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RESEARCH ARTICLES

The Chlorella variabilis NC64A Genome Reveals Adaptation to
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Guillaume Blanc,a,1 Garry Duncan,b Irina Agarkova,c Mark Borodovsky,d James Gurnon,c Alan Kuo,e

Erika Lindquist,e Susan Lucas,e Jasmyn Pangilinan,e Juergen Polle,f Asaf Salamov,e Astrid Terry,e

Takashi Yamada,g David D. Dunigan,c Igor V. Grigoriev,e Jean-Michel Claverie,a and James L. Van Ettenc

a Centre National de la Recherche Scientifique, Laboratoire Information Génomique et Structurale UPR2589, Aix-Marseille

Université, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
b Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2796
c Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
dWallace H. Coulter Department of Biomedical Engineering, School of Computational Science and Engineering, Georgia

Institute of Technology, Atlanta, Georgia 30332
e Department of Energy Joint Genome Institute, Walnut Creek, California 94598
f Brooklyn College of the City University of New York, Department of Biology, Brooklyn, New York 11210-2889
g Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University,

Higashi-Hiroshima 739-8530, Japan

Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of

Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome,

revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations

in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias.

Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known

meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a

flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways

in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and

signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of

Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from

algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green

lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

INTRODUCTION

Green algae (phylum Chlorophyta) are a highly diverse group of

photosynthetic eukaryotes from which the terrestrial plant line-

age emerged >1 billion years ago (Heckman et al., 2001). During

the evolutionary history of Earth, they have becomemajor players

in global energy/biomass production and biogeochemical recy-

cling (Grossman, 2005). Algae originally included in the genus

Chlorella are among the most widely distributed and frequently

encountered algae in freshwaters (Fott and Novakova, 1969).

They exist in aqueous environments as well as on land. They are

typically small (;2 to 10 mm in diameter), unicellular, coccoid,

nonmotile, and contain a single chloroplast. Some have a rigid

cell wall, and they are reported to lack a sexual cycle (Takeda,

1991). Accessions of Chlorella were extensively used as model

systems in early research on photosynthesis (Benson, 2002).

Over a hundred algal isolates were originally assigned to the

genus Chlorella, but their taxonomy classification has long re-

mained unreliable because of their lack of conspicuous morpho-

logical characters. Recentmolecular analyses now separate them

into two classes of chlorophytes, the Trebouxiophyceae, which

contains the trueChlorella, and the Chlorophyceae (Takeda, 1988;

Huss et al., 1999). Here, we report on the genome of Chlorella

sp NC64A (NC64A), recently renamed Chlorella variabilis NC64A

(Ryo et al., 2010), that is a bona fide member of the true Chlorella

genus, belonging to the class Trebouxiophyceae (see Supple-

mental Figure 1 online). The true Chlorella species, including

NC64A, are characterized by glucosamine as a major component

of their rigid cell walls (Takeda, 1991; Chuchird et al., 2001).

The Trebouxiophyceae contain most of the known green algal
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endosymbionts (Friedl and Bhattacharya, 2002), living in lichens,

unicellular eukaryotes, plants, and animals (e.g., mussels, hydra,

etc). Most Chlorella species are naturally free-living; however,

NC64A is a hereditary photosynthetic endosymbiont (i.e., pho-

tobiont) of the unicellular protozoan Paramecium bursaria

(Karakashian and Karakashian, 1965). This symbiosis is facul-

tative in lab conditions since both the paramecium and NC64A

can be cultivated separately. NC64A is also a host for a family of

large double-stranded DNA viruses that are found in freshwater

throughout the world; the genomes of six of these viruses have

been sequenced (Wilson et al., 2009). Like other microalgae,

there is an increasing interest in using Chlorella in a variety of

biotechnological applications, such as biofuels (Schenk et al.,

2008), sequestering CO2 (Chelf et al., 1993), producing mole-

cules of high economic value, or removing heavy metals from

wastewaters (Rajamani et al., 2007). The sequence of the

NC644A genome presented here will help in the optimization of

these various processes, while further documenting the evolu-

tion of the green lineage.

RESULTS AND DISCUSSION

Global Genome Structure

The 46.2-Mb NC64A nuclear genome was sequenced at 93
coverage using the whole-genome shotgun Sanger sequencing

approach. The genome size of NC64A is intermediate compared

with those of Mamiellale (12.6 to 21.9 Mb) and Chlamydomonas

reinhardtii (121 Mb) (Table 1). Sequence assembly yielded 413

scaffolds with lengths >1 kb (see Supplemental Table 1 online).

Eighty-nine percent of the genome assembly is contained in 30

scaffolds with lengths ranging from 494 kb to 3.12 Mb (Figure 1).

Mapping of 7624 clustered EST sequences onto the genome

sequences suggests that the assembly contains >97% of the

gene complement. The NC64A karyotype resolved by pulse field

gel electrophoresis analysis revealed 12 chromosomes ranging

in size from;1.1 to 8.6 Mb (see Supplemental Figure 2 online).

The nuclear genome sequences have the highest average GC

content (67.2% GC) reported so far in sequenced eukaryotic

genomes (Table 1). However, several genomic segments present

in scaffolds, ranging from40 to 625 kb, have conspicuously lower

GC contents (55 to 65% GC) than the rest of the genome (Figure

1). These low-GC regions represent 15.6% of the total genome

size (6.20 Mb). They have a significantly higher frequency of

genes with EST support than does the rest of the genome

(Kruskal-Wallis test P value = PKWT < 0.0001), suggesting that

they correspond to regions of higher transcriptional activity

(Figure 2A). In addition, genes located in low-GC regions exhibit

significantly shorter introns (Figure 2B) and a less biased codon

usage (Figure 2C) relative to the high-GC regions (PKWT <

0.0001). Low-GC regions are also enriched in repeated se-

quences (most prominent in the 60 to 65% GC range; Figure

2E), but the trend is only marginally significant (PKWT = 0.024).

Although the median exon density is slightly smaller for low-GC

regions (Figure 2D), the difference from that found in the high-GC

regions is not statistically significant (PKWT > 0.05). The majority

(1100) of the 1384 NC64A proteins encoded in low-GC regions

have their best BLASTP match to homologs in chlorophytes and

land plants (see Supplemental Figure 3 online). This suggests

that the low-GC regions did not result from an invasion of

horizontally transferred foreign DNA sequences.

Low-GCgenomic regions also exist in the prasinophytesMicro-

monas and Ostreococcus, where their origin and function are still

unclear (Palenik et al., 2007;Worden et al., 2009). As inNC64A, the

Micromonas low-GC chromosomes exhibit higher transcrip-

tion levels than do the normal-GC chromosomes (Worden et al.,

2009). These features common to Micromonas, Ostreococcus,

and Chlorella suggest that variation in GC content is a charac-

teristic of many chlorophytes. However, the nature of genes pres-

ent in the NC64A low-GC regions does not suggest a specific

function or a mechanism by which their compositional shift

evolved. However, we noticed that the NC64A low-GC regions

exhibited a significant underrepresentation of genes involved in

transcription, chromatin structure and dynamics, and extracel-

lular structures (see Supplemental Table 2 online).

Repeated Sequences

Only a few algal repetitive sequences are available in public

databases. This prevented us from performing an exhaustive

search for repetitive sequences based on a set of reference

sequences. Therefore, we used a de novo identification ap-

proach where repeated sequences are defined as any sequence

Table 1. Comparison of NC64A Genome Statistics to Those of Sequenced Chlorophyte Genomes

Features NC64A C. reinhardtii Micromonas CCMP1545 Micromonas RCC299 O. tauri O. lucimarinus

Nuclear genome size (Mb) 46.2 121 21.9 20.9 12.6 13.2

Number of chromosomes 12a 17 19 17 20 21

GC content total (%) 67 64 65 64 59 60

Gene count 9,791 15,143 10,575 10,056 7,892 7.651

Avg. protein length (aa) 456 444 439 473 387 399

Avg. gene density (kb/gene) 4.7 5.0 2.1 2.2 1.6 1.7

Avg. number of exons per gene 7.3 8.3 1.9 1.6 1.6 1.3

Avg. exon length (nt) 170 190 731 958 750 970

Avg. intron length (nt) 209 373 187 163 126 187

Avg. coding sequence (%) 29 17 64 68 73 69

aa, amino acids; nt, nucleotides.
aEstimation based upon pulse field gel electrophoresis analysis.
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with more than one copy in the genome (as detected by BLASTN

with an E-value < 1e-5), regardless of its size and nature (trans-

posable element, simple repeat, duplicated gene, or low com-

plexity sequences). The cumulative lengths of such repeated

sequences represent 5.53 Mb (12%) of the genome (see Sup-

plemental Table 3 online), which makes NC64A relatively repeat-

poor compared with land plants (repeat content ranges from

20 to 30% in Arabidopsis thaliana to >90% in large genomes

such as wheat [Triticum aestivum]). The content in repeated

sequences is probably slightly underestimated because repeats

frequently flanked sequence gaps. Half of the repeated se-

quences (51.6%) have no resemblance to known repeat families

(see Supplemental Table 3 online). About 10% (536 kb or 1.2%

of the genome) contain open reading frames with deduced

protein sequences similar to proteins in public databases (ex-

cluding transposable element related proteins) and therefore

correspond to highly similar gene duplicates or gene fragments

(at the nucleotide level). An additional 40.2% could be classi-

fied in known repetitive sequence families based on TBLASTX

sequence similarity searches (E-value < 1e-15) against the

Repbase database. NC64A has the major classes of known

transposable elements (see Supplemental Table 3 online): long

terminal repeat (LTR) retrotransposons (Gypsy-like elements and

TY1/Copia-like elements), non-LTR retrotransposons (RandI, L1,

RTE, and GilM elements form the most prominent families),

endogenous-retrovirus-like sequences, and DNA transposons

(Novosib-like). The NC64A telomeric repeat unit is identical to

that of flowering plants [i.e., (TTTAGGG)n]. Eighteen scaffolds

exhibit telomeric repeat arrays at a terminus and represent ends

of chromosomes (Figure 1).

Figure 1. General Characteristics of the Chlorella sp NC64A Genome Assembly.

This figure represents the 30 major scaffolds, which contain 89% of the total genome. GC percentage, exon density, EST density, and repeat density

were calculated in 40-kb sliding windows with a step of 5 kb. Density was calculated as the percentage of nucleotide in the window covered by the

relevant feature (i.e., exon, EST, or repeat sequence). Blue triangles represent telomeric repeat arrays.
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Algae- and Land Plant–Specific Protein Families

We predicted and annotated 9791 protein genes in the NC64A

genome, a number comparable to that of the Micromonas

species (Table 1). Like Chlamydomonas, the NC64A protein

genes are intron rich with 7.3 exons per gene on average, but the

average NC64A intron length is shorter than in Chlamydomonas.

An overview of the NC64A gene repertoire is provided in Sup-

plemental Results, Supplemental Table 1, and Supplemental

Figures 4 to 6 online. Comparison of the numbers of PFAM

protein domains revealed 27 protein families that are present in

all completely sequenced chlorophyte algae (NC64A, C. rein-

hardtii,Micromonas sp RCC299 and CCMP1545, Ostreococcus

lucimarinus, and Ostreococcus tauri) but absent in three repre-

sentative and completely sequenced land plants (Physcomitrella

patens, Arabidopsis, and Oryza sativa) (see Supplemental Table

4 online). Most of these algal genes probably existed in the last

common ancestor shared with terrestrial plants since all of them

have homologs in other eukaryotes. This would imply that they

were subsequently lost in the branch leading to land plants.

Many of these protein families are involved in basic metabolism,

such as respiration (cytochrome c/c1 heme lyase), amino acid

synthesis (asparaginase), carbohydrate metabolism (including

ACN9 protein and iron-containing alcohol dehydrogenase), pro-

tein synthesis (including the selenocystein aminotransferase and

posttranslational modification enzyme PAM), and DNA or RNA

metabolism (DNA binding protein HU and helicase family) (see

Supplemental Table 4 online). The six chlorophytes contain a

3959-cyclic nucleotide phosphodiesterase gene that modulates

the levels of the secondary messenger 39:59-cyclic nucleotides

in signal transduction pathways (Beavo, 1995). Chlorophyte-

specific protein families also included the formate/nitrite trans-

porter, type I polyketide synthase, and pyruvate decarboxylase

(fatty acid metabolism).

By contrast, 184 protein domain families were present in all

three land plants but absent in chlorophytes, including NC64A

(see Supplemental Data Set 1 online); 102 of them have homo-

logs in eukaryotes (excluding viridiplantae) andmay have existed

in the common ancestorwith green algae and subsequently been

Figure 2. Features of Low-GC Regions in Chlorella sp NC64A.

