
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

6-27-2002

ASSURED QUALITY-OF-SERVICE REQUEST SCHEDULING ASSURED QUALITY-OF-SERVICE REQUEST SCHEDULING

Stephen M. Goddard
Lincoln, NE

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

Goddard, Stephen M., "ASSURED QUALITY-OF-SERVICE REQUEST SCHEDULING" (2002). CSE Journal
Articles. 218.
https://digitalcommons.unl.edu/csearticles/218

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/218?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages

(19) United States
US 20020083117A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0083117 A1
Goddard (43) Pub. Date: Jun. 27, 2002

(54) ASSURED QUALITY-OF-SERVICE REQUEST
SCHEDULING

(75) Inventor: Stephen M. Goddard, Lincoln, NE
(US)

Correspondence Address:
SENNIGER POWERS LEAVITT AND
ROEDEL
ONE METROPOLITAN SQUARE
16TH FLOOR
ST LOUIS, MO 63102 (US)

(73) Assignee: The Board of Regents of the University
of Nebraska

(21) Appl. No.: 10/008,024

(22) Filed: Nov. 5, 2001

Related U.S. Application Data

(63) Non-provisional of provisional application No.
60/245,788, filed on Nov. 3, 2000. Non-provisional of
provisional application No. 60/245,789, filed on Nov.
3, 2000. Non-provisional of provisional application

No. 60/245,790, filed on Nov. 3, 2000. Non-provi
sional of provisional application No. 60/245,859,
filed on Nov. 3, 2000.

Publication Classification

(51) Int. Cl. ... G06F 9/00
(52) U.S. Cl. .. 709/103

(57) ABSTRACT

A computer Server and method for providing assured qual
ity-of-Service request Scheduling in Such a manner that low
priority requests are not starved in the presence of higher
priority requests. Each received data request is preferably
assigned a priority having both a Static priority component
and a dynamic priority component. The Static priority com
ponent is preferably determined according to a client prior
ity, a requested resource priority, or both. The dynamic
priority component is essentially an aging mechanism So
that the priority of each request grows over time until
Serviced. Additionally, each assigned priority is preferably
determined using a Scaling factor which can be used to
adjust a weighting of the Static priority component relative
to the dynamic priority component as necessary or desired
for any specific application of the invention.

RECEIVE REQUESTS
FROM CLIENTS

202

ASSIGN PRIORITY TO
EACH REQUEST

204

PROCESS REQUESTSASA 206
FUNCTION OF THEIR
ASSIGNED PRIORITIES

US 2002/0083117 A1 Jun. 27, 2002. Sheet 1 of 4 Patent Application Publication

|||||||||||||| (JEHO LWdSIC]

N_LNENITO] | NEITIO

Patent Application Publication Jun. 27, 2002 Sheet 2 of 4 US 2002/0083117 A1

FIG. 2

RECEIVE REQUESTS 202
FROM CLIENTS

ASSIGN PRIORITY TO 204
EACH REQUEST

PROCESS REQUESTSASA 206
FUNCTION OF THEIR
ASSIGNED PRIORITIES

US 2002/0083117 A1 Jun. 27, 2002. Sheet 3 of 4 Patent Application Publication

Jun. 27, 2002 Sheet 4 of 4 US 2002/0083117 A1 Patent Application Publication

u HEARBES
90 #2

I HHAHES

ZI? HEHDLWdSIG

U _LNHITO I LNJEITO

US 2002/00831.17 A1

ASSURED QUALITY-OF-SERVICE REQUEST
SCHEDULING

REFERENCE TO RELATED APPLICATIONS

0001) This application claims the benefit of U.S. Provi
sional Application No. 60,245,789 entitled ASSURED QOS
REQUEST SCHEDULING, U.S. Provisional Application
No. 60/245,788 entitled RATE-BASED RESOURCE
ALLLOCATION (RBA) TECHNOLOGY, U.S. Provisional
Application No. 60/245,790 entitled SASHA CLUSTER
BASED WEB SERVER, and U.S. Provisional Application
No. 60/245,859 entitled ACTIVE SET CONNECTION
MANAGEMENT, all filed Nov. 3, 2000. The entire disclo
Sures of the aforementioned applications are incorporated
herein by reference.

