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Abstract

The Industry 4.0 era requires new quality management systems due to the ever
increasing complexity of the global business environment and the advent of advanced
digital technologies. This study presents new ideas for predictive quality management
based on an extensive review of the literature on quality management and five real-
world cases of predictive quality management based on new technologies. The results
of the study indicate that advanced technology enabled predictive maintenance can be
applied in various industries by leveraging big data analytics, smart sensors, artificial
intelligence (AI), and platform construction. Such predictive quality management systems
can become living ecosystems that can perform cause-effect analysis, big data
monitoring and analytics, and effective decision-making in real time. This study proposes
several practical implications for actual design and implementation of effective predictive
quality management systems in the Industry 4.0 era. However, the living predictive
quality management ecosystem should be the product of the organizational culture that
nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation
of shared goals.

Keywords: Predictive maintenance, Quality management, Big data analytics, Artificial
intelligence (AI), Platform construction, Information and communication technology (ICT),
Real-time

Introduction
In today’s competitive global environment, businesses need to be agile, flexible, resilient,

and possess dynamic capabilities [1, 2]. The advent of advanced digital technologies

makes it possible for firms to completely innovate the concept of quality management. A

living ecosystem equipped with advanced digital technologies (e.g., smart sensors, ma-

chine learning, big data analytics, and artificial intelligence (AI)) can be developed to

manage quality [2].

On August 14, 2018, a 200-m section of the Ponte Morandi Bridge (built in 1968) in

Genoa, Italy, collapsed causing 41 deaths, 5 missing, and 15 injured. The main causes of

bridge collapse were aging and lack of bridge management. Incidents such as this high-

light the importance of bridge maintenance. Structural health monitoring (SHM), a new

technique developed for structure maintenance, is an up-to-date technology-based sys-

tem that analyzes weaknesses of existing systems, such as locating local and global
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damage structure and the significance of such damages. The speed and precision of

decision-making for bridge repair and maintenance are facilitated by real-time monitoring

of bridge conditions. Bansal et al. [3] proposed a real-time predictive maintenance system

using neural network methods, while Shi and Zeng [4] suggested a condition-based main-

tenance strategy that considers economic factors for predictive maintenance in real time.

Predictive maintenance, also known as condition-based maintenance, is possible today

due to the advanced digital technologies [3–6].

With the development of smart devices, highly intelligent maintenance systems have

become a focus [7]. As information and communication technology (ICT) converges

and evolves with industrial fields, major changes are taking place in the field of oper-

ation management. Preventive maintenance and quality management methods that

were all controlled by people in the past are being transformed to predictive mainten-

ance due to the development of various IT technologies, such as big data and AI [7, 8].

In particular, leading technology companies have recently developed and introduced

predictive maintenance systems for quality control [8].

In the past, recovery services were performed after a machine stoppage occurred in a

workplace. With the advanced information and communication tools such as smart de-

vices, it is now possible for skilled workers to perform regular maintenance services,

such as replacing parts or equipment, at the optimal time [7, 8]. In addition, while there

has been an emphasis on optimization of production processes, Industry 4.0 is pursuing

optimization for each individual product. Since optimization requires zero defects,

quality control is necessary to accomplish this goal. Thus, quality control techniques

need to be changed. For example, big data collected from multiple IoT (Internet of

Things) sensors embedded in components can support smart production, supply, and

delivery for predictive maintenance in real time [7, 9].

Predictive maintenance management requires sharing information on production and

inventory levels among networked partner firms, as well as the changing consumer de-

mands [7, 10]. This system of collaboration is expected to aid in satisfying customer ex-

pectations through accurate demand prediction, improved service levels, and reliability.

Expansion of smart devices with self-diagnosing and predictive failure capabilities will

help reduce failures and operating costs, optimize inventories, improve the access to

maintenance, reduce the need to maintain spare inventory for safety purposes, and en-

hance the replacement timing. Industry 4.0 needs to respond aggressively with a num-

ber of solutions that encompass safety, quality, value, and cost to meet end-user needs

for proactive predictive maintenance strategies [10].

Therefore, to minimize possible losses and ensure flexibility by avoiding sudden

downtimes, predictive maintenance is an essential strategic operating method for

businesses that are building smart plants for the future [7]. In addition, efforts to

diagnose failure of facilities, equipment, and/or systems at an early stage are benefit-

ing from technological advancements in both manufacturing and service industries.