Nonoverlapping 40-kb segments of the NC64A genome assembly were

classified into four GC content classes. The distributions of genomic

segments in each of the GC content classes are depicted by box plots for

the following features: EST density (as defined in the Figure 1 legend) (A),

average size of introns supported by EST data (B), mean effective

number of codons (ENc) per gene (C), exon density (D), and repeat

density (E). (F) shows the distribution of genomic segments as a function

of their GC content. The bottom and top of boxes represent the 1st and

3rd quartiles, Q1 and Q3, respectively, and the band near the middle of

boxes represents the median. The extremities of the lines appearing

below and above the boxes represent the lowest value still within 1.5 IQR

(interquartile range = Q3 to Q1) of the lower quartile Q1, and the highest

value still within 1.5 IQR of the upper quartile Q3. We applied the Kruskal-

Wallis statistical test to each genomic feature to test the null hypothesis

of equivalence between the distributions of values in the four GC bins.

Distributions of EST density, intron size, and Enc were found to be

significantly different between the four GC bins (P < 0.0001), whereas for

repeat density, the difference was only marginally significant (P = 0.024).

The null hypothesis of equivalence of distributions could not be rejected

at a = 0.05 for exon density (P = 0.468).

2946 The Plant Cell



lost in the Chlorophyta lineage. Furthermore, 12 protein domain

families are exclusively found in land plants and bacteria or

archea. The corresponding genes may have been exchanged by

lateral gene transfer between the nuclear genome of land plants

and the genomes of prokaryotes or organelles. The remaining 70

protein domains have no recognizable homologs outside of land

plants. Many of the 184 land plant protein domain families are

involved in development, cell signaling, stress and hormonal

response, transcriptional regulation, defense, and polysaccha-

ride and cell wall metabolism (see Supplemental Data Set 1 on-

line). Thus, in addition to the higher number of gene duplications

that are characteristic of land plants (Flagel and Wendel, 2009),

some of these proteins were probably important in the rise of

multicellularity and terrestrial colonization in the Streptophyte

lineage. For example, land plant–specific protein families in-

volved in auxin signaling havepresumably playeda significant role

in the emergence of organs, establishment of a complex devel-

opmental program, and adaptation to changing environment

(Galván-Ampudia and Offringa, 2007). They include the auxin/

indole-3-acetic acid transcriptional regulator family, auxin re-

sponse factor transcription factor family and dormancy-associ-

ated and protein products of the ARG7 auxin-responsive gene

family. We also found protein families involved in resistance to

drought (e.g., dehydrin and Di19 proteins) that are specific to land

plants; these families have perhaps been important in the adap-

tation to water-limiting conditions during the colonization of land

(Bateman et al., 1998). Unlike chlorophyte algae, terrestrial plants

have proteins involved in polysaccharide metabolism, lignin me-

tabolism (e.g., Phe ammonia lyase and caffeic acid 3-O-methyl-

transferase) and cell wall metabolism (e.g., pectate lyase and

pectinesterase), some of which probably contributed in the stiff-

ening and consolidation of cell walls to withstand the weight of

land plants subjected to gravity.

Dynamics of Chlorella Protein Families

Twenty-eight PFAM protein families showed a biased distribu-

tion of proteins among the six chlorophyte algae (Figure 3; see

Supplemental Table 5 online). Some PFAM domains were spe-

cifically overrepresented in NC64A compared with the five other

chlorophytes. A subset of those PFAM domains was also found

in excess in organisms that have intracellular or symbiotic life

styles.We therefore hypothesize that the corresponding proteins

in NC64A could also play a role in the mutualistic symbiosis with

the protozoan P. bursaria. These PFAM domains include several

families of proteins containing protein–protein interaction do-

mains (F-box and MYND) and adhesion domains (fasciclin).

Although the functions of domains may differ, proteins contain-

ing protein–protein interaction domains generally exist in excess

in intracellular bacteria and symbiotic eukaryotes compared with

their free-living relatives. For example, in intracellular bacteria,

ankyrin proteins and tetratricopeptide repeat proteins are impli-

cated in host–pathogen interactions (Petri et al., 2000), linked to

the cytoplasmic incompatibility phenotype of the eukaryotic host

(Tram et al., 2003; Iturbe-Ormaetxe et al., 2005) and directly

secreted into the host (Wu et al., 2004). Protein families that

contain ankyrin and WD40 domains are also prominent in the

plant symbiont Laccaria bicolor (Martin et al., 2008), although

there is no direct evidence that these proteins are involved in

symbiosis.

NC64A also has an excess of proteins with Cys-rich GCC2_

GCC3 PFAM motifs (Figure 3; see Supplemental Table 5 online),

which are found in a wide variety of extracellular proteins. The

symbiont L. bicolor secretes Cys-rich proteins (albeit not of the

GCC2_GCC3 type) into their host, some of which are upregu-

lated in symbiotic tissues and implicated in the establishment of

symbiosis (Martin et al., 2008).

We found a significant increase in the number of amino acid

transporters (Aa_trans domain) in NC64A (35 proteins). Fourteen

of themhave ESTs, indicating they are expressed. Some of these

transporters may be expressed when in a symbiotic environment

(note: the ESTs in this study were from NC64A cells not engaged

in symbiosis). This observation is consistent with previous stud-

ies, which suggest that Chlorella symbionts, including NC64A,

possess an efficient system for importing amino acids from the

P. bursaria host and can use amino acids as a source of nitrogen

instead of nitrate (Kato et al., 2006). As a complement to amino

acid transporters, NC64A contains many trypsin-like proteases

that may be involved in degrading peptides into amino acids.

We also found an increased number of proteins with a class 3

lipase signature (Lipase_3 domain) (Figure 3; see Supplemental

Table 5 online). A previous study reported that algal symbionts,

Figure 3. Heat Map of PFAM Protein Families with Significantly Biased

Distribution among Chlorophyte Algae.

PFAM protein families that have either significantly expanded or shrunk

in one or more sequenced chlorophytes (x2 test, a = 0.05 after Bonferroni

correction). Full red and black indicate 100 and 0%, respectively, of the

total number of proteins in the PFAM family for the six algae. Real counts

and description of PFAM protein families are given in Supplemental

Table 5 online. The leftmost graph represents the hierarchical clustering

of the PFAM domains by the average linkage methods using correlation

coefficients between profiles.
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such as zooxanthellae, translocate photosynthetic carbon into

their animal hosts in the form of intact lipids, glycerol, and fatty

acids (Battey and Patton, 1984); this process is mobilized by

lipases. The hypothesis that NC64A feeds its P. bursaria host by

translocating lipid molecules remains to be confirmed experi-

mentally.

Protein families, such as protein kinases (Pkinase domain),

guanylate and adenylate cyclases (Guanylate_cyc), and 39,59-
cyclic nucleotide phosphodiesterases (PDEase_I domain), are

more prevalent in Chlamydomonas compared with Chlorella and

themamiellalean algae, suggesting that cellular signaling ismore

complex in Chlamydomonas. Chlamydomonas also has a com-

plex set of arylsulfatase-like proteins (sulfatase domain), some of

which are secreted in response to sulfur deprivation (Pollock

et al., 2005); by contrast, NC64A has only one homolog, and the

four Mamiellale species have none, indicating that they adapt

differently to low sulfur environments.

Evidence of Sexual Reproduction in Chlorella

Although Chlorella species have long been assumed to be

asexual, NC64A encodes all of the known meiosis-specific

proteins inventoried by Schurko and Logsdon (2008) and Malik

et al. (2008), namely, dosage suppressor of MCk1 DMC1,

homologous-pairing proteins HOP1 and HOP2, meiotic recom-

bination protein MER3, meiotic nuclear division protein MND1,

andmutS homolog protein MSH4. These genes are also found in

most of the other sequenced chlorophyte algal species (see

Supplemental Table 6 online). Chlorella species, including sym-

bionts of P. bursaria, have been observed only in the haploid

phase (Pickett-Heaps, 1975; Gerashchenko et al., 2001; Kadono

et al., 2004), but the presence of meiosis genes suggests that

NC64A also has a diploid phase and that its sexual reproductive

cycle might have been overlooked, like the cryptic sex recently

identified in Ostreococcus species (Grimsley et al., 2010). In

addition, we found 19 NC64A homologs of the Chlamydomonas

gametolysin proteins that promote the disassembly of the ga-

metic cell walls and allow gamete fusion as well as an NC64A

ortholog (id:137637) to the Chlamydomonas GCS1 protein es-

sential for cell fusion (Goodenough et al., 2007). These results

suggest that meiosis and sexual reproduction are part of the

NC64A life cycle.

Conserved Flagella Proteins in Chlorella

NC64A, O. lucimarinus, and O. tauri are thought to be nonmotile

green algae because flagella have never been observed in these

organisms. Conversely, Micromonas sp CCMP1545, Micromo-

nas pusilla RCC299, and C. reinhardtii are motile green algae:

both Micromonas species have one flagellum and Chlamydo-

monas has two flagella. A proteomic study (Pazour et al., 2005)

identified 360 Chlamydomonas flagellar proteins with high con-

fidence. We used the reciprocal best BLASTP hit (RBH) criterion

between the Chlamydomonas proteome and that of other se-

quenced chlorophytes to identify orthologs to the Chlamydomo-

nas flagella proteins. Unexpectedly, we identified many putative

(RBH) orthologs to the Chlamydomonas flagellar proteins in the

NC64A genome (103 out of 360 Chlamydomonas flagella pro-

teins = 29%; see Supplemental Data Set 2 online), of which

48% (50/103) and 53% (55/103) were also found in O. tauri and

O. lucimarinus, respectively, while 85% (88/103) were also found

in both Micromonas sp CCMP1545 and M. pusilla RCC299.

Proteins normally involved in the axonemal outer dynein arm, a

structure responsible for movement of flagella, are included

among putative Chlorella orthologs (Figure 4; see Supplemental

Data Set 2 online): outer dynein arm docking complex proteins

(ODA-DC proteins; numbers of proteins in NC64A/Chlamydo-

monas = 3/3), outer dynein arm heavy chain proteins (ODA-DHC:

3/3), outer dynein arm intermediate chain proteins (OAD-IC:

2/2), and outer dynein arm light chain proteins (ODA-LC: 4/5).

Putative orthologs were identified in Micromonas for each of

these proteins (except ODA-DC1), but none were found in the

Figure 4. Distribution of Selected Flagellar Proteins across Chlorophytes.

(A) Cladogram showing the likely evolutionary relationships of sequenced chlorophytes and T. pseudonana based on the 18S phylogenetic tree shown

in Supplemental Figure 1 online. The ƒ mark shows organisms known to build motile flagella. Crei, C. reinhardtii; NC64A, Chlorella sp NC64A; Otau,

O. tauri; Oluc, O. lucimarinus; M. CCMP, M. pusilla CCMP1545; M. RCC, Micromonas sp RC299.

(B) Presence (dot) or absence (circle) of putative (Reciprocal Best Hit) orthologs to Chlamydomonas outer dynein proteins, inner dynein proteins, radial

spoke proteins, central pair proteins, and IFT proteins.

2948 The Plant Cell



Ostreococcus species (except ODA-LC8). In Chlamydomonas,

the assembly and maintenance of flagella depend on a process

called intraflagellar transport (IFT) (Cole, 2003). The IFT system

consists of a motor complex associated with groups of large

protein complexes called IFT particles. Chlorella encodes puta-

tive orthologs to the proteins ITF52, ITF57, and ITF88 involved in

the IFT particle (Figure 4) as well as putative orthologs to the

kinesin-2 motor protein FLA8 (Joint Genome Initiative [JGI]

37158) and the kinesin-associated protein KAP (JGI 139946).

Surprisingly, two of the proteins identified in Chlorella, namely,

ITF57 and ITF88, were until now exclusively found in organisms

that have flagella (Wickstead andGull, 2007) except Plasmodium

falciparum that is known to build its flagella throughout an IFT-

independent mechanism.

C. reinhardii has 249 flagellar proteins that exhibit no RBHwith

NC64A.Micromonas spp retained many of them (101/249 [41%]

RBHs in both Micromonas species). By contrast, only 18/249

(7%) and 19/249 (8%) putative orthologs were identified in O.

tauri and O. lucimarinus, respectively. Overall, 89 proteins were

present in all motile sequenced chlorophyte algae but absent in

NC64A and the Ostreococcus species. This flagella-specific set

includes most proteins known to function in inner-arm dynein

complexes (including inner-arm dyneins), the central pair com-

plex, the IFT particle, and all proteins of the Chlamydomonas

radial spoke (Figure 4; see Supplemental Data Set 2 online).

