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A B S T R A C T

Recent advancements in remote sensing technology, specifically Light Detection and Ranging (LiDAR)
sensors, provide the data needed to quantify forest characteristics at a fine spatial resolution over large
geographic domains. From an inferential standpoint, there is interest in prediction and interpolation of
the often sparsely sampled and spatially misaligned LiDAR signals and forest variables. We propose a fully
process-based Bayesian hierarchical model for above ground biomass (AGB) and LiDAR signals. The process-
based framework offers richness in inferential capabilities, e.g., inference on the entire underlying processes
instead of estimates only at pre-specified points. Key challenges we obviate include misalignment between
the AGB observations and LiDAR signals and the high-dimensionality in the model emerging from LiDAR
signals in conjunction with the large number of spatial locations. We offer simulation experiments to eval-
uate our proposed models and also apply them to a challenging dataset comprising LiDAR and spatially
coinciding forest inventory variables collected on the Penobscot Experimental Forest (PEF), Maine. Our key
substantive contributions include AGB data products with associated measures of uncertainty for the PEF
and, more broadly, a methodology that should find use in a variety of current and upcoming forest variable
mapping efforts using sparsely sampled remotely sensed high-dimensional data.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Coupling forest inventory with remotely sensed Light Detection
and Ranging (LiDAR) datasets using regression models offers an
attractive approach to mapping forest variables at stand, regional,
continental, and global scales. LiDAR data have shown great potential
for use in estimating spatially explicit forest variables over a range
of geographic scales (Asner et al., 2009; Babcock et al., 2013; Finley
et al., 2011; Iqbal et al., 2013; Muss et al., 2011; Næsset, 2011; Neigh
et al., 2013). Encouraging results from these and many other studies
have spurred massive investment in new LiDAR sensors and sen-
sor platforms, as well as extensive campaigns to collect field-based
calibration data.

Much of the interest in LiDAR based forest variable mapping is
to support carbon monitoring, reporting, and verification (MRV) sys-
tems, such as defined by the United Nations Programme on Reducing
Emissions from Deforestation and Forest Degradation (UN-REDD)

* Corresponding author at: Department of Forestry, Michigan State University,
East Lansing, MI 48824, United States.

and NASA’s Carbon Monitoring System (CMS) (CMS, 2010; Le Toan
et al., 2011; Ometto et al., 2014; UN-REDD, 2009). In these, and
similar initiatives, AGB is the forest variable of interest because it
provides a nearly direct measure of forest carbon (i.e., carbon com-
prises ∼50% of wood biomass, West, 2004). Most efforts to quantify
and/or manage forest ecosystem services, e.g., carbon, biodiversity,
and water, seek high spatial resolution wall-to-wall data products
such as gridded maps with associated measures of uncertainty, e.g.,
point and associated credible intervals (CIs) at the pixel level. In fact
several high profile international initiatives include language con-
cerning the level of spatially explicit acceptable error in total forest
carbon estimates, see, e.g., UN-REDD (2009) and UNFCCC (2015).

Many current LiDAR data acquisition campaigns focus on achiev-
ing complete coverage at a high spatial resolution over the domain
of interest, e.g., resulting in a fine grid with each pixel yielding
a high-dimensional LiDAR signal. In practice, a variety of non-
statistical approaches are then used to characterize the LiDAR
signals—effectively a dimension reduction step, Anderson et al.
(2008), Gonzalez et al. (2010), Muss et al. (2011), Tonolli et al. (2011),
Popescu and Zhao (2008), and Babcock et al. (2013). These signal
characteristics serve as regressors in models where the outcome

http://dx.doi.org/10.1016/j.rse.2016.12.004
0034-4257/© 2016 Elsevier Inc. All rights reserved.
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forest variables are measured at a relatively small set of geo-
referenced forest inventory plots. The regression model is then
used to predict the forest outcome variables at all LiDAR pixels
across the domain. This approach works well for small-scale forest
variable mapping efforts. However, next generation LiDAR acquisi-
tion campaigns aimed at mapping and quantifying variables over
large spatial extents, such as ICESat-2 (Abdalati et al., 2010; ICESat-2,
2015), Global Ecosystem Dynamics Investigation LiDAR (GEDI) (GEDI,
2014), and NASA Goddard’s LiDAR, Hyper-spectral, and Thermal (G-
LiHT) imager (Cook et al., 2013; Stockton, 2014), will collect LiDAR
data samples from the domain of interest, e.g., using transect or clus-
ter designs. The designs specify point-referenced LiDAR sampling
across the domain extent and also over forest inventory plot loca-
tions (again for regression model calibration). In such settings the
primary objective is still delivery of high resolution wall-to-wall
predictive maps of forest variables, but also corresponding maps of
LiDAR signal predictions at non-sampled locations. Further, to inform
future LiDAR collection sampling designs, there is interest in char-
acterizing the spatial dependence of within and, more importantly,
among LiDAR signals. This information can help guide LiDAR sam-
pling strategies with the aim to maximize some information gain
criterion; see, e.g., Xia et al. (2006), and Mateu and Müller (2012).

We propose a flexible framework to jointly model spatially mis-
aligned LiDAR signals and forest inventory plot outcomes (e.g., AGB)
that will i) automatically (i.e., no explicit variable selection step)
extract information from the high-dimensional LiDAR signals to
explain variability in the forest variable of interest, ii) estimate
spatial dependence among and within LiDAR signals to improve
inference and possibility help inform future LiDAR sampling strate-
gies, and iii) provide full posterior predictive inference for both LiDAR
signals and forest variables at locations where either one or neither
of the data sources are available (i.e., wall-to-wall prediction).

Meeting these objectives is particularly challenging for several
reasons. From a computational standpoint each LiDAR signal is high-
dimensional and the signals as well as the forest inventory plots are
observed at a potentially large number of locations. From a model
specification standpoint there are several sources of dependence that
should be accommodated, including i) within and between LiDAR
signals, ii) between LiDAR signals and spatially proximate forest
variable measurements, and iii) residual spatial dependence in the
signals and forest variables. These dependencies often result from
strong vertical and horizontal similarities in forest structure caused
by past management and/or natural disturbances.

Our primary methodological contribution is the development
of a modeling framework for high-dimensional misaligned data.
Given the rich inference we seek (see preceding paragraph), our
Bayesian hierarchical framework jointly models LiDAR signals and
forest variables as a random process using latent Gaussian processes
(GPs). This considerably enhances the computational burden of
fitting them to datasets with a large number of spatial locations. The
costs are exacerbated further by even a modest number of heights
at which the LiDAR signal is observed. We achieve dimension reduc-
tion through bias-adjusted reduced-rank representations of the joint
LiDAR-AGB process.

The manuscript is organized as follows. Section 2 provides an
overview of the motivating dataset that comprises G-LiHT LiDAR and
AGB measured at forest inventory plots on the Penobscot Experimen-
tal Forest (PEF) in Bradley, Maine. Section 3 describes the proposed
hierarchical model for the joint LiDAR-AGB process. The details on
Bayesian prediction and implementation are given in the Supple-
mental material. Section 4 offers an analysis of a synthetic dataset
and PEF analysis. Finally, Section 5 concludes the manuscript with a
brief summary and pointers toward future work.

