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Abstract
Advances in genome sequencing and annotation have eased the difficulty of identi-

fying new gene sequences. Predicting the functions of these newly identified genes

remains challenging. Genes descended from a common ancestral sequence are likely

to have common functions. As a result, homology is widely used for gene function pre-

diction. This means functional annotation errors also propagate from one species to

another. Several approaches based on machine learning classification algorithms were

evaluated for their ability to accurately predict gene function from non-homology gene

features. Among the eight supervised classification algorithms evaluated, random-

forest-based prediction consistently provided the most accurate gene function predic-

tion. Non-homology-based functional annotation provides complementary strengths

to homology-based annotation, with higher average performance in Biological Pro-

cess GO terms, the domain where homology-based functional annotation performs the

worst, and weaker performance in Molecular Function GO terms, the domain where

the accuracy of homology-based functional annotation is highest. GO prediction mod-

els trained with homology-based annotations were able to successfully predict anno-

tations from a manually curated “gold standard” GO annotation set. Non-homology-

Abbreviations: GWAS, genome wide association study; CDS, coding sequence; UTR, untranslated region; KB, kilobase; FPR, false positive rate; TP, true

positive; FP, false positive; TN, true negative; FN, false negative; AUC-ROC, area under curve-receiver operator characteristic; PCA, Principal Component

Analysis; RF, Random Forest; GBM, Gradient Boosting Machine; GLMNET, Lasso and Elastic-Net Regularized Generalized Linear Models; SVM, Support

Vector Machines; PLS, Partial Least Squares; NNET, Neural Network; PMLR, Penalized Multinomial Logistic Regression; LDA, Linear Discriminant

Analysis). IMP; inferred from mutant phenotype, EXP; inferred from experiment, IDA; inferred from direct assay, IPI; inferred from physical interaction, IGI;

inferred from genetic interaction, IEP; inferred from expression profile, NAS; non-traceable author statement, TAS; traceable author statement, IC; inferred by

curator, ND; no biological data available, HAD; inferred from high throughput direct assay, HEP; inferred from high throughput expression pattern). GO,

gene ontology; ISS, inferred from sequence or structural similarity; ISM, inferred from sequence model; IBA, inferred from biological aspect of ancestor;

IEA, inferred from electronic annotation; RCA, inferred from reviewed computational analysis.
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based functional annotation based on machine learning may ultimately prove useful

both as a method to assign predicted functions to orphan genes which lack function-

ally characterized homologs, and to identify and correct functional annotation errors

which were propagated through homology-based functional annotations.

1 INTRODUCTION

The rapid acceleration in genome sequencing is providing

complete sequences for dozens of new plant species each

year (Chen et al., 2018; Michael & Jackson, 2013). Advances

in both de novo and extrinsic evidence based gene struc-

ture annotation, combined with low cost and abundant RNA

sequence datasets, aid the identification and definition of gene

models across each new genome assembly (Campbell et al.,

2014; Cook et al., 2019; Del Angel et al., 2018; Monnahan

et al., 2019). However, while the accuracy and throughput of

methods to define the structure of genes have grown rapidly,

methods to experimentally determine the function of indi-

vidual genes have not. Existing annotations are taken from

a small set of proteins with direct experimental evidence and

then these annotations are extrapolated to not only paralogous

genes in the same genome but homologous genes—whether

paralogous or orthologous—in the genomes of other species

(Valencia, 2005). Among eukaryotes, fission yeast Schizosac-
charomyces pombe has perhaps the most comprehensive set

of functional gene annotations (Aslett & Wood, 2006). There

are currently 41,912 gene associations for 5,397 gene prod-

ucts available on Sz. pombe GeneDB (Lock et al., 2018). Of

these, 16,657 functional annotations for 2,302 genes (42.6%

of 5,397 annotated genes) are directly derived from experi-

ments, which include annotations with evidence codes IMP

(inferred from mutant phenotype), EXP (inferred from exper-

iment), IDA (inferred from direct assay), IPI (inferred from

physical interaction), IGI (inferred from genetic interaction),

and IEP (inferred from expression profile). Of those, a subset

of 4,761 functional annotations for 1,459 genes (27.0% of all

annotated gene models in Sz. pombe) are supported by mutant

phenotype analysis (evidence code IMP). Among flowering

plants, the model species Arabidopsis thaliana has been the

subject of intensive and comprehensive genetic investigation.

However, of the 28,775 annotated gene models in the TAIR10

A. thaliana reference genome, only 19.2% have functional

annotations supported by mutant phenotypes (evidence code

IMP) and 24.5% have functional annotations supported by

other types of experimental evidence (e.g. IDA, IPI, IGI, IEP,

HAD (inferred from high throughput direct assay) (inferred

from high throughput direct assay), and HEP (inferred from

high throughput expression pattern). An additional 30.4% of

A. thaliana gene models are functionally annotated based on

solely protein features, sequence similarity, or other forms of

evidence which are used to infer homology. These include

GO (gene ontology) terms supported by the evidence codes

ISS (inferred from sequence or structural similarity), ISM

(inferred from sequence model), IBA (inferred from biolog-

ical aspect of ancestor), IEA (inferred from electronic anno-

tation), and RCA (inferred from reviewed computational anal-

ysis). A quick aside on terminology. Homology refers to the

state of two things sharing common ancestry. Sequence sim-

ilarity is a type of evidence that two or more DNA or amino

acid sequences share common ancestry. Here we chose to

refer to methods which use sequence similarity to identify

groups of genes that are apparently homologs, and prop-

agate functional annotations between these approaches as

homology-based rather than sequence-similarity-based as we

feel it more accuracy conveys the reasoning for this approach,

that genes descended from a common ancestor are likely to

have similar functions. An additional 19.7% of gene models

are assigned functional annotations based only on evidence

codes which are not directly linkable to evidence; NAS (non-

traceable author statement), TAS (traceable author statement),

IC (inferred by curator), and ND (no biological data avail-

able). The final 6.2% of Arabidopsis gene models lack any

functional annotation (Lamesch et al., 2011).