The conservation of a substantial subset of the C. reinhardtii

flagella proteins in NC64A is intriguing. In particular, our results

suggest that NC64A has retained an almost complete set of

outer-arm dynein proteins (heavy, intermediate, and light chains

and docking complex) that are found only in eukaryotes that

exhibit motile cilia/flagella at some point in their life cycle

(Wickstead and Gull, 2007). Merchant et al. (2007) identified

195 C. reinhardtii proteins that have homologs in two motile

ciliates (Homo sapiens and Phytophthora spp) but not in a group

of reference aciliates (Arabidopsis, Neurospora, Cyanidioschy-

zon, Dictyostelium, eubacteria, and archaea). This protein set,

designated the CiliaCut, is thought to contain proteins involved

in flagellar function. In agreement with the results obtained

above, 63 proteins of theCiliaCut (63/195=32%) hadputative or-

thologs (RBH) in NC64A (see Supplemental Figure 7 online). Mer-

chant et al. (2007) further subdivided the CiliaCut on the basis

of whether or not a homolog was present in Caenorhabditis

elegans, which has only nonmotile sensory cilia, and Thalassio-

sira pseudonana, which builds unusual motile flagella during

gametogenesis. The 62 CiliaCut proteins with homologs in C.

elegans were predicted to have structural, sensory, or assembly

roles and designated the SSA, whereas the 69 CiliaCut proteins

with homologs in T. pseudonana were designated the Centric-

Cut. Interestingly, two-thirds of the CiliaCut proteins with puta-

tive orthologs in NC64A (42/63 = 67%) were classified in the

CentricCut. This distribution was found to be significantly non-

random (P value < 2E-7; x2 test). By contrast, we found no

significant association of the NC64A orthologs with the SSA

subset. Thus, the pattern of conservation of putative flagellar

proteins in NC64A ismost similar to that of T. pseudonana, which

like NC64A, lacks the genes encoding the radial spoke, central

pair, and inner dynein proteins (Figure 4) (Merchant et al., 2007;

Wickstead and Gull, 2007).

Altogether, these results lead to two hypotheses that should

be verified experimentally: (1) the conserved flagella proteins

might have acquired other biological roles when the flagellar

apparatus was lost, which allowed the corresponding genes (i.e.,

encoding the retained flagella proteins) to remain under selective

pressure; (2) given that NC64A is probably capable of sexual

reproduction as suggested above, we speculate that Chlorella

retained the ability to form rudimentary, possibly motile, flagella

or flagellum-derived structures, similar to those of T. pseudo-

nana. If true, we hypothesize that this inferred structure might

serve in the recognition of the mating partner and initiate cell

fusion, producing an as yet unidentified zygote.

Phytohormones in Algae

Phytohormones regulatemuch of the growth and development in

land plants, and they are involved in the plant’s response to

infection. Most types of land plant hormones have been bio-

chemically detected in green algae, including chlorophytes

(Tarakhovskaya et al., 2007). Some of those hormones appear

to play the same roles as in land plants (e.g., cytokinin [Stirk et al.,

2002] and auxin [de-Bashan et al., 2008]), but little is known

about algal hormone biosynthesis (Bajguz, 2009). Hormone

biosynthetic pathways in land plants are associated with plas-

tids. Since chlorophyte algae contain plastids, we anticipated

finding orthologs to the enzymes that synthesize hormones in

land plants, as well as to their hormone receptors. We did not

attempt to compile an exhaustive search of all chlorophyte hor-

mone pathway steps or their receptors. Extensive gene dupli-

cation in the Arabidopsis genome used as reference prevented

us from identifying clear algal orthologs of someenzymes involved

in hormone synthesis. Instead, we looked for the presence of one

or more clear orthologous enzymes for some key steps in plant

hormone pathways and receptors. Orthology assignation was

performed by combining information from reciprocal best hit

analysis, phylogenetic tree reconstruction, and protein domain

organization (see Supplemental Results online).

We explored the NC64A genome as well as five other chloro-

phyte genomes and found probable orthologs to Arabidopsis

enzymes involved in the synthesis of a variety of plant hormones,

including abscisic acid, cytokinin, brassinosteroid, and poly-

amines (Table 2; see Supplemental Results online). The se-

quenced chlorophyte algae did not exhibit homologs (BLASTP

and TBLASTN analyses E-value cutoff = 1e-5) to Arabidopsis

enzymes involved in the gibberellin biosynthetic pathway (gibber-

ellin biosynthetic proteinsGA1, GA2, andGA3; gibberellin oxidase

proteins GA20OX1, GA2OX1, and GA3OX1) or the ethylene bio-

synthetic pathway (1-aminocyclopropane-1-carboxylate syn-

thase and 1-aminocyclopropane-1-carboxylate oxidase [ACO]).

We did find putative orthologs to some of the known Arabidopsis

hormone receptors, including those for abscisic acid (chelatase

H subunit [CHLH]), auxin (Auxin Binding Protein1 [ABP1]), and

cytokinin (high osmolarity glycerol protein [HOG]) (Table 2). A

recent survey of genomic data also reported the existence of ortho-

logs of some of the components of the auxin signaling systems,

including ABP1, in chlorophyte algae (Lau et al., 2009). In Arabi-

dopsis, the auxin signaling cascade alternative to ABP1 involves

the TIR1/AFB family of F-box proteins, auxin response factor, and
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auxin/indole-3-acetic acid proteins (Lau et al., 2008). None of

these proteins were found to have a significant match with the

sequenced chlorophytes, suggesting that this signaling cascade is

absent in these organisms (Lau et al., 2009). By contrast, all major

components of this pathway were identified in the moss

P. patens, which implies that their origin goes back to at least

the early evolution of land plants (Rensing et al., 2008).

The presence of putative chlorophyte orthologs toArabidopsis

proteins involved in phytohormone biosynthesis and perception

does not necessarily imply that these green algae can produce,

sense, and respond to hormones through pathways analogous

to those in land plants. To our knowledge, some of the identified

enzymes have no other role than hormone biosynthesis in land

plants (e.g., ATP/ADP isopentenyltransferase AtIPT, Sterol 1 pro-

tein STE1, and DWARF5), while others are also involved in the

production of molecules with no hormonal function (e.g., ab-

scisic acid 1 protein [ABA1] and nonphotochemical quenching

protein [NPQ1] involved both in the xanthophyll cycle and in the

synthesis of ABA precursors). However, the presence of putative

orthologs to the Arabidopsis auxin receptor ABP1 in NC64A is

congruent with earlier studies demonstrating that auxin induces

cell division in Chlorella pyrenoidosa (Vance, 1987) and cell

enlargement inChlorella vulgaris (Yin, 1937), two species closely

related to NC64A (see Supplemental Figure 1 online). Our

Table 2. Accession Numbers of Putative Chlorophyte Orthologs to Arabidopsis Proteins Involved in Phytohormone Biosynthesis or Reception

Arabidopsis Enzyme Namea
Chlorella sp

NC64Ab C. reinhardtii O. tauri O. lucimarinus

Micromonas

sp RC299

Micromonas

sp CCMP1545

Abscisic acid pathway

Abscisic-aldehyde oxidase

(AAO3) NP_180283

58208 (30%)

9-cis-epoxycarotenoid

dioxygenase (NCED5) NP_174302

138368 (37%) XP_ 001695565

(32%)

Zeaxanthin epoxidase (ABA1)

NP_201504

138731 (57%) XP_ 001701701

(58%)

CAL 58065

(42%)

XP_ 001421564

(41%)

ACO 64017

(44%)

EEH 54518

(43%)

Violaxanthin deepoxidase (NPQ1)

NP_172331

35609 (42%) CAL 58064

(46%)

XP_ 001421704

(41%)

ACO 63977

(41%)

EEH 54773

(40%)

Abscisic acid receptor (CHLH)

NP_001078578

143922 (50%) XP_ 001700895

(66%)

CAL 51621

(68%)

XP_ 001417229

(68%)

ACO 63109

(68%)

EEH 57631

(67%)

Cytokinin pathway

Isopentenyl-transferase 9 (ATIPT9)

NP_851043

55198 (36%) CAL 53743

(35%)

XP_ 001418572

(36%)

ACO61527

(42%)

EEH 53639

(41%)

Cytokinin receptor (HOG)

BAH19670

37522 (81%) XP_ 001693339

(77%)

CAL 55423

(75%)

XP_ 001419579

(74%)

ACO67241

(73%)

EEH 58817

(69%)

Brassinosteroid pathway

lathosterol oxidase (STE1)

NP_186907

37407 (45%) XP_ 001701457

(50%)

7-Hydrocholesterol reductase

(DWF5) NP_001077693

ACO 69953

(51%)

EEH 53090

(51%)

Steroid reductase (DET2)

NP_181340

18410 (37%) XP_ 001696975

(34%)

CAL 52707

(32%)

XP_ 001416556

(33%)

ACO 66602

(34%)

EEH 52455

(34%)

Jasmonic acid pathway

12-Oxophytodienoate reductase

(OPR1) NP_177794

52565 (48%) XP_ 001699402

(51%)

3-Hydroxyacyl-CoA

dehydrogenase/enoyl-CoA

hydratase (MFP2) NP_187342

52565 (54%) XP_ 001696661

(45%)

CAL 53100

(44%)

XP_ 001417042

(52%)

ACO 65308

(52%)

EEH 60148

(51%)

Polyamine (spermidine) pathway

Arg decarboxylase (ADC1)

NP_179243

25497 (40%) EEH 59440

(38%)

Agmatine iminohydrolase (ATAIH)

NP_196434

133066 (54%)

N-Carbamoyl-putrescine

amidohydrolase (NLP1) NP_850101

18182 (57%) XP_ 001692986 (53%)

XP_ 001690094 (53%)

Spermidine synthase 2 (SPDS2)

NP_177188

26108 (53%) XP_ 001702843 ABO 98745

(56%)

XP_ 001420452

(58%)

ACO 70332

(55%)

EEH 54321

(56%)

Orn decarboxylase NP_001063827c 133981 (50%) XP_ 001698872

(46%)

CAL 51811

(45%)

XP_ 001417323

(45%)

ACO 63617

(46%)

EEH 58717

(46%)

Auxin pathway

Auxin receptor ABP1 NP_192207 17596 (48%),

26559 (40%)

The percentages of sequence identity in the best high-scoring pair (BLASTP) between proteins and their putative orthologous Arabidopsis protein are

shown in parentheses.
aArabidopsis accession number of protein used as query in BLAST search.
bAt the JGI portal site (http://genomeportal.jgi-psf.org/), select Chlorella NC64A.
cThis enzyme is not found in Arabidopsis; accession number is for O. sativa.
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analysis suggests that at least some of the genes specifically

involved in phytohormone biosynthesis and perception in land

plants were established prior to their evolution. Unicellular an-

cestors of streptophytes and chlorophytes were perhaps able to

communicate with each other before the emergence of multi-

cellular land plants. We suggest that the existence of these

features likely facilitated the evolution of multicellularity.

Cell Wall Metabolism and Interplay with Chlorella Viruses

With 233 predicted enzymes involved in carbohydrate metabo-

lism, NC64A appears much better equipped for synthesizing and

modifying polysaccharides than the other sequenced chloro-

phytes that have between 92 (O. tauri) and 168 (C. reinhardtii) of

such predicted enzymes (see Supplemental Data Set 3 online)

(Cantarel et al., 2009). However, we did not find homologs of

the Arabidopsis proteins involved in the synthesis of cellulose

(cellulose synthase CesA) or hemicellulose (hemicellulose syn-

thase CLS), themajor components of the primary cell wall of land

plants. Instead, experimental evidence suggests that the cell wall

of Chlorella species, including NC64A, contain glucosamine

polymers such as chitin and chitosan (Kapaun and Reisser,

1995; Sun et al., 1999). We found two NC64A paralogs for chitin

synthase and, remarkably, 25 paralogs for chitin deacetylase,

which converts chitin into chitosan. Both NC64A chitin syntase

proteins contain conserved amino acids essential for the cata-

lytic activity of the Saccharomyces cerevisiae enzyme (i.e., Asp-

441, Asp-562, Gln-601, Arg-604, Trp-605, Asn-797, Asp-800,

Trp-803, and Thr-805; Yabe et al., 1998) (see Supplemental

Figure 8A online). We also identified putative proteins involved in

the degradation of these polysaccharides: two chitinase genes

(plant and prokaryotic types [glycosyl hydrolase families GH19

and GH18, respectively]) and four chitosanase genes. The pro-

karyotic type chitinase protein exhibits protein domains that are

homologous to the PF-ChiA chitinase and cellulose binding

domains found in the chitinase of archaeon Pyrococcus furiosus.

It also exhibits the conserved amino acid sequence (DXDXE

motif) that plays an important role in the catalytic mechanism of

family 18 chitinases (Watanabe et al., 1994) (see Supplemental

Figure 8Bonline). The four NC64A chitosanases contain the three

catalytic residues Glu-36, Asp-40, and Thr-45 of Streptomyces

sp N174 chitosanase (Lacombe-Harvey et al., 2009) (see Sup-

plemental Figure 8C online).