There are several real-world examples of software development that support such

possibilities [2, 8].

In this study, we analyze actual cases that currently exist in industries to illus-

trate how service and operational efficiencies can be improved through predictive

maintenance. For this purpose, we performed an extensive review of the literature

and diverse cases to derive a quality management ecosystem for the manufacturing
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and service industries for efficient quality management through digital devices in

the Industry 4.0 era.

The rest of the paper is structured as follows. The “Review of relevant literature” sec-

tion reviews relevant literature, and the “Case description of predictive maintenance”

section presents real-world cases with advanced technologies and devices. The “Con-

clusions” section concludes the study by discussing the study results and presenting

study limitations and future research avenues.

Review of relevant literature
AI technology has been implemented throughout many industries. In particular, ma-

chine learning technology has spread to both the manufacturing and service industries

in an attempt to improve productivity, quality, and efficiency of facility maintenance.

The use of technology to improve quality is important because it facilitates changes in

culture, leadership, collaboration, and compliance [11]. However, “Quality 4.0” which is

suggested by LNS Research is not a technology, but a process used to maximize value

for the users of technology [1]. Thus, quality management in the Industry 4.0 era

should be approached from a predictive perspective based on digital technology rather

than from a preventive perspective.

Jacob [1], (p. 5) stated “Industry 4.0 initiatives are not being led by quality, but by IT,

operations, engineering, or sales and marketing.” This is due to the lack of a clear un-

derstanding of the significance of technology and applications required in the Industry

4.0 era, and this lack of understanding may result in a situation where it is difficult to

flexibly and nimbly respond to the changes required for future quality management [1].

For example, when quality control systems on a production line detect a problem,

does it mean there is an issue with only the specific items tested, or with all items? It

would be difficult for technicians to make this determination. Errors can occur at any

stage of the production process and can be caused by a number of factors, from loose

soldering to adverse environmental conditions. Quality control technicians can quickly

decide whether the analysis indicates an isolated defective item or a systemic failure

that may lead to major problems in the future. For example, at an IBM semiconductor

packaging plant in Canada, 97% of fault patterns can be identified automatically, elim-

inating hundreds of thousands of dollars per year in scrap costs. Furthermore, what-if

analysis showed that controlling humidity at a critical point in the plant’s manufactur-

ing line would improve product quality and deliver a 160% return on investment [12].

In quality management, the concept of “predictive” maintenance is different from

“preventive” maintenance. While preventive maintenance focuses on identifying and

preventing problems that may occur in the future, predictive maintenance focuses

on cost reduction and failure prevention by identifying exactly when parts of a prod-

uct are likely to cause problems, enabling replacement or repair at exactly the right

time [7, 9, 13, 14].

Predictive maintenance is being realized in the form of smart factories based on IoT,

CPS (Cyber Physics Systems), sensor technology, and AI technologies. While factory

automation in the past was optimized only for each unit process, with little flexibility, a

smart factory can achieve optimization with flexibility because objects in the factory are

connected to the IoT. Big data from factory processes is automatically collected, ana-

lyzed, and triggered for resulting in active decision-making in real time. As an example,
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BOSCH, the world’s number one automotive parts company, is actively implementing

predictive maintenance and quality control through a software tool it developed, the

“Nexeed Production Performance Manager.” With simple controls, the person in

charge of maintenance can have a positive impact on both product quality improve-

ment and maintenance through continuous monitoring of process data and performing

advance maintenance work with as little downtime as possible [15].

In Industry 4.0, the use of condition-based maintenance technology for intellectual

maintenance involves three stages: real-time condition monitoring ➔ big data process-

ing ➔ maintenance timing and scope determination [7]. Real-time condition monitor-

ing is the process of monitoring equipment parameters or conditions for all equipment

in the plant to detect errors or identify changes [10]. Therefore, predictive maintenance

monitors the condition of all production facilities, equipment, and products in real time

through the IoT; predicts remaining useful life (RUL) through signal processing, ma-

chine learning (deep learning), and data analysis; and determines the optimal mainten-

ance cycle and scope [7, 9, 13]. However, although predictive maintenance can be used

to predict potential errors earlier than preventive maintenance, it requires a high level

of investment in capital and expertise [10].

