97 @ 0.3451 0.05  -0.6635 1.7821
Corn None PA 31.00 @ -0.08192 0.5761 15 -0.14 | 0.8888 0.05  -1.3099 @ 1.1461
Fallow None PA 31.00 -1.7875 0.5761 15 -3.10 = 0.0073 0.05 = -3.0155 -
0.5595
Soybean = None PA 31.00 0.6676 0.5761 15 1.16 | 0.2647 0.05  -0.5604 = 1.8956
Corn None PA 40.00 -0.1005 0.6053 | 15 -0.17 = 0.8703 0.05  -1.3906 @ 1.1896
Fallow None PA 40.00 -2.0538 0.6053 | 15 -3.39 | 0.0040 0.05 = -3.3439 -
0.7637
Soybean = None PA 40.00 0.7323 0.6053 | 15 1.21 = 0.2450 0.05  -0.5577 @ 2.0224
Corn None PA 47.00 -0.1160 0.6178 | 15 -0.19 | 0.8536 0.05 = -1.4329 @ 1.2009
Fallow None PA 47.00 -2.1258 0.6178 | 15 -3.44  0.0036 0.05 = -3.4427 -
0.8088
Soybean = None PA 47.00 0.7249 0.6178 | 15 1.17 | 0.2590 0.05  -0.5921 @ 2.0418
Corn None PA 58.00 -0.1421 0.5975 | 15 -0.24 | 0.8153 0.05  -1.4157  1.1315
Fallow None PA 58.00 -1.9998 05975 @ 15 -3.35 | 0.0044 0.05  -3.2734 -
0.7262
Soybean = None PA 58.00 0.6108 0.5975 | 15 1.02 03229 0.05  -0.6628 = 1.8843
Corn None PA 66.00 -0.1625 0.5603 | 15 -0.29 | 0.7758 0.05 -1.3568 @ 1.0318
Fallow None PA 66.00 -1.7248 0.5603 | 15 -3.08  0.0076 0.05  -2.9191 -
0.5305
Soybean = None PA 66.00 0.4492 0.5603 | 15 0.80 = 0.4352 0.05  -0.7451 @ 1.6435
Corn None PA 74.00 -0.1841 0.5379 | 15 -0.34 | 0.7369 0.05  -1.3305 | 0.9624
Fallow None PA 74.00 -1.2952 0.5379 | 15 -2.41  0.0294 0.05 = -2.4417 -
0.1488
Soybean = None PA 74.00 0.2215 0.5379 | 15 041 = 0.6863 0.05  -0.9249 @ 1.3680
Corn None PA 83.00 -0.2097 0.6009 = 15 -0.35  0.7319 0.05 = -1.4905 | 1.0710
Fallow None PA 83.00 -0.6274 0.6009 = 15 -1.04  0.3130 0.05  -1.9081 | 0.6534
Soybean = None PA 83.00 -0.1137 0.6009 = 15 -0.19 | 0.8525 0.05  -1.3944 1.1671
Corn None PA 89.00 -0.2277 0.7246 = 15 -0.31 | 0.7577 0.05  -1.7720 @ 1.3167
Fallow None PA 89.00 | -0.07347 0.7246 | 15 -0.10 = 0.9206 0.05  -1.6178 | 1.4709
Soybean = None PA 89.00 -0.3837 0.7246 | 15 -0.53 | 0.6042 0.05  -1.9280 @ 1.1607
Corn None PA 98.00 -0.2558 1.0298 | 15 -0.25 | 0.8072 0.05  -2.4507 @ 1.9390
Fallow None PA 98.00 0.9203 1.0298 | 15 0.89 | 0.3856 0.05  -1.2746 @ 3.1152
Soybean = None PA 98.00 -0.8584 1.0298 | 15 -0.83 | 0.4176 0.05  -3.0533 | 1.3365

*Significance at P <0.05
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Table 3-7. Type III tests of fixed effects for irrigation type x crop system X sampling

date main effects and interactions for Palmer amaranth growth index in 2019 and 2020 in

a study to determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow

under subsurface drip and center-pivot irrigation systems at Clay Center, NE.

2019 2020
Effect Num Den F Pr>F Num Den F Pr>F
DF DF Value DF DF Value
Irrigation 1 4 0.23 0.6560 1 4 0.91 0.3937
Crop 2 8 18.27  0.0010 2 8 13.60 | 0.0027
Irrigation*Crop 2 8 0.25 0.7870 2 8 2.71 0.1266
Date 3 36 21.78  <.0001 3 36 8.47 0.0002
Date*Irrigation 3 36 0.13 0.9436 3 36 1.28 0.2970
Date*Crop 6 36 8.81 <.0001 6 36 6.09 0.0002
Date*Irrigation*Crop 6 36 0.17 0.9840 6 36 2.35 0.0515

*Significance at P <0.05
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Table 3-8. Type III tests of fixed effects for irrigation type x crop system X sampling

date main effects and interactions for Palmer amaranth biomass in 2019 and 2020 in a

study to determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow

under subsurface drip and center-pivot irrigation systems at Clay Center, NE.

