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Abstract Habitat loss and fragmentation are widely recognized as among the most

important threats to global biodiversity. New analytical approaches are providing an

improved ability to predict the effects of landscape change on population connectivity at

vast spatial extents. This paper presents an analysis of population connectivity for three

species of conservation concern [swift fox (Vulpes velox); lesser prairie-chicken (Tym-

panuchus pallidicinctus); massasuaga (Sistrurus catenatus)] across the American Great

Plains region. We used factorial least-cost path and resistant kernel analyses to predict

effects of landscape conditions on corridor network connectivity. Our predictions of

population connectivity provide testable hypotheses about the location of core habitats,

corridors, and barriers to movement. The results indicate that connectivity is more sensitive

to a species’ dispersal ability than variation in landscape resistance to movement. Thus, it

may prove difficult to optimize conservation strategies to maintain population connectivity

for multiple species with disparate dispersal abilities and independent distributions.
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Introduction

It has proven challenging to reliably predict population connectivity (Rudnick et al. 2012;

Cushman et al. 2013). Much of this difficulty is due to uncertainty about species distri-

butions, how different landscape features affect movement, and limited understanding of

species dispersal abilities (e.g. Cushman 2006). In addition, there are significant technical

challenges in producing fine-scale, spatially explicit predictions of population connectivity

across large geographical extents. However, new analytical approaches from the discipline

of landscape ecology have improved scientists’ abilities to predict effects of landscape

structure and fragmentation on population connectivity. For example, resistant kernel

(Compton et al. 2007; Cushman et al. 2010a; Landguth et al. 2012) and least-cost path

approaches (Cushman et al. 2009, 2010b; Landguth et al. 2012), coupled with landscape

pattern analysis (McGarigal et al. 2002), provide a framework to predict the location of

core habitats, fracture zones (where connectivity is attenuated by barriers or cumulative

dispersal cost), and movement corridors across a range of dispersal abilities (e.g. Cushman

et al. 2010a, b).

This project was designed to predict and map core habitat and fracture zones, and

identify potential movement corridors for three species of conservation concern in the

American Great Plains. Swift fox (Vulpes velox) lesser prairie-chicken (Tympanuchus

pallidicinctus) and massasuaga (Sistrurus catenatus) are identified as species of conser-

vation concern across the Great Plain Region. Reliable knowledge about population dis-

tribution and connectivity is essential to guide effective conservation actions for these

species.

We used resistant kernel (Compton et al. 2007; Cushman et al. 2010a) and least-cost

path approaches (Cushman et al. 2009, 2010b) to evaluate habitat area, fragmentation, and

corridor connectivity for these three species across the full extent of the Great Plains

Landscape Conservation Cooperative. We had three specific objectives: (1) estimate the

extent of connected habitat and map dispersal corridors among core habitat patches; (2)

identify key geographical locations that are most important to maintaining population

connectivity and facilitating movement; (3) evaluate how well protecting areas important

for population connectivity for one species could simultaneously protect population con-

nectivity for the others.

The results of connectivity analyses such as those presented here are highly dependent

on accurate distribution data, accurate estimates of dispersal distance, and accurate map-

ping of relative landscape resistance to movement. Given that there is uncertainty in these

parameters, results should be interpreted with care and treated as hypotheses warranting

further evaluation. However, the connectivity modeling approaches described here enable

researchers to make efficient use of existing information to assess connectivity and identify

or prioritize areas for management and protection.

Methods

Study area and focal species

The Great Plains Landscape Conservation Cooperative (GPLCC) is an applied conserva-

tion partnership intended to provide science and decision-support tools for the full com-

plement of plant, fish and wildlife resources in the Great Plains geographical area (www.

greatplainslcc.org/). The geographic area of the GPLCC encompasses parts of eight states
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including New Mexico, Texas, Oklahoma, Colorado, Kansas, Nebraska, South Dakota, and

Wyoming. Some of the most endangered habitats in the US are found in this area, along

with a number of imperiled species. Our analysis covers the full extent of the GPLCC,

making it one of the largest-scale connectivity modeling efforts undertaken in the United

States.