Smart manufacturing systems in Industry 4.0 can predict RUL of mechanical equip-

ment and systems, which can prevent accidents or failures in areas difficult for opera-

tors to access, and allow faster response, thus preventing downtime caused by failures.

They can also reduce maintenance cost through component replacement, reducing the

opportunity cost of losses due to downtime during the period [7, 9, 10, 13]. Conse-

quently, quality management will be reshaped in the form of predictive maintenance

management by expanding the scope of applied technologies to various areas, such as

production, maintenance, and post-sales management.

Many recent examples of AI, smart sensors, smart robots, and other intelligent main-

tenance management can be found in companies today. In the following section, we

seek predictive quality management approaches through case analyses of quality 4.0 in

manufacturing and service companies, which helps develop a new digital business

model through smartization of materials, parts, and equipment in factories.

Case description of predictive maintenance
Rolls-Royce

Rolls-Royce is one of the world’s top three aircraft engine manufacturers, producing

more than 500 airline and 150 military aircraft engines in 2018. As Rolls-Royce’s pro-

duction environment has gradually been networked and the IoT environment has

evolved, the company recently began using big data to maintain aircraft engines, gener-

ating a huge amount of data [16]. These changes have led to the development of infor-

mation and communication technologies for data analysis to seek operational strategies

to minimize losses by preventing mistakes during the design process or failures that

may occur during the manufacturing process [16]. Rolls-Royce utilizes big data pro-

cesses in three major areas: design, manufacturing, and after-sales management, in an

operational plan that can detect and monitor product status before problems occur.

Rolls-Royce uses nanobots to perform predictive maintenance and inspections, which

can better communicate engine services and increases the use of robots in places that
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are dangerous or inaccessible to humans [17]. This approach provides an opportunity

to improve engine maintenance methods by increasing the speed of the inspection

process as part of performing maintenance tasks or eliminating the need to remove

an engine from an aircraft. Through predictive maintenance, Rolls-Royce is pro-

actively preventing any delays by managing when maintenance is required on aircraft

engines [18].

The company collects and analyzes data not only in engine design and manufac-

turing but also in post-sales management. With hundreds of sensors, each small

part of a device records and reports to a professional engineer in real time, allow-

ing the engineer to determine appropriate actions through data analysis. Currently,

Rolls-Royce collects 65,000 h of gas turbine-engine running data daily, with about

100 vibration, pressure, temperature, speed, and flow sensors attached to 14,000

engines owned by 500 airlines [17, 19]. Rolls-Royce provides real-time management

through data collection after the sale of an engine as a “Total Care” service; this is

known to minimize delays and cancelations caused by gas turbines defects, which

cost approximately $45 million per day [17, 19]. The company accounted for 54%

of the aircraft engine market share in June 2013, with more than 50% of its rev-

enue generated through total care services [19].

Rolls-Royce has also developed a digital platform (a collaboration with Tata Consult-

ancy Services Company in India and Microsoft Azer) to connect external information,

such as air traffic control, weather, and fuel consumption, with sensor data collected

from its own engines for an at-a-glance view [20]. These platforms provide information

on predictive maintenance in advance of any device problems, delivering new

value-added information to airline maintenance teams and customers, enabling a new

form of quality management using predictive maintenance [20]. One reason

Rolls-Royce is providing a basis for maintaining quality control through predictive

maintenance is that it has the ability to utilize big data analysis, smart sensors, AI, and

platform construction. In the future, Rolls-Royce expects a business environment will

be created where computers can make their own decisions in certain situations through

machine learning (deep learning).

Hyundai Motors

Hyundai Motor Co., the world’s eighth largest car maker in 2017, announced on Octo-

ber 18, 2018, that it has developed an AI Car Diagnosis System that uses AI to diagnose

vehicle faults based on noise and a Knock Sensor Detection System (KSDS) to analyze

vibrations and determine whether an engine is abnormal [21, 22]. The AI Car Diagnosis

System can execute a complicated process by itself through deep learning and has been

proven in recent experiments; in one experiment, the accuracy of 10 noise analysis ex-

perts was 8.6%, while the accuracy of AI was 87.6% [23]. The company said that KSDS

will enhance consumer safety and increase problem prevention; even before it is com-

mercialized, Hyundai is voluntarily applying it to domestic and overseas sales models

starting from the third quarter of 2018 [21]. A future consideration is installing AI in

vehicles to diagnose faults or placing it at the end of the vehicle production line to

identify any abnormalities in new vehicles [23]. This technology will be applied to