A significant challenge of homology-based functional

annotation is that these annotations are often propagated from

one sequence to the next without associated data on prove-

nance. Thus, it is often impossible or impractical to track

a computationally assigned functional annotation back to

the original source of experimental evidence. This presents

a challenge, as mistaken findings related to protein func-

tions will be published from time to time (Iyer et al., 2001),

and once an experimentally derived functional annotation

is assigned to homologs in other species, there is no way

to “recall” this annotation. In fact, the annotation is likely

to continue to propagate to new genome assemblies and to

reannotations of existing assemblies (Brenner, 1999; Gilks,

Audit, De Angelis, Tsoka, & Ouzounis, 2002, 2005; Valen-

cia, 2005). It should be noted that this problem of error prop-

agation is not present in all types of homology-based func-

tional annotations. In some cases, when a protein is annotated

with a domain from the annotation of the domain in Inter-

ProScan or Pfam (Finn et al., 2015; Quevillon et al., 2005), it

is indeed possible to trace back to what evidence was used to
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predict the function of the domain. Curated annotations made

based on non-sequence similarity evidence have been esti-

mated to have an error rate of 13–18%, while curated annota-

tions made based on sequence similarity evidence had an esti-

mated error rate of 49% (Jones, Brown, & Baumann, 2007). In

short, “functional annotations are propagated repeatedly from

one sequence to the next, to the next, with no record made

of the source of a given annotation, leading to a potential

transitive catastrophe of erroneous annotations” (Karp, 1998).

Homology-based functional annotation also rests on the basic

assumption that sequence similarity and functional similar-

ity is highly correlated, which is an assumption that is not

always correct as demonstrated by many cases of sub- and

neo- functionalization between homologous genes (Brown,

Gerlt, Seffernick, & Babbitt, 2006; Clark & Radivojac, 2011;

Radivojac et al., 2013). Comparison between two yeast

species (Saccharomyces cerevisiae and Candida albicans)

identified numerous cases where homologous proteins appear

to play different biological roles (Homann, Dea, Noble, &

Johnson, 2009).

In addition to concerns with annotation accuracy, many

species also contain a significant number of genes where

homology-based annotation is not possible. The genomes

of A.thaliana and rice, respectively, are reported to contain

1,430 and 1,926 orphan genes which lack known homologs

in other species (Guo, 2013; Guo, Li, Ling, & Ye, 2007).

By definition, homology-based methods are only able to

make predictions when the function of at least one related

sequence—whether detected through direct nucleotide or pro-

tein sequence similarity (Conesa et al., 2005), or more sensi-

tive methods such as the presence of a shared protein domain

or protein domain architecture (Finn et al., 2015; Hulo et al.,

2006; Quevillon et al., 2005; Thomas et al., 2003)—has been

experimentally characterized. As the result, genes belong-

ing to orphan gene families and/or carrying only domains of

unknown functions are likely to lack predicted or potential

functions. This in turn contributes to the noted pattern of clus-

tering of research efforts on more detailed characterization

of genes with existing well characterized functions (Stoeger,

Gerlach, Morimoto, & Amaral, 2018).

However, there exists a parallel set of non-homology-based

approaches to predict the function of uncharacterized genes

(Gabaldón & Huynen, 2004; Marcotte, 2000; Marcotte et al.,

1999). Chromosomal context has been widely employed

for functional prediction in prokaryotes where operons of

genes involved in a single metabolic pathway or biological

process are common (Edwards, Rison, Stoker, & Wernisch,

2005; Enault, Suhre, & Claverie, 2005). High rates of gene

loss and horizontal gene transfer in prokaryotes can also

be employed to assign predicted functions to genes with

either similar or complementary phylogenetic distributions

(Gaasterland & Ragan, 1998; Morett et al., 2003; Pellegrini,

Marcotte, Thompson, Eisenberg, & Yeates, 1999). In eukary-

Core Ideas
• The functions of genes can be predicted without

homology data

• Non-homology methods work better for predicting

the biological role of proteins

• Better data on the sources of existing gene func-

tional annotations are needed

otes such as maize and A.thaliana, mRNA co-expression

analysis has been shown to improve the prioritization of

GWAS (genome wide association study) hits (Angelovici

et al., 2017; Chan, Rowe, Corwin, Joseph, & Kliebenstein,

2011; Schaefer et al., 2018; Zheng et al., 2019). Protein

co-expression networks are also beginning to become more

widely available and appear to capture different information

content from mRNA co-expression networks (Walley et al.,

2016). Non-homology-based methods have been used to

systematically develop functional predictions in prokaryotes

and have been employed in yeast using topology of biological

networks which are extended from protein–protein interac-

tion for reconstruction of GO (Gligorijević, Janjić, & Pržulj,

2014). Furthermore, non-homology-based methods have

been used to prioritize individual sets of candidate genes in

plants (Angelovici et al., 2017; Chan et al., 2011; Schaefer

et al., 2018; Zheng et al., 2019). However, genome-wide

functional annotation in plants still relies primarily on

homology-based methods.