2. Data

The PEF is a 1600 ha tract of Acadian forest located in Bradley,
Maine (44◦ 52′ N, 68◦ 38′ W). The forest is divided into over 50
management units (MU)—delineated as black polygons in Fig. 1 (a)—
that received management and monitoring since the 1950s (Sendak
et al., 2003). Within each MU, different silvicultural treatments are
implemented, e.g., unregulated harvest, shelterwood, diameter limit
cutting, or natural regeneration. Following procedures described in
Finley et al. (2014), AGB (Mg/ha) was calculated for each of 451 per-
manent sample plots (PSPs) across the PEF, shown as point symbols
in Fig. 1 (a). The underlying surface in Fig. 1 (a) was generated by
passing the point-referenced AGB through a deterministic surface
interpolator. Due to MU specific harvesting and subsequent regrowth
cycles, the surface exhibits patterns of spatial dependence with
relatively strong homogeneity within MUs. For example, MU U7B—
highlighted in Fig. 1 (a)—received a shelterwood harvest in 1978 with
a final overstory harvest in 2003. This silvicultural treatment results
in a MU with relatively young trees and even-aged composition with
low AGB (indicated by a lighter surface color in Fig. 1 (a)). In contrast
to U7B, C12 is characterized by older and larger trees, but also greater
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Fig. 1. (a) Penobscot Experimental Forest, Maine, with management units and forest inventory plot locations delineated as polygons and points, respectively. (b) G-LiHT LiDAR
signals observed at forest inventory plots highlighted in (a).
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vertical and horizontal forest structure complexity due to repeated
selection harvests that aim to concentrate growth on economically
desirable trees. Sendak et al. (2003) and Hayashi et al. (2014) provide
additional silvicultural treatment details.

Large footprint waveforms, characteristic of space-based LiDAR
sensors, were calculated using discrete multistop returns from a
2013 PEF G-LiHT data acquisition campaign (Cook et al., 2013). As
noted in Section 1, G-LiHT is a portable multi-sensor airborne system
developed by NASA Goddard Space Flight Center that simultaneously
maps the composition and structure of terrestrial ecosystems. The
G-LiHT laser scanner (VQ-480, Riegl Laser Measurement Systems,
Horn, Austria) uses a 1550 nm laser that provides an effective mea-
surement rate of up to 150 kHz along a 60◦ swath perpendicular to
the flight direction. At a nominal flying altitude of 335 m, each laser
pulse has a footprint approximately 10 cm in diameter and is capa-
ble of producing up to 8 returns. Following data processing methods
in Blair and Hofton (1999), G-LiHT produced 26,286 georeferenced
pseudo-waveform LiDAR signals across the PEF with 451 of these
spatially coinciding with the observed PSPs. Each pseudo-waveform
covers a 15 m diameter footprint with a signal comprising 113 values
between 0 and 33.9 m above the ground. A signal value is the amount
of energy returned to the sensor from a given height divided by
the total energy emitted by the sensor over the footprint (additional
details are given in Section 4.2.1). The signal can be used to character-
izes the vertical distribution of forest structure within the footprint.
Signals corresponding to PSPs within the MUs highlighted in Fig. 1 (a)
are shown in Fig. 1 (b). Here, U7B’s even-aged and structurally homo-
geneous composition is apparent in the signals’ consistent peak at
∼8 m—corresponding to the densest layer of the forest canopy—and
minimal energy returns above ∼17 m—corresponding to maximum
forest canopy height. In contrast, C12’s signals are characterized by
non-zero values at greater heights—reflecting the prevalence of taller
trees—and greater vertical distribution of energy returns—indicative
of a vertically complex forest structure resulting from the MU’s
silvicultural treatments. The relative energy distribution in the sig-
nal does not exactly portray the vertical distribution of vegetation
because dense overstory may act to reduce the amount of energy
available to characterize lower canopy structures. Therefore, if infer-
ential interest is in the vertical distribution of leaf area density, then
we would want to transform the signal energy returns to account
for decreasing transmittance of energy through the canopy, see, e.g.,
MacArthur and Horn (1969) for theoretical motivation for such trans-
formations and Stark et al. (2015) for a recent application. Our focus
is on modeling the observed signal and gleaning information from
signal characteristics to explain variability in AGB. It is not clear that
applying a MacArthur-Horn transformation (MacArthur and Horn,
1969) to the signal data would fetch improved inference about AGB,
and hence we do not pursue such methods here. We do, how-
ever, identify these topics as potential extensions to our proposed
modeling framework, see Section 5.

3. Models

We envision AGB as a continuous spatial process {y(s) : s ∈ D ⊂
�2} measured over a finite collection of PSP’s S = {s1, s2, . . . , sns } ⊂
D, where D is the domain of interest. LiDAR signals are also assumed
to arise as the partial realizations of a process {z(�) : � ∈ D ×
H}, where � = (s, x) is a space-height coordinate, z(�) repre-
sents the LiDAR signal’s relative energy return at spatial location
s and height x, and H is the compact interval [0, M] representing
the range of possible heights. The LiDAR signals are also mea-
sured at the PSP’s in S and heights X = {x1, x2, . . . , xnx } ⊂ H.
We will assume that L = {�1, �2, . . . , �n} is a complete enumera-
tion of space-height coordinates at which the LiDAR signals have
been measured. Each �i will correspond to a unique ordered pair

(sj, xk), where sj ∈ S and xk ∈ X . If the measurements are bal-
anced across space and height, i.e., every PSP has measured the LiDAR
signal at each of the points in X , then there will be n = nsnx mea-
surements. This, however, need not be assumed for the subsequent
development.

3.1. Model for z(�)

We write the LiDAR signal as

z(�) = lz(�; bz) + u(�) + 4z(�) , (1)

where lz(�; bz) is a mean function capturing large-scale variation,
u(�) is an underlying zero-centered stochastic process over D ×
H that characterizes spatial dependence, and 4z(�)

ind∼ N(0, t2
z (x))

models random disturbances at finer scales, at least part of which
is attributed to measurement error. The variance of this fine
scale disturbance is assumed to remain invariant over the loca-
tions, but depends upon the height x at which the signal is
measured.

We assume that u(�) is a zero-centered Gaussian process over
D × H with a covariance function Cu(�, �′; hu) := Cov[u(�), u(�′)].
This function must ensure that the resulting variance-covariance
matrix corresponding to realizations of the process over any finite
subset of D × H is positive definite. A natural class of such func-
tions is that of spatiotemporal covariance functions, but with the
temporal domain being replaced by the “height” domain; Gneiting
et al. (2006) and gne (2010) provide excellent expositions of such
functions.

A relevant concern in our current application is the lack of separa-
bility, i.e., the covariance function should not factorize into a purely
spatial component and a purely height component. Separability
would imply that the spatial association in the LiDAR signals remains
invariant across heights and, similarly, the association among sig-
nals at different heights remains the same for each spatial location.
This assumption is too stringent for our application; see, e.g., the
disparity in empirical semivariogram parameter estimates presented
in the Supplementary material. Furthermore, separable covariance
functions violate the so-called “screening” effect (Stein, 2005) and
the resulting associations can be sensitive to small perturbations in
spatial locations.