2019 2020
Effect Num Den F | Pr>F Num Den F Pr>F
DF DF Value DF DF Value
Irrigation 1 4 0.38 ' 0.5710 1 4 1.83 ' 0.2473
Crop 2 8 50.99 <.0001 2 8 58.56  <.0001
Irrigation*Crop 2 8 0.31 @ 0.7406 2 8 8.03  0.0122
Date 3 35 45.01 @ <.0001 3 36 34.64 <.0001
Date*Irrigation 3 35 2.54  0.0726 3 36 3.44  0.0269
Date*Crop 6 35 24.75 1 <.0001 6 36 24.55  <.0001
Date*Irrigation*Crop 6 35 1.10  0.3816 6 36 7.03 | <.0001

*Significance at P <0.05
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Table 3-9. Type III tests of fixed effects for irrigation type x crop system X sampling

date main effects and interactions for Palmer amaranth total leaf area in 2019 and 2020 in

a study to determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow

under subsurface drip and center-pivot irrigation systems at Clay Center, NE.

2019 2020
Effect Num Den F Pr>F Num Den F Pr>F
DF DF Value DF DF Value
Irrigation 1 4 0.98 0.3776 1 4 0.21 0.6741
Crop 2 8 1.73  0.2372 2 8 18.72 ' 0.0010
Irrigation*Crop 2 8 0.99 04113 2 8 0.04 0.9568
Date 3 36 1.55 0.2184 3 36 8.25  0.0003
Date*Irrigation 3 36 1.03  0.3894 3 36 0.46 0.7116
Date*Crop 6 36 1.41 0.2384 6 36 6.00 0.0002
Date*Irrigation*Crop 6 36 1.02  0.4291 6 36 2.27  0.0589

*Significance at P <0.05
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Figure 3-1. Daily rainfall in the (A) 2019 and (B) 2020 growing seasons at South Central

Agricultural Laboratory near Clay Center, NE
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Figure 3-2. Average total soil water results of crop systems under (A) center-pivot and
(B) subsurface drip in 2019 in a study to determine evapotranspiration of Palmer
amaranth in corn, soybean, and fallow under subsurface drip and center-pivot irrigation

systems at Clay Center, NE.
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(B) subsurface drip in 2020 in a study to determine evapotranspiration of Palmer
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systems at Clay Center, NE.
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Figure 3-4. Actual evapotranspiration by crop system and irrigation type in (A) 2019 and
(B) 2020 in a study to determine evapotranspiration of Palmer amaranth in corn, soybean,

and fallow under subsurface drip and center-pivot irrigation systems at Clay Center, NE.
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Figure 3-5. Least squares means plots of actual evapotranspiration by irrigation from day
1 to day 98 after sensor installation in 2019 in a study to determine evapotranspiration of
Palmer amaranth in corn, soybean, and fallow under subsurface drip and center-pivot

irrigation systems at Clay Center, NE.
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Figure 3-6. Cumulative evapotranspiration of Palmer amaranth in corn, soybean, and
fallow systems under center-pivot and subsurface drip irrigation in 2020 in a study to
determine evapotranspiration of Palmer amaranth in corn, soybean, and fallow under

subsurface drip and center-pivot irrigation systems at Clay Center, NE.
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Figure 3-7. Mean interaction plots for Palmer amaranth growth index by crop type and
sampling date in (A) center-pivot plots in 2019, (B) subsurface drip plots in 2019, (C)
center-pivot plots in 2020, and (D) subsurface drip plots in 2020 in a study to determine
evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface

drip and center-pivot irrigation systems at Clay Center, NE.
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Figure 3-8. Mean interaction plots for 2019 Palmer amaranth biomass by (A) sampling

date and crop type and (B) sampling date and irrigation type in a study to determine

evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface

drip and center-pivot irrigation systems at Clay Center, NE.
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Figure 3-9. Mean interaction plots for Palmer amaranth total leaf area by crop type and
sampling date in (A) center-pivot plots in 2019, (B) subsurface drip plots in 2019, (C)
center-pivot plots in 2020, and (D) subsurface drip plots in 2020 in a study to determine
evapotranspiration of Palmer amaranth in corn, soybean, and fallow under subsurface

drip and center-pivot irrigation systems at Clay Center, NE.
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CHAPTER 4:
EFFECT OF DEGREE OF WATER STRESS ON GROWTH AND FECUNDITY
OF VELVETLEAF (ABUTILON THEOPHRASTI)