Here we sought to evaluate the potential of using vari-

ous supervised classification algorithms to predict the func-

tion of annotated genes in the absence of homology data,

but instead using a range of molecular, structural, and chro-

matin data types. If successful, accurate prediction of gene

function from these data types would have a number of com-

plementary strengths to current approaches to gene function

annotation. As described above, there may be incorrect gene

function annotations which have propagated from database to

database, and an independent method to assess gene func-

tion could highlight cases where existing functional anno-

tations should be rechecked by an expert human annotator.

In addition, because when molecular, structural, and chro-

matin data are available at all, they are frequently avail-

able for all or nearly all annotated gene models, predic-

tions of gene function based on these features would aid in

hypotheses generation for orphan genes and suggest experi-

mental approaches to validating the function of more genes

which lack experimentally characterized homologs. This ini-

tial analysis focused on maize (Zea mays ssp. mays), a widely

studied genetic model and economically vital crop species.

The need for non-homology-based functional annotations is

pressing in maize, particularly as there is evidence these
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new and variably present genes may be involved in hybrid

vigor (Baldauf, Marcon, Paschold, & Hochholdinger, 2016,

2018; Paschold et al., 2014). Maize has an extensive col-

lection of functional genomic datasets, including large RNA

and protein expression atlases (Stelpflug et al., 2016; Wal-

ley et al., 2016), methylation and histone modification pro-

filing datasets (Dong et al., 2017), one of the largest collec-

tion of characterized and cloned loss-of-function mutants of

any plant species (Oellrich et al., 2015; Schnable & Freel-

ing, 2011) and these data sets were used as the features from

which a set of eight supervised classification algorithms were

trained to predict gene function. In this project, we evaluated

the potential for using supervised machine-learning-based

classification algorithms to predict the function of annotated

maize genes using purely non-homology-based features, and

seek to determine which kinds of molecular, structural, or

chromatin features are likely to be more or less beneficial

additions when estimating gene function using algorithms of

this type.

2 METHODS

2.1 Composition of the prediction variable
dataset

Predictive variables were divided into six categories: Gene

Model Structure, RNA Expression, Protein Expression,

Chromatin, Co-Expression, and Population Genetics. Gene

structural features included gene length from transcrip-

tion start site to transcription stop site, including introns,

exon number, coding sequence length, 3′ UTR (untranslated

region) and 5′ UTR length. These values were calculated

for each gene using the published AGPv4 maize genome

sequence and annotation (Jiao et al., 2017). Nucleotide

composition and the GC content were calculated using all

sequence from the annotated transcription start site to the

annotated transcription stop site.

For protein-coding genes, a codon usage bias score which

describes the degree of bias towards the most frequently used

codons for multiple encoding amino acids in a given species

was calculated following the method described in (Sharp &

Li, 1987) as implemented in the SeqIO module in biopython

(v1.72) package (Cock et al., 2009).

The initial set of RNA expression features included data

from 2–3 replicates of 79 distinct tissue types in the maize

inbred B73 (222 total samples) (Stelpflug et al., 2016) and 52

samples from biotic and biotic stress studies of B73 in differ-

ent labs (Makarevitch et al., 2015; Opitz et al., 2014; Swart

et al., 2017) for a total of 274 distinct samples. Normalized

(FPKM: fragments per kilobase of exon per million aligned

reads) expression values for each gene in each experiment

were obtained from (Hoopes et al., 2019).

Protein expression features consisted of normalized protein

abundance data quantified in dNSAF (distributed normalized

spectral abundance factor) for 33 distinct tissues sampled from

B73 were obtained from (Walley et al., 2016). B73 AGPv2

gene models were converted to B73 AGPv4 using a conver-

sion list published on MaizeGDB (Portwood et al., 2018).

Chromatin features included DNA methylation (quanti-

fied separately in CG, CHG, and CHH contexts), three his-

tone modifications (H3K4me3, H3K27me3, H3K27ac), and

open chromatin as quantified by ATAC-seq. Raw sequence

data for bisulfite-seq, ChIP-seq for H3K4me3, H3K27me3,

and H3K27ac histone modifications, and ATAC-seq was

downloaded from PRJNA391551 in the NCBI SRA (Dong

et al., 2017). DNA methylation was quantified using Bismark

(v0.19) with parameters “-L 50, -N 1” (Krueger & Andrews,

2011). ATAC-seq and histone ChIP-seq reads were aligned to

AGPv4 of the maize reference genome using gsnap (v2018-

03-25) (Wu, Reeder, Lawrence, Becker, & Brauer, 2016) with

parameters “-m 0.02, -B 5, -n 1, -Q, –nofails”. Alignment files

were then used to call peaks using the protocol previously

described in (Dong et al., 2017).

For each of these chromatin features, scores were calcu-

lated for three regions: one using the gene body, defined as

the region from the annotated transcription start site to the

annotated transcription stop site, a second for the upstream

region, defined as a 2 KB (kilobase) region directly upstream

of the transcription start site, and a third for the downstream

region, defined as the 2 KB region directly downstream of the

transcription stop site. For each BS-seq dataset, for each of the

three regions relative to each gene and each of three methy-

lation contexts (CG, CHG, CHH), a single percentage score

was calculated. These percentages were calculated as the

ratio of all cytosines in that context in that genomic interval

which were classified as “methylated” (≥5 mapped reads and

with >50% of mapped reads showing methylation) to the total

number of cytosines in that context in that genomic interval.

