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Grasslands are declining in the Great Plains due to land use changes, woody plant 

encroachment, and loss of historic fire cycles. Prescribed burn associations have utilized 

prescribed fire to collapse invading woodlands and allow the restoration of grasslands. 

This fire is considered “extreme” because it is capable of changing the structure and 

function of an ecosystem. Our study site is the Loess Canyons Experimental Landscape, a 

long-term, ecoregion-scale experiment to apply prescribed fire across the region to 

restore grasslands. The Nebraska Natural Legacy Project established the Loess Canyons 

ecoregion as a Biologically-Unique Landscape in 2005 with the state’s wildlife action 

plan to stop habitat loss due to woody encroachment and prevent reductions in the 

federally-threatened American burying beetle. We use 13 years of beetle monitoring data 

and multi-spatial landcover data of perennial forbs/grasses, trees, croplands, and litter in a 

Bayesian N-mixture model to estimate the relative abundance of ABB at permanent 

trapping locations. We use the Bayesian latent indicator scale selection method to select 

the best-performing spatial scale for each landcover type in the model. We apply a space-

for-time substitution design across the Loess Canyons to allow sampling across a time-



 
 
since-fire gradient of 17 years. We sample herbaceous plant richness, basal percent cover, 

soil compaction, and infiltration rates in grasslands restored with fire, uninvaded 

grasslands, and unburned woodland. We apply an NMDS analysis to examine changes in 

functional groups over time among sites. The abundance and distribution of the ABB in 

the Loess Canyons is mapped with the four landcover types. This study is the first to 

document increases in the ABB due to management with fire. ABB are positively 

associated with perennial forbs/grasses, and negatively associated with trees at >10% 

cover and cropland at 0.5% cover. Herbaceous species richness and basal cover in 

grasslands restored with extreme fire are comparable to uninvaded grasslands. Soil 

compaction and infiltration rates are similar between restored grasslands and uninvaded 

grasslands. Extreme prescribed fire restores ABB habitat and herbaceous plant 

communities that were lost to woody encroachment. Soil properties are not adversely 

impacted by fire, a positive outcome for the soil-dwelling American burying beetle. 
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PREFACE 

 

INTO THE WORLD OF THE AMERICAN BURYING BEETLE 

 

When I first told my parents that I had accepted a research assistantship to study 

an endangered beetle in Nebraska, they asked with surprise, “Beetles? You don’t like 

bugs though. Won’t this make you the “bug person” in future jobs?” 

I have to say, they were right to be surprised. I’ve never been overly fond of 

insects, with few exceptions. One insect I’ve never minded handling is the firefly, the 

magic of its glow overcoming my discomfort in feeling its six legs and two antennae 

poking and prodding my cupped hand. Going into the program, I was wary of the idea of 

handling shockingly large numbers of insects but heartened by the fact I could bring my 

previous experience to bear in my other chapters focusing on plants and soils. With that, I 

dove into the literature on the beetle. 

 What I found was a beautiful and fascinating insect, whose complex life cycle 

was both grisly and admirable. The more I read, the more excited I was to be working 

with this insect. I began sharing the nitty-gritty details of its life cycle and behavior to 

anyone who would listen: my family, peers, and even my dentist. The thought of being 

the “bug person” no longer bothered me. 

 As I learned about the beetle, I also learned about the land it lives on and the 

people who are its neighbors. The terrain is rough, though not as rough as some. It is hot 

and dry, though not as hot and dry as others. This place lies at the crossroads between 



xx 
 
north and south, east and west; sharing eastern species and western species, with climate 

neither southern nor northern. Torn between these identities, it forges a new identity from 

the shreds of the previous. This identity rubs off on the folks who live here, an 

idiosyncratic bunch who collect culture and norms piecemeal and aren’t afraid to be 

trailblazers. As it happens, the peculiar nature of the landscape and its people built a 

refuge for the American burying beetle, an endangered insect which has clung to the 

fringes of its historic range and remains threatened today. 

 If anything, the American burying beetle is a perfect mascot to display the 

resilience of the Loess Canyons and its social and ecological communities. Although 

found in less than 10% of its historic range, the beetle has been increasing in abundance 

in the Loess Canyons over the years. Similarly, the grasslands of the Loess Canyons have 

shifted to woodland as eastern redcedar trees continue to encroach. Despite this 

encroachment, landowners have fought to keep their grasslands by reintroducing fire onto 

the landscape. They have successfully reduced eastern redcedar abundance and halted the 

encroachment. Despite pressures to collapse and change to an alternative state, the 

grasslands and the American burying beetle have persisted here. Such a model of success 

is inspiring not only to those who have worked hard to conserve flora and fauna of the 

Loess Canyons, but to others in the Great Plains and elsewhere who wish to follow in 

their footsteps. 
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CHAPTER 1 

 

WOODY ENCROACHMENT AND THE AMERICAN BURYING 

BEETLE: GAPS IN SCIENTIFIC KNOWLEDGE AND 

MANAGEMENT1 

 

1.1 Introduction 

The difficulty of obtaining long-term data for rare and endangered species can leave 

considerable gaps in knowledge about those species’ role in an ecosystem and how a 

rapidly changing environment impacts them (Schaffer-Smith et al., 2016). These 

knowledge gaps add to the challenge of managing for rare species in regions undergoing 

rapid shifts, such as afforestation, land use changes, or climate change (Wilcove et al., 

1998; Wilkening et al., 2019). Among these species is the American burying beetle 

(Nicrophorus americanus) (ABB), which was listed as federally endangered under the 

Endangered Species Act in 1989 (Federal Register 54:29652-55) and downgraded to 

threatened in 2020 (Federal Register 85:65241-61). It is considered a habitat generalist 

(Lomolino et al., 1995) and is only found on the periphery of its former range, which 

once stretched across the entire eastern U.S. and up into Canada (Leasure and Hoback, 

                                            
1 Ludwig, A. K., and D. Twidwell. (2021). Woody encroachment and the American burying beetle: Gaps in 

scientific knowledge and management. Prepared manuscript for research journal submission. 

 

AKL contributed to conceptualization, literature review and visualization, all writing aspects, and project 

administration. DT contributed to conceptualization and critical revisions. 
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2017; Sikes and Raithel, 2002). However, knowledge gaps have made it difficult to 

manage for the beetle since its listing in 1989 (Crawford and Hoagland, 2010).  

The American burying beetle also appears to have different habitat preferences on the 

periphery of its range than in the historic core of its range. Many of the eastern states that 

hold historical records of the ABB were primarily deciduous forest, including Illinois, 

Michigan, and Tennessee (Anderson, 1982). However, its current range is in areas that 

are primarily grassland: Nebraska and Oklahoma in the Great Plains and Block Island 

(part of Rhode Island) on the northeastern coast (Leasure and Hoback, 2017). Many of 

these grasslands are undergoing rapid change to woodland and shrubland by encroaching 

woody species (Kinnebrew et al., 2020; Twidwell et al., 2013b), leaving the future of the 

ABB in doubt. 

Given the inconsistencies in behavior and habitat use of many species, including 

the ABB, when found on the periphery of their range, the ongoing encroachment of 

woody plant species may pose a severe threat to the beetle. In the Great Plains region, 

Juniperus virginiana is the primary woody species encroaching into grasslands 

(Twidwell et al., 2013b). J. virginiana woodlands have a different understory and denser 

canopy than the deciduous-dominated forests that have been shown to support the ABB 

in other regions (Leasure, 2017). Although ABB were found in forested areas within the 

core of their range historically, there is no historical precedent that ABB on the periphery 

of their range can thrive in Juniperus woodlands instead of deciduous woodlands.  

This chapter’s objectives are to provide an overview of the American burying 

beetle and its conservation status, introduce the background of woody encroachment in 
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the range of the ABB, present the scientific literature on woody plant encroachment and 

the American burying beetle, and identify four knowledge gaps and misconceptions in 

the science that impact conservation for the ABB. To help fill this gap, we discuss why 

woody encroachment has not been perceived as a serious threat to the ABB until now. 

1.2 Overview of the American burying beetle and conservation status 

The American burying beetle, Nicrophorus americanus (Coleoptera: Silphidae) is 

exceptional in many ways. It is the largest carrion beetle in North America (Ratcliffe, 

1996). It requires vertebrate carrion, a relatively rare “boom and bust” resource (Smith 

and Merrick, 2001), throughout its life cycle (Lomolino et al., 1995). A breeding male-

female adult pair will work together to bury carrion that is ideally 100-300 grams in size 

(Lomolino and Creighton, 1996) and construct an underground brood chamber around it 

to raise their young (Ratcliffe, 1996). They display biparental care of their larvae, a rare 

trait in beetles (Lomolino et al., 1995). They play an important role in the ecosystem as 

decomposers and their activities enrich soil nutrients (Hoback et al., 2020).  

Populations of the beetle have seriously decreased over the past decades. The 

ABB’s historic range covered approximately the eastern half of the United States and 

some parts of Canada (Ratcliffe, 1996). By the 1980s, it had noticeably declined to cover 

less than 10% of its former range (Lomolino et al., 1995), leading to its listing as 

federally endangered in 1989 (Bedick et al., 1999). In 2020, the U.S. Fish and Wildlife 

Service (USFWS) downgraded the ABB from endangered to threatened (U.S. Fish and 

Wildlife Service, 2020). Although surveying has found new pockets of ABB in 

neighboring states and documented the increase of the beetle population in Oklahoma, 
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the beetle is still only found in the periphery of its former range (U.S. Fish and Wildlife 

Service, 2019). 

The cause for the ABB’s decline is unclear, with multiple proposed causes being 

possible. Widespread use of pesticides such as DDT may have played a role in local 

extinctions, but they are probably not the primary cause of decline since other species of 

carrion beetles are still extant throughout the range (Sikes and Raithel, 2002). Light 

pollution is a proposed cause that has not been well studied, but recent research has found 

that ABB capture rates were negatively influenced by increased moonlight, suggesting 

that light pollution may play a role (Wormington et al., 2017). Extinctions and declines in 

some ideally-sized prey species such as the passenger pigeon (Ectopistes migratorius) 

and the bobwhite quail (Colinus virginianus) have led to a decreasing prey base to 

support the beetle (Sikes and Raithel, 2002). This in turn has led to increased competition 

from other species of carrion beetles as well as vertebrate scavengers, including raccoons, 

opossums, and coyotes (Sikes and Raithel, 2002). Since carrion beetles in general are 

susceptible to desiccation and larger-bodied beetles like the ABB are especially 

susceptible (Bedick et al., 2006), projected changes in climate (such as hotter and drier 

weather) may be unfavorable to the large-bodied ABB, now and into the future (Jurzenski 

et al., 2014). Lastly, the loss and fragmentation of habitat in its remaining range through 

widespread woody encroachment and conversion of natural land to agriculture have 

played a major role in the beetle’s decline (Sikes and Raithel, 2002). 

The beetle was initially thought to be a forest specialist (Anderson, 1982) but 

further research later determined it is a habitat generalist (Lomolino et al., 1995; 
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Ratcliffe, 1996). Given its generalist nature, it seems unintuitive that woody 

encroachment would have such a negative impact on the beetle, but research has 

confirmed that some woody plant species, such as the dense canopies of Juniperus forest, 

are harmful to the ABB (Walker and Hoback, 2007). Therefore, it is vital to understand 

the drivers of woody encroachment within the ABB’s range and the impacts woody 

species may have on the beetle. 

1.3 Background of woody encroachment in the range of the ABB 

Across the ABB’s range, the main driver behind woody encroachment is generally the 

loss or suppression of historic fire cycles, which allows the spread of woody species in 

grassland and savanna ecosystems (Twidwell et al., 2016b). The loss of grazing 

herbivores is also a factor in woody encroachment (Allred et al., 2012). Increased 

temperatures and change in weather patterns brought on by climate change are known to 

expand the range of many species beyond their historic limits (Twidwell et al., 2013b). 

Lastly, an often overlooked vector for the spread of woody species is human dispersal. 

Intentional plantings of woody species including eastern redcedar (Juniperus virginiana) 

in grasslands is aiding in the conversion of grasslands into woodlands (Briggs et al., 

2002). 

Within the Great Plains, the current range of the ABB can be split into the 

northern region (primarily Nebraska with some adjacent portions of South Dakota) and 

the southern region (primarily eastern Oklahoma with some adjacent portions of Kansas, 

Arkansas, and Texas) (Harms et al., 2020; U.S. Fish and Wildlife Service, 2019). In the 

northern region, the Sandhills and Loess Canyons of Nebraska host large populations of 
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the beetle (Jurzenski et al., 2014; Walker and Hoback, 2007) and are relatively intact 

grasslands (Raynor et al., 2017). Recently, concern has spread over the encroachment of 

eastern redcedar in these areas (Donovan et al., 2018; Walker and Hoback, 2007). 

In the southern region of the Great Plains, studies regarding woody encroachment 

date back to at least 1969 (Dalrymple, 1969), suggesting the persistence of a longstanding 

problem. Two species of Juniperus (J. virginiana and J. ashei) are encroaching in the 

grasslands of the southern Great Plains (Qiao et al., 2017; Twidwell et al., 2013a). In 

Texas, the ABB has not been recorded since 2008 (U.S. Fish and Wildlife Service, 2019), 

while the encroachment of woody species such as honey mesquite (Prosopis glandulosa 

var. glandulosa) is well-documented in the region (Martin and Asner, 2005). 

In the northeastern United States, the eastern extent of its former range, the ABB 

remains on only a few islands in the Atlantic: an independently surviving population on 

Block Island (Raithel et al., 2006) and an introduced population on Nantucket Island 

(Mckenna-Foster et al., 2016). The coastal grasslands of this region have been 

undergoing encroachment from several native woody species, such as black huckleberry 

(Gaylussacia baccata) and common greenbrier (Smilax rotundifolia) (Kinnebrew et al., 

2020). These woody species are a threat to the persistence of the region’s coastal 

grasslands as well as several species of fauna and flora. Woody species may also pose a 

threat to the populations of ABB on Block Island and Nantucket Island (Kinnebrew et al., 

2020), but that has not been studied as of yet. 

Much research and modelling effort has focused on the habitat requirements of 

the ABB throughout its current range (Bedick et al., 1999; Crawford and Hoagland, 2010; 
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Creighton et al., 1993; Jenkins et al., 2018; Jurzenski et al., 2014; Leasure and Hoback, 

2017; McPherron et al., 2012; Peyton, 2003; Schnell et al., 2014, 2008). In addition, there 

is a wide variety of research on woody encroachment in locations throughout their 

current range and its impacts on soil systems (Kinnebrew et al., 2020; Martin and Asner, 

2005), hydrology (Qiao et al., 2017), and plant communities (Kinnebrew et al., 2020; 

Msanne et al., 2017), among many other topics. However, as our review of the literature 

illustrated, there is very little research that directly examines the impacts of woody 

encroachment on American burying beetle abundance (Walker and Hoback, 2007). These 

knowledge gaps make appropriate management for the ABB challenging. 

1.4 Scientific literature on woody encroachment and the ABB  

Only one publication explicitly explored the impacts of woody encroachment on the 

American burying beetle (Walker and Hoback, 2007) (Table 1.1). This study, centered on 

the Loess Canyons region of Nebraska, captured significantly more ABB in open 

grassland sites than in closed woodland sites dominated by eastern redcedar (Juniperus 

virginiana). They concluded that woody encroachment in the region has had a negative 

impact on the ABB.  

Four other publications explored ABB habitat preferences that included areas of 

woodland or forest, without investigating the impacts of woody encroachment (Table 

1.1). The first of these studied ABB movements between grassland and deciduous 

woodland habitats at two military bases in Oklahoma and Arkansas (Creighton and 

Schnell, 1998). They found that beetles were highly mobile between habitat types, but did 

not determine if the beetles had a preference between habitat types. The second of these  
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Table 1.1 Summary of scholarly articles relating to Nicrophorus americanus and woody encroachment. 

Article Title Author(s) Journal Date Search Terms Result 

Effects of Invasive Eastern 

Redcedar on Capture Rates of 

Nicrophorus americanus and 

Other Silphidae 

Walker, 

Hoback 

Environmental 

Entomology 

2007 "nicrophorus 

americanus" 

AND 

“encroachment” 

Juniperus reduces the numbers of 

ABB*‡ 

Short-term movement patterns of 

the endangered American burying 

beetle, Nicrophorus americanus 

Creighton, 

Schnell 

Biological 

Conservation 

1998 "nicrophorus 

americanus" 

AND “wood*” 

ABB move between grassland and 

woodland† 

Identifying priority conservation 

areas for the American burying 

beetle, Nicrophorus americanus 

(Coleoptera:Silphidae), a habitat 

generalist 

Jurzenski, 

Jorgensen, 

Bishop, 

Grosse, Riens, 

Hoback 

Systematics 

and 

Biodiversity 

2014 "nicrophorus 

americanus" 

AND “wood*” 

ABB negatively associated with 

woodland in model‡ 

Landsat to monitor an 

endangered beetle population and 

its habitat: Addressing annual life 

history and imperfect detection 

Leasure Insect 

Conservation 

and Diversity 

2017 "nicrophorus 

americanus" 

AND “wood*” 

Grassland and open-canopy 

woodland associated with ABB 

abundance† 

Factors affecting overwinter 

survival of the American burying 

beetle, Nicrophorus americanus 

(Coleoptera:Silphidae) 

Schnell, Hiott, 

Creighton, 

Smyth, 

Komendat 

Journal of 

Insect 

Conservation 

2008 "nicrophorus 

americanus" 

AND “wood*” 

No difference in ABB overwintering 

survival in grassland or woodland† 

Ecology and conservation of the 

endangered American burying 

beetle (Nicrophorus americanus) 

Lomolino, 

Creighton, 

Schnell, 

Certain 

Conservation 

Biology 

1995 "nicrophorus 

americanus" 

AND 

“*forest*” 

ABB is a habitat generalist, 

preferring neither grassland nor 

forest† 

Habitat selection, breeding 

success and conservation of the 

endangered American burying 

beetle, Nicrophorus americanus  

Lomolino, 

Creighton 

Conservation 

Biogeography 

1996 "nicrophorus 

americanus" 

AND 

“*forest*” 

ABB prefer mature forest over 

clearcuts§ 

https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=1
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=1
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=1
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=2
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=2
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=2
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=2
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Effect of forest removal on the 

abundance of the endangered 

American burying 

beetle, Nicrophorus 

americanus (Coleoptera: 

Silphidae) 

Creighton, 

Bastarache, 

Lomolino, 

Belk 

Journal of 

Insect 

Conservation 

2009 "nicrophorus 

americanus" 

AND 

“*forest*” 

Forest removal (i.e., disturbance) had 

negative impact on ABB abundance§ 

Distribution and habitat of 

endangered American burying 

beetle in northern and southern 

regions 

Leasure, 

Hoback 

Journal of 

Insect 

Conservation 

2017 "nicrophorus 

americanus" 

AND 

“*forest*” 

ABB associated with several habitat 

types including grassland, forest, 

wetland† 

Distribution of the Endangered 

American Burying Beetle at the 

Northwestern Limit of its Range  

Jenkins, 

Hoback, 

Leasure, 

Mulder, Davis 

Insect 

Systematics 

and Diversity 

2018 "nicrophorus 

americanus" 

AND 

“*forest*” 

ABB positively associated with wet 

grassland; negatively with forest and 

open water‡ 

*ABB and woody encroachment 

†ABB uses areas of woodland and grassland 

‡ABB negatively associated with forest 

§ABB negatively impacted by forest removal/disturbance 
 

  

https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=6
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=6
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=6
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=6
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=6
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=6
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=9
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=9
https://apps-webofknowledge-com.libproxy.unl.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=61&SID=7COToLdScPEJAvqiBFy&page=1&doc=9
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studies created a habitat suitability model using selected landscape components and 

beetle surveys within the Sandhills region of Nebraska (Jurzenski et al., 2014). They 

found through their model that woodland areas have a negative relationship with the 

ABB. The third of these studies investigated habitat characteristics related to ABB 

abundance at a military base in Arkansas (Leasure, 2017). They found that ABB were 

positively associated with grassland and open-canopy deciduous woodlands, whereas 

they were negatively associated with closed-canopy bottomland forests (defined as >60% 

canopy cover). The final of these four studies explored overwintering survival rates of 

ABB at grassland and woodland sites within a military base in Arkansas (Schnell et al., 

2008). They found no differences between grasslands and woodlands when determining 

ABB winter survival rates, but suggested that differences in habitats may affect other 

aspects of the beetle’s life cycle. 