FIELD OF THE INVENTION

0002 The present invention relates generally to computer
Servers, and more particularly to computer Servers providing
quality of Service assurances.

BACKGROUND OF THE INVENTION

0003) The Internet Protocol (IP) provides what is called
a “best effort Service; it makes no guarantees about when
data will arrive, or how much data it can deliver. This
limitation was initially not a problem for traditional com
puter network applications Such as email, file transfers, and
the like. But a new breed of applications, including audio
and Video Streaming, not only demand high data throughput
capacity, but also require low latency. Furthermore, as
busineSS is increasingly conducted over public and private IP
networks, it becomes increasingly important for Such net
Works to deliver appropriate levels of quality. Quality of
Service (QoS) technologies have therefore been developed
to provide quality, reliability and timelineSS assurances.
0004 Existing QoS implementations typically assign pri
orities to requests for data from a Server on a client basis
(i.e., data requests from different clients are prioritized
differently), on a requested resource basis (i.e., data requests
Seeking different files or data are prioritized differently), or
a combination of the two. One problem with such imple
mentations is that low priority requests (i.e., requests from
low priority clients and/or seeking low priority data) can
become Starved under heavy loading, with only higher
priority requests being Serviced.
0005. As recognized by the inventor hereof, what is
needed is a QoS approach which provides appropriate QoS
assurances to high priority requests while, at the Same time,
ensuring that lower priority requests are Serviced in a timely
fashion and not starved.

SUMMARY OF THE INVENTION

0006. In order to solve these and other needs in the art,
the inventor hereof has Succeeded at designing a computer
Server and method for providing assured quality-of-Service
request Scheduling in Such a manner that low priority
requests are not starved in the presence of higher priority
requests. Each data request received from a client is pref
erably assigned a priority having both a static priority
component and a dynamic priority component. The Static
priority component is preferably determined according to a
client priority, a requested resource priority, or both. The

Jun. 27, 2002

dynamic priority is essentially an aging mechanism So that
the priority of each request grows over time until Serviced.
Additionally, each assigned priority is preferably determined
using a Scaling factor which can be used to adjust a weight
ing of the Static priority component relative to the dynamic
priority component, as necessary or desired for any specific
application of the invention.
0007. In accordance with one aspect of the present inven
tion, a computer Server includes a dispatcher for receiving a
plurality of data requests from clients, and for assigning a
priority to each of the data requests. Each assigned priority
includes a Static priority component and a dynamic priority
component. The computer Server further includes at least
one back-end Server for processing data requests received
from the dispatcher. The dispatcher is configured to forward
the received data requests to the at least one back-end Server
in an order corresponding to their assigned priorities.
0008. In accordance with another aspect of the present
invention, a method of processing requests for data from a
Server includes receiving a plurality of data requests from
clients, and assigning a priority to each of the data requests.
Each assigned priority includes a Static priority component
and a dynamic priority component. The method also
includes processing the received data requests as a function
of their assigned priorities.
0009. In accordance with still another aspect of the
present invention, a method of processing requests for data
from a Server includes receiving a plurality of data requests
and assigning a priority to each received data request. Each
assigned priority includes a Static priority component and a
dynamic priority component. The method further includes
Storing the received data requests in a queue, retrieving the
Stored data requests from the queue in an order correspond
ing to their assigned priorities, and Servicing the retrieved
data requests.
0010. In accordance with yet another aspect of the
present invention, a method of processing requests for data
from a server includes receiving a plurality of data requests,
and, for each received data request, assigning a priority to
the data request on a client basis, a requested resource basis,
or both, and according to when the data request was
received. The received data requests are then Serviced in an
order corresponding to their assigned priorities.
0011 While some of the principal features and advan
tages of the invention have been described above, a greater
and more thorough understanding of the invention may be
attained by referring to the drawings and the detailed
description of preferred embodiments which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 is a block diagram of a server providing
quality of Service assurances according to one embodiment
of the present invention.
0013 FIG. 2 is a flow diagram of a method performed by
the server of FIG. 1.