Hyundai Motor’s repair center in Korea by 2019 [22].
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The AI Car Diagnosis System uses AI data related to about 800 existing engine

faults. AI software can solve a problem by finding the fault area and cause using only

noise, and its credibility has been proven in tests. Hyundai Motors focuses on an op-

eration plan that can improve quality through predictive maintenance, which can

diagnose and prevent problems before they happen so consumers can drive more

safely and comfortably [21]. Through AI technology, it may be possible to improve

accuracy by combining sound, vibration, temperature, and other factors, resulting in a

system that could be applied to all mechanical things, not just cars.

Since AI involves learning, to maintain the quality of diagnoses, data of a variety of

noises generated by automobiles must be collected and analyzed. Therefore, it is neces-

sary to use big data analysis, AI, and platform construction.

BOSCH

BOSCH is composed of business units that include industrial process technology, energy

and building equipment, consumer goods and home appliances, and automotive technol-

ogy. BOSCH is one of the leading companies that actively implements predictive mainten-

ance and quality control.

The firm has been known as a manufacturer of traditional automotive parts and home ap-

pliances. In recent years, BOSCH started IoT-based solution supply and consulting busi-

nesses. BOSCH supports assembly work without mistakes under any circumstances

through its operator support system, which combines wireless communication with tech-

nologies such as smart glasses and sensors. If work is done properly, a module receives a

green light, and the system gives a work instruction to the worker through that module, eas-

ily managing the work process. The system or machine also implements a predictive main-

tenance by establishing a smart response system that operates according to conditions [15].

For prescriptive maintenance and quality control, BOSCH utilizes its Nexeed Produc-

tion Performance Manager, a software tool that collects data from various sources in

the production environment and then standardizes and combines the data to visualize

and analyze it. This tool shows the current state of individual machines as well as the

overall production system, which allows a maintenance worker to perform maintenance

tasks with little downtime (BOSCH, 2018) For example, the Nexeed Production Per-

formance Manager monitors the parameters defined in the production process and im-

mediately notifies the appropriate technicians when conditions exceed the warning

limits or threaten the process. Using the data processing module, the worker in charge

can perform the required repair individually by selecting the default rules from the

catalog. This predictive maintenance management can improve production efficiency

and reduce the cost of defects and errors that can occur in the equipment [15]. The

Nexeed Production Performance Manager can also improve product quality by

continuously monitoring and logging process data as well as maintenance data. BOSCH

is able to maintain quality management through its predictive maintenance based on

its use of big data analysis, smart sensors, AI, and platform construction.

John Deere

John Deere is implementing SAP’s Predictive Maintenance & Service (PdMS) technol-

ogy to predict facility defects before a fault occurs, thus reducing maintenance costs
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and moving toward efficiency optimization [14, 24]. The company provides agricultural

consulting services, collecting and analyzing data about things such as machinery, wea-

ther, and soil, using sensors and a drone attached to farm equipment. The operation in-

formation is provided through GPS, and helps optimize the yield of agricultural

products by providing the user with optimal farming information, such as soil acidity

and organic matter content at the current location. In other words, it provides a basis

for maximizing productivity and the quality of agricultural products through prelimin-

ary reviews [25]. John Deere provides a nutrient application total optimization service

throughout the entire agricultural harvest cycle of prior (field preparation)—process

(seeding and harvesting)—post (soil improvement) [25].

These services provide customers with benefits such as minimizing downtime, redu-

cing warranty costs, location-based real-time monitoring, and rapid supply parts plan-

ning, while enhancing the brand’s value. From the simple product sales level, the

product’s status is continuously monitored in real time through sensors attached to the

product after sale, providing customers with information about the product’s operation

and maintenance and the opportunity to maintain the product in advance. In other

words, reducing maintenance costs and improving product quality can lead to growth

in the company’s revenue.

Clova

Clova was developed by Naver, a Korean IT firm, as a smart speaker that can control

various devices through a single controller, including the IoT [26]. Based on smart

sensors, remote control and voice-based control are possible through various AI algo-

rithms and recommended systems; natural language processing, images, computer vi-

sion, and conversation functions can all be performed through AI algorithms [26].