Further exploration of the scientific literature found five publications that studied 

the habitat generalist nature of the ABB and impacts of disturbance through tree removal 

(Table 1.1). The first publication focused on the ABB in the far northern portion of the 

Sandhills, on a distinct population straddling the border of Nebraska and South Dakota 

(Jenkins et al., 2018). They found that ABB were positively associated with wet 

grasslands and open prairie, and negatively associated with forest, open water, and 

human development. The next two publications found that ABB are habitat generalists 

across their range, having no strong preference for one habitat type. The first of these 

studied beetle habitat preferences at two military bases in Oklahoma and Arkansas 

(Lomolino et al., 1995). It found that ABB had no strong preference between the 

grassland and mixed deciduous forest sites on the bases and concluded that the beetles are 
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habitat generalists. The second article explored ABB habitat preferences between beetle 

populations centered in Nebraska and Oklahoma (Leasure and Hoback, 2017). They 

found that although there were some differences between geographical locations, ABB 

were positively associated with a range of habitat types including wetlands, grasslands, 

and forest, but negatively associated with urban development and croplands. This result 

suggests the ABB may avoid areas that are heavily disturbed by human activities. 

The final two publications explored the impact of disturbance events on the ABB 

and found that disturbances, specifically tree removal, had negative impacts on the ABB. 

The first studied ABB habitat preferences across the eastern half of Oklahoma at local 

and regional scales and found that at local scales, ABB were positively associated with 

mature forest and negatively associated with clearcuts (Lomolino and Creighton, 1996). 

At the regional scale, they found that ABB were positively associated with areas 

combining forest, shrub cover, and deep soils. The second article studied the impacts of 

oak-pine forest removal on ABB in the Ouachita National Forest in Oklahoma (Creighton 

et al., 2009). They found that ABB declined significantly in areas that had undergone 

forest removal while remaining steady in areas that did not undergo forest removal. They 

concluded that habitat loss and fragmentation have negatively impacted the ABB across 

its range. 

To summarize, we found one scholarly article that explicitly investigated the link 

between the ABB and woody encroachment in grasslands (Walker and Hoback, 2007). 

They found that woody encroachment is negatively associated with the ABB. Other 

articles found that beetles will move between habitat types (Creighton and Schnell, 

1998), are habitat generalists (Leasure, 2017; Leasure and Hoback, 2017; Lomolino et al., 
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1995), and use both grassland and woodland to survive the winter (Schnell et al., 2008). 

Two explored the negative impacts of tree removal and forest clearcuts on the ABB in 

Oklahoma (Creighton et al., 2009; Lomolino and Creighton, 1996). Lastly, two articles 

concluded that ABB are negatively associated with forest and in some cases positively 

associated with grassland in areas of Nebraska and South Dakota (Jenkins et al., 2018; 

Jurzenski et al., 2014). Since we could only find one article directly exploring the 

relationship between the ABB and woody encroachment, we can conclude that there is a 

gap in scientific knowledge on the impacts of woody encroachment on the American 

burying beetle. 

This review of the scientific literature was conducted in December 2020. 

Literature related to the impacts of woody encroachment on the American burying beetle 

was searched via the Web of Science. Topic searches included the Boolean search string 

(“Nicrophorus americanus” AND “encroachment”), and derivative strings associated 

with woody encroachment: (“Nicrophorus americanus” AND “invasive”), (“Nicrophorus 

americanus” AND “wood*”), and (“Nicrophorus americanus” AND “*forest*”). A total 

of 19 publications were gathered across all search strings. We first removed duplicate 

articles, then removed results that were deemed irrelevant. Irrelevant results included 

articles on invasive elytral clipping on the beetle, studies of other Nicrophorus species 

that did not include the ABB, and studies that did not make relevant habitat comparisons 

(e.g., grassland vs woodland). After this removal process, the literature was distilled 

down to ten publications. We reviewed these ten articles and noted their key results 

(Table 1.1). We then assigned each article to one of four topic categories: 1) Evidence 

that the ABB is negatively impacted by woody encroachment (one publication); 2) 
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evidence of the ABB using both grasslands and woodlands without strong preference 

(five publications); 3) evidence that the ABB is negatively associated with forest (two 

publications); and 4) evidence that the ABB is negatively impacted by forest removal 

(e.g., clearcutting) (two publications). 

1.5 Misconceptions and Knowledge Gaps 

1) Early scientific views of the ABB hypothesized it was a forest specialist that required 

the deep, loose soils of primary forest to survive and that its decline in the eastern U.S. 

was due to widespread deforestation (Anderson, 1982; Creighton et al., 1993). By 1995 

this hypothesis was rejected and it was determined that the ABB is a habitat generalist 

(Lomolino et al., 1995). Since the ABB uses forest habitat to some extent as a generalist, 

it can be difficult to determine which forests the beetle prefers and which it avoids. There 

are also regional differences in ABB’s habitat preferences. In the northern Great Plains, 

ABB were found to prefer wetter grassland areas whereas in the southern Great Plains 

they preferred sandier soils, grasslands and hayfields, and native forests (Leasure and 

Hoback, 2017). The history of associating the ABB with forest in addition to the 

variations in habitat preferences across its range may contribute to assumptions that 

woody encroachment is not a threat to the beetle. 

2) The threats that woody species pose to the flora and fauna of grasslands, and to 

the very existence of grasslands, is often ignored or not dealt with effectively. This has 

been shown by the persistent encroachment of ashe juniper in Texas for over 50 years 

(Dalrymple, 1969; Yang and Crews, 2020), the spread of eastern redcedar in much of the 

Great Plains (Miller et al., 2017), and the continued planting of eastern redcedar in 

prairies (Briggs et al., 2002). Not only is woody encroachment a threat to grasslands 
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(Twidwell et al., 2013b) but it is also a threat to the beetle (Walker and Hoback, 2007). 

The costs associated with managing woody encroachment in grasslands cascade and 

make it more difficult to successfully manage for the ABB in the Great Plains. 

3) In a milestone work signaling the decline of American burying beetle, 

researchers proposed that a climax community of mature forest was the only habitat 

suitable for the ABB (Anderson, 1982). Later studies have echoed the idea that ABB 

prefers late-successional or climax communities (Creighton et al., 1993; Leasure et al., 

2012). However, climax communities and linear ecological succession are older 

frameworks (Briske et al., 2003) that should not be applied to the ABB, its habitat 

preferences, or woody encroachment within its range. Modern ecological theory 

including alternative states, adaptive cycles, and multi-scale approaches along with 

adaptive management are required to understand the complex forces shaping the 

landscape and the ABB’s interactions within it. 

4) Studies of the ABB tend to focus on a small area of a local or regional 

landscape such as the Sandhills (Jenkins et al., 2018), Loess Canyons (McPherron et al., 

2012; Walker and Hoback, 2007), military bases or national forests, (Crawford and 

Hoagland, 2010; Creighton et al., 1993), or an isolated island in the Atlantic (Mckenna-

Foster et al., 2016; Raithel et al., 2006). These studies are necessary, but broader studies 

at the biome-level (e.g., Great Plains) may prove insightful as well. A study of the range 

wide impacts of woody encroachment on the ABB would help paint a clearer picture of 

the beetle as it is in its current habitat as well as the potential habitat that remains, and 

allow land managers to adjust accordingly. 
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1.6 Summary 

Research investigating the impacts of woody encroachment on the ABB is sparse. Within 

the literature there is only one article exploring this question (Walker and Hoback, 2007). 

Other research on explored ABB habitat preferences including woodland or forest, 

without investigating the impacts of woody encroachment (Creighton and Schnell, 1998; 

Jurzenski et al., 2014; Leasure, 2017; Schnell et al., 2008). Three publications econcluded 

that the ABB is a habitat generalist (Jenkins et al., 2018; Leasure and Hoback, 2017; 

Lomolino et al., 1995). Two publications found that disturbances due to forest removal 

had negative impacts on the ABB (Creighton et al., 2009; Lomolino and Creighton, 

1996). 

The lack of scientific publications exploring the impacts of woody encroachment 

on the American burying beetle leaves four identifiable knowledge gaps and 

misconceptions in the science. This may be due in some part to persistent 

misunderstandings about the beetle’s habitat preferences. The legacy of the ABB as a 

forest specialist has lingered despite conclusive evidence that it is a habitat generalist. 

Additionally, many species alter their behavior at the periphery of their ranges and will 

generalize or specialize as needed, for example bullsnakes (Kapfer et al., 2008), mountain 

lions (Gigliotti et al., 2019), and Canada lynx (Squires et al., 2013). The ABB seems to 

also alter its habitat preferences based on geography, for example between Nebraska and 

Oklahoma (Leasure and Hoback, 2017), or in the extreme northern extent of its range 

(Jenkins et al., 2018), leading to continued uncertainty about its habitat needs. 

Another misconception relates to ecological succession and climax communities. 

Older research supposed that the ABB relied entirely on climax forest communities, not 
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open grassland habitat. However, this research has found that beetles are often positively 

associated with grasslands, suggesting they do not rely solely on developed forests. 

Additionally, woody encroachment is often not seen as a threat to grasslands in its early 

stages. These two views taken together mean that encroaching forests are not seen as a 

threat to grasslands in general or to beetles specifically. Habitat managers then fail to 

address the problems for flora and fauna that arise from woody plant encroachment in 

grasslands. 

Finally, many studies of the ABB focus on a limited spatial scale. They focus on 

small local scales but do not explore broader scales across the biome. Studies across the 

range of the ABB to understand the state of its current habitat as well as potential habitat 

could inform restoration activities. Additionally, studies across the temporal scale of the 

beetle could provide novel insights into its relationship with the landscape over time. 

Future studies of the beetle should employ modern ecological theories, including 

studies of woody encroachment and the ABB at multiple scales and cross-scale 

interactions as found in Panarchy theory (Allen et al., 2014). It must also embrace 

modern technologies to aid these broad, multi-scale studies (Jones et al., 2020). Woody 

encroachment has been shown to have negative impacts on the ABB in a significant 

portion of its range (Walker and Hoback, 2007), and other studies have shown that 

beetles are positively associated with open grassland and negatively with closed-canopy 

woodlands (Jenkins et al., 2018; Jurzenski et al., 2014; Leasure, 2017). There is a need 

for additional studies in diverse parts of the ABB’s range in order to inform land 

managers of appropriate goals and directions to pursue in order to conserve ABB 
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populations. Once the American burying beetle is better understood in its current range, 

we can take the next step to reintroduce the beetle across its historic range. 
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CHAPTER 2 

 

LARGE-SCALE GRASSLANDS INCREASE ABUNDANCE OF THE 

THREATENED AMERICAN BURYING BEETLE (NICROPHORUS 

AMERICANUS)2 

 

2.1 Introduction 

Large-scale landscape initiatives for threatened and endangered species conservation are 

a relatively new development for natural resource management. As a result, there are few 

success stories on which to model restoration efforts. One example of successful large-

scale restoration efforts for threatened and endangered species comes from the Sage 

Grouse Initiative in western sagebrush ecosystems. In the Warner Mountain Landscape of 

southern Oregon, land managers succeeded in increasing sage-grouse populations by 

12% as part of a large-scale effort to remove encroaching conifers from the sagebrush 

steppes (Olsen et al., 2021). Their efforts provide empirical evidence of successful 

management for a threatened species and inform land managers how to best target 

conservation efforts. However, there are few if any examples for successful landscape 

conservation initiatives for threatened and endangered insect species in rangelands and 

                                            
2 Ludwig, A. K., C. P. Roberts, D. R. Uden, E. F. Stuber, D. T. Fogarty, and D. Twidwell. (2021). Large-

scale grasslands increase abundance of the threatened American burying beetle (Nicrophorus americanus). 
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grasslands undergoing woody plant encroachment, as evidenced by the absence of insect 

species of concern from assessments of rangeland wildlife conservation (Krausman et al., 

2011). For the threatened American burying beetle (Nicrophorus americanus), no 

ecoregion-scale conservation outcomes have been documented following the initiation of 

a landscape restoration initiative. 

Globally, grassland species are facing multiple threats, including agricultural land 

conversion, woody plant encroachment, and altered disturbance regimes (Bonanomi et 

al., 2019; Daru et al., 2013; Dirzo et al., 2014; Fogarty et al., 2020; Gallardo and 

Aldridge, 2012; Knapp, 1996; Twidwell et al., 2020; Wilcove et al., 1998). For 

threatened species whose last population strongholds lie in shrinking grassland 

landscapes, such as the American burying beetle, it is critical to understand the spatial 

scales at which these threats are affecting their populations (Henry et al., 2020) and 

inform management responses at the appropriate scales. 

The shift from grassland biome to woodland in the Great Plains is well-

documented and results directly from human activities (Briggs et al., 2002; Limb et al., 

2010). European settlers on the Plains instituted the total suppression of the historic fire 

cycle established by indigenous peoples (Twidwell et al., 2020) as well as drastically 

disrupting previous cycles of herbivory (Fogarty et al., 2020; Starns et al., 2019). 

Subsequently, woody plant species such as eastern redcedar (Juniperus virginiana) began 

encroaching into the grasslands of North America and converting grasslands into 

woodland (Streit Krug et al., 2017; Van Auken, 2009). The conversion of grassland to 

woodland puts the Great Plains biome at risk and threatens the ecosystem services that it 

provides. Water resources are negatively impacted due to less soil moisture and surface 
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runoff, leading to less groundwater recharge and streamflow (Zou et al., 2018). Woody 

encroachment and conversion of grasslands also increases the risk of wildfires, which 

negatively impact human settlements (Donovan et al., 2020). Woody encroachment on 

the Great Plains poses a direct threat to livestock production, the primary human use for 

grasslands (Anadón et al., 2014), creating a less resilient food production system. Lastly, 

woody encroachment negatively impacts biodiversity, since it disrupts the grasslands that 

many plant and animal species require in their life cycles (Ratajczak et al., 2012). 

Recent research has discovered a widespread decrease in bird abundance globally, 

nowhere more significantly than in the grasslands of the world (Inger et al., 2015; 

Rosenberg et al., 2019; Sekercioglu et al., 2004). Results include a 74% decrease in 

grassland bird species and a 53% loss of individual grassland birds (Rosenberg et al., 

2019). The lesser prairie chicken (Tympanuchus pallidicintus) has faced steep declines 

over the past 100 years due primarily to woody encroachment (Fuhlendorf et al., 2002), 

and has been considered for listing under the Endangered Species Act (ESA) (Twidwell 

et al., 2013b). Many other grassland-obligate species are threatened by woody 

encroachment, including the greater prairie chicken (Tympanuchus cupido) (Svedarsky et 

al., 2000), mountain plover (Charadrius montanus) (Vickery et al., 1995), the western 

prairie fringed orchid (Platanthera praeclara) (Bjugstad and Fortune, 1989), and the 

blowout penstemon (Penstemon haydenii) (Stubbendieck et al., 1989). The potential loss 

of the grassland biome due to woody plant encroachment threatens all grassland species. 

In the grasslands of the Great Plains, the American burying beetle (ABB) is 

known to be threatened by woody encroachment (Walker and Hoback, 2007). As the 

largest carrion beetle of North America, the American burying beetle once ranged across 
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the eastern half of the United States (Ratcliffe, 1996). It was listed as federally 

endangered in 1989 (Federal Register 54:29652-55) after it was found to be present in 

less than 10% of its former range (Lomolino et al., 1995). In 2020, the ABB was 

downgraded to federally threatened (Federal Register 85:65241-61) and remains rare or 

extirpated throughout most of its former range (U.S. Fish and Wildlife Service, 2020). 

The beetle exists primarily in the Great Plains region, with the largest populations found 

in Nebraska and Oklahoma. Additionally, a small but enduring presence can be found on 

two islands in the Atlantic Ocean off the coasts of Rhode Island and Massachusetts (U.S. 

Fish and Wildlife Service, 2019). For ABBs in the Great Plains, the impacts of woody 

encroachment are not well-studied but initial assessments show that woody encroachment 

is detrimental to them (Walker and Hoback, 2007). In addition, the impacts on the ABB 

of prescribed fire and other management practices used to combat woody encroachment 

are unknown (U.S. Fish and Wildlife Service, 2019). Within the current literature, there 

are no examples of successful conservation of the ABB within the ongoing expansion of 

woody encroachment in the Great Plains. 

Only a few regions within the Great Plains still support the ABB. One such region 

is the Loess Canyons Experimental Landscape (LCEL). This region in south-central 

Nebraska was established in 2005 with the goal of returning fire across the landscape to 

manage woody encroachment, conserve productivity of privately-held working 

rangelands, and benefit the ABB (which was listed as endangered at the time). 

Establishment of the LCEL led to a partnership between scientists, landowners, and 

agency personnel and has produced over a decade of ABB monitoring data. The LCEL is 

a biologically-unique landscape (BUL) in the state, making it a part of the Nebraska state 
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wildlife action plan developed in 2005 with specific emphasis on the conservation of the 

ABB (Schneider et al., 2011). The BUL action plan was one of the first in the Great 

Plains to plan conservation at the landscape scale. Such broad-scale conservation 

planning in an area that is mostly privately-owned requires investment and cooperation 

between private landowners and public agencies for success. 

The scale at which ABB are associated with various habitat types is unclear for 

land managers and conservation planners. It is also unclear which habitat types are more 

or less desirable to the beetle at those scales. Management for the ABB at broad scales 

given the rapid woody encroachment of grasslands across the Great Plains biome remains 

a key concern. 

Like much of the Great Plains, the Loess Canyons are undergoing change due to 

woody encroachment and land managers have turned to prescribed fire to halt the 

conversion of grasslands (Fogarty et al., 2020). The advent of prescribed burn 

associations (PBAs) in the region along with the establishment of the LCEL coincides 

closely with the start of annual beetle monitoring in 2007. The Loess Canyons is a 

notable landscape that has been dominated by decades of broad-scale woody 

encroachment and annual high-intensity prescribed fires. 

The long-tern experiment within the LCEL was established alongside the state’s 

wildlife action plan with the following objectives for the American burying beetle: (1) 

improve the distribution and availability of grassland habitat and prevent habitat loss 

associated with woody encroachment, and (2) prevent reductions in American burying 

beetle populations. This study applies thirteen years of beetle monitoring data alongside 

remotely-sensed landcover changes at multiple spatiotemporal scales to determine the 
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distribution, abundance, and habitat preferences of the American burying beetle. It 

quantifies whether beetle population abundance trends are meeting conservation 

objectives and measures the spatial scales and directionality of ABB abundance 

responses to land cover covariates within the LCEL. Lastly, it visualizes the current state 

of American burying beetle abundance across the landscape together with land cover 

trajectories. 