0014 FIG. 3 is a block diagram of a server having
multiple data request queues according to another preferred
embodiment of the invention.

0015 FIG. 4 is a block diagram of a cluster-based server
providing quality of Service assurances according to another
preferred embodiment of the invention.

US 2002/00831.17 A1

0016 Corresponding reference characters indicate corre
sponding features throughout the Several views of the draw
ings.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0.017. A computer server for providing assured quality of
Service request Scheduling according to one preferred
embodiment of the present invention is illustrated in FIG. 1
and indicated generally by reference character 100. As
shown in FIG. 1, the server 100 includes a dispatcher 102
and a back-end server 104 (the phrase “back-end server”
does not imply that the server 100 is a cluster-based server).
In this particular embodiment, the dispatcher 102 is config
ured to Support open Systems integration (OSI) layer Seven
Switching (also known as content-based routing) with layer
three packet forwarding (L7/3), and includes a queue 106 for
Storing data requests (e.g., HTTP requests) received from
exemplary clients 108, 110, as further explained below.
Preferably, the dispatcher 102 is transparent to both the
clients 108, 110 and the back-end server 104. That is, the
clients perceive the dispatcher as a Server, and the back-end
Server perceives the dispatcher as one or more clients.
0.018. The dispatcher 102 preferably maintains a front
end connection 112, 114 with each client 108, 110, and one
or more back-end connections 116, 118, 120 with the
back-end server 104. The back-end connections 116-120 are
preferably non-client-specific, persistent connections, and
the number of back-end connections maintained between the
dispatcher 102 and the back-end server 104 is preferably
dynamic Such that it changes over time, as described in U.S.
application Ser. No. 09/930,014 filed Aug. 15, 2001, the
entire disclosure of which is incorporated herein by refer
ence. Alternatively, non-persistent and/or client-specific
back-end connections may be employed, and the number of
back-end connections maintained between the dispatcher
102 and the back-end server 104 may be static. The front
end connections 112, 114 (as well as the back-end connec
tions 116-120) may be established using HTTP/1.0, HTTP/
1.1 or any other Suitable protocol, and may or may not be
persistent connections. The front-end connections 108, 110
and the back-end connections 116-120 may be established
over any Suitable public and/or private computer network(s),
including local area networks (“LANs”) and wide area
networks (“WANs”) such as the Internet.
0019 While only two exemplary clients 108, 110 are
shown in FIG. 1, it should be understood that a much larger
number of clients may be supported by the server 100
without departing from the Scope of the invention. Likewise,
although FIG. 1 illustrates the dispatcher 102 as having
three back-end connections 116-120 with the back-end
server 104, it should be apparent from the description herein
that the set of connections between the dispatcher 102 and
the back-end server 104 may include more or less than three
connections at any given time.
0020. An overview of one preferred manner for imple
menting assured quality of Service request Scheduling within
the server 100 will now be described with reference to the
flow diagram of FIG. 2. Beginning at block 202, the server
100 receives multiple data requests from clients (e.g., over
the exemplary front-end connections 112, 114 shown in
FIG. 1). Via the dispatcher 102, the server 100 assigns a

Jun. 27, 2002

priority to each data request, as indicated in block 204 of
FIG. 2. In the specific embodiment under discussion, a
priority is assigned to each data request after the request is
received by the server 100 from a client. The data requests
are then processed as a function of their assigned priorities,
as indicated in block 206 of FIG. 2.

0021 Preferably, the data requests and their assigned
priorities are initially stored in the queue 106 shown in FIG.
1, and are Subsequently dequeued and forwarded to the
back-end server 104 for processing as a function of their
assigned priorities (i.e., in an order corresponding to their
assigned priorities). The request with the highest priority is
Selected for processing first. The highest priority request
may be defined as the request with either the maximum or
the minimum priority value. AS long as priorities are
assigned based on the comparison function that will be used
to Select the next request for processing, the resulting
Schedule should be identical.