For each ChIP-seq and ATAC-seq dataset, two features were

calculated for each genomic interval: the maximum inten-

sity among peaks overlapping that interval and the proportion

of that interval covered by peaks using methods previously

described in (Lloyd, Tsai, Sowers, Panchy, & Shiu, 2017).

The co-expression set of features consisted of 12 binary

variables defining membership in each of the 12 co-

expression models defined by (Hoopes et al., 2019).

For natural diversity features, raw genotype calls of

277 resequenced inbreds in maize 282 association panel

(Bukowski et al., 2017) were downloaded from Panzea (https:

//www.panzea.org/). Only biallelic SNPs were considered as

variations in the given population for this study. SNP filtering,

imputation and assignment to maize AGPv4 gene body region

was processed as a previous study (Liang, Qiu, & Schnable,

2019). SNP number per gene was determined by the number

of final detected SNPs per AGPv4 gene.

https://www.panzea.org/
https://www.panzea.org/
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2.2 Dimension reduction

Principal-component-based dimension reduction was evalu-

ated for RNA abundance and protein abundance data using

R prcomp() function with parameters “center = TRUE,

scale = TRUE”. For each set of features, 50 principal compo-

nents were calculated. In each case, the decision on how many

principal components to include was based on the cumulative

proportion of variance explained.

2.3 Defining the subset of gene models and
functional annotations

Several important features like protein abundance data for

maize vegetative and reproductive stages, are only available

for maize AGPv2. As the result, we constrained this analysis

and only considered a set gene models which had a 1:1 rela-

tionship between a single gene model in the maize reference

genome version AGPv2 and a single gene model in the maize

reference genome version AGPv4 (Liang et al., 2019). A

small number of genes with missing values for more than half

of the total set of 369 features were omitted from subsequent

analyses. For the remaining genes, features were centered,

scaled and imputed (for missing values) using preProcess()

function in caret (v6.0-80) R package (Kuhn, 2015).

An implicit GO term assignment can occur when a specific

GO term is explicitly assigned to a gene, each parent of that

GO term is also implicitly assigned to the same gene. The par-

ents() function in goatools (v0.8.9) python package was used

to add the implicit GO terms to each gene (Klopfenstein et al.,

2018). After explicitly assigning implicit GO annotations to

genes, GO terms which were assigned to less than 100 genes

or more than 5,000 gene models were excluded.

2.4 Implementing machine learning
algorithms

The eight machine learning algorithms, i.e. random forest,

neural network, svmRadial, glmnet, lda, penalized multino-

mial regression, partial least squares and gbm with parame-

ter “tuneLength = 5”, evaluated as part of this study were all

implemented in the R package caret (v6.0-80) (Kuhn, 2015).

For each GO term, a balanced training data was constructed

using the set of maize genes assigned with that annotation as

the “positive” set and a randomly selected equal number of

genes not assigned with that annotation as the “negative” set.

A 20% of the negative and positive genes from each train-

ing set were set aside as the hold-out testing data to assess

model performance. The remaining 80% of data was used

to train each algorithm for each GO term. A 10-fold cross

validation was used. The three stacking ensemble methods

evaluated in our study were also tested using implementa-

tions in the caret package (Kuhn, 2015). Each of the three

was employed as a supervisor model and was provided with

the output of three primary predictive methods (random for-

est, gbm, and glm) with “tuneLength = 3”. R source code

used to conduct all GO prediction analyses in this paper has

been deposited online (https://github.com/xiuru/Prediction-

of-Gene-Functions-in-maize).

2.5 Evaluating prediction accuracy

Accuracy, FPR (false positive rate), recall, precision, F1 score,

AUC-ROC (Area Under Curve-Receiver Operator Curve),

and consistency score were calculated for each GO term.

Accuracy= (TP+TN)/(TP+TN+FP+FN) where TP, true pos-

itive; FP, false positive; TN, true negative; FN, false nega-

tive). The FPR was calculated as the ratio between the num-

ber of negative events wrongly categorized as positive and the

total number of actual negative events (FP/FP+TN). Recall

was defined as the fraction of positive instances that have

been retrieved over the total amount of positive instances

(TP/TP+FN). Precision was defined as the fraction of pos-

itive instances among the retrieved instances (TP/TP+FP).

The F1 score was calculated as the harmonic mean of pre-

cision and recall. AUC-ROC was calculated as the ratio of

the total the area under the plot of receiver operating charac-

teristic curve, to the total area contained within the plot. For

permutation testing to evaluate the potential of over-fitting,

the same training and testing datasets were used, and the

same algorithms employed, but genes were shuffled between

the positive and negative categories. A manually reviewed

gold standard annotation set was downloaded from Cyverse

(https://doi.org/10.7946/P2S62P) to evaluate prediction accu-

racy on manually annotated genes.