2.2 Methods 

2.2.1 Study Site Description 

The Nebraska Natural Legacy Project was established in 2005 as the state’s wildlife 

action plan. It was designed with the goals of 1) reversing the decline of at-risk species in 

the state, 2) aiding in the recovery of currently listed species, 3) keeping common species 

common, and 4) conserving the state’s natural communities (Schneider et al., 2011). As 

part of this statewide effort, a network of regional-scale landscapes were designated as 

conservation priorities. Among them was the Loess Canyons ecoregion. This region hosts 

a robust population of the federally-threatened American burying beetle (Schneider et al., 

2011), an insect that once was found across the eastern U.S. but now remains only on the 

periphery of its range (Bedick et al., 1999; U.S. Fish and Wildlife Service, 2019) (Figure 

2.1). The Loess Canyons are part of the northern Great Plains population of American 

burying beetles, along with the Sandhills and parts of South Dakota. The southern Great 

Plains population is densely centered in eastern Oklahoma, with some populations found 

in bordering states. Finally, the last naturally-surviving populations of ABB are on the 

opposite side of its former range, on Block Island and Nantucket Island in the Atlantic 

Ocean, just off the northeastern coast (U.S. Fish and Wildlife Service, 2019). Within the  
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Figure 2.1 Current distribution of the American burying beetle based on 2001-2015 

survey data. (Figure adapted from (U.S. Fish and Wildlife Service, 2019)). 

 

Loess Canyons ecoregion, there is evidence that woody encroachment by eastern 

redcedar has negative impacts on the ABB (Walker and Hoback, 2007). Once designated 

as a high-priority conservation area, it became a key objective for land managers to halt 

woody encroachment and prevent losses in ABB habitat. Thus, the implementation of 

prescribed fire to meet large-scale restoration goals in the region was driven in part by the 

American burying beetle. 

The LCEL is a long-term experiment implementing extreme prescribed fire across 

the entire Loess Canyons ecoregion (Bielski et al., 2021). Since 2002, private landowners 

of the Loess Canyons Rangeland Alliance (LCRA) have worked in tandem with public 

land managers and researchers from the University of Nebraska’s Institute of Agriculture 

and Natural Resources to restore fire to the landscape, reverse woody encroachment, 
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maintain prairie, and co-produce science on working lands (Fogarty et al., 2020; Naugle 

et al., 2020; Twidwell et al., 2013b). In order to produce fire on the landscape capable of 

eliminating invasive eastern redcedar trees, fire practitioners first prepare the fuels by 

cutting down outlying trees and placing them just within the borders of a dense stand of 

eastern redcedar. When selecting the day to implement a prescribed burn, they choose 

weather conditions that create sufficient fire intensity to exceed juniper mortality 

thresholds (Twidwell et al., 2013a) and meet objectives of restoring grassland 

productivity (Bielski et al. 2021). This restoration effort has successfully halted the 

spread of eastern redcedar at large scales in the Loess Canyons (Fogarty et al., 2020) 

(Figure 2.2). 

The LCEL is located within the Loess Canyons ecoregion of south-central 

Nebraska, which spans three counties (Lincoln, Dawson, and Frontier). The Loess 

Canyons ecoregion spans 121,405 hectares and is classified as a biologically-unique 

landscape (BUL) in the state. The region supports several species of significance that are 

known to be negatively impacted by woody encroachment, including the American 

burying beetle (Nicrophorus americanus), regal fritillary (Speyeria idalia), burrowing 

owl (Athene cunicularia), greater prairie-chicken (Tympanuchus cupido), and Bell’s vireo 

(Vireo bellii) (Schneider et al., 2011). The experimental landscape spans 72,843 hectares 

within the ecoregion, and 27,176 ha have been burned from 2002 to 2019. The majority 

of prescribed fires have taken place in the central and southern portions of the Loess 

Canyons, whereas prescribed fire occurrences are rare in the northwestern and 

southeastern portions of the ecoregion (Figure 2.3). 
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Figure 2.2 Change in tree cover in the Loess Canyons from 2000 to 2017. Tree cover 

increased over time since 2000 but leveled out starting in 2014. (Figure adapted from 

(Fogarty et al., 2020)). 

 

Historically, the ecoregion was dominated by mixed-grass prairie, while trees 

were mostly limited to areas that burned infrequently  (i.e., riparian zones, steep hillsides, 

and draws (Roos et al., 2018)). In recent decades, disruption of the fire cycle has allowed 

tree species, primarily eastern redcedar (Juniperus virginiana), to encroach into prairie 

landscapes (Twidwell et al., 2016b). This has caused much of the region to shift from 

grassland to woodland (Fogarty et al., 2020; Twidwell et al., 2016b). Common grass and 

forb species include blue grama (Bouteloua gracilis), big bluestem (Andropogon 

gerardii), needle-and-thread grass (Hesperostipa comata), common sunflower 

(Helianthus annuus), and hoary vervain (Verbena stricta) (Bedick et al., 1999; Schneider 

et al., 2011). 

The Loess Canyons topography is characterized by steep-sided hills and sloping 

canyons that mostly run north-south; soil consists of an easily eroded loess-sand mixture 

(Bedick et al., 2004, 1999; McPherron et al., 2012). Parent material is primarily silt loams 
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Figure 2.3 Burn units in the Loess Canyons from 2002 to 2019. Black dots show 

permanent ABB trap locations. Traps were sampled annually since 2007. 

 

of the Coly soil series (Soil Survey Staff, 2021). Most of the land is used for grazing 

livestock, although small pockets of agriculture are found in areas with flatter topography 

(McPherron et al., 2012; Schneider et al., 2011). Mean annual temperature is 9.4°C 

(Arguez et al., 2012), with an average annual high of 18.3°C and low of 1.4°C 

(McPherron et al., 2012). Mean annual rainfall is 52.8 cm (Arguez et al., 2012). 

2.2.2 Beetle Sampling Protocol 

An ecoregion-scale long-term sampling protocol was initiated in 2007 to monitor 

American burying beetle populations across the Loess Canyons ecoregion (Figure 2.4). 

Permanent trapping locations were established and spaced approximately 8 km apart to 

ensure sampling independence and to avoid individual beetles dispersing among trap 
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locations (American burying beetles can travel 1.2 km overnight (Bedick et al., 2004; 

Creighton and Schnell, 1998)). A total of 28 traps were distributed in permanent locations 

across the 121,405 ha Loess Canyons ecoregion. Trapping occurred annually across the 

LCEL from 2007 through 2019. Some traps were not used in all years, but a minimum of 

24 traps were used every year. Beetle trapping took place for four to five consecutive 

nights in August. A total of 1,654 American burying beetles were captured during the 13-

year trapping effort. 

All sampling was coordinated by Nebraska Game and Parks Commission, the state 

wildlife agency, and followed trapping protocols established by U.S. Fish and Wildlife 

Service (USFWS) guidelines (U.S. Fish and Wildlife Service, 2018). Sampling occurred 

annually every August, which corresponded to a period when most old and young adults 

had emerged from their summer brood chambers but had not yet burrowed underground 

for hibernation. For each trap, a food-grade, 5-gallon bucket was buried in the ground. 

The rim of the bucket was left about one inch above the soil surface and a ramp of soil 

was pushed up to the rim. Buckets were covered with a wire mesh to deter scavengers 

from tampering with the bucket but with large enough gaps to allow entry of carrion 

beetles. A lid covered the bucket’s opening, propped up on two wooden blocks with a 1-2 

inch gap below that allowed beetle entry. The lid served to prevent beetle escape while 

also keeping rainfall and sunlight out of the bucket to prevent the drowning and 

desiccation of beetles. Moist, but not wet, soil was placed in the bottom of the bucket to 

allow beetles to burrow and hide and to keep the bucket’s environment cool and moist. 

An aged lab rat carcass (procured fresh from a laboratory supply company and aged in a  
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Figure 2.4 American burying beetle trap locations. Rings illustrate the multiple scales at 

which each landcover type was sampled. Landcover types sampled were perennial 

forb/grass cover, tree cover, cropland cover, and litter cover. Area within each circle 

indicated in hectares. 
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sealed bucket for at least 3-5 days) was placed in the trap. When placing the lid on top of 

the trap, additional stakes were used to secure the apparatus from outside disturbances. 

Traps were deployed, baited, and then left overnight. Traps were checked the 

following morning at first light. All traps were to be checked by noon, per USFWS 

guidelines. Captured ABB were removed from the traps and held in a separate container 

in moist, cool conditions until they could be processed. Each beetle’s length was 

measured from tip-to-tip and from its mandibles to the end of its elytra. The width of its 

pronotum was also measured. Each beetle was then marked with a bee tag. The number 

and color of the bee tag was recorded alongside each beetle’s measurements to track any 

recaptures. Other species of carrion beetles (silphids) were removed from the trap, 

identified, tallied, and placed in a larger holding container. After all beetles were 

removed, the trap was reset and additional bait added if necessary. Marked ABB were 

released about 200 m from the trap at which they were caught, following USFWS 

guidelines that they be released within 609 m of their trap location (U.S. Fish and 

Wildlife Service, 2018). Other silphid species were released at least a mile from the trap 

at which they were caught. All endangered beetles were trapped and handled in the field 

per established USFWS guidelines to avoid unnecessary mortalities. In addition, efforts 

were made to reduce mortalities of other silphid species that were caught. 

2.2.3 Landcover Data 

Landcover data were compiled for vegetation functional groups known to be influential 

to American burying beetle habitat and their distributions (Leasure and Hoback, 2017; 

Lomolino and Creighton, 1996; Walker and Hoback, 2007). Landcover data included 

cropland (%), perennial forbs and grasses (%), tree cover (%), and litter (%) using 
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geospatial data sources measured at a 30-m resolution. Cropland (%) cover was acquired 

from the USDA NASS  cropland data layers, accessed through Google Earth Engine 

(USDA National Agricultural Statistics Service Cropland Data Layer, 2020). Data were 

collected for the region from 2006 to 2019. Pixels with values less than or equal to 61 

were classified as cropland. Rangeland vegetation data were acquired from the Rangeland 

Analysis Platform and included annual measures from 2006 to 2019 (RAP; (Allred et al., 

2021; Jones et al., 2020; Uden et al., 2019)). Roads, water, and developed areas as 

defined in the National Land Cover Database (Multi-Resolution Land Characteristics 

Consortium, 2011) were masked out of the datasets. A moving window algorithm was 

used to calculate the mean values of the chosen land cover types across the different 

window sizes. Window sizes around each trapping location (Figure 2.4) were: 0.81 ha 

(3x3 window), 7.29 ha (9x9 window), 65.61 ha (27x27 window), 590.49 ha (81x81 

window), 1149.21 ha (113x113 window), and 1738.89 ha (139x139 window). This 

provided a continuous raster for all locations that were not masked out. Each trap location 

had a 60 m buffer surrounding it that calculated the average pixel value from the raster 

within that buffer for each of the window sizes. One cover value for each land cover type 

at was extracted from the continuous raster using a 60 m buffer around each trap. Thus, 

each sampling location (i.e., beetle trap) was assigned six landcover values for each of 

the four landcover types, for a total of 24 land cover values at six spatial scales.  

2.2.4 Analysis 

To estimate the relative abundance of American burying beetles at trapping locations in 

the Loess Canyons, we used a Bayesian N-mixture model (Royle et al., 2007). We 

assumed closure of individuals for each trap within each year (Royle, 2004). As fixed 
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effect predictors for the ecological process of the N-mixture model, we included four land 

cover covariates: crop cover, litter cover, perennial forb/grass cover, and tree cover. We 

also included time (year) as a fixed effect predictor in the ecological process portion of 

the model. The ecological process is the portion of the model that relates beetle 

abundance to the four land cover covariates. To allow abundance-predictor relationships 

to change signs, we added quadratic terms to all predictors in the ecological process. As 

linear predictors for the detection process of the N-mixture model (i.e., detection 

probability), we used average wind speed, presence/absence of fog, minimum 

temperature, and amount of precipitation. This weather data was obtained through 

NOAA’s Climate Data Online archive for the beetle sampling date range. To account for 

variability in surveyor crews over time and effects of this variability on detection 

probability, we set year (2007 – 2019) as a random effect for the detection portion of the 

model. Year may be used as a fixed effect in the ecological process and as a random 

effect in the detection process of the model without causing issues with collinearity. The 

detection process is the portion of the model that accounts for and models imperfect 

detection of the beetles.  

To determine at which scale our land cover covariates best explained ABB 

abundance, we used the Bayesian latent indicator scale selection (BLISS) method (Stuber 

et al., 2017). BLISS is a model selection approach that simultaneously evaluates all 

possible combinations of spatial scales for the ecological process predictor variables, 

selects the best-performing scale for each variable, and estimates the effects of predictors 

(Stuber et al., 2018). BLISS outperforms other model selection approaches because it is 
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not sensitive to collinearity among scales for a single predictor or to collinearity between 

predictors (Stuber and Fontaine, 2019). 

We conducted our analysis in the R programming environment (R 3.6.3) using 

JAGS (Just Another Gibbs Sampler (Plummer, 2003)) via the R package rjags (Plummer, 

2019; R Core Team, 2021). We used normally distributed priors with zero-means and 

large variance for all ecological process predictor variables and all detection probability 

predictor variables—except for the binomial ‘fog’ variable for which we used the beta 

distribution as a prior. For the six candidate spatial scales, we used discrete uniform 

priors (Stuber et al., 2018). For initial starting values for MCMC sampling, we generated 

random values via a Poisson distribution capped at the maximum observed count across 

all traps and years. We ran 200,000 iterations for posterior simulations, with a burn-in 

period of 100,000. Per the BLISS approach, we considered the spatial scale with the 

highest posterior probability as the ‘best-performing’ scale for each predictor variable 

(Stuber et al., 2018, 2017; Stuber and Fontaine, 2019). 

2.2.5 Mapping Visualization 

To visualize the geographic distribution of American burying beetles and their 

association with land cover types at preferred scales of selection, we synthesized our 

results into a map of the region. This map shows the four cover types chosen for the 

model (perennial forb/grass, tree, cropland, and litter), the predicted beetle abundance for 

each trap location per the model, and the actual percent cover of each cover type at the 

scale preferred by the beetle. 

2.3 Results 

2.3.1 American burying beetle abundance in the Loess Canyons 



34 
 

A total of 1,654 American burying beetles were trapped and marked during the 13 years 

of sampling.  The most beetles caught in one year was in 2016 with a total of 318 beetles 

captured, and the least beetles caught in one year was in 2007 with a total of 32 beetles. 

The results of our N-mixture model show changes in American burying beetle 

abundance from 2007 to 2019 (Figure 2.5). Beetle abundance appears to increase and 

decrease from year-to-year. Despite this fluctuation in American burying beetle 

abundance, our results show that beetle abundance has increased over time from 98 

estimated beetles when annual sampling began in 2007 to 152 estimated beetles in 2019, 

an increase of 55%. The model estimates a peak beetle abundance of 220 beetles in 2011, 

and a low beetle abundance of 90 in 2013. 

 

 

Figure 2.5 GAM plot of American burying beetle abundance in Loess Canyons, 

Nebraska. Beetle abundances estimated by Bayesian N-mixture model for trap years 

2007-2019. A Bayesian approach was used in the modelling which does not use tests of 

significance. The trend in the plot shows beetle abundance increasing over time. 
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2.3.2 Scale selection across land cover types 

BLISS revealed that the scales of analysis best estimating American burying beetle 

abundance varied across land cover types. A moderately-sized scale of analysis was the 

best performing spatial scale for mean perennial forb and grass cover and predicted beetle 

abundance (Figure 2.6a; posterior probability of highest ranking scale = 0.98; 590.49 ha). 

For mean tree cover, a single scale of analysis (7.29 ha) was the best supported scale 

(Figure 2.6b; posterior probability = 1.00). The largest scale of analysis (1738.89 ha) was  

the best predictor for mean cropland cover (Figure 2.6c; posterior probability = 0.94), 

whereas the finest scale of analysis (0.81 ha) was the best predictor for mean litter cover 

(Figure 2.6d; posterior probability = 0.99). 

 

Figure 2.6 Posterior distributions of the spatial scales (in hectares) for land cover 

abundance predictor variables estimated via the BLISS approach for American Burying 

Beetle in the Loess Canyons, Nebraska. 

a

) 

b) 

c) d) 
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The results of our scale selection method help determine what scales of habitat 

ABB associate with and how they perceive and interact with different land cover types on 

the landscape (Figure 2.6). In our model, mean percent tree cover was the only predictor 

variable whose result settled on only one scale. That scale was the second smallest scale 

in our model, covering 7.29 hectares. All other predictor variables were split between two 

scales, although in some cases only very slightly. Mean cropland cover was split at the 

largest scales (1149.21 ha and 1738.89 ha); litter cover was split at the smallest scales 

(0.81 ha and 7.29 ha); and perennial forb and grass cover was split at mid-to-large scales  

(590.49 ha and 1149.21 ha). 

Modeling results demonstrate American burying beetles exhibit strong, scale-dependent 

sensitivities to land cover change. Relative abundance of American burying beetles was 

highest for perennial grass/forb cover occurring at moderately large scales (Figure 2.7a). 

Increases in perennial grass/forb cover was the only land cover covariate to have a strictly 

positive effect on relative beetle abundance (Figure 2.7). Beetle abundances exhibited 

strong negative associations to slight increases in tree cover at fine scales (7 ha) and crop 

cover at broad scales (1739 ha) (Figure 2.7b-c). Negative effects on relative beetle 

abundances were observed once tree cover exceeded 10% (Figure 2.7b). At tree cover 

values of 22% or greater, the mean number of beetles estimated by the model fell to < 1 

per trap (Figure 2.7b). Cropland cover was the only covariate to have a strictly (i.e., 

linear) negative effect (Figure 2.7c). Relative abundance was always < 1 per trap for all 

cropland cover values and dropped markedly even under very small increases in percent 

crop cover at the largest scale of analysis (Figure 2.7c). Litter cover also had negative 

effects on relative abundance, once cover values exceeded 8% (Figure 2.7d). 
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Figure 2.7 Marginal effects (mean: black line; 80% CI: dashed lines) of land cover 

abundance predictors at the best-supported scales on relative abundance of American 

Burying Beetle in the Loess Canyons, Nebraska. X-axis ranges for each predictor 

represents observed ranges of predictors measured as proportions. 

 

2.3.3 Mapping Visualization 

Mapping spatial variability in the relative abundances shows the spatial complexity of the 

American burying beetle’s response to scale-specific patterns for different land cover 

types. Spatial patterns of abundance demonstrate that highest numbers occur where 

grassland-dominated areas (Figure 2.8a) have been minimally impacted by scale-specific 

changes in trees, cropland, or litter (Figure 2.8b, 2.8c, 2.8d). This occurs in the central 

portion of the Loess Canyons (Figure 2.8a) and contains 67% of the total estimated 

American burying beetle abundance across the ecoregion. Tree cover is highest in the 

northern portion of the Loess Canyons (Figure 2.8b), a densely forested area that contains 

11% of total American burying beetle abundance in the ecoregion. Cropland cover 

a

) 

b) 

c

) 

d) 
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surrounds the perimeter of the ecoregion with the most cultivation occurring in the 

southwestern and southeastern corners of the Loess Canyons (Figure 2.8c). Litter cover is 

densest in pockets along the Loess Canyon’s southern border and in areas in the 

northwestern quadrant (Figure 2.8d). 