Chitin is a natural component of fungal cell walls and of the

exoskeleton of arthropods but is not normally present in green

algae. The origin of chitin and its derivatives in the Chlorella

genus has long been an enigma. Except for the plant-type

chitinase gene, which is found in land plants (but not in chloro-

phytes apart from Chlorella), the four gene classes involved in

forming and remodeling chitin cell walls (i.e., chitin synthase,

chitin deacetylase, chitinase, and chitosanase) are absent in all

the other fully sequenced Viridiplantae species. By contrast,

homologs for each of these families exist in genomes ofChlorella

viruses. The viral genes are presumably involved in degradation

of the Chlorella cell wall (chitinase and chitosanase) (Kang et al.,

2005) and production of chitinous fibers on the external surface

of virus-infected cells (chitin synthase and chitin deacetylase)

(Kawasaki et al., 2002). Phylogenetic analysis suggests that the

Chlorella ancestor exchanged the bacterial-type chitinase and

chitin-deacetylase genes with the chloroviruses (Figure 5). The

fact that these genes are absent in the other Viridiplantae species

studied to date argues in favor of the capture of the viral genes by

Chlorella. Alternatively, capture of the Chlorella genes by chloro-

viruses would imply that Chlorella genes were vertically inher-

ited from the Viridiplantae ancestor and that these genes were

independently lost in many lineages of the Viridiplantae, a very

improbable scenario. Another scenario would imply a first

Figure 5. Maximum Likelihood Phylogenetic Tree of the Chitin Deace-

tylase and Chitinase Proteins.

For both protein families, we used the WAG+I+G model of substitutions.

Approximate likelihood ratio test values >50% are indicated beside

branches. Phylogenetic trees are midpoint rooted. Alignments used to

generate these trees are available as Supplemental Data Sets 4 and 5

online.

(A) Phylogenetic tree of chitin deacetylases. The multiple sequence

alignment contained 134 gap-free sites.

(B) Phylogenetic tree of chitinases. The multiple sequence alignment

contained 228 gap-free sites.

[See online article for color version of this figure.]
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capture of the genes by HGT from prokaryotes or fungi to

Chlorella, after which a Chlorella virus picked up the two genes

from Chlorella. Phylogenetic reconstructions of the chitosanase

and chitin synthase proteins indicate that the corresponding

Chlorella and Chlorella virus genes are phylogenetically related,

but no direct gene exchange occurred betweenChlorella and the

known Chlorella viruses (see Supplemental Figures 9 and 10

online). Collectively, our results are congruent with the hypoth-

esis that components of the Chlorella chitin metabolism were

acquired horizontally from viruses or distantly related chitin-

producing cellular organisms rather than from a Viridiplantae

ancestor.

Conclusion

The first sequence of a trebouxiophycean genome unveiled im-

portant features of the evolution and genomic organization of the

green phylum. For instance, the existence of genomic regions

displaying large differences in GC content, correlating with dif-

ferences in their expression levels, now appear to be a charac-

teristic feature of many chlorophyte genomes. Understanding

the role andmechanismbywhich this compositional shift is estab-

lished and maintained is one of the next challenges in phycology.

We presented evidence suggesting that Chlorella could have

acquired components of its chitin biosynthetic pathway by HGT

from a chlorovirus or a microorganism. A similar evolutionary

scenario was also evoked for the eukaryotic microalga Emiliania

huxleyi that exchanged seven genes of the sphingolipid biosyn-

thesis pathway with its large DNA virus, EhV (Monier et al., 2009),

though the direction of gene transfer is unknown. Thus, the large

DNA viruses predominantly associated with microalgae and

marine protists might have played a much larger role in the

evolution of their hosts than previously recognized. Conversely

to the traditional view of viruses as gene pickpockets, large

DNA viruses might have a propensity to enhance the metabolic

capabilities of their host by donating genes (Villarreal, 2004). In

the case of Chlorella, the acquisition of a chitinous cell wall may

have conferred a protective barrier against other viral and bac-

terial parasites lacking the chitinase/chitosanase enzymes re-

quired to penetrate and/or escape the algal cell. This might have

increased the fitness of Chlorella compared with its ancestors

unable to synthesize chitin. This HGT might be the key event

that promoted the radiation and success of the Chlorella genus

(i.e., Chlorella may have achieved a cosmopolitan distribution

because most of its previous parasites failed to penetrate its

newly acquired chitinous cell wall).

Our results illustrate the role that comparative genomics can

play in uncovering unsuspected biological functions; here, the

identification of genes involved in meiosis, gamete fusion, and

flagella. This led us to hypothesize that Chlorella retained the

capability of sexual reproduction despite the fact that no sex-

ual life cycle has been described in this genus. These findings

naturally pose the question of the maintenance of sexual re-

production in an organism capable of rapid clonal population

growth. In C. reinhardtii, mating between two haploid partners

is induced by stress conditions (e.g., lack of nitrogen), producing

a zygote resistant to freezing and desiccation (Goodenough

et al., 2007). There is some recent evidence that viruses may

have played a role in the success of sexual reproduction. Sexual

reproduction can confer a selective advantage to the host in the

arms race against its parasites (the so-called Red Queen hy-

pothesis) by increasing the efficiency with which selection can

fix beneficial mutations that result in virus resistance (Morin,

2008). A more direct viral pressure is illustrated by the hapto-

phyte microalga E. huxleyi escaping infection by the phycodna-

virus EhV by switching from its virus-sensitive diploid stage to a

morphologically distinct haploid stage immune to the virus (the

Cheshire Cat escape strategy) (Frada et al., 2008).Ostreococcus

and Chlorella species are normally haploid but contain meiosis-

related genes. They are both infected by phycodnaviruses (OsV

and Chlorella viruses, respectively) that are phylogenetically

related to EhV (Wu et al., 2009). By analogy to the EhV–E. huxleyi

model, it is tempting to speculate that these microalgae have a

virus-resistant diploid phase that might only become detectable

after viruses have decimated the haploid population.

The presence of putative chlorophyte orthologs for land plant

proteins functioning in critical hormone metabolic steps and as

hormone receptors opens the possibility that phytohormone

biosynthesis and perception could also be present in chloro-

phyte algae, although perhaps in a rudimentary form compared

with land plants. Consequently, it has been suggested that green

algaewould be amodel organism for the study of plant hormones

(and receptors) because they are unicellular and can be grown

axenically in the laboratory (Stirk et al., 2002). A fuller under-

standing of the role of plant hormonemolecules in green algae as

well as of their synthesis and perception would possibly lead to

the selection and improvement of better algal strains that could

benefit agricultural practices in developing countries (Stirk et al.,

2002), result in better production of biodiesel, and improve the

quality and quantity of nutrient supplements (proteins, vitamins,

etc.). While bioinformatics/genomics can provide strong clues,

enzyme and receptor functions remain to be experimentally

tested to verify these many predictions.

METHODS

A detailed description of methods is provided in Supplemental Methods

online.

Genome Sequencing and Assembly

The NC64A genome was sequenced using the whole-genome sequenc-

ing strategy. The data were assembled using release 2.10.11 of Jazz, a

whole-genome sequencing assembler developed at the JGI (Aparicio

et al., 2002). After excluding redundant and short scaffolds from the initial

assembly, there was 46.4 Mb of scaffold sequence, of which 4.0 Mb

(8.5%) were gaps. The filtered assembly contained 431 scaffolds, with a

scaffold N/L50 of 12/1.5 Mb (the number of scaffolds/length of the

shortest scaffold, respectively, such that the sum of scaffolds of equal

length or longer is at least 50% of the total length of all scaffolds), and a

contig N/L50 of 441/27.6 kb. The sequence depth derived from the

assembly was 8.95 6 0.15.

Pulse Field Gel Electrophoresis

Pulse field gel electrophoresis studies were performed according

to Agarkova et al. (2006). Chromosomal DNAs were separated in a

2952 The Plant Cell



CHEF-DR II (Bio-Rad) unit in a 0.8% agarose gel. Electrophoresis condi-

tions and running buffer were selected to resolve the target chromosome

sizes. The exact conditions are described in the figure legends.

EST Sequencing and Assembly

Chlorella sp NC64A cells were grown to log phase (1.5 3 107 cells/mL).

NC64A poly(A)+ RNA was isolated from total RNA using the Absolutely

mRNA Purification kit (Stratagene). One to two micrograms of poly(A)+

RNA, reverse transcriptase SuperScript II (Invitrogen), and oligo(dT)-NotI

primer were used to synthesize first-strand cDNA. Second-strand syn-

thesis was performed with Escherichia coliDNA ligase, polymerase I, and

RNaseH followed by end repair using T4 DNA polymerase. The cDNA

inserts were directionally ligated into the SalI- and NotI-digested vector

pCMVsport6 (Invitrogen). Subcloned inserts were then sequenced with

BigDye terminator chemistry (AppliedBiosystems). A total of 38,400ESTs

were generated. The ESTs were processed through the JGI EST pipeline.

A total of 23,828 ESTs remained after trimming vector sequences and

removing short sequences. EST clusters were assembled using CAP3

(Huang and Madan, 1999) to form consensus sequences. Clustering and

assembly of all 23,828 ESTs resulted in 7499 consensus sequences.

Genome Annotation and Sequence Analysis

The genome assembly v1.0 of NC64A was annotated using the JGI

annotation pipeline, which combines several gene predictors and filtering

steps (see Supplemental Methods online). Phylogenetic analyses were

performed on the phylogeny.fr web tool (Dereeper et al., 2008). De novo

identification of repeated sequences was performed by aligning the

genome against itself using the BLASTN program (E-value < 1e-15).

Individual repeat elements were organized into families with the RECON

program using default settings (Bao and Eddy, 2002). RECON constructed

2980 repetitive sequence families from10,723 individual repeat elements.

Second, identification of known repetitive sequences was performed by

aligning the prototypic sequences contained in Repbase v12.10 (Jurka

et al., 2005) using TBLASTX. The results of the two methods were

combined.

Accession Numbers

Assembly and annotations of Chlorella sp NC64A are available from JGI

Genome Portal at http://genome.jgi-psf.org/NC64A and can also be

found in the GenBank/EMBL data libraries under accession number

ADIC00000000.
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Supplemental Figure 1: Phylogenetic position of Chlorella variabilis NC64A among chlorophyte algaeSupplemental Figure 1: Phylogenetic position of Chlorella variabilis NC64A among chlorophyte algae.
Maximum likelihood (ML) phylogenetic tree based on the analysis of 18S gene sequences and the HKY+Γ+I 
substitution model. The multiple-sequence alignment contained 1509 gap-free sites (provided in Supplemental 
data set 6 online). Selection of the best substitution model for ML tree searches was performed with the 
MODELTEST program. Approximate likelihood ratio test support values for branches are given beside 
branches (only values >50%). Genbank identification (gi) numbers of sequences are given beside species 
names. 
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Supplemental Figure 2: Pulsed field gel electrophoresis of Chlorella sp. NC64A 
chromosomes 
Electrophoresis conditions were as follows: (A) 0.8% agarose gel in 0.5× TBE buffer with 
pulse ramped from 0 45K sec to 1 2K sec for 72 h at 3 V/cm; (B) 0 7% agarose gel in 0 5×pulse ramped from 0.45K sec to 1.2K sec for 72 h at 3 V/cm; (B) 0.7% agarose gel in 0.5
TBE buffer with pulse ramped from 4.5K sec to 3.0K sec at 1.4 V/cm for 72 hrs; then from 
3.6K sec to 3.0K sec at 1.4 V/cm for 24 hrs; then 2.7K sec at 1.8 V/cm for 24 hrs; then 
from 3.9K sec to 0.8K sec at 2.1 V/cm for 48 hrs;
PFGE revealed 12 bands ranging in size from 1.1 Mb to >6.4 Mb [1.1 Mb. 1.9 Mb, 2.1 Mb, 
2.4 Mb, 2.8 Mb, 3.2 Mb, 3.8 Mb, 4.2 Mb, 4.7 Mb, 5.0 Mb, 6.4 Mb, and >6.4 Mb (these 
sizes were calculated as the average of 18 gel runs with different pulse conditions)]. The g g p )]
top band represents compressed chromosomal DNA beyond the resolution limits. 
Summation of the sizes of all bands (except for the top band with compressed DNA) gives 
a genome size of ~ 37.6 Mb that is ~ 8.6 Mb less than the actual size, based on the 
genome sequence assembly (46.2 Mb). This suggests that the top unresolved band (A2 
and A3) may be the 12th chromosome of 8.6 Mb. 
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Taxonomic classification of best hits

Supplemental Figure 3: Taxonomic distribution of best matches for proteins encoded in 
low-GC regions 
1 384 NC64A proteins encoded in the low GC regions of Chlorella variabilis NC64A were1,384 NC64A proteins encoded in the low-GC regions of Chlorella variabilis NC64A were 
aligned against the NCBI-NR database using the BLASTP program. Only the best BLAST 
hits with E-value < 1e-5 were recorded. 
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Supplemental Figure 4: Gene duplication in selected Viridiplantae
Genes were considered as duplicate when their translation products matched in BLASTPGenes were considered as duplicate when their translation products matched in BLASTP 
searches with E-value < 1e-5. Duplicate genes were considered as resulting from tandem 
duplication if they lay less than ten genes apart in the genome.
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Supplemental Figure 5: Sequences motifs for intron splice sites
Different font sizes indicate the probability of a particular nucleotide at the respective 
motif position. Logos were calculated from intron sequences whose borders were 
confirmed by EST data.
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Supplemental Figure 6: Taxonomic distribution of best matches for representative 
Chl h t