We selected three focal species from the species of greatest conservation concern lists

specified in the State Wildlife Action Plans of the states within the GPLCC (www.

wildlifeactionplan.org/). Swift fox (Vulpes velox), lesser prairie-chicken (Tympanuchus

pallidicinctus), and massasauga (Sistrurus catenatus) were chosen because they are species

of high regional conservation concern, they cover a broad taxonomic range, and represent a

wide range of dispersal abilities. We used all records since 1970 in the NatureServe (www.

natureserve.org) database for these species and for which precise locational data were

available. These data provided 3,567 occurrence records of lesser prairie-chicken, 8,454

records of swift fox, and 2,441 records of massasauga within the study area. NatureServe

provides a network of biological inventories in all 50 U.S. states, Canada, Latin America and

the Caribbean. NatureServe collects and manages detailed information on occurrence records

for plants, animals, and ecosystems. Given the large extent of our study area, and the fact that

it spans multiple State, federal and local jurisdictions, we chose to use NatureServe because it

is the only occurrence database that was compiled using standardized protocols across the full

extent of our study area that provides spatial locations for observations.

Landscape resistance hypotheses

We defined a series of movement resistance models for each focal species based on a

combination of biome-level vegetation (Neilson and Draypek 1998), roads (http://www.

ipcsr.umich.edu/cocoom/TIGER), landuse and landcover (http://mrlc.gov/nlcd.php). As all

three focal species are associated with grassland, we used the same resistance maps for all

species. We defined three potential resistance models consisting of a combination of

biome-level vegetation and three levels of resistance due to roads and landuse/landcover

(Table 1). These three levels represent low, medium and high relative avoidance of

crossing roads and non-natural vegetation land cover classes.

We obtained road data from the TIGER/Line shapefiles database, produced by the US

Census Bureau. We merged all the TIGER/Line shapefiles for the study area extent, and

reprojected to an Albers conformal conic projection. This roads coverage was then

transformed from a vector to a raster coverage at a 30 m pixel grain, and reclassified to

four different classes of roads: (1) primary highway with limited access, (2) primary road

without limited access, (3) secondary and connecting road, (4) local, neighborhood and

rural road. These four classes of road were then reclassified to the relative resistance values

shown in Table 1 for the low, medium and high relative resistance scenarios. To facilitate

connectivity analysis across very large spatial extents, these 30 m grain roads raster layers

were resampled with bilinear interpolation to a 1 km pixel size. Resampling with bilinear

interpolation retains the net resistant effect across the merged pixels and is an appropriate

method to coarsen resistance maps while preserving the spatial pattern of resistance to

movement (Cushman and Landguth 2010).

We obtained landcover and landuse data from the National Landcover Database (Fry

et al. 2009), produced by the Multi-Resolution Land Characterization (MRLC) consortium.

NLCD2001 is a 16-class land cover classification scheme that has been applied consis-

tently across all 50 United States and Puerto Rico at a spatial resolution of 30 m.

NLCD2001 is based primarily on the unsupervised classification of Landsat Enhanced
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Thematic Mapper?(ETM?) circa 2001 satellite data. We merged all NLCD2001 tiles for

the study area extent and reprojected these layers to an Albers conformal conic projection.

We then reclassified the NLCD2001 rasters as shown in Table 1 to produce three levels of

relative resistance to movement through different landuse and landcover classes. To

facilitate connectivity analysis across very large spatial extents, these 30 m grain roads

raster layers were resampled with bilinear interpolation to a 1 km pixel size. The three

resistance layers used in the analysis (low, medium and high relative resistance) were

created by combining the biome, roads and landcover resistance layers through addition

(e.g. Cushman et al. 2006).