 

 

Figure 2.8 Spatial patterns of predicted American burying beetle abundance across 24 

permanent trapping locations in the Loess Canyons, Nebraska. Cover types are shown at 

the spatial grain size most relevant for the beetle as determined by BLISS (Bayesian 

latent indicator scale selection) model. Cover data shows the state of cover in 2019. 

 

 

 

a) b) 

c) d) 
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2.4 Discussion 

The Bayesian analysis and N-mixture model found that American burying beetle 

abundances have increased since annual trapping began in 2007 (Figure 2.5). The model 

showed that beetles have increased by 55% as of 2019. Our study illustrates the first 

documented increase in the American burying beetle, a federally-threatened species, in an 

ecoregion managed extensively with prescribed fire. In addition, this is within a working 

landscape that is multi-use, supporting widespread livestock grazing and recreational 

activities while meeting conservation goals. 

Conservation activities in the Loess Canyons Experimental Landscape have been 

ongoing since the establishment of the Nebraska Natural Legacy Project in 2005. The 

Project’s goals of improving the distribution and availability of grassland habitat, 

preventing habitat loss from woody plant encroachment, and averting reductions in 

American burying beetle populations have been instrumental in directing conservation 

activities in the region. We measured the directionality of beetle abundance responses to 

land cover covariates at six spatial scales. This allowed us to determine the distribution 

and abundance of American burying beetle populations in the Loess Canyons 

Experimental Landscape, their habitat preferences, and whether conservation objectives 

have been met. We found that the American burying beetle is distributed throughout the 

Loess Canyons, with the most abundant populations in the central region (Figure 2.8). 

Beetles are most abundant in areas with high perennial forb and grass cover (Figure 2.8a) 

and are less abundant in areas with high tree cover (Figure 2.8b). Areas of high forb and 

grass cover in the central Loess Canyons are less impacted by large increases in cropland 

or litter cover (Figure 2.8c, 2.8d).  
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Perennial forb and grass cover is positively related to ABB abundance (Figure 

2.7a) at mid-to-high spatial scales (Figure 2.6a). Our model suggests that beetles may be 

more abundant in highly intact grasslands and prairies, which agrees with other studies in 

the northern Great Plains (Jenkins et al., 2018; Jurzenski et al., 2014; Walker and 

Hoback, 2007). Tree cover is negatively associated with ABB abundance at greater than 

10% tree cover (Figure 2.7b), with the greatest impact at lower spatial scales (Figure 

2.6b). This result agrees with previous work in the Loess Canyons which found that ABB 

populations declined at 20-40% tree cover (Walker and Hoback, 2007). Our finding also 

suggests that small amounts of tree cover may be beneficial to the ABB. The American 

burying beetle is a habitat generalist and may be able to use trees as shelter from heat, 

desiccation, or other extreme weather. Some trees may also support ideally-sized prey 

species for the beetle, such as certain birds and rodents. Studies in other regions of the 

beetle’s range have found that oak-hickory forest is an important habitat for the beetle 

(Creighton et al., 1993). However others have shown that the Juniperus forest of the 

Loess Canyons has a different understory than deciduous oak-hickory forest (Walker and 

Hoback, 2007) so its utility to the beetle in this region may be limited. 

Increasing crop cover has an entirely negative impact on ABB abundance (Figure 

2.7c) and is impactful at the highest spatial scales (Figure 2.6c). Litter cover is negatively 

associated with ABB abundance at greater than 8% litter cover (Figure 2.7d) and is 

impactful at the lowest spatial scales (Figure 2.6d). 

The negative impacts of woody encroachment on the ABB in the Loess Canyons 

have been known for over a decade (Walker and Hoback, 2007). This study shows that 

management actions to reverse woody encroachment have had a subsequent positive 
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outcome for the beetle. There are several other studies that have explored habitat 

characteristics correlated to beetle abundance or decline, or have created habitat 

suitability models to inform future land management efforts (Jurzenski et al., 2014; 

Leasure and Hoback, 2017; McPherron et al., 2012). However, ours is the only study we 

know of that investigates the impacts of real-world woody plant management on 

American burying beetle populations. 

Our model shows the sensitivity of American burying beetles to scale-specific 

changes associated with woody plant encroachment and cropland conversion. The split 

between the smallest scales of litter cover may indicate that beetles use litter cover at 

smaller spatial scales than accounted for in the model (Figure 2.6d). For cropland cover, 

the split in the model between the two largest spatial scales could indicate that beetles are 

interacting with that cover type at a larger scale than what was accounted for in the model 

(Figure 2.6c). The sensitivity of the American burying beetle to cropland conversion is 

supported by many other studies of the beetle (Jenkins et al., 2018; Jurzenski et al., 2014; 

Leasure and Hoback, 2017; Schnell et al., 2008). Additionally, the scale of tree cover 

chosen by the model (7.29 ha; Figure 2.6b) is associated with how woody plant 

encroachment fragments intact grassland over time.  

Conservation efforts in the Loess Canyons ecoregion need to prioritize the area 

with the greatest American burying beetle stronghold. The central Loess Canyons holds 

the greatest abundance of ABB (Figure 2.8), and this area overlaps closely with ongoing 

restoration activities in the region (e.g., brush management and prescribed fire). 

However, this stronghold of beetles in the Loess Canyons is vulnerable to woody plant 

encroachment and dependent on the continued actions of land managers through 
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prescribed fire. Conversely, these ABB in the central Loess Canyons are far less 

vulnerable to cropland conversion because of soil types and topography. High litter cover 

is also less of a threat to the American burying beetles in the central Loess Canyons. We 

expect higher litter cover in areas that have not been burned recently, and the central 

Loess Canyons is the most actively burned area in the ecoregion (Figure 2.1). 

Additionally, litter cover appears to be the most heterogeneous cover type on the 

landscape, with patches of high and low cover beside each other across the landscape 

(Figure 2.8d). Grazing practices of individual landowners may impact litter cover in the 

Loess Canyons and make relationships with ABB abundance unclear. Land managers 

should aim to prevent increases in tree, cropland, and litter cover in the beetle’s central 

stronghold in order to avoid major depletion of beetle abundances. Once that stronghold 

is secured, conservation efforts can grow from that foundation to increase beetle 

abundance across the ecoregion and reduce the negative impacts of trees, cropland, and 

litter at critical scales of importance to the beetle. 

It is important for large-scale conservation planning to deal with large-scale 

threats (e.g., woody plant encroachment across the Great Plains). The threat of woody 

encroachment at the biome-scale also creates a threat to the ABB at the ecoregion-scale 

(Walker and Hoback, 2007). This holds true for the beetle’s scale-dependent associations 

to other land cover types. The two land cover types with strong negative impacts to the 

beetle (tree cover and cropland cover) have been identified as the leading threats to 

wildlife conservation in the Great Plains biome (Natural Resources Conservation Service, 

2021). The Loess Canyons Experimental Landscape provides evidence that private lands 

conservation efforts can operate at the necessary scales to achieve the broad conservation 
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outcomes needed to sustain threatened and endangered species facing such threats. More 

strategic implementation of conservation investments can build upon current efforts in 

this experimental landscape. 

2.5 Conclusions 

The ABB in the Loess Canyons strongly prefer areas of perennial forbs and grasses at 

intermediate spatial scales (Figure 2.7a), suggesting that their habitat of choice is 

primarily open grasslands. Since these grasslands require disturbances from a fire regime 

to avoid woody invasions, our results suggest that prescribed fire has an overall positive 

impact on the ABB despite the fear that fire will cause mortality to the beetle. Fire clears 

away the dense, closed-canopy eastern redcedar woodland and restores open grasslands. 

This allows the beetle to move more freely while seeking carrion to feed and reproduce. 

The majority of prescribed burns in the Loess Canyons occur early in the spring, before 

the beetle emerges from hibernation. Additionally, since the beetles are nocturnal they 

spend most of their time during the day underground, the same time when prescribed 

fires are actively burning. Prescribed fire appears to cause little direct mortality to the 

ABB while having positive impacts on beetle habitat. For the Great Plains biome, an area 

undergoing widespread woody encroachment, these results are encouraging. Prescribed 

fire can be a powerful tool for grassland managers grappling with woody encroachment. 

It can also help create habitat for rare, threatened, or endangered species that depend on 

grasslands.  
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CHAPTER 3 

 

RESTORATION OF GRASSLAND RICHNESS FOLLOWING 

COLLAPSE OF JUNIPERUS WOODLAND WITH EXTREME FIRE3 

 

3.1 Introduction 

In the Great Plains, woody plant encroachment is a growing concern. Much of the region 

has been converted from grasslands to woodlands, resulting in a regime shift throughout 

the biome (Briggs et al., 2002; Twidwell et al., 2013a). A regime shift is the rapid change 

of an ecosystem from one state to an alternative state that has its own unique processes 

and feedbacks (Beisner et al., 2003; Scheffer et al., 2001). Additionally, such regime 

shifts in grasslands are often hysteretic (Bielski et al., 2021; Fogarty et al., 2021), 

requiring more effort to return to the original grassland regime than was needed to shift to 

the alternative woodland regime (Carpenter et al., 1999; Scheffer et al., 2001). This is 

because the woodland regime establishes positive feedback loops that enhance its own 

stability and also prevent the conditions needed for a grassland regime (Twidwell et al., 

2013a). In order to return to a grassland regime, restoration practitioners must use 

                                            
3 Ludwig, A. K., V. M. Donovan, C. R. Allen, and D. Twidwell. (2021).Restoration of grassland richness 

following collapse of Juniperus woodland with extreme fire. Prepared manuscript for research journal 

submission. 

 

AKL contributed to conceptualization, data collection and curation, formal analysis, visualization, all 

writing aspects, and project administration. VMD contributed to formal analysis, data curation, 

visualization, and writing selected sections. CRA contributed conceptualization and critical revisions. DT 

contributed to conceptualization, visualization, and critical revisions. 
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alternative pathways to break the positive feedback loops of the woodland regime or else 

risk the consequences of woody encroachment (Twidwell et al., 2013a). 

In the Great Plains, the consequences of shifting to a woodland regime can be 

severe. Livestock production can decrease as much as 75% (Fuhlendorf et al., 2008). The 

risk of wildfire increases, destroying homes, increasing the cost of suppression, and 

threatening human lives (Twidwell et al., 2013b). Biodiversity and endangered species 

across the Plains are impacted by woody encroachment, from grassland birds (Chapman 

and Engle, 2004; Fuhlendorf et al., 2002) and small mammals (Reddin, 2016), to the 

federally-listed American burying beetle (Walker and Hoback, 2007) and herbaceous 

plant species (Briggs et al., 2002; Limb et al., 2010). Streamflow can be drastically 

reduced by woody encroachment (Starks and Moriasi, 2017; Zou et al., 2018), which 

decreases the region’s resilience to drought. After a grassland has undergone a regime 

shift to a woodland, restoration can be difficult.  

 The difficulty of restoring the lost biodiversity and communities of Great Plains 

grasslands is complex and in some cases may be impossible. Restoration efforts must 

account for lost keystone species (Kotliar et al., 1999; McMillan et al., 2019), create 

preferred habitat for grassland species (Madden et al., 2000; Walker and Hoback, 2007), 

reduce habitat fragmentation (Adhikari and Hansen, 2018; Fuhlendorf et al., 2002; 

Johnson, 2001), and reestablish the lost patterns and processes that formed the Great 

Plains (Fuhlendorf et al., 2009; Twidwell et al., 2020). Lost biodiversity includes not only 

extirpated and endangered animal species, but also common species that have declined 

and the lost plant assemblages that create the foundation for diverse animal life (Samson 

et al., 2004; Van Auken, 2009). Woody encroachment is a direct threat to grassland plant 
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assemblages and therefore a threat to the species, patterns, and processes of grasslands 

(Twidwell et al., 2013b; Van Auken, 2009). Two approaches have emerged that have 

successfully restored grasslands that were lost to woody encroachment at large scales: (1) 

prescribed burn associations (PBAs), and (2) extreme fire. 

In response to the threat of woody encroachment across the Great Plains, 

prescribed fire has gained widespread traction among landowners as a cost-effective, 

useful tool in grassland restoration (Bielski et al., 2021; Twidwell et al., 2013b). 

Landowner-driven PBAs are well-suited to restoration in the Great Plains, a region that is 

mostly privately-owned with complex patterns of ownership across the landscape 

(Augustine et al., 2019). Though relatively small on their own, cumulative restoration 

actions at the scale of the individual landowner have an upward cascading effect across 

the landscape (Allen et al., 2014) and become more efficient as more landowners 

participate in PBA activities (Twidwell et al., 2013b). Thus, PBAs in the Great Plains are 

an effective mechanism to respond to hysteretic regime shifts and restore grasslands 

(Bielski et al., 2021). It was previously hypothesized that encroachment of juniper 

woodlands was irreversible with prescribed fire alone, but this was demonstrated to be a 

social artifact stemming from a narrow range of accepted burn conditions and fire 

intensities (Twidwell et al., 2020). Studies have shown that conducting burns above 

juniper mortality thresholds can successfully collapse alternative juniper woodland states 

and restore grassland processes (Twidwell et al., 2016a, 2013a, 2009). Such high 

intensity fires are described as “extreme” in the sense that the fire behaves erratically, 

undergoes sudden and rapid changes, and fundamentally alters the structure and 

functioning of an ecosystem (Twidwell et al., 2016a). However, following such 
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prescribed burns it is unclear whether grassland plant biodiversity and herbaceous 

communities are restored to grassland systems that had been converted to juniper 

woodland. 

While studies have shown restoration is possible using fire in juniper woodland 

and that grassland biomass recovers following burning with extreme fire (Bielski et al., 

2021), studies have not been conducted to assess whether biodiversity patterns following 

fire mimic grassland reference sites. In addition, landscape studies are extraordinarily 

rare in grassland fire ecology, yet are critical to better understanding the complexity in 

post-fire community responses (Fuhlendorf et al., 2009; Smit et al., 2016). Using a long-

term, ecoregion-scale experiment (17 years of treatments on 220,000 acres in the Loess 

Canyons Experimental Landscape; Bielski et al. 2021), we utilize a space-for-time 

substitution design to (1) quantify how herbaceous community characteristics and 

herbaceous species richness respond to extreme fire-based restoration treatments in J. 

virginiana woodlands and compare those to reference grassland states, (2) determine how 

herbaceous community characteristics and species richness change with time-since-fire 

(tsf) treatments compared to unburned reference sites.  

3.2 Methods 

3.2.1 Study Site: Loess Canyons Experimental Landscape 

The Loess Canyons Experimental Landscape (LCEL) covers 72,843 ha in central 

Nebraska and is the result of partnerships we initiated between private land managers of 

the Loess Canyons Range Alliance (LCRA), other local PBAs, and state agencies 

(Bielski et al., 2021). These groups have partnered to restore fire to the Great Plains and 

co-produce science studying prescribed fire across its extreme range of variability. The 



48 
 

LCRA has conducted prescribed burns in the region almost annually since 2002, allowing 

this study to cover a spread of 17 years of fire (Figure 3.1). Annual prescribed burns 

typically are held in the spring season from February to April. Fuels density is 

manipulated using the cut-and-stuff technique within eastern redcedar forests (Fogarty et 

al., 2021). Specific weather conditions are chosen to magnify the fire intensity and ensure 

forest collapse (Twidwell et al., 2013a). 

The region consists of steep, hilly terrain and sandy loess soil that is easily eroded 

into sloping canyons. Elevations range from 781 to 989 m above sea level. The region 

receives an average 550 mm of precipitation annually and the mean annual temperature is  

Figure 3.1 Locations of burn units in the Loess Canyons Experimental Landscape. Dark 

polygons are burn units in which burned grassland and fire-collapsed juniper woodland 

were sampled. Green and black striped polygons were paired reference sites where 

unburned grassland and intact juniper woodland were sampled. White and black striped 

polygons were other burn units in the region that were not sampled. 
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9.8 ºC (Arguez et al., 2012). It supports mixed-grass prairie as well as several species of 

significance, such as the federally-listed American burying beetle (Walker and Hoback, 

2007). The region is classified by the state as a biologically-unique landscape (Schneider 

et al., 2011), but in recent years woody encroachment by eastern redcedar has been 

identified as a threat to the region’s ecological significance. Suppression of fire and the 

disruption of the historical fire-return interval has resulted in woody encroachment of 

grassland areas (Fogarty et al., 2020). 

3.2.2 Experimental Design and Sampling 

In the LCEL, we selected 13 burn units across a gradient of 17 years for sampling (Figure 

3.1; Table 3.1) to allow for a space-for-time substitution to assess herbaceous species 

richness and basal cover after extreme fire. Each burn unit was paired with a nearby 

unburned unit to sample as a reference site. Burn units were chosen based on: 1) the 

 

Table 3.1 Summary of burn units sampled for herbaceous plant richness and percent 

cover. All units were sampled in 2019. 

Burn Unit Year Burned tsf (yrs) Area (ha) Area (acres) 

38_E_2002 2002 17 162 400 

40_S_2005 2005 14 28 69 

15_N_2008 2008 11 366 904 

30_D_2009 2009 10 37 91 

14_N_2010 2010 9 505 1248 

17_G_2011 2011 8 313 773 

5_S_2012 2012 7 751 1856 

36_E_2014 2014 5 434 1072 

52_S_2015 2015 4 304 751 

58_S_2016 2016 3 1041 2572 

61_G_2017 2017 2 593 1465 

69_D_2018 2018 1 121 299 

72_K_2019 2019 0.333 308 761      

Total Area Burned: 4963 12261 
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temporal gradient to ensure a comprehensive spread of years, 2) a wide-ranging spatial 

spread across the core of fire activity on the landscape, 3) the size of the burn unit to 

ensure a reasonable number of plots available for sampling, and 4) the availability of a 

nearby unburned unit to pair as a reference site. Within each of the 26 burned and 

unburned units, two plots were selected. In the unburned units, one unburned grassland 

plot and one unburned woodland reference plot were selected (Figure 3.2). In the burned 

units, one burned grassland plot and one grassland restoration plot were selected. 

Grassland restoration plots consisted of localized extreme fire in closed-canopy cedar 

woodlands which caused the collapse of the cedar woodland and restored it to a grassland 

state, leaving only tree skeletons. A total of 52 plots across 26 units were sampled from 

July to September 2019. To be selected for sampling, the plots had to be at least 

 

Figure 3.2 Examples of plot types sampled. a) Burned grasslands; b) unburned 

grasslands; c) restored grassland from fire-collapsed juniper woodland; and d) unburned 

juniper woodlands. 

a) b

c) d
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Figure 3.3 Plot sampling layout. The starting point was randomly chosen along a 5 m 

transect that was laid parallel to the slope, then the main transect laid out perpendicularly 

from the starting point for 30 m. A 1-m2 quadrat was placed at six random locations 

along the transect. Within the quadrat, all herbaceous plants were identified to species. 

Percent basal cover of each species in the quadrat was estimated. 