0022 Referring again to block 204 of FIG. 2, each data
request is preferably assigned a priority comprising a Static
component and a dynamic component. In one embodiment,
this priority assignment is defined by the following Equation
(1):

P=S+D (1)
0023 where P is the priority assigned to request R, S, is
the Static component and D, is the dynamic component. AS
further explained below, the Static component is preferably
used to prioritize the request based on the identity of the
client which Sent the request, and/or the Specific resource
Sought by the request. The dynamic component is dynamic
in the Sense that it changes at least for each request received
over a Specific connection, and preferably for every request
received by the server 100, regardless of connection, as
further explained below. The dynamic component is essen
tially an aging mechanism which ensures that certain
requests are not denied processing when the Server 100
receives a relatively infinite Sequence of requests having a
higher static priority component. By changing the way S.
and D, are calculated for request R, a nearly infinite number
of Scheduling algorithms can be developed.
0024. In one preferred embodiment, S is computed using
the following Equation (2):

S=kdr (2)
0025 where K is a scaling factor, d is a static priority of
the client which sent the request (e.g., determined with
reference to the client's IP address or Subnet), and r is a
Static priority of the requested resource. An infinite number
of priority assignment algorithms can be created using
different values of K, d, and ri. For example, assume di
ranges from 0 to 1 depending on the priority assigned to a
given domain name, K=100, and ri ranges from 0 to 1
depending on the priority assigned to a given resource.
ASSuming the highest priority request is defined as max(P)
(i.e., the maximum priority value), the highest priority
clients are assigned a di Value of 1 and the lowest priority
clients are assigned a di Value of 0. Similarly, the highest
priority resources are assigned a r value of 1 and the lowest
priority resources are assigned a r value of 0. Under these
assumptions, S ranges from 0 to 100. The maximum value
of S is obtained only when a highest priority client requests
a highest priority resource. Note that if the value of d is
fixed, the Static priority component is wholly dependent on
ri, and Vice versa.

US 2002/00831.17 A1

0026. The dynamic priority component, Di, of Equation
(1) is preferably computed using the following Equation (3)
when max(P) defines the highest priority request, or the
following Equation (4) when min(P) defines the highest
priority request:

Di=Dax-1-(R, mod Dax) (3)
Di=(R, mod Dax) (4)

0027. Using modulo arithmetic, D, ranges from 0 to
D-1 in both Equations (3) and (4).
0028) Assuming max(P) defines the highest priority
request and D=65536, the dynamic priority component
for the first request, Do, is 65535, the dynamic priority
component for the Second request, D, is 65534, and So on.
Request R creates what is referred to as a wrap-around
condition which may be dealt with in any Suitable manner.
In one alternative embodiment of the invention, shown in
FIG. 3, a dispatcher 302 is provided with two data request
queues 306, 307. The dispatcher 302 initially stores data
requests received from clients in the first queue 306 until the
wrap-around condition exists, and then Stores Subsequently
received requests in the Second queue 307. After all requests
are retrieved from the first queue 306 and processed by the
back-end server 104, the dispatcher 302 begins retrieving
requests from the second queue 307 for processing. Note
that under these conditions, if for Some constant S, S=S for
all requests, a Scheduling algorithm based on Equation (1)
yields the same result as First-Come-First-Served (FCFS)
Scheduling.