3 RESULTS

We assembled a set of descriptors for each gene, including

gene structure, population genetics, expression, histone mod-

ification and DNA methylation features (Supplemental Table

S1). This dataset included features calculated from the align-

ment of sequence reads to the maize AGPv4 reference genome

and data mined from previously published papers (Bukowski

et al., 2017; Dong et al., 2017; Hoopes et al., 2019; Jiao et al.,

2017; Liang et al., 2019; Walley et al., 2016). Some important

features, for example, protein abundance data for maize veg-

etative and reproductive stages, are only available for prior

versions of the maize reference genome. As the result, we

constrained this analysis and only considered a set of 29,428

gene models which had a 1:1 relationship between a single

gene model in the maize reference genome version AGPv2

https://github.com/xiuru/Prediction-of-Gene-Functions-in-maize
https://github.com/xiuru/Prediction-of-Gene-Functions-in-maize
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and a single gene model in the maize reference genome ver-

sion AGPv4 (Liang et al., 2019; Schnable et al., 2009; Wang

et al., 2016). Many algorithms for making predictions from

input feature sets are intolerant of missing values. While the

overall rate of missing data for this 1:1 gene set was low, a

small number of genes (1,995 genes) have missing values for

more than half of the total set of 369 features (Supplemental

Figure S1). These genes were omitted from subsequent anal-

yses. For the remaining 27,433 genes, missing values were

imputed using the median value for that feature across all the

genes where that feature was successfully scored.

3.1 Potential for dimensional reduction
among non-homology features

Spearman correlation coefficients were calculated among the

369 features (Figure 1). The two largest classes of features,

i.e. RNA abundance (274 features) and protein abundance

(33 features), showed substantial between-feature correlation.

Supervised machine learning classification models tend to

overfit when trained with excessively large numbers of fea-

tures. This overfitting decreases predictive performance on

non-training datasets. Dimensional reduction techniques seek

to address this problem by reducing the total number of fea-

tures available for training without significantly reducing the

overall information content of the dataset. Dimensional reduc-

tion algorithms can generally be divided into the categories

of feature extraction and feature selection. Principal Compo-

nent Analysis (PCA) is a widely used feature extraction tech-

nique that improves learning performance, reduces compu-

tational complexity, builds better models and decreases the

required memory space (Tang, Alelyani, & Liu, 2014). More

than 90% of the variance in RNA abundance and protein abun-

dance could be captured by 20 and 10 principal components

respectively (Supplemental Figure S2). These principal com-

ponents were used in place of the original RNA and protein

abundance features, which decreased the number of possible

predictive variables from 369 to 92. This decrease also sub-

stantially reduced the degree of correlations between possible

predictive variables (Figure 1). The 95th percentile and 99th

percentile for the absolute values of Spearman correlation (rs)

dropped from 0.76 and 0.94 to 0.22 and 0.51, respectively

(Figure 1b).

Classifiers were trained using either all 369 predictor fea-

tures, the reduced set of 92 predictor features remaining

after targeted dimensional reduction, or 50 predictor features

extracted from untargeted dimensional reduction for complete

set of 369 features. Across random forest models trained of

each of the 1,562 GO terms in this analysis, those trained with

the full set of 369 features exhibited prediction accuracies of

0.35 to 0.93 with a median of 0.67. Models trained using the

reduced set of 92 predictor features exhibited prediction accu-

racies of 0.41 to 0.93 with a median of 0.68. Models trained

using 50 untargeted principal components exhibited predic-

tion accuracies of 0.42 to 0.86 with a median of 0.63. The

increase in prediction accuracy for the targeted dimensional

reduction models relative to the full models was statistically

significant although the effect size was modest (p = 0.0002;

two tailed paired t-test). While targeted dimensional reduction

increased prediction accuracy, untargeted dimensional reduc-

tion did not. Models trained using a set of 50 principal com-

ponents extracted from the complete set of 369 features pro-

vided significantly lower prediction accuracy than either the

total feature set (p = 5.96× 10−158; two tailed paired t-test)

or the targeted dimensional reduction feature set (p = 3.89 ×
10−192; two tailed paired t-test) (Supplemental Figure S3).

Prediction accuracy was evaluated using shuffled data to

test whether, even after dimension reduction, over fitting

might be occurring. Prediction accuracy for individual GO

terms ranged from 0.47 to 0.57 with a median of 0.51, only

slightly higher than expected of random predictions. The

median prediction accuracy of 0.51 for shuffled GO term

assignments was consistent across 4 sequential permutations

of the data. As targeted dimensional reduction increased pre-

diction accuracy to a modest extent while retaining the ability

to evaluate segregated models using only specific biological

data types requiring different sets of procedures to assay in

new species, the dataset generated using targeted dimensional

reduction was employed for downstream analyses.

Multiple distinct sets of GO predictions exist for the maize

reference genome (Goodstein et al., 2011; Tello-Ruiz et al.,

2015; Wimalanathan, Friedberg, Andorf, & Lawrence-Dill,

2018). We chose to use the maize GAMER dataset as our start-

ing point for training and evaluating non-homology-based

prediction algorithms (Wimalanathan et al., 2018). The pub-

lished maize GAMER dataset includes 9,336 GO terms which

are directly assigned to one or more gene models, and an addi-

tional 2,757 GO terms which are implicitly assigned to one or

more gene models. An implicit GO term assignment can occur

when a specific GO term is explicitly assigned to a gene. In

this case, each parent of that GO term is also assigned to the

same gene implicitly. We utilized both implicit and explicit

GO term assignments. The initial dataset thus consisted of

12,093 GO terms and each go term was assigned to one or

more of the 39,324 gene models in the B73 AGPv4 maize

reference genome. We chose to exclude both extremely com-

mon GO terms (e.g. GO:0008150 “Biological Process”) and

extremely rare GO terms. Extremely common GO terms tend

to be low information content. Extremely rare GO terms are

unlikely to possess enough known positive genes to accu-

rately train prediction algorithms. After excluding GO terms

assigned to <100 genes or >5,000 genes in our set of 27,433

genes with feature data, 1,562 GO terms—including 1,148

Biological Process, 151 Cellular Component and 263 Molec-

ular Function terms—remained for downstream analyses.
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F I G U R E 1 Correlations among different

features in the prediction dataset. (a) Spearman

correlations and group membership among all 369

original features. (b) Spearman correlations and

group membership for 92 features remaining after

targeted principal-component-based dimension

expression data. The ordering of individual features

from top to bottom and left to right is provided in

Supplemental Table S2

F I G U R E 2 Performance of eight

machine-learning-based supervised

classification algorithms in predicting gene

functions using non-homology-based predictor

variables. (a) Distribution of prediction

accuracies for 1,562 GO terms using 8 methods.