Based upon the above, we use a slightly simpler version of a
highly flexible class of covariance functions developed by Gneiting
(2002),

Cu(�, �′; hu) :=
s2

u(
a|x − x′|2 + 1

)c exp

⎛
⎜⎝− c ‖ s − s′ ‖(

a|x − x′|2 + 1
)c/2

⎞
⎟⎠ , (2)

where � = (s, x), �′ = (s′, x′), and hu = {s2
u , a,c, c}, with s2

u , a,
and c all greater than 0 and c ∈ [0, 1]. The parameter c describes
the space-height interaction. Values of c close to 1 indicate strong
space and height interaction. If c is zero, then Eq. (2) is reduced to
a separable covariance function, i.e., no space and height interaction.
Observe that the above covariance function still assumes isotropy,
i.e., the associations depend upon the distances between the spatial
locations and the absolute difference between the heights. This, too,
is unlikely in practice, but we are less concerned here because non-
stationarity will be introduced in the covariance structures as a part
of dimension reduction (Section 3.3).
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3.2. Model for y(s) and z(�)

The spatial process for AGB, y(s), shares the same spatial domain
as the LiDAR process and can be modeled using a Gaussian process
over D. Thus,

y(s) = ly(s; by) + w(s) + 4y(s) , (3)

where ly(s; by) captures large scale variation or trends in AGB, w(s)
is a zero-centered spatial process, and 4y(s) is a white noise process
with zero mean and variance t2

y to capture measurement error in
AGB.

We posit that the process for AGB is associated with the process
for the LiDAR signals and desire to estimate this association. One pos-
sibility is to treat w(s) as a shared process between AGB and LiDAR
and introduce it as an additive component in Eq. (1). This, however,
causes identifiability issues. First, an additional additive process in
Eq. (1) may be difficult to identify from u(�) using a single partial
realization of the LiDAR process. Second, the AGB process is then gov-
erned by a single shared process, w(s), and adding a second process,
say v(s), to capture departure from the shared component will, again,
introduce identifiability problems. Both these problems can, in prin-
ciple, be resolved in Bayesian settings if prior elicitation was possible
on these different component processes. This, unfortunately, is diffi-
cult here and we do not pursue such approaches.

We prefer to treat u(�) as a shared underlying process, common
to both z(s; x) and y(s). However, since the AGB has support over
the spatial domain only, we assume that it is a continuous weighted
average of u(�) over X . Therefore, we write w(s) in Eq. (3) as

w(s) =
∫
X
a(x)u(s, x)dx + v(s) ≈

nx∑
j=1

a(xj)u(s, xj) + v(s) , (4)

where a(x) is a weight function that maps height in X to the real line
and v(s) is a zero-centered spatial process, independent of u(s, x), that
captures features specific to AGB that are not shared with the LiDAR
signal. Specifically, we assume v(s) is a zero-mean Gaussian process
with an exponential covariance function Cv(s, s′; hv) = s2

v exp(−0v ‖
s − s′ ‖), where hv = {s2

v ,0v}. More generally, a Matérn covariance
function (Stein, 1999) with a prior on the smoothness parameter
could have been used, but this does adds to the computational bur-
den without any discernible benefits in the substantive scientific
inference we seek in the current application.

Rather than specify the weights a(x), we represent the integrated
process in Eq. (4) as a linear combination of the u(�)′s over X for
any fixed s and regard the a(xj)′s as unknown coefficients for the
u(s, xj)′s. These coefficients capture the dependence of w(s) on u(�)
and, hence, the association between the two processes. If they are all
estimated to be effectively zero, then there is no association between
the AGB and LiDAR processes, while significant departures of any
of the coefficients from zero will indicate association between the
processes.

Let u be the n × 1 vector with elements u(�i), i = 1, 2, . . . , n
stacked so that �i = (sj, xk), where i = (j − 1)nx + k with j =
1, 2, . . . , ns and k ∈ {1, 2, . . . , nx}, and Cu(hu) is the corresponding
n × n variance-covariance matrix with entries cov(u(�i), u(�i′ )). For
the spatial process v(s), we let v be the ns × 1 vector with ele-
ments v(sj) and Cv(hv) is the corresponding ns × ns spatial covariance
matrix. Also, we assume linear fixed effects lz(�i; bz) = qz(�i)
bz
and ly(sj; by) = qy(sj)
by, where qz(�i) and qy(sj) are pz × 1 and
py×1 vectors of predictors or explanatory variables for z(�i) and y(sj),
respectively.

A joint Bayesian hierarchical model for y(sj)′s and z(�i)′s, given
measurements over S and S × X , respectively, is given by

p(H) × N
(
by | lby

, Vby

)
× N

(
bz | lbz

, Vbz

)
× N (a | la , Va)

× N (v | 0, Cv(hv)) × N(u | 0, Cu(hu))

×
ns∏

j=1

N
(

y(sj) | q

y (sj)by + a
u(sj) + v(sj), t2

y

)

×
n∏

i=1

N
(

z(�i) | q

z (�i)bz + u(�i), t2

z (xk)
)

, (5)

where H =
{
hu, hv, t2

y , t2
z

}
with t2

z =
(
t2

z (xk)
)nx

k=1, bz and by are
regression slopes for each qz(�i) and qy(sj), respectively, u(sj) is the
vector with elements u(sj, xk) for xk

′s in X yielding LiDAR signals cor-
responding to sj, a is an nx×1 vector of unknown coefficients, viz. the
a(xj)′s, for the elements in u(sj), and p(H) are joint prior distributions
on the process parameters for u(s, x) and v(s). Further specifications
customarily assume that

p(H) ∝ p(hu) × p(hv) × IG
(
t2

y | aty , bty

)
×

nx∏
k=1

IG
(
t2

z (xk) | atz , btz

)
, (6)

where p(hu) = p(a,c, c) × IG
(
s2

u |au, bu
)

and p(hv) = p(0v) ×
IG

(
s2

v |av, bv
)
, with IG denoting the inverse-Gamma distribution.

When the number of space-height coordinates n is large, estimat-
ing Eq. (5) is computationally expensive and, depending upon the
available computational resources, possibly unfeasible.

3.3. Predictive process counterparts for dimension reduction

To implement the computations necessary for estimating Eq.
(5) when n is large, we exploit reduced rank processes to achieve
dimension reduction. Such processes usually arise as basis expan-
sions of the original process with fewer number of basis functions
than the number of data points. This yields “low-rank” processes.
Every choice of basis functions yields a process and there are far
too many choices to enumerate here; see, e.g., Wikle (2010) for an
excellent overview of these methods. Here, we opt for a particularly
convenient choice, the predictive process (Banerjee et al., 2008; Fin-
ley et al., 2009), which derives the basis functions from taking the
conditional expectation of the original process, often called the “par-
ent” process, given its realizations over a fixed set of points, often
referred to as “knots”.

Let S∗
u =

{
s∗

u,1, s∗
u,2, . . . , s∗

u,n∗
u

}
and S∗

v =
{

s∗
v,1, s∗

v,2, . . . , s∗
v,n∗

v

}
be

two sets of spatial knots to be used for constructing the predictive
process counterparts of u(�) and v(s), labeled ũ(�) and ṽ(s), respec-
tively. Let X ∗ =

{
x∗

1, x∗
2, . . . , x∗

n∗
x

}
be a set of knots for heights in the

LiDAR signal. Dimension reduction is achieved because the number
of knots, i.e., n∗

u, n∗
v, and n∗

x , is much smaller than the original number
of observations ns and nx. Implementation details for the predictive
process version of Eq. (5) used in the subsequent analyses is detailed
in the Supplemental material.