0029) Combining Equations (1), (2) and (3), the priority,
P, of each request, Ri, can be computed using the following
Equation (5) when max(P) defines the highest priority
request, or using the following Equation (6) when min(P)
defines the highest priority request:

Pi=kdri--Da-1-(R, mod Dina) (5)
P=kdri (R, mod D.) (6)

0030. From Equations (5) and (6), it should be clear that
the Scaling factor K can be used to adjust the weighting of
the Static priority component relative to the dynamic priority
component in the Overall priority P.
0031. As an example, suppose max(P) defines the high
est priority request, K=500, D=65536, and r, and d are
defined as follows:

Client
Domain

Resource Priority
Resource Priority (r) Client Domain (d)

File1.html 1.O 129.93.33.141 0.5
File2.html O.1 192.168.11.114 1.O
File3.html 0.5 192.168.1.2 0.5

0032 Suppose a 1 request, Ro, is received from IP
address “129.93.33.141” and seeks “file2.html.” Using
Equation (5), this 1' request is assigned a priority P-500 *
(0.5*0.1)+65536-1- (0 mod
65536)=25+65536-1-0=65560. Suppose a 2" request, R,
is received from IP address "192.168.11.114' and seeks
“file1.html.” The 2" request is therefore assigned a priority
P=500 * (1.0 * 1.0)+65536-1- (1 mod 65536)=500+

Jun. 27, 2002

65536-1-1=66034. Suppose further that a 500" request,
Roo, is received from IP address “192.168.1.2” seeking
“file1.html.” The 500" request is therefore assigned a pri
ority P=500 * (0.5 * 1.0)+65536-1- (499 mod 65536)=
250+65036=65285. Thus, if all three requests were pending
in the queue 106 of FIG. 1 at the same time, they would be
processed in the following order: R, Ro, Roo.
0033 AS apparent to those skilled in the art, the server
100 may receive one or more data requests from a particular
client before the server 100 responds to a prior request from
that client. (For example, the HTTP 1.1 protocol allows a
client to send multiple requests over a single TCP/IP con
nection, even before responses to earlier requests are
received by that client.) In one embodiment of the invention,
this situation is addressed as follows. The first request
received from the client is assigned a priority and then
processed according to its assigned priority in the manner
described above. When one or more additional requests are
received from the client before the first request completes
processing, the additional requests are simply Stored in the
queue 106 without being assigned a priority. Once the Server
100 completeS processing of the first request, the Second
request received from the client becomes eligible for pro
cessing. This Second request can then be assigned a request
number and corresponding priority, in the manner described
above, as if the Second request was just received by the
server 100. Once the server 100 completes processing of the
Second request, the third request received from the client
becomes eligible for processing, and So on.
0034. Alternatively, data requests can be “aged” using a
unique request counter R for each connection C. When
connection C, is established, the corresponding counter is
initialized to 0 and incremented for each request received
over that connection. Thus, for the k" request of connection
C, R=k. The connection request number R is then used,
rather than the general request counter R, to set the priority
of eligible requests. In Such a case, the priority of each
request can be computed using Equation (7) when max(P)
defines the highest priority request, or using the following
Equation (8) when min(P) defines the highest priority
request:

P=Kdrit-Dax-1-(Rik mod Dinax) (7)
Pi=Kdri-(R, mod Dinax) (8)

0035) Note that use of R rather than R; in computing a
request's priority changes the notion of fairness. When
Equation (7) or (8) is used to compute priorities, the first
request of every connection has its dynamic priority com
ponent Set to its maximum value. Thus, given a set of
connections with requests of equal Static priority compo
nents, the request from the connection with the fewest
processed requests will be given higher priority over
requests from the other connections. When Equation (7) or
Equation (8) is used with the HTTP 1.0 protocol, in which
connections can make at most only one request, the dynamic
priority component, Di, of Equation (1) is always Zero Such
that the Scheduling algorithm reduces to simple Static pri
ority Scheduling.

0036) A cluster-based server 400 according to another
preferred embodiment of the present invention is shown in
FIG. 4, and is preferably implemented in a manner similar
to the embodiment described above with reference to FIG.
1. As shown in FIG. 4, the cluster-based server 400 employs

US 2002/00831.17 A1

multiple back-end servers 404, 406 for processing data
requests provided by exemplary clients 408, 410 through an
L7 dispatcher 402 having at least one queue 412. The
dispatcher 402 preferably receives data requests from clients
and assigns priorities thereto before Storing the data requests
and their assigned priorities in the queue 412. Each time one
of the back-end servers 404, 406 becomes available for
processing another data request, the dispatcher 402 retrieves
one of the data requests from the queue 412 in accordance
with the assigned priorities, and forwards the retrieved data
request to the available back-end Server for processing. AS
should be apparent, by providing the server 400 with two or
more back-end servers 404, 406 in a clustered arrangement,
the processing ability of the server 400 is markedly
increased.