Taxonomic classification of best hits

Chlorophytes
The full proteome complements of the three green algae were aligned against the NCBI-
NR database using the BLASTP program. Only the best BLAST hits with E-value < 1e-5 
were recorded. 
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CiliaCut Chlamy: 195 - NC64A: 63 (32%) A
CenticCut Chlamy: 69 - NC64A: 42 (61%)

Chlamy: 95
NC64A: 16 (17%)

Chlamy: 38
NC64A: 24 
(63%)

Chlamy: 31
NC64A: 18
(58%)

Chlamy: 31 NC64A: 5 (16%)

MotileCut Chlamy: 133 - NC64A: 40 (30%)

MotileCut
SSA (non 
MotileCut)

P-valueB
MotileCut)

Chlamydomonas CiliaCut 
proteins

133 62

Chlamydomonas CiliaCut 
proteins with putative 
orthogues in NC64A

40 (30%) 23 (37%) 0.42

CentricCut
non 

CentricCut
P-value

Chlamydomonas CiliaCut 
proteins

69 126

Chlamydomonas CiliaCut 
proteins with putative 
orthogues in NC64A

42 (61%) 21 (17%) 2.07E-07

Supplemental Figure 7:  NC64A putative orthologues to Chlamydomonas CiliaCut proteins 
(A) CiliaCut: The CiliaCut contains 195 Chlamydomonas proteins with homologs in human and species of 
Phytophthora, but not in nonciliated organisms. This group was subdivided on the basis of whether or not a 
homolog was present in Caenorhabditis, which has only nonmotile sensory cilia. The 133 CiliaCut proteins 
without homologs in Caenorhabditis were designated the MotileCut (orange rectangle) Proteins withwithout homologs in Caenorhabditis were designated the MotileCut (orange rectangle). Proteins with 
homologs in Caenorhabditis are associated with nonmotile cilia (white and yellow areas) and were named 
SSA (for structural, sensory or assembly). The CentricCut (yellow plus light orange box) is made up of 69 
CiliaCut homologs present in the centric diatom Thalassiosira. These proteins can be divided into those 
also in the MotileCut (38 proteins; light orange box) or those not present in the MotileCut (31 proteins; 
yellow box). Blue numbers indicate the number of Chlamydomonas proteins in each of the subdivisions of 
the CiliaCut, whereas green numbers indicates the number and proportion (in parentheses) of 
Chlamydomonas CiliaCut proteins with putative orthologues in NC64A . Modified from figure 5 in Merchant 

l (200 ) (B) Di ib i f Chl d i i h Cili C b i P let al. (2007). (B) Distribution of Chlamydomonas proteins in the CiliaCut sub-categories. P-values were 
calculated with the Chi-square test and are associated to the null hypothesis that the Chlamydomonas
CiliaCut proteins with putative orthologues in NC64A are randomly distributed in the CiliaCut sub-
categories (relative to the distribution of all CiliaCut proteins)
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Supplemental Figure 8: Alignment of NC64A proteins with their reference
proteins involved in chitin metabolism. 
Arrows indicate residues identified as essential for the catalytic activity in the 
reference protein. (A) Alignment of chitin synthases. Numbering of essential 
residues refers to the S. cerevisiae chitin synthase II. The Genbank id (gi) of the 
S. cerevisiae chitin synthases I and II are 6324137 and 6319512 respectively (B) 
Alignment of chitinase. Numbering of essential residues refers to the NC64A 
protein. The gi of the Pyrococcus furi reference protein is 1633271. (C) Alignment
of chitosanase. Numbering of essential residues refers to the Streptomyces sp. 
NC147 t i ( i 1633271)NC147 protein (gi: 1633271).
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Supplemental Figure 9: ML phylogenetic tree of chitosanase proteins
The multiple-sequence alignment contained 156 gap-free sites (provided in 
Supplemental data set 7 online). The phylogenetic tree was reconstructed using the 
WAG+I+G model of substitutions. Approximate likelihood ratio test values >50 are 
indicated beside branches.
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Supplemental Figure 10: ML phylogenetic tree of chitin synthase proteins
The multiple-sequence alignment contained 241 gap-free sites (provided in Supplemental 
data set 8 online). The phylogenetic tree was reconstructed using the WAG+I+G model 
of substitutions. Approximate likelihood ratio test values >50% are indicated beside 
branches.
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Supplemental Table 1: Nuclear genome assembly statistics 

Features  

Number of scaffolds 413 

GC content codinga 66% 

GC content Introna 68% 

Gene count 9,791 (100%)

Complete ORF (with start and stop codons) 8,519 (87%) 

Supported by ESTs 4,138 (42%) 

Supported by homology (NCBI NR) 8,747 (89%) 

Contain Pfam domain 5,537 (57%) 

Ave. Gene length (nt) 2,928 

Ave. Coding sequence length (nt) 1,368 

Repeated sequence content 11.5% 

a Calculated from genes whose gene structure is confirmed by EST 
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Supplemental Table 2: EuKaryotic Ortholog Groups (KOG) functional categories 
among low-GC and normal-GC regions 

KOG category 
Nb of 

proteins in 
category 

Percent of 
proteins in low 

GC regions 
P-value ‡ 

All KOG categories 7,938 16.21%  
Amino acid transport and metabolism  323 21.36% 0.012
Carbohydrate transport and metabolism  324 19.14% 0.153
Cell cycle control, cell division, chromosome partitioning  170 20.00% 0.180
Cell motility  4 25.00% 0.634
Cell wall/membrane/envelope biogenesis  99 18.18% 0.595
Chromatin structure and dynamics  227 7.93% 0.001*
Coenzyme transport and metabolism  114 20.18% 0.251
Cytoskeleton  271 17.34% 0.614
Defense mechanisms  82 15.85% 0.930
Energy production and conversion  241 14.11% 0.375
Extracellular structures  210 8.10% 0.001*
Function unknown  477 15.93% 0.868
General function prediction only  1,063 14.58% 0.149
Inorganic ion transport and metabolism  188 15.43% 0.770
Intracellular trafficking, secretion, and vesicular transport  315 20.00% 0.068
Lipid transport and metabolism  266 22.56% 0.005
Nuclear structure  56 14.29% 0.696
Nucleotide transport and metabolism  95 25.26% 0.017
Posttranslational modification, protein turnover, chaperones  774 16.54% 0.807
Replication, recombination and repair  243 16.46% 0.917
RNA processing and modification   335 19.40% 0.113
Secondary metabolites biosynthesis, transport and 
catabolism  140 20.71% 0.148
Signal transduction mechanisms  682 16.57% 0.801
Transcription  843 9.61% 0.000*
Translation, ribosomal structure and biogenesis  396 20.20% 0.031

‡ P-value associated with the null hypothesis that the low-GC and normal-GC regions have an unbiased 
distribution of proteins in functional category, relative to the total number of proteins. P-values were calculated 
using the chi-square test. 
* statistically significant at α = 5% after Bonferroni correction 
. 
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Supplemental Table 3: Repeated sequences in the NC64A genome 

Class Family No. of fragments Cumulative length (nt) Percent of total 

TOTAL  29,495 5,527,001 100.0% 
   
Unknown  8,896 2,712,218 51.6% 
   
LTR Retrotransposon  10,824 1,160,885 21.0% 
 Gypsy 5,797 628,019 11.4% 
 Copia 4,048 427,518 7.7% 
   
Non-LTR Retrotransposon  7,176 923,613 16.7% 
 RandI 3,164 405,853 7.7% 
 L1 1,854 233,943 4.5% 
 RTE 645 112,476 2.1% 
 GilM 963 109,310 2.1% 
   
Endogenous Retrovirus  659 64,277 1.2% 
 ERV1 485 49,403 0.9% 
   
DNA Transposon  474 71,553 1.3% 

 Novosib 334 37,568 0.7% 

   
Satellite  92 12,892 0.2% 
   
rRNA - tRNA  215 21,186 0.4% 
   
Gene duplicates*   1,141 536,090 10.3% 
* refers to nucleotide sequences with significant BLASTX match with proteins, excluding transposable-element 
related proteins  
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Supplemental Table 4: Chlorophyte algae specific PFAM protein domains 

PFAM domain 
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Description 

Amino acid metabolism 
Asparaginase 2 2 1 1 2 1 L-Asparaginase type 1 (bacterial) 

Carbohydrate metabolism 
ACN9 1 1 1 1 1 1 ACN9 protein 
Fe-ADH 2 3 2 1 1 1 Iron-containing alcohol dehydrogenase 
Fatty acid metabolism 
PYC_OADA 1 1 1 1 1 1 Conserved domain of pyruvate carboxylase 
Cell adhesion/signal transduction 
CD36 2 1 1 1 1 1 CD36 family scavenger receptors class B  
Cell envelope    
CotH 1 1 2 1 2 2 CotH family protein 
Cytoskeleton     
p25-alpha 3 5 2 1 1 1 p25-alpha microtubule-targeting protein family  
DNA or RNA metabolism 
Bac_DNA_binding 1 1 1 1 1 1 Histone Like DNA-binding HU-beta protein  
HA 3 1 2 3 4 5 Helicase domain 
Protein metabolism     
Cu2_monooxygen 1 3 1 1 1 2 Peptidylglycine alpha-amidating monooxygenase (PAM) 
SLA_LP_auto_ag 1 1 1 1 1 1 Selenocystein aminotransferase 
Respiration     
Cyto_heme_lyase 2 3 2 2 2 2 Cytochrome c/c1 heme lyase 
Signal transduction    
PDEase_I 2 28 4 6 2 2 3'5'-cyclic nucleotide phosphodiesterase  
Transport    
Form_Nir_trans 3 6 1 2 1 1 Formate/nitrite transporter 
Miscellaneous     
Thioesterase 1 2 2 2 2 2 Thioesterase domain of type I polyketide synthase 
DUF101 1 1 1 1 1 1 Protein of unknown function 
DUF1824 1 1 1 1 1 1 Protein of unknown function 
DUF2009 1 1 1 1 1 1 Protein of unknown function 
DUF262 2 2 2 2 1 1 Protein of unknown function 
DUF395 1 3 1 2 3 1 Protein of unknown function 
GCC2_GCC3 15 5 2 4 1 1 GCC2 and GCC3 domain 
NIPSNAP 1 2 1 1 1 1 Protein of unknown function 
Tcp10_C 1 1 1 1 1 1 T-complex protein 10 C-terminus 
TIG 1 3 9 9 10 8 IPT/TIG domain
UPF0079 1 1 1 1 1 1 Protein of unknown function 
VTC 2 2 2 2 1 1 Protein of unknown function 
Ycf66_N 1 1 1 1 1 1 Protein of unknown function 
* Number of proteins containing a PFAM domain  
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Supplemental Table 5: PFAM domains with biased distribution in chlorophyte green 
algae 

PFAM domain 
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Putative function of proteins or 
domains 

Pkinase 188 432 112 127 99 88 3.E-104* Protein kinase 
Histone 33 149 16 17 11 13 4.6E-77* Core histone H2A/H2B/H3/H4  
Guanylate_cyc 2 76 2 1 0 0 6.0E-73* Adenylate and Guanylate cyclase  
Sel1 3 2 72 6 2 3 3.3E-56* Sel1 domain containing protein 
Polysacc_deac_1 25 0 0 0 0 0 2.7E-25* Chitin deacetylase 
Peptidase_M11 17 34 0 0 0 0 5.1E-24* Gametolysin peptidase M11 

SBP 34 21 3 3 0 0 1.5E-19*
Squamosa promoter binding protein 
family 

zf-MYND 58 42 27 15 4 3 2.4E-19*
MYND finger protein-protein 
interaction domain 

Sulfatase 1 19 0 0 0 0 1.3E-17* Sulfatase 

SRCR 14 24 0 0 0 0 1.3E-16*
Scavenger receptor cysteine-rich 
domain protein 

DUF1929 2 18 0 0 0 0 1.8E-15* Unknown function 
PDEase_I 2 28 4 6 2 2 4.7E-14* 3'5'-cyclic nucleotide phosphodiesterase  

BTB 6 28 3 3 2 2 5.3E-14*
BTB/POZ protein-protein interaction 
domain 

Exostosin 16 29 1 3 3 2 8.3E-14* Exostosin family 

Aa_trans 35 8 7 8 6 5 2.8E-11*
Transmembrane amino acid transporter 
protein  

GTP_EFTU_D2 16 3 0 0 1 1 1.1E-10*
GTP-binding translation elongation 
factor EF-Tu-like 