RF (Random Forest); GBM (Gradient Boosting

Machine); GLMNET (Lasso and Elastic-Net

Regularized Generalized Linear Models); SVM

(Support Vector Machines with Radial Basis

Function Kernel); PLS (Partial Least Squares);

NNET (Neural Network); PMLR (Penalized

Multinomial Logistic Regression); LDA (Linear

Discriminant Analysis). (b) Median values for

each of the eight algorithms. Color labeling in

panel B correspond to the color labeling of each

algorithm in panel A

3.1.1 Selection of random forest for gene
function prediction

Eight machine-learning-based supervised classification

algorithms including random forest (Liaw & Wiener, 2002),

stochastic gradient boosting machines (Ridgeway, South-

worth, & RUnit, 2013), Lasso and Elastic-Net Regularized

Generalized Linear Models (Friedman, Hastie, & Tibshirani,

2010; Simon, Friedman, Hastie, & Tibshirani, 2011), Support

Vector Machines with Radial Basis Function Kernel (Karat-

zoglou, Smola, Hornik, & Zeileis, 2004, 2018), partial least

squares (Wehrens & Mevik, 2007), neural network (Ripley,

Venables, & Ripley, 2016; Venables & Ripley, 2002), penal-

ized multinomial regression (Ripley et al., 2016; Venables &

Ripley, 2002), and linear discriminant analysis (Ripley et al.,

2013; Venables & Ripley, 2002) were evaluated for their

accuracy in predicting GO annotations. Benchmark genes for

every GO term were divided into the sets of 80% training and

20% testing. For training data, 10-fold cross validation was

performed for all machine learning methods. Validation accu-

racy and testing accuracy, i.e. the accuracy in testing dataset,

were both calculated for the 8 algorithms and comparisons of

the algorithms were based on the accuracy in testing dataset.

Based on the average accuracy across all GO terms tested,

random forest and gbm methods performed the best and sec-

ond best respectively (Figure 2a-b). Random forest was the

best performing algorithm for 52% of all GO terms (average

rank from 1–8 = 2.0), and gbm was the best performing algo-

rithm for 30% of GO terms (average rank from 1–8 = 2.7). No

other algorithm had an average rank <4 or was the performing

algorithm for >8% of tested GO terms. This ranking was

consistent across sets of GO terms with different annotation

frequencies, as well as for GO terms within each of the three

The GO domains include: Biological Process, Cellular

Component, Molecular Function (Supplemental Table S3).

This ranking was also consistent when performance was cal-
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culated in different ways. Random forest exhibited the best

performance based on calculations of precision (proportion

of predicted genes that are truly positive), recall (proportion

of true positive genes recovered), F-measure (harmonic mean

of precision and recall), consistency score, and AUC-ROC

(Figure 2b). Ensemble methods were also evaluated however

these did not show a significant increase in prediction accu-

racy compared to pure random-forest-based prediction (Sup-

plemental Figure S4).

3.2 Higher prediction accuracy for biological
process GO terms

ROC (receiver operating characteristic) curves for the

prediction accuracy of random-forest-based prediction—

determined from 10-fold cross validation—were plotted for

individual GO terms (Figure 3a). Details for the perfor-

mance measures of every GO term provided in Supplemental

Table S4. As a control, AUC-ROC values were also calcu-

lated for genes with shuffled functional annotations. The 5th

and 95th percentile of AUC-ROC values from 4 times of gene

label shuffling for individual GO terms were 0.45 and 0.56

and for multiple iterations the median is 0.51. These values

were consistent with expectations for random labeling of bal-

anced data.

Random forest testing accuracy for individual GO terms

ranged from 0.41 to 0.93 with a median of 0.68. The sin-

gle best performing GO term prediction model, assessed

based on accuracy, was for GO:0006270 (DNA replica-

tion initiation) using random forest (precision = 95.2%,

recall = 90.9%, FPR = 4.5%, Accuracy = 0.93, AUC-

ROC = 0.92, Consistency score = 0.87). The GO terms

related to DNA replication (GO:0006270, DNA replication

initiation, Accu = 0.93), modification (GO:0016556, mRNA

modification, Accu = 0.90; GO:0006304, DNA modifica-

tion, Accu = 0.85), methylation (GO:0006346, methylation-

dependent chromatin silencing, Accu = 0.93; GO:0001510,

RNA methylation, Accu = 0.91) and metabolic process

(GO:0009220, pyrimidine ribonucleotide biosynthetic pro-

cess, Accu = 0.86) are well predicted using non-homology

features. On the other end of the distribution, examples of GO

terms with the low prediction accuracy were (GO:0022832,

voltage-gated channel activity, Accu = 0.48; GO:0005216,

ion channel activity, Accu = 0.48) and regulation of a pro-

cess (GO:0050778, positive regulation of immune response,

Accu = 0.52; GO:0051348, negative regulation of transferase

activity). GO terms with higher prediction accuracy were

drawn primarily from the Biological Process domain while

GO terms with the lowest prediction accuracy belonged pri-

marily to the Molecular Function domain.