We replicated all spatial modeling analyses on all three of these resistance layers to

quantify the degree to which predictions of population connectivity depended on the

Table 1 Classification of resistance values in the resistance maps used in our analysis

Land attribute Assigned resistance level

Low Medium High

Land covera

Natural Perennial ice/Snow; Barren land; Deciduous forest;
Evergreen forest; Mixed forest; Scrub/Shrub; Herbaceous;
Emergent herbaceous wetlands

1 1 1

Agricultural Hay/Pasture; Cultivated crops 5 10 15

Water Open water 5 10 15

Residential Developed, open space; Developed, low intensity 10 15 20

Urban Developed, medium intensity; Developed, high intensity 15 20 25

Roadsb

Primary highway with limited access Interstate highways and
some toll highways are in this category and are distinguished by
the presence of interchanges

200 400 600

Primary road without limited access This category consists
mainly of US highways, but may include some state highways
and county highways that connect cities and larger towns

50 100 150

Secondary and connecting road This category includes mostly
state highways, but may include some county highways that
connect smaller towns, subdivisions, and neighborhoods

50 100 150

Local, neighborhood, and rural road A road in this category is
used for local traffic and usually has a single lane of traffic in
each direction

10 10 10

Biomec

Mixed conifer Temperate cool mixed forest, Temperate evergreen
needleleaf woodland, Temperate cool mixed woodland

10

Grass/Shrub Subtropical grassland, Subtropical shrubland,
Temperate grassland; Temperate shrubland

1

Desert Subtropical desert 5

Subalpine Tundra; Subalpine 5

a Categorical land cover classes from the 2001 National Land Cover database (http://www.mrlc.gov/nlcd.
php)
b Line dataset of roads in the United States from the 2000 Census TIGER line features (http://www.icpsr.
umich.edu/cocoon/TIGER/2000ua/states.xml)
c Predicted vegetation cover from 2000 Nielson/Drapek vegetation cover http://www.fs.fed.us/pnw/
corvallis/mdr/mapss)
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particular resistance values chosen. Evaluating habitat connectivity across this range of

resistance parameters enabled us to quantify the sensitivity of results to variation in the

nature of the functional response to landscape composition (as in Cushman et al. 2006) and

allowed us to quantify the degree of uncertainty in our predictions.

Connectivity modeling approaches

This project combined two different connectivity modeling approaches. The first of these

approaches is the resistant kernel approach. Unlike most corridor prediction efforts, the

resistant kernel approach is spatially synoptic and provides prediction and mapping of

expected dispersal rates for every pixel in the study area extent, rather than only for a few

selected ‘‘linkage zones’’ (e.g. Compton et al. 2007). Also, in resistant kernel modeling,

scale dependency of dispersal ability can be directly included to assess how species of

different vagilities may be affected by landscape fragmentation (e.g. Cushman et al.

2010a). Resistant kernel modeling is also computationally efficient, enabling simulation

and mapping across the entire GPLCC for multiple species (e.g. Cushman et al. 2010a).

The second approach is a factorial implementation of least-cost path analysis (e.g.

Cushman et al. 2009, 2010b; Landguth et al. 2012). We used the universal corridor net-

work simulator (UNICOR; Landguth et al. 2012) to predict movement corridors for each

focal species. UNICOR’s key features include a driver-module framework, connectivity

mapping with thresholding and buffering, and graph theory metrics. Through parallel-

processing computational efficiency is greatly improved allowing analysis of larger geo-

graphic extents and populations. Previous least-cost path mapping approaches were limited

by prolonged computational times and poor algorithmic efficiency that restricted the size of

the conservation problem that could be analyzed, or required artificial subsamples of target

populations.

Details of the resistant kernel approach

The resistant kernel approach to connectivity modeling is based on least-cost dispersal

from a defined set of sources. The sources in our case are the locations of NatureServe

records of occurrence for the three focal species. Each of the three resistance maps

described above provide resistance values for all locations in the study area, in the form of

the cost of crossing that pixel relative to the least-cost condition. These costs are used as

weights in the dispersal function, such that the expected density of dispersing individuals in

a pixel is down-weighted by the cumulative cost from the source, following the least-cost

route (Compton et al. 2007). The initial expected density for our three focal species was set

to 1 in each cell containing a NatureServe record. The model calculates the expected

relative density of each species in each pixel around the source, given the dispersal ability

of the species, the nature of the dispersal function, and the resistance of the landscape