3.4. Bayesian prediction

As noted in Section 1, we seek predictive inference for z(�0) at any
arbitrary space-height coordinate �0 and for y(s0) at any arbitrary
spatial location s0. The posterior predictive distributions and corre-
sponding sampling algorithms that yield this inference are defined
in the Supplemental material. In Section 4, we use posterior predic-
tive inferences at i) unobserved locations to create prediction maps
of the LiDAR signals and AGB, and to assess models’ predictive per-
formance using holdout set validation, and ii) observed locations to
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Table 1
Parameter credible intervals, 50% (2.5%,97.5%), goodness-of-fit, and predictive validation. Bold entries indicate where the true value is missed, bold goodness-of-fit metrics indicate
best fit, and bold prediction metrics indicate best predictive performance.

Parameter True Models

n∗
u = 300 and S∗

u = S n∗
u = 200 n∗

u = 100 n∗
u = 50

by,0 20 20.11 (19.3,21.06) 20.21 (19.48,21.05) 20.28 (19.46,21.32) 20.5 (19.95,21.12)
a1 −2 −1.92 (−2.25,−1.61) −2.09 (−2.49,−1.73) −2.03 (−2.63,−1.45) −1.41 (−2.19,−0.71)
a2 0 0.06 (−0.3,0.46) 0.38 (−0.13,0.83) 0.25 (−0.62,1.03) −0.1 (−1.09,0.87)
a3 2 1.57 (1.06,2.01) 1.21 (0.71,1.77) 1.12 (0.26,1.99) 0.91 (−0.09,2.01)
a4 1 0.91 (0.54,1.29) 0.77 (0.34,1.19) 0.93 (0.26,1.6) 0.68 (−0.19,1.59)
a5 5 4.94 (4.64,5.23) 4.9 (4.52,5.27) 4.82 (4.23,5.43) 5.04 (4.38,5.68)
s2

u 0.2 0.2 (0.19,0.22) 0.21 (0.2,0.22) 0.22 (0.21,0.23) 0.21 (0.2,0.22)
a 12 12.91 (11.62,14.46) 11.53 (10.1,13.36) 10.58 (9.29,12.63) 10.62 (8.77,13.19)
c 0.9 0.89 (0.84,0.93) 0.94 (0.85,0.97) 0.92 (0.85,0.95) 0.92 (0.83,0.97)
c 5 5.17 (4.62,5.93) 5.24 (4.7,5.87) 3.82 (3.35,4.29) 3.09 (2.7,3.5)
s2

v 0.5 0.64 (0.34,1.27) 0.68 (0.37,1.24) 0.51 (0.15,1.47) 0.6 (0.12,1.74)
0v 2 1.68 (0.41,3.87) 1.7 (0.49,3.8) 1.38 (0.21,5.26) 7.6 (0.25,9.99)
pD for AGB & LiDAR 95.01 95.94 96.14 92.39
DIC for AGB & LiDAR 28,399.73 29,238.34 30,140.16 30,647.04
G for AGB & LiDAR 6883.54 7705.30 8566.07 8779.24
P for AGB & LiDAR 7507.49 8215.54 9007.16 9386.19
D = G + P for AGB & LiDAR 14,391.03 15,920.84 17,573.23 18,165.43
RMSPE for AGB & LiDAR 0.80 0.80 0.81 0.82
CRPS for AGB & LiDAR 2054.52 2056.32 2076.22 2090.47
GRS for AGB & LiDAR − 712.04 −743.83 −864.92 −962.09
95% prediction interval coverage for AGB& LiDAR % 95.27 95.1 95.39 94.9
RMSPE for AGB|observed LiDAR 2.79 2.74 2.78 2.81
CRPS for AGB|observed LiDAR 159.32 156.28 157.71 158.69
GRS for AGB|observed LiDAR −311.06 − 305.18 −308.63 −308.17
95% prediction interval coverage for AGB|observed LiDAR% 89 91 93 93
95% prediction interval width for AGB|observed LiDAR 9.30 9.70 9.74 9.96
CPU time 101.7 h 60.0 h 27.5 h 13.8 h

provide replicated data (see, e.g., Gelman et al., 2013) used to assess
candidate models’ fit.

4. Data analysis

The proposed Markov chain Monte Carlo (MCMC) sampler and
prediction algorithms, detailed in the Supplementary material, were
implemented in C++. All code needed to fit the proposed mod-
els and reproduce the subsequent results are available in the
Supplemental material. Posterior inference for subsequent analysis
were based upon three chains of 50,000 MCMC iterations (with a
burn-in of 5000 iterations). The computations were conducted on a
Linux workstation using two Intel Nehalem quad-Xeon processors.

In the subsequent simulation experiment Section 4.1 and PEF
data analysis Section 4.2 candidate models were compared based

on parameter estimates, fit to the observed data, out-of-sample pre-
diction, and posterior predictive distribution coverage. Model choice
was assessed using the deviance information criterion or DIC and
model complexity pD (Spiegelhalter et al., 2002) and a posterior pre-
dictive loss criterion D = G + P (Gelfand and Ghosh, 1998), where
smaller values of DIC and D indicate preferred models. For both anal-
yses, a 25% holdout set, comprising locations selected at random,
served to assess out-of-sample prediction. Prediction accuracy for
the holdout locations was measured using root mean squared pre-
diction error (RMSPE) (Yeniay and Goktas, 2002) as well as CRPS and
GRS given in Eqs. (21) and (27), respectively, in Gneiting and Raftery
(2007). Smaller values RMSPE and CRPS, and larger values of GRS,
indicate improved predictive ability. The percent of holdout locations
that fell within their respective posterior predictive distribution 95%
CI was also computed along with the average interval width.
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Fig. 2. Parameter posterior summaries, 50% point symbol and 95% credible interval bars. Posterior summaries are jittered slightly along the x-axis to facilitate comparison.
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Fig. 3. Locations of observed and holdout PSPs, predictive process knots, and illustra-
tive transect on the PEF.

4.1. Simulation experiment

Using the true parameter values given in the first column of
Table 1 and Fig. 2, we simulated AGB and LiDAR signals from the
full GP joint likelihood for AGB and LiDAR in Eq. (5) for ns = 400
coinciding locations in S on a regular grid within a [0, 4] × [0, 4]
domain and nx = 50 heights within [0,5]. The AGB signal was
regressed on a global intercept (by) while the LiDAR signals were
regressed on the 50 height-specific intercepts and non-spatial vari-
ances; thus tz and b2

z are both 50 × 1. A subset of 100 locations from
the 400 were withheld to assess out-of-sample predictions. Each of
our candidate predictive process models used n∗

x = 5 equally spaced
knots for height in the [0,5] interval and n∗

v = ns = 300 with S∗
v = S .

Candidate models differed on the number of knots n∗
u. We consid-

ered models with n∗
u = 300 and S∗

u = S and with n∗
u equaling 200,

100, and 50 knots, respectively, selected on a regular grid within the
domain.