To test whether this finding represented a consistent pat-

tern, the distribution of prediction accuracies was evalu-

ated separately for GO terms belonging to each of the

three domains (Biological Process, Cellular Component, and

Molecular Function). GO terms involved in Cellular Compo-

nent have the highest median accuracy (Figure 3b). Cellular

Component GO terms were the rarest of the three domains

(151 GO terms of 1,562 total terms tested). Median accuracy

for Biological Process GO terms was modestly lower than

for Cellular Component. Biological Process GO terms were

much more abundant (73%) in 1,562 GO terms test, which

may explain why the most accurate individual GO terms

were drawn from this domain. GO terms from the Molecular

Function domain had the lowest median accuracy, and there

were many Molecular Function GO terms, particularly those

related to channel, transporter, enzyme activity or binding

with extremely low accuracy (Supplemental Table S4). This

ranking of accuracy across GO domains was largely consis-

tent across GO terms with different population sizes of genes

carrying the annotation and across the results from predict-

ing using different machine learning algorithms (Supplemen-

tal Table S3).

3.3 Contribution of different feature types to
prediction accuracy

Separate predictions were conducted using distinct subsets

of features to assess relative contributions of different types

of features to the overall accuracy of non-homology-based

functional prediction by building different machine learning

models using random forest algorithms. The ranking of pre-

diction accuracy was largely consistent across the three pri-

mary GO term domains: Biological Process, Cellular Compo-

nent, and Molecular Function. Models trained using only gene

model structure features or trained using only RNA expres-

sion features provided approximately equal independent

prediction accuracy. One exception was in the Molecular

Function domain where models trained using only gene struc-

ture features performed almost equivalently to the complete

model (median AUC-ROC = 0.69 and 0.70 for the mod-

els using structural data only and full models, respectively).

Models for predicting Molecular Function GO terms trained

using only RNA expression features performed significantly

worse than the complete model. Models trained using only

chromatin features or only co-expression features did not per-

form well in any of the three domains (Figure 4a). Exclud-

ing chromatin features increased will increase the predic-

tion accuracy for both the specific set of Biological Pro-

cess GO terms as well as the complete population of tested

GO terms, while gene model structure and RNA abundance

appear to provide distinct and partially non-redundant con-

tributions to prediction accuracy of both the Biological Pro-

cess and Cellular Component GO term populations. While

it was possible to obtain models with some prediction accu-
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F I G U R E 3 Prediction accuracy for individual GO terms varies in response to different characteristics of those terms. (a) Distribution of

AUC-ROC values for random-forest-based prediction of 1,562 GO terms, including information on the single best and second worst performing

GO terms based on AUC-ROC GO:0032392 (DNA geometric change; Biological Process) and GO:0044403 (Symbiotic Process; Biological

Process). The worst performing GO term (GO:005877) was for a biological process GO term which does not occur in plants. (b) Distribution of

prediction accuracies for individual GO terms in the Biological Process, Cellular Component and Molecular Function domains using random-forest-

based prediction

F I G U R E 4 Contributions of each of five types of features to the overall functional prediction accuracy. (a) Median AUC-ROC values for all

GO terms, and GO terms classified based on domain for the complete model, and partial models trained using only RNA abundance features, only

chromatin features, only gene structure futures (including 2 population genetic features), only protein abundance features, or only co-expression

features. Error bars indicate Standard Error around the median AUC-ROC calculated from the individual prediction accuracies for all 1,562 GO

terms or every GO term in 3 GO domains. (b) AUC-ROC values for models constructed using data for four out of five feature types. Bigger decreases

relative to the full model indicate feature types which provide larger amounts of non-redundant information for GO prediction. Error bars indicate

Standard Error around the median AUC-ROC among all tested GO terms within a given domain. (c) Examples of the same comparison shown in

panel A for individual GO terms: RNA Methylation (GO:0001510) (Biological Process); Telomere Maintenance (GO:0000723) (Biological

Process); Small GTPase Binding (GO:0031267) (Molecular Function); Mitochondrial Protein Complex (GO:0098798) (Cellular Component). As

this panel displays data for individual GO terms each bar represents a single value, not a median, and no error bars are show

racy using only chromatin or coexpression features, models

which excluded these features performed equally to the full

model, suggesting the information content of these feature

types is likely to be independently by other feature types (Fig-

ure 4). In addition, the importance of each of the 92 individ-

ual feature across the 1,562 GO terms was calculated using

the using caret varImp and provided as Supplemental Table

S5. At the level of individual GO terms, there were a num-

ber of GO terms where models trained using only protein

expression features (99 GO terms 6.3%) or chromatin state

features (35 GO terms 2.2%) had better performance than

any of the other component models (Figure 4c; Supplemen-

tal Table S6). In a minor number of cases (15 GO terms

0.96%) the model trained using only co-expression features
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provided the highest accuracy of any of the component models

(Supplemental Table S6).

3.4 Evaluation using manually reviewed
annotations

Prediction accuracy was independently evaluated using a set

of 476 GO terms assigned to 1,619 gene models by man-

ual curation of direct assay and mutant phenotype evidence

(Monaco et al., 2013; Wimalanathan et al., 2018). From this

set, 263 GO terms overlapped with the 1,562 GO terms for

which prediction models were trained, and 21 of the 263 over-

lapping GO terms were assigned to more than 10 genes in the

gold standard set. New models were trained for each of these

21 GO terms using GAMER training data with all gold stan-

dard genes masked. Twenty of the 21 GO terms achieved a

prediction accuracy >0.75 with a median value of 0.83.