USING SOIL MOISTURE SENSORS

Abstract
Velvetleaf (Abutilon theophrasti L.) is a troublesome broadleaf weed that competes with
agronomic crops for resources such as soil moisture. Water stress can affect the ability of
weed species to grow and produce seeds. The objective of this study was to determine the
effect of degree of water stress on the growth and fecundity of velvetleaf using soil
moisture sensors under greenhouse conditions. Velvetleaf seeds collected from a
corn/soybean field were grown in silty clay loam soil and plants were maintained at
100%, 75%, 50%, and 25% soil field capacity (FC) corresponding to no-, light-,
moderate-, and high-water stress conditions, respectively. Water was regularly added to
pots based on soil moisture levels detected by a Decagon 5STM sensor to maintain the
desired water stress level required by treatment. Plants maintained at 100% FC had the
maximum number of leaves (28 leaves plant '), followed by 21 and 15 leaves plant ! at
75% and 50% FC, respectively. Velvetleaf at 100% and 75% FC achieved maximum
plant height (108 to 123 cm) compared with 83 cm at 50% FC. Velvetleaf maintained at
75% FC had the greatest growth index (79,907 cm?) followed by 72,197 cm? at 100% FC
and 64,256 cm?® at 50% FC. Seed production was similar at 100%, 75%, and 50% FC
(288 to 453 seeds plant ') compared with 2 seeds plant ' at 25% FC. This is because the

majority of plants maintained at 25% FC did not survive more than 77 d after
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transplanting. Seed germination was 96%—100% at 100%, 75%, and 50% FC compared
to 20% germination at 25% FC. The results of this study demonstrate that velvetleaf can
survive > 50% FC continuous water stress conditions, although with a reduced leaf

number, plant height, and growth index compared to 75% and 100% FC.

Introduction

Throughout Nebraska’s agricultural history, natural disasters such as drought have
had an adverse effect on crop yields and the economy (USDA 2020; Wu et al. 2013). In
the early mid-2000s and in 2012, Nebraska dealt with severe drought resulting in reduced
crop yields (Wu et al. 2013). More recently, in August of 2020, Nebraska began
experiencing drought conditions, and by October of 2020, 34 counties in Nebraska were
eligible for emergency loans for drought relief (USDA 2020). Recognition of drought
periods is important because weed species such as velvetleaf compete with crops for a
variety of environmental resources, including water, which is one of the most limiting
factors for optimum crop production (Benjamin and Nielsen 2006). Water stress can
negatively affect the growth and productivity of crops and associated weed species,
though the outcomes of competition for water depend on the crop and weed species’
abilities to survive under water stress conditions (Begg and Turner 1976; Patterson 1995).
Compared to C4 weed species such as Amaranthus palmeri and Portulaca oleracea that
have water stress resistance mechanisms (e.g., drought avoidance, drought tolerance,
drought recovery, or drought escape), C3 weed species such as velvetleaf are not able to
maintain the same level of growth and development under water stress conditions (Kumar

et al. 1984; Pearcy and Ehleringer 1984; Sung and Krieg 1979; Ward et al. 2001). Hinz
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and Owen (1994) found that velvetleaf under water stress conditions caused leaf water
and osmotic potential to decrease linearly over time. Munger et al. (1987a; 1987b)
indicated that as leaf water potential decreased in velvetleaf plants, stomatal conductance,
photosynthetic, and transpiration rates decreased.

In addition to growth and development, seed germination is an important
component of weed establishment and is influenced by environmental factors such as
water availability, water temperature, light quality, and light duration during seed
development (Baskin and Baskin 1998; Fenner 1991). Velvetleaf seed germination is
sensitive to varying degrees of water stress and was completely inhibited by an osmotic
potential of -600 kPa (Sadeghloo et al. 2013; Xiong et al. 2018). Despite these findings,
scientific literature is not available on the effect that water stress throughout velvetleaf’s
growth period has on growth and fecundity. Bathke et al. (2014) projected a 5%—10%
decrease in soil moisture for Nebraska under a high emissions scenario, indicating the
potential for increased water stress and plant water competition in Nebraska plant
populations. Despite projected increases in precipitation events in the eastern Great
Plains, soil moisture is expected to decrease most near the soil surface due to evaporative
loss from warmer temperatures (Bathke et al. 2014; Berg et al. 2016). While some plant
developmental processes in leaves, roots, and reproductive structures are conserved
across species, most plant responses are variable within and between species and are
dependent on the developmental stage (Gray and Brady 2016).