Parameter estimates and performance metrics for all candidate
models are given in Table 1. With the exception of a3 for n∗

u equal
to 200 and 100, and a few of the covariance parameters for n∗

u
equal to 100 and 50, the 95% CIs for all parameters included the
true values. Importantly, the a estimates—used to relate information
between LiDAR signals and AGB—remain consistent in sign and mag-
nitude as the spatial process associated with the signals is modeled
over a reduced number of knots. Fig. 2 provides the posterior sum-
maries for the 50 height-specific intercepts and non-spatial variances
associated with the LiDAR signals; results for only two candidate
models are provided due to the large number of parameters and min-
imal difference in estimates among the models. These estimates also
seem robust to a coarser representation of the underlying process
(Fig. 2).

Not surprisingly, for the joint outcome vector, goodness-of-fit and
out-of-sample prediction is best for the full model, i.e., n∗

u = 300
(rows labeled AGB & LiDAR in Table 1). Interestingly, in an inter-
polation setting when LiDAR is observed, RMSPE, CRPS and GRS all
show that AGB prediction improves slightly when moving from the
full model to the n∗

u = 200 knot model (rows labeled AGB | observed
LiDAR in Table 1). In general, goodness-of-fit and predictive per-
formance is not substantially degraded for the predictive process
models when compared to the full model. The last row in Table 1
gives the CPU time for the candidate models. A 6-fold decrease in
knots between the full model and n∗

u = 50 knot model results in a
7-fold decrease in computing time.

4.2. Forest LiDAR and biomass data analysis

4.2.1. Data preparation and exploratory data analysis
Pre-processing the raw G-LiHT LiDAR data followed methods

detailed in Cook et al. (2013) and produced a complete 15 × 15 m
grid across the PEF, where each pixel contained a LiDAR signal. Prior
to analysis, these LiDAR signals were further processed to remove
excess zeros and coarsened to remove small-scale noise. Specifi-
cally, the maximum tree height across the PEF was approximately
22.8 m and hence LiDAR signal values beyond this height were zero
and subsequently removed. Small-scale anomalies that occurred
across each signal’s 113 values were smoothed by averaging every
two consecutive measurements. Truncation above forest canopy
extent and smoothing resulted in signals of length nx = 39 within

Table 2
Parameter credible intervals, 50% (2.5%,97.5%), and goodness-of-fit for the n∗

u = 339 and n∗
v = 339 models. Bold parameter values indicated values that differ from zero where

appropriate and bold goodness-of-fit metrics indicate best fit.

Parameter Height knot models

n∗
x = 2 n∗

x = 3 n∗
x = 4 n∗

x = 5 n∗
x = 6 n∗

x = 7

by,0 0.21 (−0.43,0.86) 0.01 (−0.7,0.76) −0.06 (−0.77,0.65) 0.39 (−0.51,1.35) 0.09 (−0.76,0.98) −0.12 (−1.01,0.71)
by,Elev 0.02 (0,0.03) 0.02 (0.01,0.04) 0.03 (0.01,0.04) 0.02 (−0.01,0.04) 0.02 (0,0.04) 0.03 (0.01,0.05)
a1 − 0.08 (−0.15,−0.01) −0.06 (−0.15,0.03) −0.04 (−0.09,0.01) 0.02 (−0.04,0.07) −0.05 (−0.1,0.01) −0.04 (−0.09,0.02)
a2 0.33 (0.27,0.39) 0.06 (−0.11,0.24) − 0.16 (−0.23,−0.1) −0.05 (−0.11,0.03) − 0.11 (−0.18,−0.04) − 0.07 (−0.13,0)
a3 – 0.43 (0.33,0.52) 0.1 (0.05,0.16) 0.05 (−0.02,0.12) − 0.1 (−0.17,−0.03) − 0.09 (−0.15,−0.03)
a4 – – 0.26 (0.13,0.39) 0.2 (0.14,0.27) 0.04 (−0.03,0.12) −0.01 (−0.06,0.06)
a5 – – – 0.28 (0.13,0.47) 0.11 (0.03,0.18) 0.06 (−0.02,0.12)
a6 – – – – 0.18 (0.06,0.35) 0.17 (0.07,0.28)
a7 – – – – – 0.04 (−0.13,0.28)
s2

u 0.1 (0.1,0.11) 0.16 (0.14,0.17) 0.48 (0.44,0.52) 0.61 (0.57,0.65) 0.97 (0.88,1.07) 1.15 (1.07,1.26)
a 1.12 (0.99,1.28) 1.41 (1.24,1.56) 0.75 (0.7,0.8) 1.12 (1.05,1.18) 0.99 (0.93,1.05) 1.05 (0.99,1.11)
c 0.99 (0.98,0.99) 1 (1,1) 1 (0.99,1) 1 (1,1) 0.99 (0.98,1) 1 (1,1)
c 16.39 (14.03,19.62) 10.94 (9.89,12.14) 8.89 (8.16,9.72) 8.55 (7.98,9.1) 8.07 (7.54,8.59) 8.44 (7.94,9.01)
s2

v 0.09 (0.07,0.15) 0.11 (0.07,0.18) 0.1 (0.06,0.13) 0.1 (0.07,0.17) 0.08 (0.07,0.11) 0.1 (0.08,0.12)
0v 3.6 (2.23,7.49) 3.27 (1.86,4.93) 3.59 (1.84,5.32) 2.14 (1.64,3.55) 4.51 (3.34,6.58) 3.8 (3.04,4.82)
t2

y 0.03 (0.01,0.04) 0.03 (0.02,0.04) 0.03 (0.02,0.03) 0.03 (0.02,0.04) 0.02 (0.01,0.03) 0.02 (0.02,0.03)
pD 112.67 113.14 105.05 104.81 104.28 100.52
DIC 25,249.95 23,914.36 19,508.47 15,141.14 12,678.65 9627.62
G 10,201.51 8243.9 6932.84 4466.97 3636.59 3165.57
P 10,606.52 8770.24 7522.97 4918.89 4188.48 3595.77
D 20,808.03 17,014.13 14,455.8 9385.86 7825.07 6761.33
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Table 3
Parameter credible intervals, 50% (2.5%,97.5%), and goodness-of-fit for the n∗

u = 170 and n∗
v = 339 models. Bold parameter values indicated values that differ from zero where

appropriate and bold goodness-of-fit metrics indicate best fit.