Helicase_C 85 36 31 24 37 53 1.2E-10* Helicase  
Trypsin 37 11 14 10 6 5 1.1E-09* Trypsin-like protease 
SCP 12 14 1 0 0 0 2.5E-09* SCP-like extracellular protein 
p450 25 41 12 12 11 10 8.7E-08* Cytochrome P450 
Peptidase_S8 22 15 6 6 2 1 2.7E-07* Subtilase serine proteases 

F-box 32 14 10 8 6 7 4.8E-07*
F-box protein-protein interaction 
domain 

Lipase_3 32 14 9 13 8 7 7.7E-06* Lipase (class 3) 
GCC2_GCC3 15 5 2 4 1 1 1.3E-05* GCC2 and GCC3 domain protein 
U-box 25 21 12 26 6 5 3.7E-05* U-box domain protein 
DUF285 0 0 10 16 9 12 5.3E-05* unknown function 
CBM_20 18 8 5 7 1 3 1.2E-04* glycosyl transferase 
Fasciclin 23 10 9 7 5 4 1.6E-04* Fasciclin adhesion domain 
* significant at α = 0.05 after Bonferroni correction for multiple tests. P-values calculated using the Chi square 
statistics. 
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Supplemental Table 6: Meiosis-specific proteins Genbank identification (gi) numbers 
and percentage of protein sequence identity with reference Arabidopsis proteins (in 
brakets) 
List of species DMC1a HOP1b HOP2c MER3d MND1c MSH4 

Chlorella NC64A 
(Chlorophyte)1 

52039 
(55%) 

142584 (27%) 139916 (28%) 140725 (41%)
132912 
(40%) 

137861 
(37%) 

C. reinhardtii 
(Chlorophyte)* 

XP_00170
0483 
(59%) 

 
XP_0016953

46 (29%) 
XP_0016984

71 (39%) 

XP_00169
5418 
(43%) 

XP_0016
99298 
(46%) 

 

Micromonas sp. RCC299 
 (Chlorophyte) 

ACO70309 
(53%) 

 
ACO62770 

(26%) 
ACO61833 

(36%) 
EEH55296 

(37%) 

XP_0025
04488 
(33%) 

O. lucimarinus 
(Chlorophyte) 

XP_00142
0481 
(52%) 

XP_0014177
06 (24%) 

XP_0014175
13 (26%) 

XP_0014180
83 (36%) 

XP_00141
9666 
(37%) 

 

O. tauri (Chlorophyte)* 
CAL55792 

(54%) 
CAL53885 

(26%) 
CAL51676 

(26%) 
CAL54173 

(36%) 
19307 
(35%) 

 

Cyanidioschyzon 
merolae (Rhodophyte) 

  
CMP311C 

(26%) 
 

CMG028C 
(39%) 

CMK199
C (25%) 

Giardia intestinalis 
(protist)* 

AAQ24509 
(56%) 

XP_0017076
98 (23%) 

XP_0017040
33 (20%) 

 
XP_00170

8984 
(31%) 

 

Trichomonas vaginalis 
(protist)* 

XP_00130
3137 
(54%) 

ABC61969 
(32%) 

ABC61980 
(27%) 

XP_0013294
76 (32%) 

XP_00157
9664 
(33%) 

XP_0013
06678 
(26%) 

Saccharomyces 
cerevisiae (yeast)* 

NP_01110
6 (53%) 

NP_012193 
(26%) 

NP_01148 
(25%) 

NP_011263 
(33%) 

NP_01133
2 (25%) 

NP_1166
52 (27%)

A. thaliana (dicot)* 
NP_18892

8 
NP_564896 AAO67519 NP_189410 

NP_00107
8469 

NP_1934
69 

O. sativa  (monocot)* 
NP_00106

5738 
(81%) 

BAD00095 
(65%) 

ABF98498 
(59%) 

CI28521 
(55%) 

NP_00106
2766 
(72%) 

NP_0010
59660 
(61%) 

Physcomitrella patens 
(moss)* 

Scaffold 92 
(76%) 

XP_0017601
73 (50%) 

XP_0017826
02 (41%) 

XP_0017603
06 (57%) 

XP_00176
0266 
(65%) 

XP_0017
77754 
(57%) 

Homo sapiens* 
NP_00899

9 (61%) 
CAI13655 

(27%) 
NP_037422 

(31%) 
NP_0010179

75 (33%) 
NP_11549

3 (27%) 
NP_0024
31 (35%)

* Previously reported as being sexually reproducing species. 
a Creates double-stranded DNA breaks (for original citations see Malik et al. 2008). 
b A synaptonemal complex protein that binds double-stranded breaks during prophase I of meiosis (for original 
citations see Malik et al. 2008). 
c HOP2 and MND1 dimerize and to assure accurate homologous pairing during prophase I of meiosis (for 
original citations see Malik et al. 2008). 
d Helicase involved in Holiday junction resulution (for original citations see Malik et al. 2008). 
1 Go to the JGI portal site (http://genomeportal.jgi-psf.org/). and select Chlorella sp. NC64A. 
2 Identified by TBLASTN alignment of the Arabidopsis protein against the Physcomitrella genome sequence. 
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1 Supplemental methods 

1.1 Chlorella sp. NC64A Genomic DNA Preparation  

Chlorella sp NC64A was streaked onto a modified Bold’s Basal medium (MBBM) 
plate and a single colony was grown to log phase (1 - 2 X 107 cells/ml) in liquid 
MBBM medium. The cells were harvested by centrifugation for 6 min., 5,000 g 4 C, 
flash frozen with liquid nitrogen, and stored at -80 C.  The cell pellets, containing a 
collective total of 3 X 1010 cells, were then processed using a modification of the 
standard operating procedure /protocol from JGI for bacterial genomic DNA isolation 
using CTAB, version number 2.  

The cell pellets were thawed in 1X TE buffer, supplemented with 0.5% SDS and 100 
g/ml proteinase K, and incubated at 53 C overnight (16 h).  NaCl was added to 0.6 
M. Pre-warmed CTAB/NaCl solution was added for a final concentration of 28 mM 
CTAB/0.65 M NaCl and incubated at 65 C for 1 h.  The sample was extracted with 
chloroform:isoamyl alcohol (24:1) followed by phenol:chloroform:isoamyl alcohol 
(25:24:1).  Nucleic acids were precipitated with isopropanol, washed with 70% EtOH, 
and dried.  The pellets were resuspended in 1X TE buffer, supplemented with RNAse 
A to 100 g/ml and incubated at 37 C for 30 min.  The total DNA sample was 
extracted with phenol:chloroform:isoamyl alcohol (25:24:1), precipitated with 0.3 M 
NaOAc and 2 1/2 vol. EtOH, dried and resuspended in 1X TE buffer.  

Total DNA was centrifuged on 40-60% CsCl gradients equilibrated with 1X TE, pH 
8.0 buffer containing 1 µg/ml Hoechst 33258 dye to enrich for the nuclear DNA.  The 
upper bands containing chloroplast DNA were removed and the lower bands 
containing nuclear DNA were collected with a wide-mouth pipet tip.  The Hoechst dye 
was extracted from the DNA twice with an equal volume of CsCl/TE-saturated 
isopropanol.  The samples were diluted with 1X TE and the DNA was precipitated 
with 0.3 M NaOAc and 2 vol. EtOH at -20 C, washed with 70% EtOH, dried, and 
resuspended in a total of 800 l 1X TE, pH 8.0.  

The quality of the purified nuclear-enriched genomic NC64A DNA was monitored with 
a wavelength absorbance scan and electrophoresis on a 0.8% 1X TBE agarose gel 
compared to varying amounts of lambda phage DNA. 

1.2 Pulse Field Gel Electrophoresis 
PFGE studies were carried out according to Agarkova et al. (Agarkova et al., 

2006). Briefly, 100 ml of actively growing NC64A cells were harvested from 4-day old 
cultures (1.2-2.0 x 107 cells/ml) by centrifugation at 5000 × g for 5 min, washed 3 
times with ice cold TE buffer amended with 50 mM EDTA and then re-suspended in 
0.5 ml of TE buffer at a concentration 0.6-1.0 × 109 cells/ml. The re-suspended cells 
were mixed with an equal volume of 2% low melting point agarose (Bio-Rad) in TE 
buffer at 45°C, poured into plug molds (Bio-Rad, Hercules, CA), and placed at 4°C 
for 15 min to solidify. Agarose blocks were incubated in approximately 2 ml of 1 
mg/ml proteinase K in DB solution (250 mM EDTA, pH 9.5; 1% N-lauroylsarcosine) 
for 24 h. After digestion, samples were washed two times for 30 min with DB solution 
and cut into small pieces that fit into gel wells. Samples were sealed with 0.8% low 
melting point agarose at 45°C in electrophoresis buffer. Chromosomal DNAs were 
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separated in a CHEF-DR II (Bio-Rad) unit in a 0.8 % agarose gel. Electrophoresis 
conditions and running buffer were selected to resolve the target chromosome sizes. 
The exact conditions are described in the figure legends. Hansenula wingei 
chromosomes (1.05-3.13 Mb) and Schizosaccharomyces pombe chromosomes (3.5- 
5.7 Mb) (Bio-Rad) were used as DNA size markers. Gels were stained with 1.0 g/ml 
ethidium bromide for 30 min and digital images were captured with the ChemiDoc EQ 
imaging System (Bio-Rad). 

1.3 Genome sequencing and assembly  

The NC64A genome was sequenced using WGS strategy. Five libraries with insert 
sizes of 2-3 KB, 6-8 KB, and 35-40 KB were used. The sequenced reads were 
screened for vector using cross_match software (www.phrap.org), trimmed for vector 
and quality, and filtered to remove reads shorter than 100 bases, which resulted in 
the following dataset: 

346,070 2-3 KB reads, containing 217 MB of sequence. 

318,619 6-8 KB reads, containing 207 MB of sequence. 

 45,816 35-40 KB reads, containing 23 MB of sequence.  

The data was assembled using release 2.10.11 of Jazz, a WGS assembler 
developed at the JGI (Aparicio et al., 2002). A word size of 13 was used for seeding 
alignments between reads. The unhashability threshold was set to 40, preventing 
words present in the data set in more than 40 copies from being used to seed 
alignments. A mismatch penalty of -30.0 was used, which will tend to assemble 
together sequences that are more than 97% identical. The genome size and 
sequence depth were initially estimated to be 47 MB and 8.0, respectively.  

After excluding redundant (<5Kb, with 80% of total length contained in scaffolds > 5 
KB) and short (<1Kb) scaffolds from the initial assembly, there was 46.2 MB of 
scaffold sequence, of which 3.9 MB (8.5%) were gaps. The filtered assembly 
contained 413 scaffolds, with a scaffold N/L50 of 12/1.5 MB, and a contig N/L50 of 
441/27.6 KB. The sequence depth derived from the assembly was 8.95 ± 0.15. 
Mapping of 7,624 clustered EST sequences onto the genome sequences suggests 
that the assembly contains >97% of the gene complement. 

1.4 cDNA library construction and sequencing:  
Chlorella sp. NC64A cells were grown to log phase (1.5 x 107 cells/ml) and harvested 
by centrifugation.  The cell pellets were immediately flash frozen in liquid nitrogen, 
disrupted with glass beads and vortexing in the presence of TRIZOL reagent 
(Invitrogen, Carlsbad, CA), and total RNA was isolated according to manufacturer’s 
instructions.  The integrity of the sample was evaluated by spectrophotometry and 
electrophoresis on a denaturing agarose gel.  NC64A poly A+ RNA was isolated from 
total RNA using the Absolutely mRNA Purification kit and manufacturers instructions 
(Stratagene, La Jolla, CA). cDNA synthesis and cloning was a modified procedure 
based on the “SuperScript plasmid system with Gateway technology for cDNA 
synthesis and cloning” (Invitrogen, Carsbad, CA). 1-2 g of poly A+ RNA, reverse 
transcriptase SuperScript II (Invitrogen) and oligo dT-NotI primer (5' 
GACTAGTTCTAGATCGCGAGCGGCCGCCCT15VN 3') were used to synthesize 
first strand cDNA. Second strand synthesis was performed with E. coli DNA ligase, 
polymerase I, and RNaseH followed by end repair using T4 DNA polymerase. The 
SalI adaptor (5' TCGACCCACGCGTCCG and 5' CGGACGCGTGGG) was ligated to 

Supplemental Data. Blanc et al. Plant Cell. (2010). 10.1105/tpc.110.076406

18



  

the cDNA, digested with NotI (New England Biolabs, Ipswich, MA), and subsequently 
size selected by gel electrophoresis (1.1% agarose). Two size ranges of cDNA were 
cut out of the gel to generate separate size selected cDNA libraries: 0.6kb-2kb 
(library codes CPBS and CBWF) and >2kb (library code CBWC). The cDNA inserts 
were directionally ligated into the SalI and NotI digested vector pCMVsport6 
(Invitrogen). The ligation was transformed into ElectroMAX T1 DH10B cells 
(Invitrogen).  