AI is the most important factor in Clova and represents a paradigm shift to a dra-

matic real-time service. Although additional technology developments continue to add

features, the most important tool needed to provide these services will be accurate in-

formation. Since Clova apps often use weather as well as location to provide informa-

tion, the company will need to monitor these real-time big data to provide customers

with more convenient services. Clova is able to maintain quality control through

prescriptive maintenance based on its use of big data analysis, smart sensors, AI, and

platform construction.

Table 1 shows a summary of case examples. A review of case analyses suggests that pre-

dictive quality management approaches require advanced technologies to provide real-time

service through network-in-time (NIT) on cyber-physical systems. NIT automatically pro-

vides accurate information for quality management in real time. The just-in-time (JIT)

system attempts to increase efficiency and decrease waste by receiving components/parts

just in time for production. NIT is for collecting all the relevant quality data and informa-

tion in real time on cyber-physical systems through intelligence sensors or devices.

Discussion and evaluation of case examples

How should a living quality management ecosystem be structured in the Industry 4.0

era? The number of companies participating in the data analysis business is surging.

For example, GE Digital provides a platform (PaaS) called “Predix” as a service to
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airlines, healthcare, energy, manufacturing, and transport companies, so they can better

utilize their data. Predix allows operators to acquire work expertise, reduce the time

needed to adapt to the site, and enables them to proactively detect fatal errors that

occur on site and respond to them in real time. A second example is the partnership

between Schneider Electric and Microsoft, which helped improve drinking water qual-

ity control in Seminole County, FL, USA, through their collaboration in the develop-

ment of a state-of-the-art analysis solution, the Ecosystem. GE, Siemens, Cisco, SAP,

and BOSCH have already taken a lead in the platform.

The examples presented above are summarized in Table 2, highlighting that the basic

requirements for achieving a living quality management ecosystem include a predictive

maintenance management strategy through big databases and data analysis, real-time

simulations, and platform deployment. The convergence and integration of innovative

technologies have led to development of the IoT, digital technology, big data, cloud

computing, 3D printing, smart sensors, ICT, and robots, which are gradually establish-

ing a world that can be realized in the future.

To continuously maintain and improve the quality of products, real-time data must

be collected and analyzed, and diagnosis must be performed through AI [3–6]. There-

fore, the use of big data analytics, AI, and platform construction is necessary. As shown

in Table 2, the objectives for quality management through predictive maintenance can

be achieved by establishing basic requirements and operational processes.

In many companies, a maintenance team analyzes data and identifies the problem,

then implements AI using the major sensors, and applies deep learning diagnostics to

identify repair or replacement needs [7, 9, 10, 13]. However, predictive maintenance for

quality management, for which advanced technologies are an integral part, may raise

Table 1 Summary of case examples

Examples of predictive maintenance

Manufacturing Manufacturing Manufacturing Manufacturing Service

Company
name

Rolls-Royce Hyundai Motors BOSCH John Deere Clova

Purpose To provide an
opportunity to
improve engine
maintenance
methods

To provide consumer
safety through increased
problem prevention

To support
assembly work
without mistakes

To predict
facility defects

To provide
dramatic
real-time
service

Effects Real-time
management

Diagnose and
prevent problems
before they occur
for greater safely
and comfort

Production efficiency
and reduce the cost
of defects and errors

Application
for total
optimization
of services

Accurate
information
services

Predictive
maintenance
on QM

Big data analysis, smart sensors, AI, platform construction, ICT

Table 2 Process of quality management through predictive maintenance

Technical requirements Operational process Achievement objectives

Big data analytics, AI, Platform
construction, Deep learning,
Smart sensor, ICT, Robots

Real-time data analysis, Expert
analyst, Deep learning (machine
learning), Data deployment, AI

Increasing productivity,
Minimizing maintenance
costs, Improving product
quality, Increasing reliability,
Improving
revenue
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the issue of industrial security risk. In addition to the risk of external malicious code in-

filtration (a cybersecurity problem), the industry’s complementary management could

be a major issue because the vulnerability of the system itself can create problems such

as unauthorized remote access, internal network access through unauthorized devices,

employee errors, intentional program leaks, and unauthorized asset leaks.