Parameter Height knot models

n∗
x = 2 n∗

x = 3 n∗
x = 4 n∗

x = 5 n∗
x = 6 n∗

x = 7

by,0 −0.09 (−0.76,0.59) −0.44 (−1.16,0.27) −0.25 (−0.88,0.37) −0.15 (−0.9,0.57) −0.15 (−0.82,0.49) −0.2 (−0.92,0.48)
by,Elev 0.03 (0.01,0.04) 0.03 (0.02,0.05) 0.03 (0.02,0.04) 0.03 (0.01,0.04) 0.03 (0.01,0.04) 0.03 (0.01,0.04)
a1 −0.2 (−0.42,0.04) − 0.4 (−0.66,−0.14) −0.03 (−0.17,0.1) −0.07 (−0.22,0.07) −0.1 (−0.26,0.03) −0.13 (−0.32,0.08)
a2 0.72 (0.53,0.89) −0.45 (−0.79,0.01) − 0.28 (−0.5,−0.08) − 0.25 (−0.44,−0.06) − 0.13 (−0.28,0) −0.09 (−0.26,0.09)
a3 – 0.62 (0.37,0.86) 0.23 (0.05,0.41) −0.13 (−0.31,0.05) − 0.28 (−0.44,−0.14) − 0.24 (−0.45,−0.04)
a4 – – 0.33 (0.08,0.55) 0.24 (0.11,0.42) 0.14 (−0.03,0.31) −0.06 (−0.2,0.1)
a5 – – – 0.1 (−0.19,0.41) 0.11 (−0.05,0.31) 0.12 (−0.06,0.32)
a6 – – – – 0.09 (−0.22,0.31) 0.12 (−0.12,0.37)
a7 – – – – – 0.05 (−0.3,0.41)
s2

u 0.05 (0.05,0.06) 0.09 (0.07,0.1) 0.24 (0.22,0.28) 0.35 (0.32,0.39) 0.39 (0.35,0.44) 0.42 (0.38,0.48)
a 0.8 (0.64,1) 1.02 (0.82,1.23) 0.84 (0.74,0.94) 1.23 (1.12,1.35) 1.25 (1.14,1.37) 1.49 (1.36,1.64)
c 0.98 (0.9,0.99) 0.99 (0.96,1) 0.99 (0.97,1) 0.99 (0.98,1) 1 (0.99,1) 1 (0.99,1)
c 6.02 (5.32,6.71) 4.75 (4.19,5.39) 3.23 (2.85,3.6) 3.05 (2.77,3.39) 2.81 (2.53,3.15) 2.89 (2.55,3.29)
s2

v 0.08 (0.05,0.16) 0.09 (0.05,0.14) 0.06 (0.04,0.09) 0.08 (0.04,0.18) 0.05 (0.04,0.08) 0.06 (0.04,0.1)
0v 2.63 (1.32,5.02) 2.51 (1.43,4.54) 3.92 (2.02,8.4) 1.42 (1.13,3.61) 8.17 (3.76,16.33) 4.1 (2.6,7.84)
t2

y 0.04 (0.02,0.05) 0.03 (0.02,0.04) 0.03 (0.02,0.04) 0.04 (0.02,0.05) 0.02 (0.01,0.05) 0.03 (0.02,0.04)
pD 118.32 121.42 110.41 112.36 114.27 110.13
DIC 26,952.72 26,222.81 24,446.58 22,809.18 22,325.5 21,889.75
G 10,703.8 9529.07 8085.34 6678.27 6402.89 6131.33
P 10,868.98 9840.64 8480.8 7080.34 6885.51 6656.74
D 21,572.78 19,369.71 16,566.14 13,758.61 13,288.4 12,788.07

the [0, 22.8] m height interval. Fig. 1 (b) illustrates the processed
signals over the PSPs within two MUs.

As described in Section 1, important current and future LiDAR
acquisition missions sparsely sample the domain of interest. The
sampling designs, e.g., transects or clusters, aim to collect LiDAR data
across the domain and also at forest inventory plot locations. To
mimic the sparseness of these anticipated datasets and associated
inferential challenges, only LiDAR signals that spatially coincided
with PSPs were used for candidate model parameter estimation.

Candidate models were assessed without and with predictor vari-
ables. The set of candidate models without predictor variables (i.e.,
qz = 1 and qy = 1, i.e., intercepts only) mimic a worst-case settings
where we do not have complete coverage, wall-to-wall, predictor
variables. The set of candidate models with predictor variables use
ground surface topographic characteristics derived from G-LiHT’s dig-
ital elevation model to help explain variability in AGB and LiDAR
signals. Although we considered a host of aspect, slope, and roughness
predictor variables in exploratory data analysis using the proposed
models (following suggested topographic transformations in Stage,
1976), only elevation consistently explained a substantial portion of
variability in observed AGB and LiDAR signals. Therefore, the set of

models with predictor variables was fit using q

z (�) = (1, Elev(s)) and

q

y (s) = (1, Elev(s)), where Elev is ground elevation (m).

To better assess the information contribution of latent LiDAR
regressors for AGB prediction an additional set of intercept only
models were fit with v(s) set to zero. For this set of models, only
information from the latent LiDAR regressors, i.e., via a, is available
to explain variability in AGB.

4.2.2. Candidate model results and discussion
For brevity, in the main text we only present results for the set

of candidate models what include elevation as a predictor variable.
Results for the intercept only and v(s) set to zero models are offered
in the Supplemental material. Results were comparable among all
candidate model sets; however, models with the elevation predictor
and v(s) showed consistent, albeit marginal, improvement in fit and
predictive performance.

Candidate models were formed by varying n∗
x , n∗

u, and n∗
v along

with knot location following the approximately optimal knot design
criteria described in the Supplementary material. We present results
for n∗

x from 2 to 7, n∗
u equal 339 and 170, and n∗

v = 339. All candidate
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Fig. 4. Parameter posterior summaries, 50% point symbol and 95% credible interval bars. Posterior summaries are jittered slightly along the x-axis to facilitate comparison.
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Table 4
Prediction metrics for the n∗

u = 339 and n∗
v = 339 models. Bold values indicate best predictive performance.

Parameter Height knot models

n∗
x = 2 n∗

x = 3 n∗
x = 4 n∗

x = 5 n∗
x = 6 n∗

x = 7

RMSPE for AGB & LiDAR 0.883 0.842 0.83 0.781 0.777 0.77
CRPS for AGB & LiDAR 1944.36 1868.3 1846.69 1754.68 1773.21 1777.23
GRS for AGB & LiDAR −1895.37 −1381.9 −1359.45 − 1084.02 −1230.43 −1376.24
95% prediction coverage for AGB & LiDAR 93.5 93.8 94.2 93.4 94.9 95.7
RMSPE for AGB|observed LiDAR 0.313 0.308 0.304 0.311 0.306 0.305
CRPS for AGB|observed LiDAR 19.84 19.36 19.16 19.49 19.26 19.22
GRS for AGB|observed LiDAR 140 151.73 154.43 151.4 153.75 153.93
95% prediction interval coverage for AGB|observed LiDAR 90.2 93.8 93.8 96.4 95.5 95.5
95% prediction interval width for AGB|observed LiDAR 1 1.1 1.12 1.23 1.19 1.22

models were fit using a subset of ns = 339 PSPs selected at ran-
dom from the complete set of 451 PSPs. The remaining 112 PSP were
used for out-of-sample prediction validation. Observed and holdout
PSPs along with knot locations are illustrated in Fig. 3. Here too, an
example transect is identified along with locations where the tran-
sect crosses MU boundaries. This example transect is used to help
visualize and assess results.

Parameter estimates and goodness-of-fit metrics for the afore-
mentioned choices of n∗

x are provided in Tables 2 and 3 for n∗
u equal

339 and 170, respectively. For both choices of n∗
u, increasing the num-

ber of height knots n∗
x resulted in improved fit (noted by lower values

of DIC and D). This makes sense because a greater number of knots
provides an improved representation of the LiDAR signal. This result
also holds for the intercept only and v(s) = 0 candidate models
(Supplementary material Tables S1, S2, S5, and S6).