Research evaluating a plant’s response to water stress is typically performed
under greenhouse or controlled environment conditions. The plants are often grown in

pots to maintain certain water stress levels or soil field capacity (FC) for a limited growth
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period or until the plant has reached maturity. A common method for maintaining desired
FC in similar studies has been to weigh pots regularly to determine water lost from the
soil and then add the appropriate amount of water (Chandi et al. 2013; Chauhan 2013;
Chauhan and Johnson 2010; Earl 2003; Sarangi et al. 2015). However, it is not possible
to determine the weight of the plant and pot separately using this method, resulting in
inaccurate soil water content (Chahal et al. 2018). This could result in errors when adding
water, especially as plants accumulate more biomass. Moreover, this approach is time-
consuming and labor intensive since the pots must be lifted and weighed at regular
intervals until completion of the study. By incorporating soil moisture sensors such as
Decagon 5TM sensors (Decagon Devices, 2365 NE Hopkins Court, Pullman, WA), the
labor required to weigh and add water to pots can be reduced. The Decagon 5STM sensor
is a frequency-domain reflectometry sensor that measures soil water content directly as
percent volume, determining soil moisture stress in real time with increased accuracy
(Chahal et al. 2018). Soil moisture sensors allow researchers to measure soil water
content more frequently and maintain FC within a narrow, predetermined range (Irmak et
al. 2016) in loam and silt-loam soils (Paudel et al. 2016; Zhu 2016). Thus, the objective
of this study was to determine the effect of degree of water stress on growth and

fecundity of velvetleaf using soil moisture sensors.

Materials and Methods
Plant Materials. Velvetleaf seeds were collected from fields under corn-soybean rotation

at the South Central Agricultural Laboratory in Clay County, Nebraska (40.57°N,
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98.14°W). The seeds were stored in a refrigerator at 5°C until used in this study.
Velvetleaf seeds were planted in germination trays containing silty clay loam soil with a
particle size distribution of 53% silt, 28% clay, 19% sand, and 2% organic matter content
and a pH of 6.7. The soil used in this study was collected from a field near Lincoln, NE
with no herbicide use in the last 10 yr. Germination trays were kept under greenhouse
conditions at the University of Nebraska-Lincoln maintained at 27/21°C day/night
temperatures. Overhead metal-halide lamps with 600 mmol photon m 2 s™! light intensity
were used to provide supplemental light in the greenhouse to maintain a 16-h
photoperiod. Velvetleaf seedlings 6 to 8 cm in height were transplanted into round, free-
draining pots (20-cm diam and 30-cm ht) containing 10 kg of the same soil used in the
germination trays, with one plant per pot. Pots were already at the desired moisture stress
level of 100%, 75%, 50%, and 25% FC when velvetleaf seedlings were transplanted,
minimizing the risk of transplant shock. Treatments were arranged in a completely
randomized design with six replications.
Soil Water Content. The soil used in this study had a permanent wilting point and
saturation point of 17.7% and 34.7% volumetric, respectively. The soil had a bulk density
of 1.4 g cm™ and a volumetric FC of 39.2% based on soil test reports (American
Agricultural Laboratory, Inc., McCook, NE). Gravimetric FC was 28% and was
calculated using the following equation (Hillel 1998):

0g = 6v/py
where 6g is the percent gravimetric soil water content, 8v is the percent volumetric soil

water content, and p,, is the soil bulk density in grams per cubic cm.
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The study included four soil water stress treatments: 100%, 75%, 50%, and 25%
of the soil FC, corresponding to no-, light-, moderate-, and high-water stress levels,
respectively (Chahal et al. 2018; Sarangi et al. 2015). Soil water content in the pots was
measured using Decagon 5STM soil moisture sensors and Em50 data loggers (Figure 4-1).
The sensors were installed at a 45° angle at a 15 cm depth in each pot. Because the soil
had a gravimetric FC of 28%, 2.8 L of water (28% of 10 kg soil) was added to each pot at
12 and 4 d before transplanting in 2019 and 2020, respectively, to maintain 100%
gravimetric FC. Likewise, 2.3 L (75% of 2.8 L), 1.6 L (50% of 2.8 L), and 0.9 L (25% of
2.8 L) of water were added to maintain 75%, 50%, and 25% soil FC, respectively, with a
range of £2% actual volumetric water content set for water stress treatments. Soil
moisture data from Decagon data loggers were recorded once a day, and the required
amount of water was added evenly on top of the soil to maintain treatment soil FC.