Conclusions
At the Davos Forum in Switzerland in January 23, 2016, futurist Klaus Schwab [27],

Founder and Executive Chairman of the World Economic Forum, emphasized the need

to revolutionize the economy and society, arguing that the Fourth Industrial Revolution

is not about changing what we do, but about changing our humanity. This can be per-

ceived as emphasizing the fact that in all industries, innovation can break away from

existing frameworks and the notions that society may be lost without responding prop-

erly to Industry 4.0. We can learn this lesson from the fall of well-known global com-

panies such as Nokia, Kodak, and Toys “R” Us that were once among the world’s

leading companies [2].

The Fourth Industrial Revolution is an extension of the digital paradigm, similar to

the Third Industrial Revolution, but with a wider range of economic and social disrup-

tions through digital transformation, such as product and service innovation, jobs, and

welfare, which are all, unpredictable and complex.

Reports of the IBM Institute for Business Value [28], Capgemini [29], and Agile Ele-

phant [30] defined digital transformation as an enterprise that incorporates digital and

physical elements to transform business models and sets new directions for the indus-

try. This broad concept describes the transformation of processes, digitizing assets, and

changing the way organizations think and work; the creation of new type of leadership

and business models; and the use of technologies to enhance the experiences of cus-

tomers and employees.

The results of this study provide several theoretical and practical implications. First,

to enable predictive maintenance in the Industry 4.0 era, advanced digital technologies

need to be applied to enhance productivity and value creation. Second, although appli-

cation of big data analytics is possible based on real-time, experts who can control and

make decisions based on data analysis should be provided with policy support. Third,

for predictive maintenance for quality management, implementation methods should

be proposed through development of conditions for field ecosystems, methods for

measuring cause-effect analysis, and expected outcomes. Improvements in systems and

training/education should be developed for the use of AI-supported ecosystems with

embedded digital technologies and statistical tools (e.g., cause-effect analysis, regression

analysis, cause-effect diagrams, t tests/ANOVA tests, and performance/cost measure-

ments). Fourth, in addition to utilizing digital tools, introduction of blockchain technol-

ogy can be a major factor in predictive maintenance for quality management in the

future. Based on these suggestions, the expected value of predictive maintenance and

quality management can be enormous for cost reductions, improving work efficiency,

agile responses, asset retention, and information sharing. Although quality 4.0 includes

quality digitization, it should also include quality technologies, processes, and people

that impact digitization. Quality management in the past was performed by data-driven

decision-making, but currently, evidence-based decision-making has become more
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important and the role of analysts has been emphasized because big data is collected in

real time [1, 8, 14]. Today, posting pictures on Facebook, reading articles on smart

phones, and paying with credit cards using smart mobile devices have become routine

activities. While these may seem to be just part of everyday life, every single action is

being recorded as data, and many companies are looking for a business model that uses

such data. This has emerged as the significant value of big data. AI has also become

the umbellar factor in processing the accumulated big data for knowledge creation.

Therefore, quality management in Industry 4.0 should be changed not only by the use

of evidence-based data, but also in the form of predictive maintenance management

ecosystem based on people and processes [7, 9, 10, 13, 14].

However, the position presented in this study is controversial because it suggests the

direction of quality management in the future based on digital technology-based pre-

dictive maintenance cases. As AI-based technologies have recently entered our lives

and applications have been made in a number of areas where they can proactively re-

spond to problems, this research contributes academically as it presents a basic direc-

tion for quality management through predictive maintenance in the Industry 4.0 era. In

addition, the case analysis of this study has practical value, as it can be used for bench-

marking as excellent examples. More practical suggestions regarding predictive main-

tenance for quality management are as follows. Predictive maintenance for quality

management should be implemented as a result of organizational culture, which fosters

rethinking the role of training/education and leaders, develops ways that all employees

can participate in continuous improvement, and pursues and applies real-time big data

analytics. In the future, predictive maintenance for quality management will play a key

role in enhancing competitiveness by creating new value for all the stakeholders. In

2016, Manufacturing Business Technology forecast that predictive maintenance will save

$630 billion in costs over the next 15 years [31].

Since the present study presented a theoretical direction for predictive maintenance

for quality management in Industry 4.0 through literature review and case analysis, but

not based on empirical data, a limitation of the study is that its theoretical proposal has

yet to be verified. Future research should consider conducting empirical research.

Additionally, the validity of application plans for predictive maintenance for quality

management through big data analysis, AI, platform building, deep learning, smart sen-

sors, ICT, and robots should be examined more systematically in the future.
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