0037. The dispatchers 102,302402 shown in FIGS. 1, 2
and 4, respectively, as well as the back-end Servers, are
preferably implemented entirely in application-Space, as
described in U.S. application Ser. No. 09/878,787 filed Jun.
11, 2001, the entire disclosure of which is incorporated
herein by reference. AS Such, the dispatchers and back-end
Servers may be implemented using commercially-off-the
shelf (COTS) hardware and COTS operating system soft
ware. This is in contrast to using custom hardware and/or OS
Software, which is typically more expensive and leSS flex
ible.

0.038. In one alternative embodiment of the invention, it
is connection requests, rather than data requests, that are
prioritized and queued by a Server having a dispatcher
implementing OSI layer four Switching with layer three
packet forwarding (“L4/3”). In this alternative embodiment,
connection requests received from clients are assigned pri
orities in a manner Similar to that described above: each
priority includes a Static component, based Solely on the
client priority (the static component cannot also be a func
tion of the requested resource unless the dispatcher is
configured to inspect the contents of the data requests, which
is generally not done in L4/3 dispatching), and a dynamic
component based on when the connection request was
received relative to other connection requests. Thus, once a
connection request is dequeued and forwarded to a back-end
Server for Service, the back-end Server establishes a connec
tion with the corresponding client, and will continue to
Service data requests from that client (while other connec
tion requests are stored by the dispatcher in a queue) until
the connection is terminated. The server of this alternative
embodiment is preferably a cluster-based Server, and is
preferably implemented in a manner described in U.S.
application Ser. No. 09/965,526 filed Sep. 26, 2001, the
entire disclosure of which is incorporated herein by refer
ence. The dispatchers and back-end Servers described herein
may each be implemented as a distinct device, or may
together be implemented in a single computer device having
one or more processors.

0.039 When introducing elements of the present inven
tion or the preferred embodiment(s) thereof, the articles “a”,
“an”, “the' and "said” are intended to mean that there are
one or more of the elements. The terms “comprising,
“including” and “having” are intended to be inclusive and
mean that there may be additional elements other than the
listed elements.

0040 AS various changes could be made in the above
constructions without departing from the Scope of the inven

Jun. 27, 2002

tion, it is intended that all matter contained in the above
description or shown in the accompanying drawings shall be
interpreted as illustrative and not in a limiting Sense.

What is claimed:
1. A computer Server comprising:
a dispatcher for receiving a plurality of data requests from

clients, and for assigning a priority to each of the data
requests, each assigned priority including a Static pri
ority component and a dynamic priority component;
and

at least one back-end Server for processing data requests
received from the dispatcher;

wherein the dispatcher is configured to forward the
received data requests to the at least one back-end
Server in an order corresponding to their assigned
priorities including their Static priority components and
their dynamic priority components.

2. The computer server of claim 1 wherein the dispatcher
includes at least one queue for Storing the received data
requests, and wherein the dispatcher is configured for
retrieving data requests from the queue in an order corre
sponding to their assigned priorities.

3. The computer server of claim 2 wherein the at least one
queue includes a first queue and a Second queue, and
wherein the dispatcher is configured to Store received data
requests in the first queue until a wrap-around condition
exists for the assigned priorities, and to then Store received
data requests in the Second queue.

4. The computer server of claim 3 wherein the dispatcher
is configured to retrieve data requests from the first queue
prior to retrieving data requests from the Second queue.

5. The computer server of claim 1 wherein the at least one
back-end Server comprises at least two back-end Servers for
processing data requests received from the dispatcher, and
wherein the computer Server is a cluster-based Server.