Data Collection. Velvetleaf height, number of leaves per plant, and growth index were
determined at 7-d intervals beginning 7 d after transplanting (DAT) until plants were
harvested upon maturity at 84 DAT during both years. Growth index can be defined as a
quantitative indicator of plant growth rate used to compare plants grown under different
soil water conditions and was calculated using the following equation (Irmak et al. 2004;
Sarangi et al. 2015):

Gl (cm3) = mx (w/2)?xh
where w is the width of the plant calculated as an average of two widths, one measured at
the widest point and another at 90° to the first; and h is the plant height measured from

the soil surface to the shoot apical meristem (Sarangi et al. 2015). Upon maturity, leaves
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were counted and removed from each stem to measure the total leaf area for each plant
using a leaf area meter (LI-3100C Area Meter, Li-Cor, Lincoln, NE).

During harvest, plant stems were clipped at the soil surface and roots were
removed from the pots; stems and roots were washed with water in a container and air-
dried for 24 h. The leaves, shoots, and roots from each plant were stored separately in
paper bags and oven-dried at 65°C for 7 d. Seed heads were collected and the number of
seeds per plant counted; seeds were then weighed and stored in the dark at room
temperature until used in germination tests. Seed dormancy was interrupted in velvetleaf
seeds by soaking them in boiling water for five seconds (Sadeghloo et al. 2013). Fifty
seeds from each plant were placed on a piece of moist Whatman No. 4 filter paper (GE
Healthcare UK, Amersham Place, Little Chalfont, Buckinghamshire HP7 9NA, UK) in a
petri dish. Petri dishes were stored for 21 d in a growth chamber maintained at 35/28°C
day/night temperatures with a 16-h photoperiod, and an appropriate amount of water
were added each day to keep the filter paper wet. Fluorescent bulbs were used to produce
a light intensity of 85 mmol m 2 s ~!. The total number of germinated seeds was counted
and converted to percent germination based on the total seed number in each petri dish.
Statistical Analysis. Three parameter log-logistic models were fit to velvetleaf height,
leaf number per plant, and growth index using the drc package in R (R Foundation for

Statistical Computing, Vienna, Austria) (Knezevic et al. 2007):

d
Y= {1+exp[b(logx—loge)]}
where Y is plant height, leaf number per plant, or growth index; x is days after
transplanting; d is the estimated maximum plant height, leaf number per plant, or growth

index; e is the time taken to achieve 50% of plant height, leaf number per plant, or
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growth index; and b represents the relative slope around the parameter e. A ¢-test was
used to determine whether the water stress treatments significantly affected maximum
estimates, rate of change, and time taken to achieve 50% of plant height, leaf number per
plant, or growth index. Velvetleaf stem, leaf, and root biomass per plant (g), total leaf
area per plant (cm?), seed number per plant, and percent seed germination were subjected
to ANOVA and LSD tests using the agricolae and LSD procedures in R, respectively.
Experimental year and replication were considered fixed effects to determine whether
velvetleaf stem, leaf, aboveground and root biomasses, total leaf area, seed number, and
percent seed germination were significant by year or replication, and whether there was a
year by replication interaction. Velvetleaf stem, aboveground, and root biomass were
significant by year, so ANOVA and LSD tests were performed for these parameters by
year, while leaf biomass, total leaf area, seed number, and percent seed germination were
grouped together by year. Where the ANOVA indicated treatment effects were

significant, means were separated at P < 0.05.

Results and Discussion
Leaf Number. Velvetleaf responded to increasing water stress by senescing the oldest
leaves, resulting in a reduced number of leaves with increasing water stress level (Table
4-1). Similarly, Schmidt et al. (2011) reported senescence of older leaves in velvetleaf
under drought conditions. Velvetleaf maintained at 100% FC had a maximum of 28
leaves plant !, followed by 21 and 15 leaves plant ! at 75% and 50% FC, respectively
(Table 4-1, Figure 4-2A). Chadha et al. (2019) reported similar results in prickly lettuce

(Lactuca serriola L.), where leaf numbers were higher in 100% (52 leaves plant ') and
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75% FC (49 leaves plant ') compared to 50% FC (41 leaves plant !). In contrast,
Mahajan et al. (2018) reported a similar leaf number plant ! in two African turnip weed
(Sisymbrium thellungii O.E. Schulz) biotypes at 100%, 75%, and 50% FC. Kaur et al.
(2016) also reported a similar number of leaves plant™ in giant ragweed (dmbrosia trifida
L.) at 100%, 75%, and 50% FC. A significant reduction in leaf number in Sisymbrium
thellungii (Mahajan et al. 2018) and Ambrosia trifida L. (Kaur et al. 2016) at 25% FC
were reported, similar to the results of this study, where velvetleaf plants maintained at
25% FC had a maximum of 7 leaves plant ! before plant death (Figure 4-2A). The log-
logistic model estimated that velvetleaf grown at 100%, 75%, and 50% FC took a similar
amount of time [3.3 to 4.3 weeks after transplanting (WAT)] to achieve 50% of
maximum leaf number. Similarly, there was no difference in the time it took for
Ambrosia trifida L. to achieve 50% of maximum leaf number at 100%, 75%, and 50% FC
(6 to 9 WAT) (Kaur et al. 2016).