The regression slope parameter estimates for by,Elev in Tables 2
and 3 suggest elevation explains a significant amount of variation in
AGB, with greater biomass occurring on higher elevation PSPs. Fig. 4
provides posterior summaries for the LiDAR signal’s height-specific
intercept bz,0, elevation regression slope parameter bz,Elev, and non-
spatial variance parameter estimates for two candidate models. For
heights of less than ∼10 m (corresponding to bz index ∼20 in Fig. 4
(b)), higher elevation is associated with fewer energy returns, and
between ∼10 and 18 m (corresponding to bz index ∼20–35 in Fig. 4
(b)) higher elevation is associated with greater energy returns. This
is not surprising, given by,Elev estimates suggest greater AGB is asso-
ciated with higher elevation and tall dense canopies are indicative of
forest with greater AGB.

Also, unlike the synthetic data analysis, panels (a) and (b) in Fig. 4,
show differences in precision between parameter estimates at dif-
ferent levels of n∗

u. Specifically, we see more precise estimates of the
intercept and elevation regression slope parameters at n∗

u = 170
versus n∗

u = 339. This is likely due to a phenomena called spatial
confounded (see, e.g., Hanks et al., 2015), which is most pronounced
when a predictor variable and random effect are correlated, in our
case elevation seems to be correlated spatially with ũ(�). The greater
the resolution on the spatial process, i.e. moving from n∗

u = 170 to

339, the greater the influence of spatial confounding on the estimates
of b1,Elev. Spatial confounding can result in wider regression coeffi-
cient credible intervals but should not have deleterious effects on
prediction, i.e., the inferential focus of our analysis.

Fig. 4 (c) shows lower residual variances for n∗
u = 339 across

heights. This is not surprising, given the additional information
about the signal supplied by the higher resolution spatial process
representation.

Inference on a, which act as weights for the LiDAR process, help
us gauge the usefulness of the latent LiDAR regressors for explaining
variability in AGB. The increasing subscript value on a′s in Tables 2
and 3 correspond to increasing knot heights in X ∗. Regardless of the
choice for n∗

u or n∗
v, estimates of a and knot height are positively asso-

ciated, for example, estimates of a for the n∗
x = 6 model in Table 2

increase from a1 (corresponding to knot x∗
1 which is near the ground)

to a6 (corresponding to x∗
6 which is near the maximum forest canopy

height). The intuition here is that the latent LiDAR process ũ(�) tend
to have larger values at heights where energy return is greater (i.e.,
where the signal encounters tree material such as leaves, branches,
and boles) and small where energy return is low (i.e., where there is
mostly empty space in the vertical profile of the forest, or dense over-
story intercepts the majority of the signal). Typically, more mature
forest with large diameter and tall trees have higher AGB compared
with younger lower canopy or sparsely populated forest. Therefore,
we expect greater AGB in regions returning much of the LiDAR signal
from greater heights and, conversely, lower AGB in regions returning
much of the signal at lower heights.

Tables 4 and 5 provide out-of-sample prediction validation
results corresponding to the models presented in Tables 2 and 3,
respectively. For joint prediction of AGB and LiDAR, using either level
of n∗

u, RMSPE favors n∗
x = 7 whereas selection results based on CRPS

and CRS are mixed. Importantly, however, holdout validation results
suggest there is very little difference in predictive ability among the
range of height knots beyond n∗

x = 2 or 3. If interest is in predicting
AGB at a location given observed LiDAR, the majority of the pre-
diction metrics favor n∗

x between 4 and 6 as indicated in the lower
portion of Tables 4 and 5.

Table 5
Prediction metrics for the n∗

u = 170 and n∗
v = 339 models. Bold values indicate best predictive performance.

Parameter Height knot models

n∗
x = 2 n∗

x = 3 n∗
x = 4 n∗

x = 5 n∗
x = 6 n∗

x = 7

RMSPE for AGB & LiDAR 0.876 0.846 0.824 0.798 0.793 0.792
CRPS for AGB & LiDAR 1916.97 1867.7 1814.08 1755.98 1748.6 1741.51
GRS for AGB & LiDAR −1009.11 −1052.07 − 976.27 −1060.06 −1024.2 −1103.49
95% prediction coverage for AGB & LiDAR 94.6 94.2 93 91.8 91.6 91.5
RMSPE for AGB|observed LiDAR 0.304 0.302 0.298 0.303 0.296 0.298
CRPS for AGB|observed LiDAR 19.11 18.92 18.74 19.02 18.62 18.75
GRS for AGB|observed LiDAR 153.35 156.75 158.25 154.26 160.24 158.42
95% prediction interval coverage for AGB|observed LiDAR 92.9 93.8 93.8 92.9 93.8 94.6
95% prediction interval width for AGB|observed LiDAR 1.05 1.09 1.05 1.06 1.07 1.08
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Fig. 5. Posterior predictive median for LiDAR signals along the example transect denoted in Fig. 3.

Results for the intercept only and v(s) = 0 candidate models are
presented in the Supplementary material. For the v(s) = 0 models, fit
and prediction is only influenced by the choice of n∗

x and n∗
u. Compar-

ing results between the intercept only model and v(s) = 0 suggest
that inclusion of v(s) has little effect on the best model selected
using goodness-of-fit and out-of-sample prediction validation met-
ric within each model set, i.e., n∗

u equal 339 and 170 (Supplementary
material Tables S1–S8). This suggests that the underlying process
seems to be driven by features shared between AGB and LiDAR and
there is negligible information on features specific to AGB that are
not shared by LiDAR. Hence, the shared AGB-LiDAR process pursued
in this work. However, inclusion of v(s) does marginally improve
fit to the data and prediction. This improvement suggests there is

some spatial structure in the residuals of AGB that is not captured by
information from the LiDAR signals.

It is useful to consider a 2-dimensional slice through the data to
further assess candidate model results. Fig. 5 (a) is the side-view of
the observed LiDAR signals along the example transect denoted in
Fig. 3. Analogous to the portrayal in Fig. 1 (b), larger values of the sig-
nal correspond to greater density of tree material; hence, one could
imagine Fig. 5 (a) is like looking at the side of a forest (15 m in width
and ∼700 m in length) where greater values correspond to denser
forest. Lower values in Fig. 5 (a) could occur because there is no for-
est (i.e., above the canopy extent), sparse forest, or overstory acts to
block the LiDAR signal from penetrating into the lower portions of
the forest. MU boundaries are also superimposed on Fig. 5 (a) and
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clearly show how different silvicultural treatments (i.e., tree harvest-
ing) result in different vertical and horizontal distributions of tree
material. For example, MU C22 is a young, short stature, forest ver-
sus the older, taller, and more vertically homogeneous forest in MU
U3. As seen in Fig. 3, no PSPs or knots in S∗

u fall on the transect and

hence the LiDAR signals in Fig. 5 (a) were not used for parameter
estimation.

For brevity, we subsequently consider n∗
x = 6 candidate models

but note that, in general, values of n∗
x ≥ 4 yield comparable results.

Signal prediction along the example transect using the n∗
x = 6 mod-

els are given in panels (b) and (c) in Fig. 5. Comparison between
these predictions and observed data, Fig. 5 (a), shows the candidate
models capture the dominant trends in LiDAR signals. Reducing u∗
process knots by half, i.e., moving from the n∗

u = 339 to n∗
u = 170

model, does not greatly affect the vertical and horizontal distribution
of predicted signal values.