Library quality was first assessed by randomly selecting 24 clones and PCR 
amplifying the cDNA inserts with the primers M13-F (5’ GTAAAACGACGGCCAGT) 
and M13-R (5’ AGGAAACAGCTATGACCAT) to determine the fraction of clones 
without inserts. Colonies from each library were plated onto agarose plates (254 mm 
plates from Teknova, Hollister, CA) at a density of approximately 1,000 colonies per 
plate. Plates were grown at 37 C for 18 hr then individual colonies were picked and 
each used to inoculate a well containing LB media with appropriate antibiotic in a 384 
well plate (Nunc, Rochester, NY). Clones in 384 well plates were grown at 37 C for 
18 hr. Plasmid DNA for sequencing was produced by rolling circle amplification 
(Detter et al., 2002) (Templiphi, GE Healthcare, Piscataway, NJ). Subclone inserts 
were sequenced from both ends using primers complimentary to the flanking vector 
sequence (Fw: 5’ ATTTAGGTGACACTATAGAA Rv: 5’ 
TAATACGACTCACTATAGGG) with Big Dye terminator chemistry and run on ABI 
3730 instruments (Applied Biosystems, Foster City, CA). A total of 23,828 ESTs 
remained after trimming and filtering. 

1.5 EST sequence processing and assembly: 

A total of 38,400 ESTs including; 6,144 from CPBS, 16,128 from CBWC, and 16,128 
from CBWF were processed through the JGI EST pipeline (ESTs were generated in 
pairs, a 5’ and 3’ end read from each cDNA clone). To trim vector and adaptor 
sequences, common sequence patterns at the ends of ESTs were identified and 
removed using an internally developed tool. Insertless clones were identified if either 
of the following criteria were met: >200 bases of vector sequence at the 5' end or less 
than 100 bases of non-vector sequence remained. ESTs were then trimmed for 
quality using a sliding window trimmer (window = 11 bases). Once the average 
quality score in the window was below the threshold (Q15) the EST was split and the 
longest remaining sequence segment was retained as the trimmed EST. EST 
sequences with less than 100 bases of high quality sequence were removed. ESTs 
were evaluated for the presence of poly A or poly T tails, which were removed, and 
the ESTs were reevaluated for length, removing ESTs with less than 100 bases 
remaining. ESTs consisting of more than 50% low complexity sequence were also 
removed from the final set of "good ESTs". In the case of resequencing the same 
EST, the longest high quality EST was retained. Sister ESTs (end pair reads) were 
categorized as follows: if one EST was insertless or a contaminant then by default 
the second sister was categorized as the same. However, each sister EST was 
treated separately for complexity and quality scores. Finally, EST sequences were 
compared to the Genbank nucleotide database in order to identify contaminants; 
non-desirable ESTs such as those matching non-cellular and rRNA sequences were 
removed.  

For clustering, ESTs were evaluated with malign, a kmer based alignment tool 
(Chapman, unpublished), which clusters ESTs based on sequence overlap (kmer = 
16, seed length requirement = 32 alignment ID >= 98%). Clusters of ESTs were 
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further merged based on sister ESTs using double linkage. Double linkage requires 
that 2 or more matching sister ESTs exist in both clusters to be merged. EST clusters 
were then each assembled using CAP3 (Huang and Madan, 1999) to form 
consensus sequences. Clusters may have more than one consensus sequence for 
various reasons to include; the clone has a long insert, clones are splice variants or 
consensus sequences are erroneously not assembled. Cluster singlets are clusters 
of one EST, whereas CAP3 singlets are single ESTs which had joined a cluster but 
during cluster assembly were isolated into a separate singlet consensus sequence. 
ESTs from each separate cDNA library were clustered and assembled separately 
and subsequently the entire set of ESTs for all cDNA libraries were clustered and 
assembled together. For cluster consensus sequence annotation, the consensus 
sequences were compared to Swissprot using BLASTx and the hits were reported. 
Clustering and assembly of all 24,072 filtered ESTs resulted in 7,624 consensus 
sequences. 

1.6 Genome annotation and sequence analysis 
The genome assembly v1.0 of NC64A was annotated using the JGI annotation 
pipeline, which combines several gene predictors:1) putative full length genes 
derived from 7,624 cluster consensus sequences of 24,072 clustered and assembled 
NC64A ESTs were mapped to genomic sequence, 2) homology-based gene models 
were predicted using FGENESH+ (Salamov and Solovyev, 2000) and Genewise 
(Birney et al., 2004) seeded by BLASTx alignments against sequences from NCBI 
non-redundant protein set, 3) ab initio gene predictor FGENESH (Salamov and 
Solovyev, 2000) was trained on the set of putative full-length genes and reliable 
homology-based models. Genewise models were completed using scaffold data to 
find start and stop codons. An additional 12,784 gene models were predicted using 
ab initio GeneMark-ES (Ter-Hovhannisyan et al., 2008) and combined with the rest of 
predictions. ESTs and EST clusters were used to extend, verify, and complete the 
predicted gene models. Because multiple gene models per locus were often 
generated, a single representative gene model for each locus was chosen based on 
homology and EST support and used for further analysis. This led to a filtered set of 
9,791 gene models with their characteristics support by different lines of evidence 
summarized in Supplemental Table 1 online.  
All predicted gene models were annotated using InterProScan (Zdobnov and 
Apweiler, 2001) and hardware-accelerated double-affine Smith-Waterman alignments 
(www.timelogic.com) against SwissProt (www.expasy.org/sprot) and other 
specialized databases like KEGG (Ogata et al., 1999) and PFAM (Finn et al., 2010). 
Finally, KEGG hits were used to map EC numbers (http://www.expasy.org/enzyme/), 
and Interpro hits were used to map GO terms (Ashburner et al., 2000). In addition, 
predicted proteins were annotated according to KOG classification (Koonin et al., 
2004).  

1.6.1 Meiosis and sexual reproduction in green algae 

Detection of a sexual cycle involving meiosis in eukaryotic microbes in nature or in 
the laboratory can be quite difficult. Schurko and Logsdon (2008) and Malik et al. 
(2008) however, devised a meiosis detection inventory/toolkit, which is a collection of 
meiosis-specific genes/proteins, as a means of partially circumventing the need to 
visually or experimentally document sexual reproduction and meiosis. They contend 
that the presence of intact, conserved meiosis-specific genes is a good indicator of 
meiosis and a sexual cycle. We used their suite of meiosis-specific proteins to search 
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for the presence of meiosis in Chlorella sp. NC64A. We used stringent criteria to 
identify orthology between protein sequences, which had to meet all three of the 
following criteria in order to be considered orthologs to well-documented, sexually 
reproducing land plant species (Arabidopsis, Oryza, and Physcomitrella): (a) the 
phylogenetic relationships among the sequences had to match with the known 
species phylogeny; (b) the algal sequences had to contain the same organization of 
protein domains as the A. thaliana sequence; and, (c) when the algal protein 
sequence was aligned back against the A. thaliana database, the best hit had to be 
the corresponding A. thaliana sequence (i.e., reciprocal best blast hit). We hasten to 
add that in some cases, an absence of an accession number in table 2 only means 
that we were unable to confidently identify a particular sequence as an ortholog; in 
fact, highly conserved homologues were sometimes identified. Our analyses included 
other species of green algae (Volvox carteri, Ostreococcus lucimarinus, and 
Micromonas sp. RCC299) and a red alga (Cyanidioschyzon merolae) whose sexual 
status is unknown.  

1.6.2 Carbohydrate active enzymes in green algae 

The prediction of proteins involved in cell wall metabolism was performed using 
BLAST searches against a reference database of carbohydrate active enzymes (i.e., 
CAZy; http://www.cazy.org/), as well as HMM searches against protein families 
(PFAM) involved in polysaccharide metabolisms. For the BLAST searches, we 
applied family-specific E-value thresholds defined as follows: the reference 
carbohydrate active protein sequences of the CAZy database were aligned against 
each other using BLASTP. For each CAZy family, the E-value threshold was defined 
as the smallest E-value obtained between a member of the family and any 
carbohydrate active protein sequence not included in the family. We combined the 
results of BLAST and HMM searches, and assigned the carbohydrate active protein 
to protein families based on sequence similarities. This approach was applied to the 
entire proteomes of NC64A. The proteomes of C. reinhardtii, O. lucimarinus, O. tauri, 
Micromonas sp. CCMP1515 and Micromonas sp. RCC299 were reannotated in the 
same way for comparison purposes. Missing genes were confirmed by TBLASTN 
alignment against the genomic sequences using land plant protein sequences as 
query. 

1.7 Phylogenetic analyses 

Phylogenetic analyses were mainly performed through the phylogeny.fr web platform 
(Dereeper et al., 2008). The Phylogeny.fr pipeline was set up as follows: homologous 
sequences were aligned with the MUSCLE program (Edgar, 2004); poorly aligned 
positions and divergent regions positions were removed from the multiple-alignment 
using the GBLOCK program (Castresana, 2000). The cleaned multiple-alignment 
was then passed on to the PHYML program (Guindon and Gascuel, 2003) for 
phylogenetic reconstruction using the maximum likelihood criterion. Selection of the 
best fitting substitution model was performed using the ModelTest program for 
nucleotide sequences (Posada and Crandall, 1998) and ProtTest for amino acid 
sequences (Abascal et al., 2005). PhyML was run with the aLRT statistical test of 
branch support (Anisimova and Gascuel, 2006). This test is based on an 
approximation of the standard Likelihood Ratio Test, and is much faster to compute 
than the usual bootstrap procedure while branch supports are generally highly 
correlated between the two methods. 
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2 Supplemental Results 

2.1 Gene content  
We predicted and annotated 9,791 protein genes in the NC64A nuclear genome. 
This number is comparable to the number of genes in Micromonas species that 
exhibit slightly more than 10,000 predicted genes while having genome sizes that are 
more than two times smaller (20.9 – 21.9 Mb). C. reinhardtii (15,143 genes) and land 
plants (e.g., A. thaliana has 26,341 genes) have more genes while the Ostreococcus 
species to be compared with the numbers of genes for O. tauri (8,166) Forty-two 
percent of the nuclear gene models are supported by 24,072 ESTs. Genes are 
homogeneously distributed across the NC64A genome with no apparent gene island 
structures like those found in seed plant genomes such as that of maize (Schnable et 
al., 2009) (Figure 1). The mean gene density (4.7 Kb/gene) is intermediate between 
two other sequenced green algae, O. tauri (1.5 Kb/gene) and C. reinhardtii (8 
Kb/gene). Although less than their land-plant cousins, which have between 68% 
(Physcomitrella) and 80% (Arabidopsis) gene duplicates (including weakly similar 
genes detected by alignments at the protein level), substantial gene duplications 
occur in NC64A, representing 43% of the predicted genes (supplemental figure 4 
online). It is remarkable that the number of single copy genes in chlrophyte algae and 
land plants varies relatively little compared to the number of duplicated genes. 
Altogether these results indicate that emergence of multicellularity and the 
colonization of land by plants are correlated with an extensive duplication of genes, 
many of the corresponding original single copies probably preexisted in their green 
algal ancestor.  

The NC64A protein genes are intron-rich with 7.3 exons per gene on average. This 
figure is smaller than that of C. reinhardtii (8.3 exons/gene) and Human (8.8 
exons/gene) but higher than land plant species (e.g., Arabidopsis thaliana: 5.2 
exons/gene; Physcomitrella patens: 5.7 exons/gene; Oryza sativa: 4.6 exons/gene). 
The sequence consensus for intron donor and acceptor sites were similar to those of 
Chlamydomonas (Supplemental figure 5 online). Thirty percent of the intron length in 
C. reinhardtii was accounted for by repeat sequences, suggesting that 
Chlamydomonas introns resulted from either creation or invasion by transposable 
elements (Merchant et al., 2007). In addition, many introns of Micromonas 
CCMP1545 contained introner repeat elements compared to their intronless 
orthologs in Micromonas RCC299 (Worden et al., 2009). Remarkably, Chlorella 
introns appear much less invaded by repeated sequences (i.e., 5.0% of the intron 
length on average). 

A large fraction of the predicted genes (9,021; 92%) is supported by homology with 
known genes in public databases (BLASTP E-value >1e-5), the majority of which are 
most similar to chlorophyte algae or streptophyte plant homologues (i.e. Viridiplantae 
in supplemental figure 6 online). NC64A shares 6,948 protein genes (73%) with C. 
reinhardtii (BLASTP e-value < 1e-5), of which 4,712 (48%) form MBH. The average 
amino-acid identity between mutual best hits is 52.6%, which is lower than the 
average amino acid identity between monocot and dicot plant species (e.g., ~60% 
between grapevine and rice (Jaillon et al., 2007)). 