Plant Height. Velvetleaf maintained at 100% and 75% FC achieved a height of 108 cm
and 123 cm compared with a height of 83 cm at 50% FC (Table 4-1, Figure 4-2B). These
results suggest that available soil moisture at > 75% FC is sufficient to achieve maximum
velvetleaf height and that a visible decrease in plant height at 50% FC could be a result of
reduced cell enlargement due to low turgor pressure at 50% FC water stress level (Farooq
et al. 2009; Jaleel et al. 2009). Similar results were reported by Chadha et al. (2019), in
which Lactuca serriola had the greatest plant height at 75% FC (115 cm) and 100% FC
(104 cm) compared with 77 cm at 50% FC. Kaur et al. (2016) also reported that
Ambrosia trifida L. had the greatest plant height at 75% FC (140 cm) and 100% FC (125

cm) compared with 112 cm at 50% FC. In contrast, Mahajan et al. (2018) reported the
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greatest plant height at 50% FC (65 cm) compared to 75% FC (53 cm) and 100% FC (56
cm) of the St. George biotype of Sisymbrium thellungii. Karimi et al. (2015) reported the
greatest plant height in sweetleaf (Stevia rebaudiana Bertoni) at 90% FC, and decreased
height with increasing water stress up to 45% FC. The model estimated that velvetleaf
grown at 100%, 75%, and 50% FC took a similar amount of time (5.7 to 6.2 WAT) to
achieve 50% of maximum plant height. Similarly, Kaur et al. (2016) reported that
Ambrosia trifida L. grown at 100%, 75%, and 50% FC took 6 WAT to reach 50% of
maximum plant height.
Plant Growth Index. Velvetleaf maintained at 75% FC had the greatest growth index
(79,907 cm®) compared with a growth index of 72,197 cm?® at 100% FC and 64,256 cm? at
50% FC (Table 4-1, Figure 4-2C). Results suggest that available soil moisture at 75% FC
is sufficient for maximum growth of velvetleaf, and that available soil moisture at 100%
FC might actually hinder plant growth due to root saturation (Ashraf 2012). Similarly,
Kaur et al. (2016) reported that Ambrosia trifida L. maintained at 75% FC had the
greatest growth index (588 cm?), followed by 416 cm?® at 100% FC and 274 cm? at 50%
FC. The time to achieve 50% of maximum growth index was similar across water stress
levels (4.6 to 5.7 WAT) (Table 4-1). In contrast, Kaur et al. (2016) reported that the time
for Ambrosia trifida L. to achieve 50% of maximum growth index was longer at 75% FC
(6 WAT) compared to 100% and 50% FC (4 WAT).

Velvetleaf maintained at 25% FC did not survive more than 77 DAT during both
years, although one plant produced a small number of seeds; therefore, root, leaf, and
stem biomass, total leaf area, number of seeds per plant, and percent seed germination are

presented (Table 4-2). The permanent wilting point of soil used in this study was 17.7%
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by volume, corresponding to 45.2% FC. The soil water available to velvetleaf plants at
25% FC was below the permanent wilting point that resulted in plant death.

Plant Stem and Root Biomass. Year by treatment interactions were significant for stem
and root biomass; therefore, data were separated (Table 4-2). Velvetleaf plants
maintained at 75% FC were the tallest; however, they resulted in similar root, stem, or
leaf biomass as 100% FC during both years. In 2019, stem biomass was similar (10—14 g
plant ') at 100%, 75%, and 50% FC and root biomass was reduced at 100% FC (1.5 g
plant ') and 25% FC (0.08 g plant ') compared with 2.4 to 3.4 g plant ' at 75% and 50%
FC. Similarly, no differences were reported in Ambrosia trifida L. (Kaur et al. 2016) and
Sisymbrium thellungii (Mahajan et al. 2018) stem biomass at 100%, 75%, and 50% FC.
Other studies reported that velvetleaf (Vaughn et al. 2016) and Stevia rebaudiana
(Karimi et al. 2015) aboveground biomass increased as water supply increased and was
generally greatest at full transpiration and 90% FC, respectively. Studies also reported
that velvetleaf (Vaughn et al. 2016) and Ambrosia trifida L. (Kaur et al. 2016) root
biomass were greatest at full transpiration and 100% FC, respectively, but that was not
the case in this study, as root biomass was reduced at 100% FC in 2019. Root biomass at
100% FC was likely reduced due to waterlogging of the soil, inhibiting root system
elongation and potentially leading to adventitious root formation (Ashraf 2012; Steffens
and Rasmussen 2016). In 2020, stem biomass (0.05 to 0.3 g plant ') and root biomass
(0.01 to 0.07 g plant ') were reduced at 50% and 25% FC compared to stem biomass (1.2
to 1.3 g plant '), and root biomass (0.16 to 0.17 g plant ) at 100% and 75% FC. Chadha
et al. (2019) reported similar results in which aboveground biomass of Lactuca serriola

was greatest at 100% and 75% FC (19.4 to 22.4 g plant ) compared to 50% and 25% FC
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(17.2 to 17.5 g plant !). On the contrary, Karkanis et al. (2011) reported no effect on root
biomass due to water stress.