 

40 m x 15 m to allow for a minimum 5-meter buffer on all sides of the plot and reduce 

edge effects. On each plot, a starting point was randomly chosen along a 5 m tape laid 

parallel to the slope (Figure 3.3). At that point, a 30 m transect was run perpendicularly 

from the slope across the length of the plot. If the plot was on a hillside, the transect 

followed the contour of the hill to avoid cresting the top or descending to the bottom so 

as to reduce variability in sampling, since vegetative communities can vary greatly 

between the drier crests and wetter troughs of hills. All random numbers were 

predetermined through a random number generator at [https://www.random.org/] and 

recorded before beginning field work to avoid sampling biases in the field. 
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After the 30 m transect was laid out, 6 points were randomly chosen along the 

entire length of the transect (Figure 3.3). A 1-m2 sampling quadrat was placed at each 

randomly chosen point. The quadrat was placed on either the right or left side of the 

transect at random. Within each quadrat, all herbaceous plant species were identified to 

the species level, with a few exceptions that were only identifiable to genus and treated 

consistently as recorded unknowns. The percent basal cover of all herbaceous plants in 

the quadrat was visually estimated. Herbaceous vegetation must be alive and rooted more 

than 50% inside the quadrat to be identified and estimated. A complete list of plant 

species encountered in the field can be found in Appendix A. 

3.2.3 Analysis 

To examine changes in the herbaceous plant community across time and between site 

types, we used a non-metric multidimensional scaling (NMDS) analysis in the ‘vegan’ 

package in R (Oksanen et al., 2020). We averaged percent cover for each plant species 

across the transect sampled at each site. We then generated a pair-wise distance matrix 

using the Canberra distance metric. We used the Canberra distance metric reduced over 4 

dimensions in our NMDS because this offered the most acceptable stress levels (Kruskal, 

1964).  Environmental vectors were calculated using the function ‘envfit’ for time since 

fire and plant functional groups (annual/perennial, native/nonnative, warm/cool season, 

and forb/grass/sedge/subshrub). 

We used PERMANOVA to test for differences in herbaceous plant community 

composition among the four plot types: unburned grasslands, unburned woodlands, 

burned grasslands, and grassland restoration sites. We confirmed homogeneity of 

dispersion among groups by calculating multivariate dispersions within each group using 
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the function ‘betadisper’ and then testing for differences using ANOVA. We then used 

the function ‘adonis’ to identify differences in community composition among groups.   

Total species richness and mean percent basal cover of herbaceous species was 

calculated across the four plot types. We used non-parametric local regression (loess) 

smoothing curves to visualize trends in total species richness and mean basal percent 

cover to compare trends in each of the four plot types relative to time-since-fire.  Loess 

smoothing curves were applied to illustrate trends using the ‘ggplot2’ package in R 

(Wickham, 2016). All analyses and figures utilized the R statistical software (R Core 

Team, 2021).  

3.3 Results 

3.3.1 Herbaceous response to restoration 

Differences in community composition among grassland restoration sites, unburned 

woodlands, burned grasslands, and unburned grasslands were largely distinguished along 

NMDS axis 1 in our analysis (Figure 3.4). Following axis 1 from left to right there is a 

woodland-to-grassland gradient, with unburned woodland at the far left, followed by 

restored grassland (which was woodland collapsed by extreme fire and restored to a 

grassland state), then unburned grassland, and finally burned grassland at the far right. 

There was a high level of similarity in herbaceous community composition between 

burned grasslands and unburned grasslands across sample sites (Figure 3.4; p-value = 

0.16; Table 3.2). In contrast, grassland restoration sites within juniper woodlands differed 

significantly from unburned juniper woodlands (p-value < 0.01; Table 3.2). Grassland 

restoration sites in juniper woodlands had a community composition that was split 

between burned and unburned grasslands and unburned woodlands (Figure 3.4).  
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Figure 3.4 Plant community composition of four plot types as shown by non-metric 

multidimensional scaling (NMDS). Plot shows major axes of the NMDS with continuous 

vectors showing relationships of plant community functional groups. 

 

Herbaceous community composition within grassland restoration sites was significantly 

different to burned grasslands (p-value = 0.02; Table 3.2) and unburned grasslands (p-

value < 0.01; Table 3.2). Unburned woodlands had largely different community 

compositions compared to restored grasslands (p-value < 0.01), burned grasslands (p-

value < 0.01), and unburned grasslands (p-value < 0.01; Table 3.2).  

Species compositions in grassland restoration sites appeared to be a combination 

of species found in woodland and grassland sites (Figure 3.4). Common dandelion 

(Taraxacum officinale) and West Indian nightshade (Solanum ptycanthum) were strongly 

associated with unburned woodlands. Scaly blazing star (Liatris squarrosa), prairie  
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Table 3.2 Differences in herbaceous species compositions among restored grasslands 

(RG), unburned woodlands (UW), burned grasslands (BG), and unburned grasslands 

(UG) indicated by PERMANOVA. 

 

sandreed (Calamovilfa longifolia), and lacy tansyaster (Machaeranthera pinnatifida) 

were more common in burned grasslands and unburned grasslands. The occurrence of 

forbs, grasses, perennial, native, and warm season species was strongly associated with 

grassland restoration sites, burned grasslands, and unburned grasslands (Figure 3.4).  

Mean herbaceous species richness was over two times greater in grassland 

restoration sites (17.2 ± 5.4 SD) compared to unburned woodlands (8.2 ± 3.6 SD) (Figure 

3.5). Mean species richness was similar between burned grasslands (19.2 ± 4.6 SD), 

unburned grasslands(18.1 ± 4.4 SD), and grassland restoration sites (17.2 ± 5.4 SD). 

Burned grasslands, unburned grasslands, and grassland restoration sites all had a 

maximum species richness of 26 across sites, while unburned woodlands had a maximum 

species richness of 14 across sites (Figure 3.5). Burned grasslands and unburned 

grasslands had a minimum species richness of 9 across sites, while grassland restoration 

sites had a minimum species richness of 6 and unburned woodlands had a minimum 

species richness of 3 (Figure 3.5). 

 

 Df Sum of 

Sqs 

R2 F Pr(>F) 

RG x UW 1 1.09 0.11 2.96 <0.01 

0.16 

0.02 

<0.01 

<0.01 

<0.01 
 

BG x UG 1 0.43 0.05 1.16 

RG x BG 1 0.50 0.05 1.34 

UW x UG 1 1.41 0.14 3.87 

RG x UG 1 0.61 0.06 1.65 

UW x BG 1 1.36 0.13 3.71 
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Figure 3.5 The change in total species richness and total herbaceous cover relative to 

time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 

 

Grassland restoration sites had higher native species richness compared to 

unburned woodlands (Figure 3.6). Native species richness in grassland restoration sites 

was similar to burned grasslands and unburned grasslands. Grassland restoration sites had 

similar nonnative species richness to unburned woodlands, burned grassland sites, and 
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Figure 3.6 The change in native and nonnative species richness at sampled sites relative 

to time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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Figure 3.7 The change in Native and Nonnative herbaceous basal percent cover at sampled 

sites relative to time since fire. Green indicates grassland restoration sites, red indicates 

burned grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 95% 

confidence intervals. 
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unburned grasslands. Grassland restoration sites had higher native percent cover 

compared to unburned woodlands (Figure 3.7). Burned grasslands in general had higher 

or similar native percent cover to unburned grasslands. 

Mean herbaceous cover in grassland restoration sites was 12 times greater than 

unburned woodlands (Figure 3.5; 37.3% ± 16.8 versus 3.1% ± 2.5 SD, respectively). 

Mean herbaceous cover was similar between grassland restoration sites (37.3% ± 16.8 

SD), unburned grasslands (40.8% ± 7.0 SD), and burned grasslands (42.7% ± 12.4 SD). 

Maximum herbaceous cover in grassland restoration sites was 10 times great than 

unburned woodlands (77.5% versus 7.2%, respectively). Maximum herbaceous cover 

was similar between grassland restoration sites (77.5%) and burned grasslands (76%). 

Maximum cover at unburned grasslands (49%) was about two-thirds as much as at 

grassland restoration sites. Minimum herbaceous cover in restored grasslands was 17 

times greater than unburned woodlands (10.25% versus 0.6%, respectively). Minimum 

herbaceous cover in burned grasslands (22.9%) and unburned grasslands (27.9%) was 

two and three times as much as in restored grasslands (10.25%), respectively. 

3.3.2 Herbaceous response to time since fire 

Patterns in NDMS axis 2 were strongly associated with patterns in time since fire (Figure 

3.8). Species near the upper-mid quadrant of ordination were most associated with earlier 

tsf communities, whereas species near lower-mid quadrant were more associated with 

greater time since fire (Figure 3.8). Sedges, cool season grasses, perennials, and native 

species were more common with greater time since fire, while annuals and non-native 

species were more strongly associated with lower time since fire. In the second NMDS 
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Figure 3.8 Plant community composition of four plot types as shown by non-metric 

multidimensional scaling (NMDS) with time since fire (tsf) indicated for all burned plots. 

Plot shows major axes of the NMDS with continuous vectors showing relationships of 

plant community functional groups. 
 

plot, grassland restoration sites and burned grasslands tended to separate along a time 

since fire gradient (Figure 3.8). Younger burned areas grouped near the top of the plot, 

while older burned areas grouped towards the bottom. However, the oldest burned areas 

(tsf = 17) were near the middle of the NMDS plot, not going strongly in either direction 

of the tsf gradient (NMDS axis 2). 

Grassland restoration sites and burned grasslands had similar patterns in species 

richness response to time since fire, except at the end of our time since fire gradient (~14 

years since burning) where burned grasslands increased in species richness while restored 

grasslands decreased (Figure 3.5). Grassland restoration sites and burned grasslands had 
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higher species richness than unburned woodlands only four months following fire. Mean 

species richness was highest in restored grasslands 2 years after fire (11.8 ± 2.5 SD) 

(Figure 3.5). In burned grasslands, mean species richness was also highest 2 years after 

fire (12.7 ± 1.4 SD). Grassland restoration sites and burned grasslands reached lowest 

mean species richness 9 years after fire (2.5 ± 1.0 SD; 4.2 ± 1.5 SD, respectively).  

Native species richness showed a slight increase through time in grassland 

restoration sites, while nonnative species richness showed a slight decrease (Figure 3.6). 

The opposite was true for unburned woodlands. Grassland restoration sites had higher 

native species richness than unburned woodlands across the entire tsf gradient, except at 

0.3 years tsf. Grassland restoration sites had a higher nonnative species richness than 

unburned woodlands except after 10 years tsf, where restored grasslands had lower 

nonnative species richness. Burned grasslands and unburned grasslands shared similar 

trends for both native and nonnative species richness, except at 17 years tsf, where 

burned grasslands had an increase in nonnative species while unburned grasslands had a 

decrease. Native percent cover showed a bimodal distribution in grassland restoration 

sites, increasing and then decreasing at two inflection points at 5 years tsf and 14 years tsf 

(Figure 3.7). Burned grasslands showed a similar, but dampened trend. Nonnative percent 

cover was less variable across most of the tsf gradient, especially for unburned 

woodlands. However, grassland restoration sites, burned grasslands, and unburned 

grasslands all showed a spike in nonnative percent cover from 5-7 years tsf. 

Like species richness, mean herbaceous cover was similar between grassland 

restoration sites and burned grasslands. Mean herbaceous cover in grassland restoration 

sites and burned grasslands was highest 9 years after fire (51.5% ± 21.3 SD; 76% ± 12.3  
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Figure 3.9 The change in annual and perennial species richness at sampled sites relative 

to time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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SD, respectively; Figure 3.5). However, patterns differed between burned 

grasslands and grassland restoration sites near the end of our time since fire gradient, 

with much more drastic declines in herbaceous cover in grassland restoration sites 17 

years post fire. The lowest mean cover in grassland restoration sites was 17 years after 

fire (10.3% ± 4.6 SD). Lowest mean cover in burned grasslands was 1 year after fire 

(22.9% ± 7.6 SD). 

Grassland restoration sites had higher annual and perennial species richness 

compared to unburned woodlands (Figure 3.9). Annual species richness declines through 

time in grassland restoration sites, while perennial species richness increases (Figure 3.9). 

Immediately after fire (tsf < 1 year), perennial species richness was lower in grassland 

restoration sites compared to unburned woodlands but increased above unburned 

woodland levels after tsf = 1 year. 

3.3.3 Herbaceous functional group responses to restoration 

Grassland restoration sites had higher annual and perennial percent cover compared to 

unburned woodlands (Figure 3.10). Annual and perennial percent cover in grassland 

restoration sites was more variable, but similar to burned grasslands and unburned 

grasslands.  Annual percent cover largely declines through time in grassland restoration 

sites, while perennial percent cover increases through time before decreasing after 10 

years tsf (Figure 3.10). Annual percent cover for unburned woodlands, burned grasslands, 

and unburned grasslands remains fairly static through time. Perennial percent cover in 

burned grasslands increases through time before decreasing after 10 years tsf. 

Grassland restoration sites had higher warm and cool season species richness 

compared to unburned woodlands (Figure 3.11). The warm and cool season species  
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Figure 3.10 The change in annual and perennial herbaceous basal percent cover at 

sampled sites relative to time since fire. Green indicates grassland restoration sites, red 

indicates burned grasslands, blue indicates unburned grasslands, and purple indicates 

unburned woodlands. Trend visualized using loess smoothing method. Shaded areas 

represented 95% confidence intervals. 
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Figure 3.11 The change in warm season and cool season species richness at sampled 

sites relative to time since fire. Green indicates grassland restoration sites, red indicates 

burned grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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richness in grassland restoration sites was relatively similar to burned grasslands and 

unburned grasslands. Warm season species richness showed a slight decrease through 

time in grassland restoration sites, while cool season species richness showed a slight 

increase (Figure 3.11). Burned grasslands and unburned grasslands largely shared trends 

for both warm and cool season species richness across tsf. 

Grassland restoration sites had higher warm and cool season percent cover 

compared to unburned woodlands (Figure 3.12). The warm and cool season percent cover 

in grassland restoration sites was similar to burned grasslands and unburned grasslands. 

Warm season percent cover in grassland restoration sites was mostly the same through 

time, with a sudden drop in percent cover at 17 years tsf (Figure 3.12). Cool season 

percent cover in grassland restoration sites was higher than in unburned woodlands, 

except at 0.3 years tsf. Burned grasslands and unburned grasslands shared similar trends 

for both warm and cool season percent cover across tsf. 

Grassland restoration sites had higher grass and forb species richness compared to 

unburned woodlands (Figure 3.13). The grass and forb species richness in grassland 

restoration sites was relatively similar to burned grasslands and unburned grasslands. 

Grass species richness showed a slight decrease through time restored grassland, while 

forb species richness trends remained fairly similar across tsf in grassland restoration 

sites (Figure 3.13). Burned grasslands and unburned grasslands closely shared trends for 

grass species richness across tsf, although forb species richness was more variable in 

burned grasslands across tsf. 

Grassland restoration sites had higher grass and forb percent cover compared to 

unburned woodlands (Figure 3.14). The grass and forb percent cover in grassland  
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Figure 3.12 The change in warm season and cool season herbaceous basal percent cover 

at sampled sites relative to time since fire. Green indicates grassland restoration sites, red 

indicates burned grasslands, blue indicates unburned grasslands, and purple indicates 

unburned woodlands. Trend visualized using loess smoothing method. Shaded areas 

represented 95% confidence intervals. 
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restoration sites was relatively similar to burned grasslands and unburned grasslands. 

Forb percent cover in grassland restoration sites spikes at 2 years tsf, then decreases over 

time (Figure 3.14). Grass cover decreases over time in grassland restoration sites. Burned 

grasslands and unburned grasslands had similar trends for grass and forb percent cover 

across tsf. 

All site types had similar levels of subshrub and sedge species richness (Figure 

3.15). Subshrub and sedge species richness was mostly static across tsf for all site types 

(Figure 3.15). Grassland restoration sites had a small increase in subshrub species 

richness across tsf. 

All site types had similar levels of subshrub percent cover (Figure 3.16). Sedge 

percent cover was similar in grassland restoration sites and burned grasslands, and both 

were higher than the sedge percent cover in unburned woodlands and unburned 

grasslands. Subshrub percent cover was mostly static across tsf for all site types (Figure 

3.16). Sedge cover in burned grasslands was similar to unburned grasslands in early tsf, 

but spiked at 9 years tsf. Grassland restoration sites had a similar but smaller increase in 

sedge percent cover at 9 years tsf. 
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Figure 3.13 The change in forb and grass species richness at sampled sites relative to 

time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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Figure 3.14 The change in grass and forb basal percent cover at sampled sites relative to 

time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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Figure 3.15 The change in subshrub and sedge species richness at sampled sites relative 

to time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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Figure 3.16 The change in subshrub and sedge basal percent cover at sampled sites 

relative to time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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3.4 Discussion 

There are multiple possible trajectories for reorganization in restored juniper woodland 

following reset with fire (Allen et al., 2014; Beisner et al., 2003; Garmestani et al., 2020). 

If the juniper mortality threshold is not overcome by fire, the system could rebound to 

juniper woodland (Twidwell et al., 2013a). If the juniper mortality threshold is overcome 

by fire of sufficient intensity, the system could transition to a grassland regime (Bielski et 

al., 2021). In other cases, neither juniper woodland nor grassland will arise, but rather a 

novel state emerges, e.g., forb dominance. Our findings agree with other studies that 

regime shifts between grasslands and juniper woodlands behave hysteretically and that 

woody encroachment in grasslands is not irreversible (Bielski et al., 2021; Fogarty et al., 

2020; Twidwell et al., 2016a, 2013b). In juniper woodlands that have undergone extreme 

fire-based restoration treatments, we found that herbaceous species richness and percent 

cover returned to levels comparable to that of reference grassland states. In contrast, 

unburned juniper woodlands had low levels of herbaceous species richness and percent 

cover, consistent with other studies (Briggs et al., 2002; Ratajczak et al., 2012; Van 

Auken, 2009). There are relatively few studies that show herbaceous richness can be 

restored using only extreme fire treatments, highlighting the importance of this work. 

 When using prescribed fire in non-resprouting juniper woodlands, diversity 

responses are contingent upon exceeding the fire intensity-juniper mortality thresholds 

(Twidwell et al., 2013a). Success or failure is readily apparent shortly after treatment. 

However, mechanical removal of encroaching juniper woodland has a slower response, 

with species richness in restored grasslands reaching levels similar to reference grassland 

communities fire years after treatment (Limb et al., 2014). Although this confirms the 
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richness patterns recorded by our study in restored grasslands for the first five years after 

extreme fire, it cannot be used to compare the restoration outcomes of mechanical 

removal and extreme fire ten or more years after restoration. In restored grasslands, 

studies have found that juniper re-encroachment begins shortly after treatment and can 

return to previous densities 5-11 years after treatment (Fogarty et al., 2021). Thus, more 

long-term studies (≥10 years) comparing treatment types and re-encroachment rates in 

restored grasslands are needed. 

 Modeling based on decades of data in Australian rangelands has shown that 

prescribed fire, along with other management activities such as grazing, can reduce some 

encroaching woody species and successfully restore grasslands (Noble and Walker, 

2006). Conversely, other management activities such as mechanical removal through 

chaining, has failed to restore grasslands and simply replaced one dominant woody 

species (Acacia spp.) with several smaller woody plants (budda, green turkey-bush, and 

ellangowan poison bush) (Noble and Walker, 2006). In African savannas, the fire return 

interval was found to play an important role in the structuring of grasslands, second only 

to mean annual precipitation (Sankaran et al., 2008). Shorter fire return intervals led to a 

decrease in woody cover, suggesting that more frequent fires (fire return interval <10 

years) are vital to restoring and maintaining grassland structure (Sankaran et al., 2008). 