4 DISCUSSION

Accurate and precise annotation of gene model functions

in the absence of gene-by-gene genetic analysis remains

challenging. In most species, the vast majority of genes have

not been studied or characterized directly. Instead, when func-

tional annotations are present, they are drawn from functional

characterization of homologous genes. Homology-based

approaches may also introduce erroneous and misleading

functional annotations. Firstly, genes which are homologous

will not always perform the same biological function or be

localized to the same cellular compartments. For example,

R2R3-MYB transcription factors are all homologous to each

other yet play different roles regulating responses to multiple

stress conditions, controlling plant development and cell

fate, or regulating secondary metabolism (Du, Feng, Yang,

Huang, & Tang, 2012). Secondly, because homology-based

functional annotations are often drawn from datasets and

databases which were originally also annotated based on

homology, it is possible for incorrect functional annotations

to propagate through biological databases indefinitely.

Estimates of the mis-annotation using experimentally well-

characterized sets of enzymes can range from about 25%

to over 60% (Schnoes, Brown, Dodevski, & Babbitt, 2009).

Finally, 5 to 15% of annotated gene models in the genomes

of many species are “orphans” without detectable homology

to any protein with a characterized function. Here we sought

to evaluate whether using machine learning methods and a

set of non-homology-based features can complement existing

methods for functional annotation. Non-homology-based

methods may ultimately be able to correctly assign new func-

tional annotations to gene models and identify potentially

inaccurate existing functional annotations.

It is important to discuss one critical limitation of the

analyses employed here. While non-homology-based anno-

tation approaches ultimately hold the potential to identify

and correct errors introduced by homology-based annotation,

in this study a set of functional annotations derived from

homology-based annotation were treated as ground truth. As

the result, the true recall of non-homology-based methods

may be higher than the estimated recall in this study, as some

false negatives may in fact represent errors in the underlying

functional annotations. Going forward, there is a clear need

for curated sets of experimentally supported functional anno-

tations for maize equivalent to those previously generated for

species such as yeast and A. thaliana (Aslett & Wood, 2006;

Lamesch et al., 2011). However, based on testing using a

modest number of existing manually curated GO term assign-

ments in maize, it appears that prediction models trained on

homology-based annotations may indeed achieve significant

prediction accuracy when evaluated using functional anno-

tations derived from direct evidence. It should also be noted

that randomly splitting data into training and testing sets can

tend to overestimate prediction accuracy in the real world,

where systematic differences between training and prediction

datasets can be more common (Sheridan, 2013). Models

trained using functional annotations currently assigned to

only one or several homologous gene families may learn

signatures of those gene families rather than the annotated

function itself. Gene family guided splitting of training and

testing datasets is one potential method which could be used

to control for this potential confounding variable (Washburn

et al., 2019). However, there are also some reasons to be opti-

mistic. For example, in this study each GO term was treated as

a discrete unit. Accuracy metrics which leverage the relation-

ships between GO terms would provide ways to evaluate the

accuracy of classifiers in a more nuanced fashion that would

capture “near miss” annotations (Plyusnin et al., 2018). For

example a gene which should be assigned GO:0019685

(“photosynthesis, dark reaction”) and is instead assigned

GO:0019684 (“photosynthesis, light reaction”) provides

partially correct information as the two GO terms share a

common parent one step up in the directed acyclic graph

of GO relationships. While acknowledging these limitations

and necessary future steps some intriguing initial patterns

are still apparent in this initial trial of non-homology-based

function annotation.

Machine-learning-based functional annotation showed

strengths which are complementary to known accuracy pat-

terns of primarily homology-based methods. Specifically,

homology-based functional annotation has been reported to

show higher accuracy for GO terms in the Molecular Func-

tion domain (Jiang et al., 2016; Radivojac et al., 2013).

In contrast, we found that non-homology-based predictions

exhibited the highest prediction accuracy in the Cellular

Component and Biological Process domains, and the lowest
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accuracy in Molecular Function (Figure 3b). Molecular

functions (e.g. transcription factors, transporters, structural

proteins) are likely to be conserved between homologous

sequences. In contrast, the cellular localization and biologi-

cal role of a given transcription factor or signal transduction

component can vary and diverge substantially between even

closely related homologs (Du et al., 2012). Genes involved in

the same biological process or localized to a specific cellular

compartment may be more likely to exhibit shared features

such as co-expression than specific classes of transcription

factors or transporters which may be localized to different cell

types or expressed only in response to different environmental

stimuli.

Going forward there are a number of potential avenues to

improve the accuracy of genome-wide non-homology-based

functional annotation. As discussed above, the incorpora-

tion of more detailed provenance information for existing

functional annotations will serve both to train more accu-

rate models, and to more accurately quantify the performance

of these models. There are also additional types of non-

homology-based predictive variables which could be incor-

porated in the future. These include more extensive protein

and mRNA expression data, particularly from different stress

conditions, experimentally derived protein-protein interac-

tion data, descriptors of population genetic features includ-

ing different types of selection and diversity, and as well

as incorporating the results of quantitative genetic analyses

using different types of phenotypes in different environments.

Two challenges for future studies are how to integrate these

heterogeneous data sources and how to deal with incomplete

and noisy data.
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