Total Leaf Area. The total leaf area per plant increased with increasing water stress, with
the highest value at 50% FC (86.7 cm? plant ') and the value reduced to 5.5 cm? plant ! at
25% FC (Table 4-2). However, total leaf area values were statistically similar (56 to 86.7
cm? plant™!) across 100%, 75%, and 50% FC. In contrast, Chadha et al. (2019) reported
the greatest leaf area of Lactuca serriola at 75% FC, followed by 50%, 100%, and 25%
FC. Vaughn et al. (2016) and Manivannan et al. (2007) reported reduced total leaf area
with decreased water availability in velvetleaf and Helianthus annus.

Seed Production. Water stress influenced the number of velvetleaf seeds produced per
plant. Velvetleaf at 75% FC produced the highest number of seeds (453 seeds plant 1),
followed by 100% (406 seeds plant ), 50% (288 seeds plant '), and 25% FC (2 seeds
plant™!) (Table 4-2). Results suggest that although velvetleaf plant growth may be
reduced by 50% FC, a considerable number of seeds are still produced. Thus, early-
season control of velvetleaf is crucial for avoiding a large infestation later in the growing
season. Similarly, Kaur et al. (2016) reported that seed production of Ambrosia trifida L.
was influenced by degree of water stress, with the highest number of seeds produced at
75% FC, followed by 100%, 50%, and 25% FC. In contrast, Chadha et al. (2019), Chahal
et al. (2018), Mahajan et al. (2018), and Sarangi et al. (2015) reported decreased seed
production with increased water stress in Lactuca serriola, Sisymbrium thellungii,
waterhemp (Amaranthus tuberculatus), and Palmer amaranth (4Amaranthus palmeri S.
Watson), respectively, indicating their sensitivity to water stress compared with

velvetleaf.
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Seed Germination. Velvetleaf seed germination was similar (96% to 100%) at 100%,
75%, and 50% FC compared with 20% germination at 25% FC. Similarly, Chahal et al.
(2018) reported no difference in Amaranthus palmeri seed germination at 100%, 75%,
and 50% FC, and no seeds were produced at 25% FC, signifying that Amaranthus
palmeri seed production is more sensitive to water stress than velvetleaf. In contrast,
Chadha et al. (2019) reported no difference in the germination ability of Lactuca serriola
seeds produced under water stress conditions, demonstrating a higher tolerance to water
stress compared to velvetleaf. These findings imply that velvetleaf can survive and
produce viable offspring at water stress levels as low as 50% FC, prompting the need for
early-season control.
Practical Implications

This is the first study that evaluates the response of velvetleaf to the degree of
water stress using soil moisture sensors that more frequently and accurately maintain a
precise level of water stress throughout the growth period. Plant height and leaf number
per plant were sensitive to water stress than total leaf area, stem, leaf, and root biomass,
seed production, and seed germination. Seeds of velvetleaf used in this study were
collected from a field under continuous corn-soybean rotation in Clay County, NE. The
growth characteristics of velvetleaf observed in this study could vary if velvetleaf
biotypes were collected from different cropping systems or rotations. Waselkov et al.
(2020) found that agriculturally prevalent Amaranthus tuberculatus from the Mississippi
Valley and Plains regions had higher relative performance than waterhemp from the
Northeast region, where waterhemp is less of an agricultural weed. The results of this

study could also vary under field conditions because velvetleaf plants were not able to
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grow to their full potential due to limited pot size and pest infestation under greenhouse
conditions. In 2020, stem and root biomass were significantly lower compared to 2019,
likely due to white fly (4leyrodidae) infestation. In addition, a single velvetleaf plant was
grown in each pot without inter- or intra-specific competition; thus, plants growing with
crops might produce flowers earlier or later in the growing season depending on the
competitive nature of the crops, resulting in higher or lower seed formation. Water stress
treatments were imposed throughout the growth period in this study, while duration of
water stress can also play an important role in determining velvetleaf’s growth response.
Therefore, it is expected that velvetleat grown under field conditions will have a better
chance of survival and higher seed production due to possibly limited periods of water
stress because of rain/irrigation compared with the continuous water stress conditions
imposed in this study.