6. The computer server of claim 1 wherein the dispatcher
is an L7/3 dispatcher.

7. The computer server of claim 6 wherein the dispatcher
is implemented entirely in application-Space using COTS
hardware and COTS OS Software.

8. The computer Server of claim 1 wherein each assigned
priority is determined from an equation P=S+D, where P.
is the assigned priority of data request R, S, is the Static
priority component for data request R, and D, is the dynamic
priority component for data request R.

9. The computer server of claim 8 wherein each dynamic
priority component is determined from an equation

Di=Dax-1-(R1 mod Das),
where max(P) defines a highest priority data request.
10. The computer server of claim 8 wherein each dynamic

priority component is determined from an equation
D=(R, mod D max).

where min(P) defines a highest priority data request.
11. A method of processing requests for data from a

Server, the method comprising:
receiving a plurality of data requests from clients,
assigning a priority to each of the data requests, each

assigned priority including a Static priority component
and a dynamic priority component; and

US 2002/00831.17 A1

processing the received data requests as a function of their
assigned priorities including their Static priority com
ponents and their dynamic priority components.

12. The method of claim 11 further comprising storing the
received data requests and their assigned priorities in one or
more queues, and wherein the processing includes retrieving
the Stored data requests from Said one or more queues and
forwarding the retrieved data requests to one or more
back-end Servers for Service.

13. The method of claim 11 wherein the assigning
includes determining the dynamic priority component for
each data request received over a specific connection as a
function of when that data request is received relative to
other data requests received over Said specific connection or
another connection.

14. The method of claim 11 wherein the assigning
includes determining the dynamic priority component for
each data request received over a specific connection Solely
as a function of when that data request is received relative
to other data requests received over Said Specific connection.

15. The method of claim 11 wherein the receiving
includes receiving a plurality of data requests over a same
connection, and wherein the assigning includes assigning a
priority to a first one of the data requests received over the
Same connection, and assigning a priority to a Second one of
the data requests received over the same connection only
after Said first one of the data requests undergoes the
processing.

16. The method of claim 11 wherein each static priority
component is represented by a number, wherein each
dynamic priority component is represented by a number, and
wherein each assigned priority is determined by Summing its
Static priority component and its dynamic priority compo
nent.

17. The method of claim 11 wherein the assigning
includes determining the Static priority component on a
client basis, a requested resource basis, or both.

18. The method of claim 11 wherein the assigning is
performed after the receiving.

19. A computer-readable medium having computer-ex
ecutable instructions for performing the method of claim 11.

20. A method of processing requests for data from a
Server, the method comprising:

Jun. 27, 2002

receiving a plurality of data requests,
assigning a priority to each received data request, each

assigned priority including a Static priority component
and a dynamic priority component;

Storing the received data requests in a queue;
retrieving the Stored data requests from the queue in an

order corresponding to their assigned priorities includ
ing their Static priority components and their dynamic
priority components, and

Servicing the retrieved data requests.
21. The method of claim 20 wherein the assigning

includes determining the dynamic priority component for
each received data request according to when that data
request is received with respect to other data requests.

22. The method of claim 20 wherein the storing includes
Storing the received data requests and their assigned priori
ties in the queue.

23. The method of claim 20 wherein the dynamic priority
component is determined using a general request counter.

24. The method of claim 20 wherein the dynamic priority
component is determined using a connection request
COunter.

25. A method of processing requests for data from a
Server, the method comprising:

receiving a plurality of data requests,
for each received data request, assigning a priority to the

data request on a client basis, a requested resource
basis, or both, and according to when the data request
was received; and

Servicing the received data requests in an order corre
sponding to their assigned priorities.

26. The method of claim 25 wherein the receiving step
includes receiving the plurality of data requests at a dis
patcher, the assigning Step includes assigning at the dis
patcher a priority to each received data request, and the
Servicing Step includes Servicing the received data requests
using at least one back-end Server.

	ASSURED QUALITY-OF-SERVICE REQUEST SCHEDULING
	

	1498418931550315129-US20020083117A1