 While our study demonstrated the relatively rapid restoration response in 

grasslands following localized extreme fire treatments, restoration success could be short-

lived (Fogarty et al., 2021). The emergence of hysteretic system behavior following the 

transition from a grassland to a juniper woodland could establish positive feedback loops 

that strengthen the alternative vegetation state and make the transition difficult to reverse 
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(Bielski et al., 2021). Single restoration treatments are less likely to persist past a 10-year 

threshold as re-encroachment from external and internal seed sources begins shortly after 

restoration (Bielski et al., 2021; Fogarty et al., 2021; Noble and Walker, 2006; Sankaran 

et al., 2008). In the future, grassland restoration activities should explore variability in 

treatment types, intensities, and timing of application, as well as envisage mixed 

treatments (e.g., pyric herbivory, herbicide/prescribed fire) over decades versus one-time 

treatments of a single type. 
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CHAPTER 4 

 

SOIL COMPACTION AND INFILTRATION RATES FOR 

ALTERNATIVE GRASSLAND-JUNIPER WOODLAND STATES4 

 

4.1 Introduction 

In rangeland and fire ecology, a space-for-time substitution provides the opportunity for 

time-since-fire (tsf) studies. A space-for-time substitution allows for present spatial 

observations of phenomena that occurred in the past across a temporal spectrum (Blois et 

al., 2013). In our case, a space-for-time substitution can be used to study extreme fire 

events that occurred across a span of 17 years and relate observed rangeland 

characteristics to tsf. The usual focus in the literature is applied treatment vs. control (i.e., 

burned vs. unburned), and not changes in properties across time-since-fire (Limb et al., 

2016). 

 More recent work has been done to study tsf and fire effects in rangelands, 

including fire’s impacts on herbaceous biomass over time (Bielski et al., 2021) and 

woody re-encroachment after fire over time (Fogarty et al., 2021). Other studies have 

explored the relationship of fire effects over time on habitat structure in savannas 

                                            
4 Ludwig, A. K., V. M. Donovan, R. A. Drijber, and D. Twidwell. (2021). Soil compaction and infiltration 

rates for alternative grassland-juniper woodland states. Prepared manuscript for research journal 

submission. 

 

AKL contributed to conceptualization, data collection and curation, formal analysis, visualization, all 

writing aspects, and project administration. VMD contributed to formal analysis, data curation, 

visualization, and writing selected sections. RAD contributed conceptualization and critical revisions. DT 

contributed to conceptualization, visualization, and critical revisions. 
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(Roberts et al., 2020). In addition to broadening temporal scale by applying tsf to their 

research questions, these studies have broadened the spatial scales under scrutiny (e.g., 

ecoregion) rather than focusing on small patch dynamics (Fuhlendorf et al., 2009). 

 The application of extreme fire as a land management technique adds to the 

toolbox for cutting-edge rangeland restoration. Extreme fire is fire applied to the 

landscape under specially-selected conditions that favor higher-intensity fire effects 

(Twidwell et al., 2020). Extreme fires show intense and variable fire behavior and are 

capable of shifting an ecosystem to an alternative state (e.g., collapsing closed-canopy 

woodland and allowing grassland re-emergence) and altering its functions (Twidwell et 

al., 2016a). Although extreme fire aids in management to restore grasslands, it can have 

negative impacts as well. High-intensity fire can heat the soil to high temperatures that 

change soil chemical properties, increase soil hydrophobicity, and reduce water 

infiltration rates (Fuhlendorf et al., 2011). However, the reintroduction to fire to the 

landscape (including extreme fire) can trigger shifts between alternative states, restore 

biodiversity, and increase heterogeneity on the landscape (Fuhlendorf et al., 2011). 

We apply a space-for-time substitution design to the Loess Canyons Experimental 

Landscape (LCEL), a 220,000-acre region with over 15 years of fire treatments (Bielski 

et al., 2021), to create a long-term, ecoregion-scale experiment that will (1) quantify 

differences in soil compaction and infiltration rates between grasslands that have 

undergone collapse and reorganization to an alternative state (i.e., extreme fire treatments 

in woodlands to restore grassland) and grasslands that have undergone the same 

disturbance treatment but have not undergone reorganization (burned grasslands) and 

compare them to a reference unburned grassland state, and (2) determine how soil 
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compaction and infiltration rates change with time-since-fire (tsf) treatments in burned 

grasslands compared to unburned reference sites in grassland and woodland. 

4.2 Methods 

4.2.1 Study Site 

This study takes place in a region of south-central Nebraska called the Loess Canyons 

Experimental Landscape (LCEL) (Figure 4.1). The LCEL is a biologically-unique area in 

the state that consists of steep, easily-eroded loess hills and canyons (McPherron et al., 

2012). It is managed through partnerships between private landowners, state and federal 

agencies, and NGOs, with researchers from the University of Nebraska involved in co-

producing science to help manage the landscape (Bielski et al., 2021). Through the 

formation of the Loess Canyons Rangeland Alliance (LCRA), these groups have worked 

together to return fire to the landscape in order to restore grasslands and manage 

encroaching woody species such as eastern redcedar (Juniperus virginiana). Managers 

manipulate the fuel density prior to burning in order to increase fire intensity and 

subsequently collapse encroaching woodlands (Fogarty et al., 2020; Twidwell et al., 

2013a). Management with extreme fire has been ongoing since 2002, providing this study 

with burn sites across a time gradient of 17 years.  

 The LCEL covers approximately 72,843 ha with elevations ranging between 781 

and 989 m above sea level (Bielski et al., 2021). The region’s mean annual temperature is 

9.8 ºC and mean annual precipitation is 550 mm (Arguez et al., 2012). The soil parent 

material is primarily loess and alluvium, creating silt loams of the Coly, Coly-Hobbs, and 

Uly-Coly soil series (Soil Survey Staff, 2021). The landscape is predominantly composed 

of mixed-grass prairie that supports widespread livestock grazing, with scattered cropland  
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Figure 4.1 Locations of burn units in the Loess Canyons Experimental Landscape. Black 

polygons are burn units in which burned grassland and fire-collapsed juniper woodland 

were sampled. Green polygons were paired reference sites where unburned grassland and 

intact juniper woodland were sampled. White and black striped polygons were other burn 

units in the region that were not sampled. 

 

in more level areas (Walker and Hoback, 2007). Suppression of historic fire regimes has 

allowed for the encroachment of eastern redcedar into much of the grasslands, 

threatening native prairie flora and fauna as well as livestock production (Fogarty et al., 

2020). 

4.2.2 Experimental design and sampling 

Our sampling sites consisted of 13 burned units and 13 unburned reference units (Figure 

4.1). Burned units were selected across the 17 year time gradient (Table 4.1), which 

allowed us to apply a space-for-time substitution to measure soil compaction levels and 
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water infiltration rates after management with fire. Several criteria guided us as we chose 

burn units to sample: 1) the area of the burn unit must be large enough to provide enough 

plots for sampling, 2) the spatial spread across the landscape must be broad enough to 

encapsulate the activities of fire practitioners, 3) the temporal spread across the landscape 

must encompass the 17 year time gradient, and 4) unburned units must be nearby to serve 

as paired controls. Within the 13 burned units and 13 unburned units, two plot types were 

selected. These plot types consisted of a burned grassland and a grassland restoration site 

in the case of the burn units, and an unburned grassland and unburned woodland in the 

case of the unburned units (Figure 4.2). Grassland restoration sites are defined as 

applications of localized extreme fire that collapse closed-canopy cedar woodlands and 

allow the return of a grassland state. In total, 52 plots were sampled across all units from 

July to September 2019. Plots were chosen for sampling if they had a minimum area of 

40 m x 15 m, to allow for a 5 m buffer on all sides of the plot. 

 Starting from a random point, a 30 m transect was run across the plot following 

the contour of the hill, perpendicular to the slope of the hill (Figure 4.2). At 6 regular 

intervals spaced 5 meters apart along the transect, soil compaction was measured at 6 

depths (5 cm, 10 cm, 15 cm, 20 cm, 25 cm, 30 cm) to create a profile of soil compaction 

across the chosen plot. All compaction readings were taken with a DGSI double-rod 

static cone penetrometer with a cone tip angle of 60º and section area of 1.5 cm2. 

Measurements were read directly on the penetrometer using the cone index (Qc) gauge 

that is output in kg/cm2 with a maximum reading of 70 kg/cm2. 
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Table 4.1 Summary of all burn units in the LCEL. Soil compaction and water infiltration 

rate were sampled in selected units.  

Burn Unit Year 

Burned 

tsf (yrs) Area (ha) Area (acres) Sampled 

(y/n) 

38_E_2002 2002 17 162 400.3 X 

9_D_2002 2002 17 171 422.6 
 

25_G_2002 2002 17 33 81.5 
 

2_T_2002 2002 17 172 425.0 
 

40_S_2005 2005 14 28 69.2 X 

32_H_2006 2006 13 190 469.5 
 

8_P_2006 2006 13 477 1178.7 
 

44_G_2007 2007 12 195 481.9 
 

15_N_2008 2008 11 366 904.4 X 

42_P_2008 2008 11 16 39.5 
 

28_S_2008 2008 11 9 22.2 
 

29_B_2008 2008 11 27 66.7 
 

43_L_2009 2009 10 563 1391.2 
 

18_N_2009 2009 10 156 385.5 
 

30_D_2009 2009 10 37 91.4 X 

12_M_2009 2009 10 282 696.8 
 

24_B_2009 2009 10 208 514.0 
 

31_VR_2009 2009 10 62 153.2 
 

Sf_conf_2010 2010 9 37 91.4 
 

14_N_2010 2010 9 505 1247.9 X 

41_S_2010 2010 9 130 321.2 
 

6_S_2010 2010 9 722 1784.1 
 

11_D_2010 2010 9 159 392.9 
 

26_G_2010 2010 9 277 684.5 
 

27_W_2010 2010 9 165 407.7 
 

39_K_2011 2011 8 247 610.4 
 

20_L_2011 2011 8 345 852.5 
 

22_A_2011 2011 8 398 983.5 
 

17_G_2011 2011 8 313 773.4 X 

7_M_2011 2011 8 364 899.5 
 

13_G_2011 2011 8 283 699.3 
 

1_W_2012 2012 7 427 1055.1 
 

19_N_2012 2012 7 62 153.2 
 



82 
 

Burn Unit Year 

Burned 

tsf (yrs) Area (ha) Area (acres) Sampled 

(y/n) 

16_G_2012 2012 7 147 363.2 
 

3_S_2012 2012 7 134 331.1 
 

5_S_2012 2012 7 751 1855.8 X 

4_NN_2012 2012 7 282 696.8 
 

10_D_2012 2012 7 230 568.3 
 

48_NN_2014 2014 5 358 884.6 
 

49_NN_2014 2014 5 291 719.1 
 

66_NN_2014 2014 5 267 659.8 
 

67_NN_2014 2014 5 201 496.7 
 

68_NN_2014 2014 5 281 694.4 
 

Sf_conf_2014 2014 5 19 47.0 
 

Pondo_2014 2014 5 48 118.6 
 

21_T_2014 2014 5 172 425.0 
 

33_P_2014 2014 5 477 1178.7 
 

47_S_2014 2014 5 570 1408.5 
 

34_F_2014 2014 5 164 405.3 
 

35_B_2014 2014 5 91 224.9 
 

45_S_2014 2014 5 136 336.1 
 

36_E_2014 2014 5 434 1072.4 X 

37_C_2014 2014 5 94 232.3 
 

46_CR_2014 2014 5 457 1129.3 
 

23_PE_2014 2014 5 203 501.6 
 

KTKF_2015 2015 4 559 1381.3 
 

Sf_conf_2015 2015 4 258 637.5 
 

36_Ef_conf_2015 2015 4 21 51.9 
 

Bf_conf_2015 2015 4 677 1672.9 
 

50_B_2015 2015 4 108 266.9 
 

51_NN_2015 2015 4 163 402.8 
 

52_S_2015 2015 4 304 751.2 X 

73_G_2015 2015 4 271 669.7 
 

74_G_2015 2015 4 435 1074.9 
 

76_G_2015 2015 4 150 370.7 
 

75_NN_2016 2016 3 127 313.8 
 

Df_conf_2016 2016 3 164 405.3 
 

Ff_conf_2016 2016 3 436 1077.4 
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Burn Unit Year 

Burned 

tsf (yrs) Area (ha) Area (acres) Sampled 

(y/n) 

58_S_2016 2016 3 1041 2572.4 X 

55_R_2016 2016 3 834 2060.9 
 

57_H_2016 2016 3 568 1403.6 
 

53_G_2016 2016 3 343 847.6 
 

59_G_2016 2016 3 457 1129.3 
 

60_W_2016 2016 3 238 588.1 
 

56_B_2016 2016 3 90 222.4 
 

54_V_2016 2016 3 198 489.3 
 

77_G_2016 2016 3 915 2261.0 
 

63_N_2017 2017 2 156 385.5 
 

61_G_2017 2017 2 593 1465.3 X 

64_G_2017 2017 2 398 983.5 
 

62_K_2017 2017 2 85 210.0 
 

65_JS_2017 2017 2 97 239.7 
 

SA_fall_2018 2018 1 347 857.5 
 

78_NN_2018 2018 1 555 1371.4 
 

69_D_2018 2018 1 121 299.0 X 

70_S_2018 2018 1 1032 2550.1 
 

72_H_2018 2018 1 876 2164.6 
 

71_JN_2018 2018 1 179 442.3 
 

MME_spring_2019 2019 0.333 677 1672.9 
 

72_K_2019 2019 0.333 308 761.1 X 
      

Total Area Burned: 
  

27176 ha 67153 acres 
 

 

To measure water infiltration rate, a minimum of two locations on the plot were 

randomly chosen. Locations had to be within 5 m of the transect and on a reasonably 

level patch of ground. One location was placed along the first half of the transect and the 

other placed along the second half. At each location, excess vegetation that could hamper 

measurements was clipped without disturbing the soil surface. An infiltration ring 6  
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Figure 4.2 Plot sampling layout. The starting point was randomly chosen along a 5m 

transect, then the main transect laid out perpendicularly from the starting point for 30m. 

Soil compaction measurements were taken at six regularly-spaced intervals along the 

transect (black points) and at six depths at each sampling point. Sampling points for 

water infiltration (blue circles) were taken at a minimum of two random locations that 

were within 5m of the transect. Examples of plot types sampled: a) restored grassland 

from fire-collapsed juniper woodland; b) burned grassland; c) unburned juniper 

woodland; and d) unburned grassland. 

 

inches in diameter was driven 5 cm into the soil. A measuring cup was filled with 444 

mL of water and gently poured into the ring to avoid splashing or disturbing the soil 

surface. Immediately following this, a timer was started to record the time it took for the 

water to completely soak into the soil. Depth measurements were also recorded every few 

minutes throughout the trial. If the water took greater than 20 mins to absorb into the soil, 

a final depth measurement was taken and the final infiltration rate calculated based on 

that. If the water took fewer than 15 mins to absorb into the soil, additional trials were 

run until the 20 minute benchmark was reached. This methodology was chosen due to 
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limitations on time spent in the field and the amount of water able to be carried to remote 

sampling locations. 

4.2.3 Analysis 

To explore changes in soil compaction across time and between site types, we calculated 

the average soil compaction for each site at all six depths and plotted them across the 

time-since-fire gradient. Non-parametric local regression (loess) smoothing curves were 

applied to the plots to aid in visualizing trends in soil compaction using the ‘ggplot2’ 

package in R (Wickham, 2016). To further examine relationships in compaction between 

sites, we selected four comparisons to undergo a two-sided student’s t-test for significant 

differences. The comparisons were made using mean compaction values of all selected 

site types, and at each of the six depths. The selected comparisons were: Restored 

Grassland x Burned Grassland; Restored Grassland x Unburned Woodland; Burned 

Grassland x Unburned Grassland; and Unburned Grassland x Unburned Woodland. We 

first compared the variances of the selected sites using the function ‘var.test’ in R (R 

Core Team, 2021). After determining if the variances were or were not significantly 

different, we then entered that result into the formula for the t-test, calculated using the 

‘t.test’ function in R. If the variances are not equal, then R uses Welch’s t-test. Otherwise 

it uses a pooled variance between the sites selected for comparison. To further illustrate 

the differences in mean soil compaction between site types, we created box-and-whisker 

plots of compaction readings at the four site types and at all depths. 

 To investigate differences in water infiltration rates across site types and time-

since-fire, we calculated each site’s mean infiltration rate across all sampling locations 

and trials within the respective site. Some infiltration rates were removed from the dataset 
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due to abnormal infiltration rate measurements that did not follow the standard sampling 

protocol. Calculating mean infiltration rates reduces the effects of any sampling errors 

made while taking readings in the field. We also calculated the final trial’s infiltration 

rate at each of the sampling locations within a site. Using only the final reading after 

multiple trials ensures similar levels of soil moisture have been reached at each site, since 

differences in soil moisture can affect infiltration rates and soil moisture will be 

inherently different at sites sampled at differing spatial and temporal locations. Final and 

mean infiltration rates were plotted across the time-since-fire gradient to show trends 

over time. Loess smoothing curves were applied using the ‘ggplot2’ package in R 

(Wickham, 2016) to show trends in water infiltration rates at all sites across time. We 

then further explored relationships in infiltration rates between sites by selecting four 

comparisons to undergo t-tests, following the same protocol as outlined in the previous 

paragraph. Comparison types were the same as those chosen for soil compaction. Tests of 

variance and t-tests were run using mean infiltration rates and final infiltration rates. 

Methodology followed that of the soil compaction t-tests using R (R Core Team, 2021). 

Box-and-whisker plots were made for both mean and final infiltration rates. 

4.3 Results 

4.3.1 Soil characteristics in alternative grassland states 

Mean soil compaction levels were similar in burned grasslands, grasslands restored from 

eastern redcedar woodland, and unburned reference grasslands at all depths sampled 

(Figure 4.3). The greatest variation in mean compaction was in unburned grassland 

reference sites at a depth of 5 cm with values ranging from 8 kg/cm2 to 44 kg/cm2. The 

second largest variation was in burned grasslands at a depth of 30 cm with values ranging 
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Figure 4.3 The change in mean soil compaction at paired sampled sites relative to time 

since fire, ranging from a depth of 5 cm to 30 cm. Green indicates grassland restoration 

sites, red indicates burned grasslands, blue indicates unburned grasslands, and purple 

indicates unburned woodlands. Trend visualized using loess smoothing method. Shaded 

areas represented 95% confidence intervals. 

 

from 1.7 kg/cm2 to 28 kg/cm 2. Grasslands restored through extreme fire in juniper 

woodland showed the least variation in mean soil compaction levels amongst site types 

with values ranging from 2 kg/cm2 to 20 kg/cm2 at a depth of 30 cm. In unburned 

grassland reference sites across all depths, the minimum and maximum mean compaction  
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Figure 4.4 Mean soil compaction boxplots for all depths at the four site types. Median 

compaction values are shown as the solid black line with the box, first and third quartiles 

are shown as the top and bottom of the box, minimum and maximum compaction values 

are shown as the whiskers from the box, and outlying data points are shown as black dots. 