2.2 Plant hormones and receptors 

Plant hormones have received attention for some time because in seed plants, 
including agronomic crops, they control processes involved in growth, development 

Supplemental Data. Blanc et al. Plant Cell. (2010). 10.1105/tpc.110.076406

22



  

and response to pathogen infection (Bajguz, 2007) (Siewers et al., 2006) (Callis, 
2005). More recently there has been acceleration in the identification of plant 
hormone receptors, some of which have novel mechanisms of action (Chow and 
McCourt, 2006; Spartz and Gray, 2008). While most categories of plant hormone 
molecules have been detected in green algae (Tarakhovskaya et al., 2007), some of 
which appear to play the same roles as in seed plants (Stirk et al., 2002), little is 
known of algal hormone biosynthesis (Bajguz, 2009).  

We used the KEGG pathway database (Ogata et al., 1999) to obtain protein 
sequences of A. thaliana hormone-pathway enzymes. We then searched for protein 
homologs in the six algal proteomes by using BLASTP. Functional domains within 
proteins were identified using the RPS-BLAST algorithm available on the NCBI web 
site (www.ncbi.nih.nlm.gov). All of the A. thaliana and green algal accession numbers 
are given in table 2. Extensive gene duplication in Arabidopsis prevented us from 
identifying additional clear algal orthologs of enzymes involved in hormone synthesis 
(e.g., auxin synthesis), as well as hormone-receptors (e.g., brassinosteroid receptors 
BRL2 and BRL3 and the abscisic acid receptors BRI1 and BRI2). Within each 
hormone category below, the symbol (1) contains content for the hormone pathways, 
while the symbol (2) contains content for the hormone receptors. We used the same 
criteria as for the meiotic protein analysis (see above) for inferring orthology between 
reference A. thaliana sequences and Chlorella sp. NC64A proteins. 

Abscisic acid (ABA): (1) ABA is synthesized in response to a variety of environmental 
stresses and is involved in the control of a number of downstream responses 
essential for adaptation to various stresses that affect plant growth and development 
(Verslues and Zhu, 2005; Mittler, 2006). The synthesis and role of abscisic acid has 
long been studied in a number of green algal species (Tominaga et al., 1993; 
Kobayashi et al., 1997; Bajguz, 2009). Under stress, such as low light, zeaxanthin 
epoxidase (ABA1; EC: 1.14.13.90; KEGG pathway ath00907) converts zeaxanthin to 
violaxathin. This biochemical step is reversed by violaxanthin de-epoxidase (NPQ1; 
EC: 1.10.99.3), resulting in the inactivation of the ABA pathway. In a phylogenetic 
analysis we used the protein zeaxanthin epoxidase from A. thaliana and found 
orthothogs in all seven algal species. Indeed, Chlorella sp. NC64A had a 53% 
identity over a span of 506 amino acids with those from A. thaliana. All seven algal 
sequences contained the Pyr_recox superfamily domain. In a similar analysis for the 
enzyme violaxanthin de-epoxidase from A. thaliana (AT1G08550), we found 
orthologs for 5/7 green algal species. (There was no evidence of gene duplication 
encoding either of these two proteins in Arabidopsis or any of the green algae.) 
Chlorella sp. NC64A had a 49% identity over a span of 284 amino acids. The five 
algal species had the VDE superfamily domain. Beyond this biochemical control step, 
there are several alternative pathways for the production of ABA (KEGG pathway 
ath00907). We found evidence of homology to Arabidopsis proteins for some of 
these alternative steps, but we could not conclude with confidence that they were 
orthologs.  

(2) The plastidic abscisic acid receptor GUN5-CHLH (Mg-chelatase H subunit) 
mediates ABA signalling as a positive regulator in seed germination, post-
germination growth and stomatal movement (Shen et al., 2006): The A. thaliana 
sequence for GUN5-CHLH was blasted against the seven algal genomes. The blast 
search and maximum likelihood phylogenic tree suggested that all algal species have 
orthologs to the Arabidopsis sequence. The Chlorella GUN5-CHLH gene overlapped 
with a sequencing gap in the current genome assembly, which gave a truncated 
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protein (jgi|ChlNC64A_1|143922). The orthologs to Arabidopsis have a very high 
level of identity (64-68%) and similarity (79-82%) extending over a length of >1,200 
amino acids, thus extremely highly conserved. The six algal species shared the 
CobN superfamily and PRK12493 multi-domains with A. thaliana.  

Auxin pathway: (1) Green algae clearly have homologs to the enzymes involved in 
the synthesis of auxins, but the large number of gene duplications in Arabidopsis 
thaliana prevented us from identifying clear orthologs. (2) The auxin binding protein1 
(ABP1) is presumed to function as a plasma membrane receptor for auxin (Napier et 
al., 2002): The ABP1 gene is single copy in the Arabidopsis thaliana genome. In 
contrast Chlorella sp. NC64A had two orthologs to the Arabidopsis sequence, 
resulting from a gene duplication event that occurred after the separation between 
green algae (Chlorophytes) and land plants (Streptophytes); however, no clear 
orthologs were identified in the other six green algal species. Both NC64A sequences 
had the expected AUXIN/CUPIN binding domains; as well, they had 49% and 51% 
identity and 68% similarity to the A. thaliana sequence.  

Brassinosteriod (BR) pathway: (1) Like abscisic acid, brassinosteroids are plant 
hormones that influence plant growth and development, particularly in response to 
abiotic stresses and pathogen infection (Krishna, 2003) and have been documented 
in green algae (Bajguz and Tretyn, 2003). In fact, Bajguz (2009) found that the 
addition of exogenous brassinosteroid increased the cellular production of abscisic 
acid in the green alga Chlorella vulgaris in response to short-term heat stress, 
thereby enhancing thermotolerance; the implication of these results is that 
microalgae could possibly be cultured for industrial purposes, even at sunlit culture 
temperatures of 45 oC. The enzymes for brassinosteriod synthesis can be found in 
KEGG pathways ath00100 and ath00905. One or more green algae contained 
orthologs to each of three enzymes involved in the synthesis of brassinosteroids: (a) 
STE1, (b) DWF5 and (c) DET2. Sterol 1 (STE1): Chlorella sp. NC64A and three other 
algal species had sequences that were clearly orthologous to A. thaliana STE1, 
which converts episterol to 5-dehydroepisterol. They all shared the FA hydrolase 
superfamily with A. thaliana and had 45-53% sequence identity. The two 
Ostreococcus species and Micromonas have sequences that were considered 
possible orthologs because they contained the same FA hydrolase superfamily 
domain and 32-39% identity to A. thaliana STE1, but when they were aligned against 
the A. thaliana database, the best hit was not STE1.  DWARF 5 (DWF5): It is clear 
from phylogenetic analysis that Micromonas spp. have orthologs to A. thaliana 
DWF5, which converts 5-dehydroepisterol to 24-methylene cholesterol. As well, they 
have 59% and 51% sequence identity with A. thaliana DWF5, respectively, and they 
both have the ICMT superfamily domain. Finally, when each of the two sequences 
was blasted to the A. thaliana database, DWF5 was the best hit. No orthologs were 
found in the genomes of Chlorella, Chlamydomonas, Volvox and the Ostreococcus 
species, even using TBLAST alignment. De-etiolated 2 (DET2): DWF4 (EC:1.14.13.-) 
and DET2 (EC:1.3.99.-) combine to convert campesterol to 6-deoxocathasterone 
(and 6-oxocampestanol) through a series of interconnected steps (see KEGG 
pathway ath00905 for details). There are many gene duplications of DWF4 in A. 
thaliana that prevented us from making a clear determination of orthologs in the 
green algae, although there is clear homology in some species. Six of seven green 
algae contained an ortholog to A. thaliana DET2. All six algal species shared the 
steroid_dh superfamily domain with A. thaliana. When the six algal sequences were 
blasted to the A. thaliana database, the DET2 sequence was the best hit. (2) 
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Extensive gene duplication in Arabidopsis prevented us from identifying the orthologs 
to the brassinosteroid-receptors BRL2 and BRL3 for which there were clear 
homology in some of the green algae.  

Cytokinin pathway: (1) Cytokinins are involved in the control of cell division, 
particularly in cell growth (Tarakhovskaya et al., 2007). Miyawaki et al. (2006) found 
that tRNA isopentenyltranserases (IPT2 and IPT9) are necessary for the synthesis of 
cZ-type cytokinin in Arabidopsis (designated ATIPT2 and ATIPT9; KEGG pathway 
ath00908). We found evidence of orthology with ATIPT9 in all green algal species 
except C. reinhardtii. Chlorella sp. NC64A (jgi|ChlNC64A_1|55198|) had 37% identity 
for a length of 405 amino acids with ATIPT9. All six algal species with orthologs 
contained the IPPT superfamily domain. We did not, however, find orthologs of 
ATIPT2 in any of the green algae. The IPTs 1, 3, 4, 5, 7 and 8, which do not have an 
associated tRNA, are also involved in cytokinin synthesis; unfortunately, Arabidopsis 
had several-many gene duplications of these genes making it difficult to determine 
orthology. (2) Cytokinin binding protein-57 (CBP-57) = homology-dependent gene 
silencing 1 (HOG1): Orthologs of CBP-57 were found in each of the seven algae. The 
percent identity over a span of 450 amino acids ranged from 71% identity 
(Micromonas) to 77% identity (Chlorella sp. NC64A). All 7 green algal species shared 
the same superfamily/domains with A. thaliana, and their best blast hit to the A 
thaliana database was CBP-57. 

Ethylene pathway: (1) While its function is not clear in algae, ethylene plays an 
important role in stressed tissues and maturing fruit of seed plants by inducing 
senescence, and it is initiated as a defensive response (Tarakhovskaya et al., 2007). 
Ethylene production has been documented in marine, freshwater and cultured green 
algae (Maillard et al., 1993; Osborne et al., 1996; Driessche et al., 1997). In seed 
plants methionine can be converted to ethylene by the following three-step pathway 
(KEGG pathway: ath00271): in step 1 L-methionine is converted to S-adenosyl-L-
methionine by MAT3 (EC: 2.5.1.6), which in step 2 is converted to 1-
aminocyclopropane-1-caroxylate by ACS (EC: 4.4.1.14), which in step 3 is converted 
to ethylene by EFE (EC: 1.14.17.4). For step 1, we found clear phylogenetic evidence 
for orthology between the Arabidopsis MAT3 protein and the seven green algal 
species (80% identity between the protein sequences of A. thaliana and green 
algae). As well, all seven algal species shared the same S-AdoMet_synt_N 
superfamily domains as A. thaliana. For step 2, the similarity search and phylogenetic 
analysis indicated that green algae have clear homologs of the A. thaliana ACS 
proteins. However there are also 10 Arabidopsis paralogs of ACS4 that presumably 
arose after the separation between chlorophyte green algae and land plants, so we 
were unable to demonstrate orthology. The Arabidopsis EFE protein (step3) is a 
member of a large plant multigene family. We identified several homologs in all 
chlorophyte algal species, but extensive gene duplication in Arabidopsis blurred 
orthologous relationships between Arabidopsis and green algae. (2) A. thaliana 
employs at least five families of ethylene receptors: ETR1, ETR2, ERS1, ERS1 and 
EIN4. While the seven species of green algae clearly had homologs for some of 
these receptor families, extensive gene duplication in Arabidopsis again prevented us 
from drawing any strong conclusions of orthology. 

Polyamine pathway: (1) Polyamines are involved in a wide variety of cellular activities 
ranging from regulating growth and development (Tarakhovskaya et al., 2007), to 
involvement in stress responses, to the modulation of ion channels (Kusano et al., 
2008). The polyamines spermidine, spermine and homospermidine are synthesized 
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by short pathways from arginine or ornithine (Kusano et al., 2008). L-arginine is 
converted to agmatine by arginine decarboxylase [EC: 4.1.1.19]; agmatine is 
converted to N-carbamoyl-putrescine by agmatine deiminase [EC: 3.5.3.12]; N-
carbamoyl-putricine is converted to putrescine by N-carbamoyl-putrescine 
amidohydrolase [EC: 3.5.1.53]; putrescine is converted to spermidine by spermidine 
synthase [EC:2.5.1.16]. Chlorella sp. NC64A has the complete toolkit of enzymes to 
synthesize spermidine from L-arginine. The other algae lack arginine decarboxylase. 
Putrescine can also be synthesized from L-ornithine by ornithine decarboxylase [EC: 
4.1.1.17]. All seven algal species have an ortholog of this enzyme. Finally, it is 
interesting that Paramecium bursaria Chlorella virus-1 (PBCV-1) encodes 4 enzymes 
involved in polyamine biosynthesis including homospermidine synthase (A237R), 
which converts spermidine + putricine to homospermidine. Homospermidine 
synthase has not been found in metazoans, land plants or fungi. The level of 
similarity indicates that this viral enzyme had a bacterial origin (a few archaea encode 
this enzyme but there is very low sequence identity with PBCV1). Kaiser et al. (1999) 
demonstrated that this PBCV-1 enzyme is functional. The only other virus known to 
encode a putative homospermidine synthase is Ralstonia phage RSL1 (NCBI hit with 
A237R). (2) We were unable to find evidence for polyamine receptors in Arabidopsis. 
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