The observed signal data, Fig. 5, suggest a strong space-height
process interaction. The strength of this interaction is captured by c

in covariance function (Eq. (2)), where values close to one indicate
strong interaction and values close to zero indicate weak interaction.
Parameter estimates for c in Tables 2 and 3 do indeed corroborate the
presence of strong interaction between space and height. Fig. 6 sum-
marizes estimated space-height correlation and shows the median
posterior correlation surface and associated contours using posterior
samples from the n∗

u = 170 and n∗
x = 6 model. Here, at a given height

the spatial correlation is small (i.e., 0.25) at ∼0.5 km and negligible
(i.e., 0.05) at ∼1 km. This makes sense because the average areal
extent of the MUs is a bit less than a half kilometer. Within a given
signal, i.e., at a given spatial location, the correlation drops to 0.05
at ∼4 m. Again, looking at Figs. 1 (b) and 5(a), we see fairly weak
correlation in any given signal beyond several meters for most MUs.

Panels (a) and (b) in Fig. 7 display the posterior median for each
latent LiDAR regressor along the example transect that correspond to
the n∗

x = 6 model a estimates in Tables 2 and 3, respectively. Figure
legends also include the x∗ knot height associated with each latent
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Fig. 7. Posterior predictive median of latent LiDAR signal regressors along the example transect denoted in Fig. 3. The legend relates each regressor to the corresponding element
in a with the predictive process knot height in meters is given in parentheses.
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Fig. 8. Posterior predictive median for AGB along the example transect denoted in Fig. 3. MU identifiers are provided across the top of each panel.

regressor. The latent regressors interpretation becomes clear when
Fig. 5 (a) is considered with panel (a) or (b) in Fig. 7. For example,
Fig. 5 (a) shows most energy returns in MU C7A (between ∼490 and
560 m along the example transect) are between ∼ 5 and 12 m in
height, hence we see large values of the latent regressor associated
with x∗ = 9 m and a3 in panels (a) and (b) in Fig. 7. Similarly, paucity
of energy returns in the ∼1−5 m height at ∼300−370 m along the
example transect, results in small values of the latent regressors
associated with x∗ equal to 0.6, and 4.8 m. Deviations seen between
the latent regressor lines in panels (a) and (b) in Fig. 7 and trends
in Fig. 5 (a) are due to process smoothing that results from lack of
PSPs and S∗

u occurring on the example transect. This smoothing also
accounts for difference between panels (a) and (b) in Fig. 7.

Significant a parameter estimates suggest LiDAR signal trends
captured by the low-rank models are useful for explaining variabil-
ity in AGB. The impact of latent LiDAR regressors is seen in Fig. 8
where both models capture AGB trends within MUs and along the
example transect. Clearly spatial smoothing occurs—there should
likely be more abrupt changes in median AGB across MUs—however
there is nothing to inform AGB predictions except for the elevation
predictor variable, representation of the LiDAR signals, and residual
spatial random effects, all three of which are smoothly varying across
the domain. Other candidate models, including those presented in
the Supplementary material, produce similar AGB profiles. We could
certainly add a MU indicator or additional location specific predictors
to help inform AGB prediction. However, again, these data are rarely
available in applied settings and a key objective of this analysis was

to assess the usefulness of the latent LiDAR regressors for modeling
AGB. Indeed, even lacking additional location specific predictor vari-
ables the candidate models yield very useful AGB data products
that are critical inputs to forest management and MRV systems. For
example, Fig. 9 offers candidate models’ AGB posterior predictive
median and associated measure of uncertainty at a 15 × 15 meter
resolution for the entire PEF. This figure shows the candidate models
deliver nearly identical AGB prediction and uncertainty maps despite
the large reduction in space-height process dimension. As expected,
more precise AGB prediction occurs in proximity to observed PSP as
shown by narrow 95% CI intervals in panels (b) and (d) in Fig. 9.

5. Summary

We have developed and implemented a class of Bayesian hierar-
chical models to jointly model LiDAR signals and AGB and effectively
exploit the information from the high-dimensional LiDAR signals to
explain AGB variability. We account for spatial dependence among
and within the high-dimensional LiDAR signals and predict the
LiDAR signals and AGB at arbitrary spatial locations and heights. We
circumvent computational bottlenecks presented by the LiDAR signal
dimensionality and number of spatial locations by applying reduced-
rank predictive processes, a collapsed MCMC framework, and some
efficient numerical linear algebra.

We opted for a fully process-based approach using covariance
functions to exploit the easy constructibility and interpretability of
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Fig. 9. Posterior predictive distribution’s median and width of 95% prediction interval for AGB.

the joint models. Alternative approaches could build upon exist-
ing functional data models that treat the high-dimensional signals
as a function of space and height. For instance, one could possibly
adapt the approach of Yang et al. (2015), who mapped agricultural
soil properties, to build joint AGB-LiDAR models. Properties of these
models and, in particular, their scalability to massive datasets still
need to be explored.

Substantive contributions from the current PEF analysis include
LiDAR-based maps of AGB with associated uncertainty that can
inform analyses of MU specific silvicultural experiments and also
serve as baseline estimates, with uncertainty, for future management
and experiments. More broadly, we believe this modeling frame-
work will be employed for future explorations and analysis relating
LiDAR and similar high-dimensional signal data—generated by the
missions detailed in Section 1—with AGB and other forest variables
of interest. Future methodological extensions include analyzing sev-
eral forest variables (e.g., AGB by tree species or structural variables
such as density and basal area) perhaps correlated among them-
selves, as well as accounting for spatiotemporal associations. There
is also considerable interest in adapting the proposed framework to
model non-Gaussian forest variables such as forest/non-forest, fire

risk categories, and species or functional types. We plan to extend
this joint modeling framework to accommodate additional sparsely
sampled high-dimensional signal data such as hyper-spectral data
that is similar to LiDAR but records information across the electro-
magnetic spectrum and can provide information on forest species or
tree health status.

Our focus was on modeling the space-height structure of LiDAR
signals to improve the prediction of i) signals at non-sampled loca-
tions and ii) AGB at locations where the signal may or may not
have been observed. If one was interested in modeling vegetation
structure, such as leaf area density, then a MacArthur-Horn trans-
formation (MacArthur and Horn, 1969) could be applied in either a
pre-processing step prior to model fitting, or in a posterior predictive
fashion (one-for-one using samples from z(�)′s posterior distribu-
tion) to generate posterior distributions of the transformed signals.
Using the proposed joint model, future work could test if such signal
transformation increases the explained variability in AGB (or similar
forest variables of interest), via the a coefficients.

Future analysis of LiDAR and forestry data will need to cope
with massive amounts of data and increasing demands on model
scalability. Here, we could considerably enhance the scalability
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of the predictive process using the multi-resolution extensions in
Katzfuss (2016), where we construct a sequence of nested predictive
processes over a nested partition of the spatial domain. Alterna-
tively, recent developments in massively scalable sparsity-inducing
Nearest-Neighbor Gaussian Processes or NNGPs (Datta et al., 2016)
can be exploited. Our framework seamlessly accommodates such
processes—we replace u(�) and v(s) in Eq. (5) with their NNGP
counterparts instead of predictive processes. Rather than dimension
reduction, scalability will be achieved exploiting sparsity structures
in the resulting precision matrices.
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