 

readings were 2.83 kg/cm2 and 43.6 kg/cm2, respectively. In burned grasslands across all 

depths, the minimum and maximum mean compaction readings were 1.7 kg/cm2 and 28.3 

kg/cm2, respectively. In restored grasslands across all depths, the minimum and 

maximum mean compaction readings were 2.1 kg/cm2 and 19.9 kg/cm2, respectively. 

Restored grasslands had the lowest mean compaction readings across all depths 

compared to other grassland states (Figure 4.4). Burned grasslands consistently had lower 

mean compaction readings than unburned grasslands at all depths except at 25 and 30 cm, 

where mean compaction in burned grasslands was equal to or higher than compaction in 

unburned grasslands. 

Mean and final infiltration rates were similar in burned grasslands, grasslands 

restored from woodland, and unburned grasslands (Figure 4.5). Unburned grasslands had  
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Figure 4.5 The change in final and mean water infiltration rates at paired sampled sites 

relative to time since fire. Green indicates grassland restoration sites, red indicates burned 

grasslands, blue indicates unburned grasslands, and purple indicates unburned 

woodlands. Trend visualized using loess smoothing method. Shaded areas represented 

95% confidence intervals. 
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Figure 4.6 Mean infiltration rates for all four site types shown as boxplots. Median 

infiltration rates are shown as the solid black line with the box, first and third quartiles 

are shown as the top and bottom of the box, minimum and maximum infiltration rates are 

shown as the whiskers from the box, and outlying data points are shown as black dots. 

 

the greatest difference in minimum and maximum final infiltration rates, ranging from 

0.20 mm/min to 7.04 mm/min. Grasslands restored through extreme fire had the second 

most difference between minimum and maximum final infiltration rates, ranging from 

0.20 mm/min to 3.53 mm/min. Burned grasslands had the least difference between 

minimum and maximum final infiltration rates, ranging from 0.10 mm/min to 1.48 

mm/min. Mean infiltration rates showed even less variation (Figure 4.5). Mean 

infiltration rates in unburned grassland reference sites had a minimum and maximum of 

0.50 mm/min to 3.83 mm/min. Mean infiltration rates in grasslands restored through 

extreme fire had a minimum and maximum of 0.20 mm/min to 2.08 mm/min. Mean 

infiltration rates in burned grasslands had the least variation with a minimum and 
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maximum of 0.42 mm/min to 1.03 mm/min. Burned grasslands had the lowest mean 

infiltration rates compared to other grassland states, followed by unburned grasslands and 

finally restored grasslands (Figure 4.6). 

4.3.2 Changes in soil characteristics over increasing time-since-fire 

Grasslands restored through extreme fire and burned grasslands had similar mean soil 

compaction to one another throughout the 17 years of post-fire treatment and at all depths 

(Figure 4.3). The largest difference between the two was from 1 to 4 years post-fire at at 

depth of 30 cm, where burned grasslands had as much as twice the compaction levels of 

restored grasslands. Unburned grasslands usually had higher compaction levels than both 

restored grassland and burned grasslands along the time-since-fire (tsf) gradient starting 

from 6 years tsf to 17 years. From 0.3 tsf to 5 tsf, burned grassland and unburned 

grassland sites had similar or higher compaction levels. Restored grasslands consistently 

had some of the lowest compaction levels across the tsf gradient. 

Final and mean infiltration rates were similar in alternative grassland states across 

most of the 17-year tsf gradient (Figure 4.5). Restored grasslands varied the most across 

tsf, and generally had higher infiltration rates than burned grasslands. It had similar 

infiltration rates to unburned grasslands, with the greatest difference in mean and final 

infiltration rates in restored grasslands coming at the end of the 17-year tsf gradient. 

Burned grasslands generally had the lowest mean and final infiltration rates across tsf. 

Restored grassland and burned grassland infiltration rates differed the most from 0.3 to 4 

years post-fire. 

We used two-sided Student’s t-tests to test for significant differences between site 

types. For mean soil compaction, there was a significant difference between grasslands 
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restored by extreme fire and unburned woodland at all six depths (Table 4.2a-f). P-values 

ranged from as high as 0.05 at 5 cm to as low as 0.0001 at 20 cm, indicating that mean 

soil compaction in restored grasslands is significantly different from that in unburned 

woodlands. We also found a significant difference between restored grasslands and 

burned grasslands at 5 cm (p-value = 0.02). The only other significant difference in mean 

soil compaction was between unburned woodlands and unburned grasslands at 30 cm (p-

value = 0.04). All other comparisons of mean soil compaction between the chosen site 

types were not significant. 

Table 4.2a Differences in soil compaction at a depth of 5 cm among restored grassland 

(RG), unburned woodland (UW), burned grassland (BG), and unburned grassland (UG) 

indicated by two-sided student’s t-test. 

 Df 95% CI t p-value 

RG x UW 14.5 [-11.74, 0.01] -2.13 0.05* 

BG x UG 15.7 [-14.22, 0.57] -1.96 0.07 

RG x BG 24 [-6.99, -0.60] -2.45 0.02* 

UW x UG 24 [-3.84, 13.34] 1.15 0.26 

     

 

Table 4.2b Differences in soil compaction at a depth of 10 cm. 

 Df 95% CI t p-value 

RG x UW 15.2 [-12.22, -2.51] -3.23 0.006** 

BG x UG 24 [-10.71, 0.12] -2.02 0.06 

RG x BG 18.1 [-5.91, 1.23] -1.38 0.19 

UW x UG 24 [-5.99, 6.53] 0.09 0.93 

     

 

Table 4.2c Differences in soil compaction at a depth of 15 cm. 

 Df 95% CI t p-value 

RG x UW 24 [-10.64, -3.53] -4.11 0.0004** 

BG x UG 24 [-8.93, 1.42] -1.50 0.15 

RG x BG 24 [-5.66, 1.72] -1.10 0.28 

UW x UG 24 [-6.44, 3.72] -0.55 0.59 
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Table 4.2d Differences in soil compaction at a depth of 20 cm. 

 Df 95% CI t p-value 

RG x UW 24 [-10.59, -3.07] -3.75 0.0001** 

BG x UG 24 [-6.22, 3.05] -0.71 0.49 

RG x BG 24 [-5.66, 1.75] -1.09 0.29 

UW x UG 24 [-7.97, 1.40] -1.45 0.16 

     

 

Table 4.2e Differences in soil compaction at a depth of 25 cm. 

 Df 95% CI t p-value 

RG x UW 24 [-10.81, -2.58] -3.36 0.0026** 

BG x UG 24 [-4.63, 3.61] -0.25 0.80 

RG x BG 24 [-5.92, 0.62] -1.67 0.11 

UW x UG 24 [-8.36, 1.27] -1.52 0.14 

     

 

Table 4.2f Differences in soil compaction at a depth of 30 cm. 

 Df 95% CI t p-value 

RG x UW 24 [-10.38, -1.56] -2.80 0.01** 

BG x UG 24 [-3.10, 6.95] 0.79 0.44 

RG x BG 24 [-8.50, 1.76] -1.35 0.19 

UW x UG 24 [-8.81, -0.24] -2.18 0.04* 

     

 

We also tested for significant differences in mean and final infiltration rates at 

chosen sites (Table 4.3a-b). The only significant differences were found between restored 

grasslands and burned grasslands, for both mean infiltration rate (p-value = 0.04) and 

final infiltration rate (p-value = 0.04). All other comparisons were not significant. 

Table 4.3a Differences in MEAN water infiltration rates among restored grassland (RG), 

unburned woodland (UW), burned grassland (BG), and unburned grassland (UG) 

indicated by two-sided student’s t-test. 

 Df 95% CI t p-value 

RG x UW 22 [-0.70, 0.41] -0.53 0.60 

BG x UG 13.6 [-0.93, 0.16] -1.52 0.15 

RG x BG 12.3 [-0.88, -0.02] -2.26 0.04* 

UW x UG 24 [-0.43, 0.84] 0.67 0.51 

     



94 
 

Table 4.3b Differences in FINAL water infiltration rates among restored grassland (RG), 

unburned woodland (UW), burned grassland (BG), and unburned grassland (UG) 

indicated by two-sided student’s t-test. 

 Df 95% CI t p-value 

RG x UW 44 [-0.92, 0.32] -0.98 0.33 

BG x UG 32 [-0.92, 0.22] -1.24 0.22 

RG x BG 29.4 [-0.85, -0.02] -2.12 0.04* 

UW x UG 50 [-0.33, 1.10] 1.08 0.29 

     

 

4.3.3 Additional results 

Plotting all water infiltration rates across the time-since-fire gradient showed similar 

trends to mean and final infiltration readings (Figure 4.7). Restored grasslands had the 

highest infiltration rates right after fire (<1 year since fire), but after 1 year since fire their 

infiltration rates follow a similar trajectory to unburned grasslands. However, after 14 

years since fire, infiltration rates in restored grasslands increase again and become the 

highest of all site types at 17 years since fire. Burned grasslands have the lowest 

infiltration rates of all site types across the entire tsf gradient. Unburned woodlands vary 

across tsf, with infiltration rates peaking as the highest of all site types from 5 to 14 years 

since fire. 

Comparing final infiltration rates with all infiltration rates shows much less 

variation in final infiltration rates than in all infiltration rates (Figure 4.8). Final 

infiltration readings have far fewer outliers and smaller differences between minimum 

and maximum readings. Final infiltration rates were chosen as the primary metric due to 

this perceived stability. Similarly, breaking out all infiltration rates by time since fire 

highlights the variability seen among all infiltration rates even within the same site type 
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Figure 4.7 All final water infiltration rates relative to time since fire. Red indicates 

burned grasslands, green indicates grassland restoration site, blue indicates unburned 

grasslands, and purple indicates unburned woodlands. Trend visualized using loess 

smoothing method. Shaded areas represented 95% confidence intervals. 

 

 (Figure 4.9). Unburned grasslands show exceptionally more variation among all 

infiltration readings, lending further support to the primary use of final infiltration 

readings to investigate trends and differences. 

 Burned grasslands had far lower final infiltration rates than other site types, with 

the majority of their final infiltration readings falling at or below 1.5 mm/min (Figure 

4.10). Final infiltration rates in unburned grasslands primarily fell at or below 3 mm/min, 



96 
 

Figure 4.8 Box-and-whisker plots showing final infiltration readings versus all 

infiltration readings, by site type. Median infiltration rates, first and third quartiles, 

minimum and maximum infiltration readings are shown. Some sites ran more than two 

tests per testing location, up to a maximum of five tests. 
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Figure 4.9 Boxplots showing all infiltration readings, broken out by site type then by test 

location and plotted across the tsf gradient. Median infiltration rates are shown as the 

solid black line within the box, first and third quartiles are shown as the top and bottom 

of the box, minimum and maximum infiltration readings are shown as the whiskers from 

the box, and outlying data points are shown as black dots. Some sites ran more than two 

tests per testing location, up to a maximum of five tests. 

 

although some readings were as high as 8 mm/min. Final infiltration rates in restored 

grasslands fell primarily at or below 2.5 mm/min, with some readings at 4 mm/min. Final 

infiltration rates in unburned woodlands mostly fell at or below 5 mm/min. 

Mean infiltration rates in restored grasslands primarily fell at 1 to 2 mm/min 

(Figure 4.11). Almost all mean infiltration rates in unburned grasslands at or below 1 

mm/min. Mean infiltration rates in burned grasslands fell at or below 1.1 mm/min across 
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a fairly consistent frequency (1.0-3.0). Mean infiltration rates in unburned woodlands 

were mostly low, the majority ranging from 0.5-1.5 mm/min. 

 Mean compaction readings were similarly distributed across site types at depths 

of 5 and 10 cm (Figure 4.12a). The majority of mean compaction readings were at or 

below 20 kg/cm2 for all site types, with unburned woodlands and grasslands getting the 

highest readings at 50 kg/cm2. From depths of 15 to 20 cm, mean compaction readings 

fell primarily at or below 20 kg/cm2 and ranged no higher than 30 kg/cm2 (Figure 4.12b). 

Mean compaction readings at depths of 25 and 30 cm were similar to previous depths, 

ranging no higher than 30 kg/cm2 with the majority of readings falling at or below 15 

kg/cm2 (Figure 4.12c). 

Figure 4.10 Histograms showing the frequency of final infiltration readings broken out 

by site type.  
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Figure 4.11 Histograms showing the frequency of mean infiltration readings broken out 

by site type. 
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Figure 4.12a Histograms showing the frequency of mean compaction readings broken 

out by site type. Readings shown are from depths of 5 cm and 10 cm. 
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Figure 4.12b Histograms showing the frequency of mean compaction readings broken 

out by site type. Readings shown are from depths of 15 cm and 20 cm. 
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Figure 4.12c. Histograms showing the frequency of mean compaction readings broken 

out by site type. Readings shown are from depths of 25 cm and 30 cm. 
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4.4 Discussion 

This study aimed to understand dynamic changes in soil properties after regime shifts and 

across a time-since-fire gradient of 17 years. We compared two alternative states in 

grasslands (i.e., grasslands treated with prescribed fire and grasslands that emerged 

following the collapse of juniper woodland with high intensity fire) with one another and 

against a reference unburned grassland state and a reference unburned woodland state. 

We compared physical soil properties of burned and unburned grasslands against the 

properties of grasslands restored from juniper woodland. This allowed us to investigate 

the changes that can be expected in grassland and juniper woodland soils when applying 

fire to the landscape. Additionally, we studied how these soil properties change over time 

after fire has been applied to the system. Lastly, we compared soil properties of 

alternative grassland states to those of closed-canopy juniper woodland, illustrating the 

differences in regimes that land managers can expect when undertaking ecological 

restoration. 

 We found that the greatest differences in soil compaction were between 

grasslands restored with extreme fire and unburned woodland sites. Restored grasslands 

had lower median compaction levels across all depths when compared to unburned 

woodlands (Figure 4.4) and were significantly different at all depths (Table 4.2a-f). It is 

noteworthy that restored grasslands were previously closed-canopy juniper woodlands, 

the same as the unburned woodlands, but had undergone high intensity fire in order to 

shift from a woodland to a grassland state. In contrast, other studies have found increased 

compaction in grasslands for two growing seasons post-fire (Snyman, 2002). This 

partially agrees with our data. In the first growing season after collapse and 
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reorganization (about four months post-fire) we found that restored grasslands had higher 

soil compaction levels than unburned woodland at almost every depth (Figure 4.3). 

However, in the second growing season after fire, soil compaction in restored grasslands 

was consistently lower than in unburned woodlands. The increased compaction in 

restored grasslands right after burning may be related to the sudden loss of organic matter 

from the top layer of the soil and the decrease in plant and litter cover (Snyman, 2002). 

By the second growing season however, soil compaction in restored grasslands has 

decreased to levels similar to burned and unburned grasslands. 

 The only significant differences in mean and final infiltration rates were between 

restored grasslands and burned grasslands (Table 4.3a-b). Restored grasslands had a 

higher median infiltration rate than burned grasslands (Figure 4.6). Mean infiltration rates 

in restored grasslands were very similar to those in unburned woodlands, especially 

within the first and third quartiles. Restored grasslands in our study were once closed-

canopy juniper woodlands which had collapsed after extreme fire and reorganized into 

grasslands. For the first five years after fire, mean infiltration rate in restored grasslands 

follows a similar trajectory to paired woodland reference sites (Figure 4.5). However, 

after five years tsf the two begin to diverge, with the strongest differences in mean 

infiltration seen at 7 and 14 years post-fire. Although their median infiltration rate is high 

compared to burned and unburned grasslands, restored grasslands had some of the lowest 

mean infiltration rates overall (Figure 4.6). Studies have found that fire can create soil 

crusts or hydrophobic soil surfaces that reduce infiltration rates (Snyman, 2002), perhaps 

explaining the large variation in mean infiltration rates in restored grasslands. Unburned 

woodlands were also highly variable, but had some of the highest mean infiltration rates. 
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It is possible that underneath the dense canopy of juniper woodlands, the soil is drier 

since most rainfall is intercepted by the canopy. This drier soil could lead to higher 

infiltration rates overall. 

 There are some limitations to this dataset. Some sites that were sampled were 

found to have different parent material than other sites, specifically the 38_E_2002 burn 

unit (Table 4.1). This site is on the northeastern edge of the LCEL and with a different 

parent material we can expect the soil to have a different chemical makeup, pH, and 

cation distribution than other soils in the region. Additionally, soil properties are 

dynamic, changing over time and from season to season. Since not all sites could be 

sampled at the same month of the year, some variation in soil properties is to be expected. 

We chose to sample during the summer season as opposed to other seasons for 

several reasons. Summer measurements can be used to infer the soil’s resilience to hotter 

and drier conditions, an important factor for landowners managing for drought. 

Additionally, the LCEL hosts a large population of the federally-listed American burying 

beetle (Nicrophorus americanus). Summer is the peak of the beetle’s activities, mainly 

foraging, breeding, and larval development. The beetle is closely tied to the soil, 

spending a large portion of time belowground throughout its developmental stages 

including when constructing underground brood chambers to raise their young. The 

American burying beetle is also a large-bodied insect and quite susceptible to desiccation, 

for example during summer drought conditions. Therefore, we deduced that water 

infiltration rates and soil compaction levels could have outsized impacts on the beetle. 

The complexity of the landscape also poses a unique limitation to our study. The 

area is a working landscape that primarily supports grazers. However, it is almost entirely 
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privately-owned by many different landowners who may each follow different grazing 

plans and stocking rates. Grazers can impact soil compaction, and since each site is 

managed differently it is unknown how livestock may have affected these results. 

 In the LCEL, and when managing systems in general, often the goal of 

management is to reduce variability and increase stability. Researchers also prefer 

dampened variability in order to control for unknowns in their studies. However, 

heterogeneity and variability in the system can be important. These characteristics can 

increase the system’s resilience to extreme events such as wildfire and drought 

(Arterburn et al., 2018). Heterogeneity can also provide unique niches for wildlife to take 

advantage of, such as the American burying beetle (Walker and Hoback, 2007). It 

supports a wider variety of local species and can increase biodiversity in general 

(Fuhlendorf et al., 2011).  

4.5 Conclusions 

Select physical soil characteristics do not differ strongly between grassland alternative 

states. Soils in grasslands restored with extreme, woodland-collapsing fire were similar to 

soils in grasslands burned with less intense prescribed fire and grasslands that were not 

burned. A major implication is that land managers who apply a range of fire intensities to 

the landscape in order to restore or maintain grasslands do not need to worry about 

negative impacts on these selected physical soil characteristics over time. 
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CHAPTER 5 

 

SYNTHESIS  

 

 

The American burying beetle contributes to the flow of nutrients through the ecosystem 

as it breaks down dead organic matter and returns it to the soil. Its populations boom and 

bust depending on the availability of carrion, climate factors such as drought, and its 

ability to raise the next generation. An ABB lives a little over one year, meaning it has 

one summer to successfully reproduce and raise its young. If anything goes wrong in that 

season (either to an individual beetle or a local population) and they are unable to raise a 

successful brood, then that beetle or group of beetles is lost from the gene pool and from 

the landscape. 

For an insect no larger than your thumb, this could be a terrifying prospect. The 

chances of finding a good-sized piece of carrion on which to raise your brood is slim. 

Even if you find carrion of the right size, you will have to fight off other carrion beetles 

to secure it for you and your mate. Then you will have to work together to prepare the 

carrion for burial, despite its far larger size and weight. Burial and brood chamber 

construction in the soil is generally 20 to 30 cm deep, and you yourself are no more than 

4.5 cm long. After all that, a vertebrate scavenger such as a coyote may dig up that 

carrion and all your hard work will have been for naught. 