Water stress may also influence the duration of the critical weed-free period for
various crops. Light to moderate water stress (75% to 50% FC) would not likely impact
the critical weed-free period of velvetleaf in crops, although high water stress (25% FC)
might reduce the critical weed-free period of velvetleaf compared with saturated
conditions (Coble et al. 1981; Jackson et al. 1985). Velvetleaf is a temperate climate
species and is typically absent from environments where dry climate and high
evapotranspiration rates restrict growth. Munger et al. (1987a) and Vaughn et al. (2016)
have shown that crops such as soybean and corn, respectively, have higher transpiration
efficiency (TE) compared with velvetleaf under short-term water stress conditions. The
higher TE of corn and soybean is likely due to earlier leaf senescence in velvetleaf during

short-term water stress; however, the velvetleaf response to long-term water stress may
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be advantageous, where early conservation of available soil moisture and early leaf
senescence could result in maintaining enough water for transpiration later and
potentially producing seeds (Schmidt et al. 2011). Hagood et al. (1980) reported a greater
reduction in soybean growth due to velvetleaf competition during a dry year compared to
a wet year, indicating potential competition for moisture between two species. The
growth characteristics of velvetleaf at <75% FC in this study could indicate its
competitive ability under long-term water stress conditions. For these reasons, this
information could be useful for evaluating weed-crop interaction using competition
models, as well as for developing climate simulation models to understand the effect of
drought, rising atmospheric CO; concentrations, rising global temperatures, reductions in
annual soil and groundwater recharge, and increasing frequency of extreme weather

events on crop and weed species.
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Table 4-1. Parameter estimates and test of lack of fit at 95% level for the three-parameter
log-logistic function? fit to velvetleaf leaves per plant, plant height, and growth index
under differing degrees of water stress at 84 d after treatment (DAT) in a greenhouse

study at University of Nebraska-Lincoln.

Water stress treatment®* d+SE>e4 e (weeks)®d bed Lack of fit®
Leaves plant’!
100% FC (no water stress) 28+7a 43+13a —-24+16a 1.0
75% FC (light water stress) 21+14b 34+£047a -49+25a 0.3
50% FC (moderate water stress) 15+£1.8¢ 33+£0.6a —-25+12a 0.4
Plant height (cm)
100% FC (no water stress) 108+ 10.7a 57+04a —-47+17a 0.9
75% FC (light water stress) 123+ 123 a 6.0+04a —48+x16a 0.9
50% FC (moderate water stress) 83+£11.6Db 6.2+06a —-48+21a 0.9
Growth index (cm?®)f
100% FC (no water stress) 72,197 £8,310b  5.1+0.4 ab —-6.6t3.1a 0.9
75% FC (light water stress) 79,907 +7,072 a 46+03a —-10.1+56a 0.9
50% FC (moderate water stress) 64,256 + 8,398 ¢ 5.7+0.4 ab —83+45a 1.0

aY={d/1+exp[b(logx-loge)]}, where Y is the leaves per plant, plant height, or growth index; x is days after
transplanting; d is the estimated maximum leaves per plant, plant height, or growth index; e is the time
taken to achieve 50% of leaves per plant, plant height, or growth index; and b is the relative slope around
parameter e.

bAbbreviation: FC, field capacity; SE, standard error.

°Only one velvetleaf plant maintained at 25% soil FC survived more than 77 DAT, and the three-parameter
log-logistic model did not provide a good fit for leaves per plant, plant height, or growth index; therefore,
data are not presented.

4Means within columns with no common letter(s) are significantly different at P < 0.05.

°A test of lack of fit at the 95% level was not significant for any of the curves tested for the water stress
treatments, indicating that the fitted model was correct.

fGrowth index = m * (w/2)? * h, where w is the width of the plant calculated as an average of two widths;
and / is the plant height measured from the soil surface to the apical meristem.
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Figure 4-1. Soil moisture content in pots was measured using (A) Decagon 5STM
moisture sensors and (B) Em50 data loggers to determine degree of water stress on

velvetleaf in a greenhouse study conducted at the University of Nebraska—Lincoln.
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Figure 4-2. Effect of degree of water stress on (A) leaves per plant, (B) plant height, and
(C) growth index of velvetleaf after 84 DAT during both years. 100%, 75%, 50%, and
25% field capacity (FC) treatments correspond to no-, light-, moderate-, and high-water
stress, respectively. Only one velvetleaf plant maintained at 25% FC survived more than
77 DAT during both years, and the three-parameter log-logistic model did not provide a
good fit for leaves per plant, plant height, or growth index; therefore, curves are

presented for 25% FC, although only for visual sake.
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