Life is hard for these beetles, and it’s getting harder. Predicted increases in 

extreme weather and drought will make summers hotter and drier, a distinct threat to such 
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a large and easily desiccated beetle. Grassland bird species, generally the perfect size for 

beetle use, are declining in the Great Plains. This includes the two Great Plains’ states 

that have the most American burying beetles: Nebraska and Oklahoma. The biome is also 

troubled by an existential threat to its grasslands—woody plant encroachment. 

Woody encroachment is not just a threat to some beetle the size of your thumb or 

to a grassland bird you’ve never seen. It is a threat to the existence of grasslands and all 

the ecosystem services they provide. Woody encroachment is the common enemy of all 

who use or value any components of grasslands. Once woody plants invade grasslands, 

they shade out forbs and grasses, reducing grassland plant biodiversity and the forage 

available for grazing. Fewer grassland birds, including common species, provide fewer 

opportunities for hunters and birders. Woody encroachment provides more aboveground 

fuel for wildfires, which will become more frequent and threaten more homes and 

families across the Great Plains. 

The worst part of it is that to some it’s already too late. Huge swathes of grassland 

have already been converted to dense woodland, and the cost of mechanically removing 

those woodlands is impossibly high. Even after mechanical removal, the seed bank 

remains in the soil to ensure reinvasion within a handful of years. Although the 

conversion to woodland is not irreversible, it is often hysteretic, requiring more effort to 

return to the grassland state than was needed to change to the alternative woodland state. 

Is it any wonder that landowners have begun to ban together across the Great Plains to 

combat woody encroachment? 

 Prescribed burn associations have become the solution to the problem of woody 

encroachment. These groups are returning fire to the Great Plains, a biome that was 
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fundamentally shaped by fire for millennia. This includes the ambitious application of 

extreme prescribed fire: the use of intense fire that rapidly and unpredictably fluctuates 

and alters an ecosystem’s structure and function. This has been the key to stop woody 

plant encroachment, restore grasslands, and rebuild grassland structure and ecological 

functions. 

 We found that extreme prescribed fire restored herbaceous species richness and 

basal cover to areas that had been invaded by eastern redcedar woodlands. The plant 

communities in restored grasslands were similar to uninvaded grasslands. Herbaceous 

richness and percent cover of functional groups like perennials, grasses, natives, and 

warm season species were comparable between restored and uninvaded grasslands. 

 Despite the extreme nature of these prescribed fires, we found that soil 

characteristics were minimally impacted. Soil compaction in restored grasslands did not 

differ significantly from uninvaded grasslands except in the top 5 cm of the soil. 

Grasslands restored through extreme fire had slightly water higher infiltration rates than 

burned grasslands, but they were comparable across most of the time-since-fire gradient. 

 Perennial forbs and grasses at large spatial scales have a positive relationship with 

the American burying beetle, whereas >10% tree cover at small spatial scales negatively 

impacts ABB abundance. Cropland cover in small amounts (e.g., 0.5%) but at broad 

spatial scales has strong negative impacts on the beetle. Since 2007, we found that 

American burying beetle abundances have increased by 55% across our study site, the 

Loess Canyons Experimental Landscape. Across this site the ABB has been monitored 

for 13 years and prescribed fire has been applied for 17 years. We found that two-thirds 

of ABB were found in areas of high forb and grass cover, which coincides with areas of 



110 
 

high prescribed fire activity. This is the only study to document increases in American 

burying beetle abundance alongside management with fire.  

 There have been many knowledge gaps in the science that have prevented 

effective management for the beetle across its range. Only one scientific publication has 

studied the impacts of woody plant encroachment on the ABB. We have confirmed their 

finding that increasing woody plant cover causes decreases in beetle abundance. We have 

applied a multi-scale lens to the landscape, in order to better understand at what scales the 

beetle interacts with grasslands, woodlands, and croplands in its range. Lastly, this study 

utilizes the ecological framework of alternative states in order to understand how the 

landscape has changed repeatedly over years of woody encroachment and fire. 

 Future directions of ABB research should explore the impacts of woody 

encroachment across the beetle’s entire range. Further investigation of the beetle’s food 

web would allow us to better understand what prey species the beetle relies on. The 

impacts of woody encroachment and prescribed fire on beetle prey species should also be 

studied. Entomological studies using the same beetle survey data used in this study could 

apply beetle sex, length, and width measurements to research sexual dimorphism in 

beetles as well as differences in male-female abundances over time. This data could also 

be applied to our landcover dataset to determine if there are differences between beetle 

populations that live in grasslands versus woodlands. Lastly, the human dimensions of 

American burying beetle conservation should be explored. Our study site is mostly 

owned and managed by private individuals, as is the case in much of the Great Plains. 

The interests of landowners must be understood in order to find areas of mutual benefit 

for them and the beetle.  
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Appendix A 

 

Table of Herbaceous Plant Species Encountered 

 

Table A.1: Complete plant species assemblages at sampled sites. Species presence is indicated by an ‘x’ for each of the four site 

types: Restored Grassland (RG), Unburned Woodland (UW), Burned Grassland (BG), and Unburned Grassland (UG). 

USDA 

Code 

Genus Species Common Name f group Life 

Cycle 

Non/Native Season RG UW BG UG 

ACMI2 Achillea millefolium common yarrow Forb Perennial Native Cool x 
 

x x 

AMARA Amaranthus sp. pigweed Forb Annual Native Warm x x x x 

AMCA6 Amorpha canescens leadplant Subshrub Perennial Native Warm 
 

x 
  

AMPS Ambrosia psilostachya western ragweed Forb Perennial Native Cool x 
 

x x 

ANGE Andropogon gerardii big bluestem Grass Perennial Native Warm x 
 

x x 

AQUIL Aquilegia sp. columbine Forb Perennial Native Cool 
 

x 
  

ARABIS Arabis sp. rockcress Forb Annual Native Cool 
  

x 
 

ARAN7 Argentina anserina silverweed 

cinquefoil 

Forb Perennial Native Cool 
 

x 
 

x 

ARLU Artemisia ludoviciana white sagebrush Forb Perennial Native Cool x 
 

x 
 

ARPO2 Argemone polyanthemos crested 

pricklypoppy 

Forb Annual Native Cool x 
   

ARPU9 Aristida purpurea purple threeawn Grass Perennial Native Warm 
  

x x 

ASTRA Astragalus sp. milkvetch Forb Perennial Native Cool x x x x 

ASGR3 Astragalus gracilis slender 

milkvetch 

Forb Perennial Native Cool 
  

x x 

ATRIP Atriplex sp. saltbush Forb Annual Nonnative Cool x 
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BASC5 Bassia scoparia burningbush Forb Annual Nonnative Warm x 
 

x x 

BOCU Bouteloua curtipendula sideoats grama Grass Perennial Native Warm x x x x 

BODA2 Bouteloua dactyloides buffalograss Grass Perennial Native Warm 
  

x x 

BOGR2 Bouteloua gracilis blue grama Grass Perennial Native Warm x x x x 

BOHI2 Bouteloua hirsuta hairy grama Grass Perennial Native Warm 
  

x x 

BRCA2 Brassica campestris field mustard Forb Annual Nonnative Cool 
 

x 
  

BRCI2 Bromus ciliatus fringed brome Grass Perennial Native Cool x 
  

x 

BRIN2 Bromus inermis smooth brome Grass Perennial Nonnative Cool x x x x 

CAIN2 Callirhoe involucrata purple poppy 

mallow 

Forb Perennial Native Cool x 
 

x x 

CALO Calamovilfa longifolia prairie sandreed Grass Perennial Native Warm 
   

x 

CAREX Carex sp. sedge Sedge Perennial Native Cool x x x x 

CASA3 Cannabis sativa marijuana Forb Annual Nonnative Cool x 
   

CELO3 Cenchrus longispinus mat sandbur Grass Annual Native Warm 
   

x 

CHENO

P 

Chenopodium sp. goosefoot Forb Annual Native Cool x x 
 

x 

CHAL7 Chenopodium album lambsquarters Forb Annual Nonnative Cool 
 

x x 
 

CHGL13 Chamaesyce glyptosperma ribseed sandmat Forb Annual Native Warm x x x x 

CHNU9 Chamaesyce nutans eyebane Forb Annual Native Warm 
  

x 
 

CIUN Cirsium undulatum wavyleaf thistle Forb Perennial Native Cool x 
  

x 

COCA5 Conyza canadensis Canadian 

horseweed 

Forb Annual Native Cool x x x x 

DEPI Descurainia pinnata western 

tansymustard 

Forb Annual Native Cool x 
 

x x 

ELCA4 Elymus canadensis Canada wildrye Grass Perennial Native Cool x x x 
 

ELTR7 Elymus trachycaulus slender 

wheatgrass 

Grass Perennial Native Cool x x x x 

ERCI Eragrostis cilianensis stinkgrass Grass Annual Nonnative Warm x 
   

EUHE5 Euphorbia hexagona sixangle spurge Forb Annual Native Warm x 
 

x 
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EUMA1

4 

Euphorbia maculata eyebane Forb Annual Native Warm 
  

x 
 

EUMA8 Euphorbia marginata snow on the 

mountain 

Forb Annual Native Warm x 
 

x x 

FRVI Fragaria virginiana Virginia 

strawberry 

Forb Perennial Native Cool x 
 

x 
 

GAAP2 Galium aparine bedstraw Forb Annual Native Cool x x x x 

GAYOP Gayophytum sp. groundsmoke Forb Annual Native Cool 
 

x x 
 

GILIA Gilia sp. gilia Forb Annual Native Cool x 
 

x x 

GUSA2 Gutierrezia sarothrae broom 

snakeweed 

Subshrub Perennial Native Cool x 
 

x x 

HEAN3 Helianthus annuus common 

sunflower 

Forb Annual Native Cool x 
 

x x 

HECO26 Hesperostipa comata needle and thread Grass Perennial Native Cool x 
 

x x 

HEHI Hedeoma hispida rough false 

pennyroyal 

Forb Annual Native Cool x x x x 

LASE Lactuca serriola prickly lettuce Forb Annual Nonnative Cool x x x x 

LEDE Lepidium densiflorum common 

pepperweed 

Forb Annual Native Cool x 
 

x 
 

LIIN2 Lithospermum incisum narrowleaf 

stoneseed 

Forb Perennial Native Cool 
  

x x 

LIRI Linum rigidum stiff flax Forb Annual Native Cool x 
 

x 
 

LISQG Liatris squarrosa var. 

glabrata 

scaly blazing star Forb Perennial Native Cool 
  

x 
 

LUPU Lupinus pusillus rusty lupine Forb Annual Native Cool 
  

x 
 

LYJU Lygodesmia juncea rush 

skeletonplant 

Forb Perennial Native Cool x 
 

x x 

MAPI Machaeranthera pinnatifida lacy tansyaster Subshrub Perennial Native Cool 
  

x x 
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MAST4 Maianthemum stellatum starry false lily of 

the valley 

Forb Perennial Native Cool x x 
  

MEOF Melilotus officinalis sweetclover Forb Annual Nonnative Cool x x x x 

MIQU2 Mimosa nuttallii Nuttall's sensitive 

briar 

Forb Perennial Native Cool 
   

x 

MOFI Monarda fistulosa wild bergamot Forb Perennial Native Cool x 
   

MUCU3 Muhlenbergia cuspidata plains muhly Grass Perennial Native Warm x x x x 

MURA Muhlenbergia racemosa marsh muhly Grass Perennial Native Warm x 
  

x 

NECA2 Nepeta cataria catnip Forb Perennial Nonnative Cool x x 
  

OPMA2 Opuntia macrorhiza twistspine 

pricklypear 

Subshrub Perennial Native CAM 
 

x 
  

OXST Oxalis stricta yellow 

woodsorrel 

Forb Perennial Native Cool x x x x 

PACA6 Panicum capillare witchgrass Grass Annual Native Warm x x x x 

PAPS5 Packera pseudaurea falsegold 

groundsel 

Forb Perennial Native Cool 
   

x 

PASM Pascopyrum smithii western 

wheatgrass 

Grass Perennial Native Cool 
  

x x 

PEAN4 Penstemon angustifolius broadbeard 

beardtongue 

Forb Perennial Native Cool x 
  

x 

PEAR6 Pediomelum argophyllum silverlead Indian 

breadroot 

Forb Perennial Native Cool 
   

x 

PEES Pediomelum esculentum large Indian 

breadroot 

Forb Perennial Native Cool x 
   

PHYSA Physalis sp. groundcherry Forb Perennial Native Cool 
   

x 

PLPA2 Plantago patagonica woolly plantain Forb Annual Native Cool x 
 

x x 

POFE Poa fendleriana muttongrass Grass Perennial Native Cool x x x x 

POAL4 Polygala alba white milkwort Forb Perennial Native Cool 
  

x x 

POLYG Polygala sp. milkwort Forb Annual Native Cool x 
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POLYG4 Polygonum sp. knotweed Forb Annual Nonnative Cool 
  

x 
 

PSTE5 Psoralidium tenuiflorum slimflower 

scurfpea 

Forb Perennial Native Cool x x x x 

RACO3 Ratibida columnifera upright prairie 

coneflower 

Forb Perennial Native Cool x 
 

x x 

RUMEX Rumex sp. dock Forb Perennial Native Cool x 
 

x 
 

SCPA Schedonnardus paniculatus tumblegrass Grass Perennial Native Warm 
   

x 

SCSC Schizachyrium scoparium little bluestem Grass Perennial Native Warm x x x x 

SETAR Setaria sp. foxtail Grass Annual Nonnative Warm x x x x 

SOLID Solidago sp. goldenrod Forb Perennial Native Cool x x x x 

SOMI2 Solidago missouriensis Missouri 

goldenrod 

Forb Perennial Native Cool 
   

x 

SOMO Solidago mollis velvety 

goldenrod 

Forb Perennial Native Cool 
   

x 

SONU2 Sorghastrum nutans Indiangrass Grass Perennial Native Warm 
   

x 

SOPT7 Solanum ptycanthum West Indian 

nightshade 

Forb Annual Native Cool x x x 
 

SPCR Sporobolus cryptandrus sand dropseed Grass Perennial Native Warm x 
  

x 

STLE6 Strophostyles leiosperma slickseed 

fuzzybean 

Forb Annual Native Cool 
   

x 

SYFA Symphyotrichum falcatum white prairie 

aster 

Forb Perennial Native Cool x 
 

x 
 

TAOF Taraxacum officinale common 

dandelion 

Forb Perennial Nonnative Cool x x x x 

THME Thelesperma megapotamicum Hopi tea 

greenthread 

Forb Perennial Native Cool 
  

x x 

TOXIC Toxicodendron sp. poison oak/ivy Subshrub Perennial Native Cool x 
   

TRDU Tragopogon dubius yellow salsify Forb Annual Nonnative Cool x 
 

x x 
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VEBA Vernonia baldwinii Baldwin's 

ironweed 

Forb Perennial Native Cool x x x x 

VEFA2 Vernonia fasciculata prairie ironweed Forb Perennial Native Cool 
  

x 
 

VEST Verbena stricta hoary vervain Forb Perennial Native Cool x 
 

x x 

VETH Verbascum thapsus common mullein Forb Annual Nonnative Cool x x x x 

VIRI Vitis riparia riverbank grape Subshrub Perennial Native Cool x 
   

VIVI Vicia villosa winter vetch Forb Annual Nonnative Cool x 
 

x 
 

VUOC Vulpia octoflora sixweeks fescue Grass Annual Native Cool x 
 

x x 

YUGL Yucca glauca soapweed yucca Subshrub Perennial Native Cool 
  

x x 
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Appendix B 

 

Communication and Outreach 

 

B.1: Media Communications 

Szuch, Susan. The North Platte Telegraph. 2021. Print news article. “Watch now: On the 

lookout for American burying beetles southeast of North Platte.” 

[https://nptelegraph.com/news/local/watch-now-on-the-lookout-for-american-

burying-beetles-southeast-of-north-platte/article_49e83742-fc8d-11eb-8e47-

13837fd99ee2.html] 

Reyna, Beatriz. KNOP-TV. 2021. Television news presentation. “American Burying 

Beetle Research Underway.” 

[https://twitter.com/ALudwig7/status/1427678623385874438?s=20] 

Stromberg, Ronica. University of Nebraska-Lincoln NSF National Research Traineeship 

Program. 2019. Student spotlight article. “Uncovering buried secrets of an 

endangered beetle.” [https://nrt.unl.edu/alison-ludwig] 

B.2: Presentations and Posters 

Ludwig, Alison K., Daniel R. Uden, and Dirac Twidwell. University Nebraska Lincoln 

Spring Research Fair. 2020. Poster presentation. “Extreme fire as a management 

tool to combat regime shifts in the range of the endangered American burying 

beetle.” 

[https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1203&context=agron

hortdiss] 
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Ludwig, Alison. Nebraska Natural Legacy Conference. 2021. Video presentation. “The 

role of extreme fire in grassland restoration for the threatened American burying 

beetle.” [https://youtu.be/IkW0cADIX5A] 

Ludwig, Alison. Nebraska Natural Legacy Conference. 2020. Video presentation. 

“Screening landcover types on a shifting landscape that supports the endangered 

American burying beetle (Nicrophorus americanus).” 

[https://youtu.be/wURNNuWDEfs] 

B.3: Educational Programming 

Ludwig, Alison K., Conor D. Barnes, Dillon T. Fogarty, Julie A. Fowler, Katharine F. E. 

Hogan, Jessica E. Johnson, and Dirac Twidwell. Plant and Soil Sciences eLibrary. 

2021. Online educational module. “Ecological Resilience.” 

[https://passel2.unl.edu/view/lesson/d6c3e24cbc7e] 

Barnes, Conor D., Dominic J. Cristiano, Hugh Ellerman, Alexandra Loker, Alison K. 

Ludwig, Daniel Morales, Alyssa Noble, and Dirac Twidwell. Council for 

Resilience Education Case Study. 2021. Online educational material. “The 

Sandville Wind Project: A Case Study for Teaching the Adaptive Cycle.” 

[https://cre.unl.edu/Teacher%27s%20Notes.pdf] & 

[https://cre.unl.edu/Student%20Handouts.pdf] 

Dillon T. Fogarty, Katharine F. E. Hogan, Conor D. Barnes, Alison K. Ludwig, Julie A. 

Fowler, Jessica E. Johnson, and Dirac Twidwell. Council for Resilience 

Education Classroom Game Activity. 2021. Online educational material. 

“Understanding Resilience with Jenga.” 

[https://cre.unl.edu/Jenga%20Booklet.pdf] 
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Appendix C 

 

American Burying Beetle Image Gallery 

 

C.1: Photos 
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C.2: Videos 

 American Burying Beetle (Nicrophorus americanus) Grooming Behavior 

https://youtu.be/EoHmkIoe9_0 

 American Burying Beetle Burrows into Soil 

https://youtu.be/qLGXqtxIWGg 

 Old American Burying Beetle in Holding Container 

https://youtu.be/W-e10z4MnHw 

 Carrion Beetles in Baited Bucket Trap 

https://youtu.be/Cu0JHERWo3I 

 Young American Burying Beetles in Holding Container 

https://youtu.be/nHbcmB29CPo 

 Inside Bucket Trap - American Burying Beetle 

https://youtu.be/nHO6HhWVMGg 
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