(Compton et al. 2007; Cushman et al. 2010a). We wrote an ESRI ArcGrid script to

calculate the resistant kernel (Rk) density. The script uses the ArcGrid COSTDISTANCE

(ESRI 2008) function to produce a map of the movement cost from each source up to the

specified dispersal threshold. These cost-distance grids were inverted and scaled such that

the maximum value for each individual kernel was one. The scaled kernels surrounding all

sources were then summed to give the total expected relative density of dispersing indi-

viduals at each pixel. The results of the model were surfaces of expected density of

dispersing organisms at any location in the landscape.
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We bracketed the range of plausible dispersal abilities of the three focal species

(Table 2). The dispersal distance settings for each species were based on careful review of

published dispersal distance data in the scientific literature. For the lesser prairie-chicken,

Hagen and Giesen (2005) reported that 7 % of 348 movements by individuals of this

species in SW Kansas exceeded 30 km. Robb and Schroeder (2005) report that lesser

prairie-chicken individuals are capable of long distance movements. They believe there are

no natural barriers impeding the connectivity of lesser prairie-chicken populations

throughout most of their range. Based on the observed frequency of dispersal greater than

30 km, we chose three dispersal distances for the lesser prairie-chicken which likely

bracket the functional range of dispersal in this species. The three dispersal distances were

20000, 40000, and 80000 cost units, reflecting a range of 20–80 km of dispersal ability in

optimal habitat.

Mackessy (2005) reports that over the course of the active season, massasaugas moved

considerable distances. Data from three individuals indicated that total distance of

movements may be 2–4 km. Clark et al. (2008) report that massasaugas exhibit population

genetic structure over very short distances (1–2 km), indicating either extremely limited

natal dispersal, reduced movement associated with mating, or both. Accordingly, we chose

dispersal distances for massasauga of 2000, 4000, and 6000 cost units, corresponding to

dispersal ability in optimal habitat of between 2 and 6 km.

Dark-Smiley and Keinath (2003) reported dispersal distances for adult swift foxes

averaging 11 km, with an observed maximum distance of 64 km (Mercure et al. 1993).

Kamler et al. (2004) report movement of one female swift fox as far as 20 km, before

returning to her natal range where she remained philopatric. Based on these published

movement abilities we chose dispersal distances for swift fox of 10000, 30000, and 60000

cost units, corresponding to dispersal ability of 10–60 km in optimal habitat. It should be

noted that these dispersal distances are effectively ‘‘maximum dispersal distance’’ in the

resistant kernel modeling approach, and the vast majority of modeled dispersal events will

be less than half that total cost distance using the resistant kernel method.

Details of the least-cost path approach

The UNICOR simulator uses Dijkstra’s algorithm (Dijkstra 1959) to solve the single

source shortest path problem from every mapped species occurrence location on a land-

scape to every other occurrence location (Landguth et al. 2012). The analysis produces

predicted least-cost path routes from each source point to each destination point. UNICOR

requires two input files: (1) a landscape resistance surface, and (2) point locations for each

population or individual’s location. Point locations define starting and ending nodes of the

least-cost paths between pairs of individuals. From graph theory and network analysis, we

Table 2 Range of dispersal distances for the three focal species used to examine connectivity in the
GPLCC

Species Dispersal distance
settings (km)

Sources

Lesser prairie-chicken
(Tympanuchus pallidicinctus)

20, 40, 80 Hagen and Giesen (2005),
Robb and Schroeder (2005)

Massasauga (Sistrurus catenatus) 2, 4, 6 Mackessy (2005), Clark et al. (2008)

Swift fox (Vulpes velox) 10, 30, 60 Mercure et al. (1993), Dark-Smiley and
Keinath (2003), Kamler et al. (2004)
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can then represent the landscape resistance surface as a graph with nodes and edges. Each

occurrence record was considered to be a node. The graph edges, which represent possible

movement paths between each node were weighted by the resistance value of the cell,

times the distance to the next pixel center, which gives the total edge length in terms of

raster cell units (resistance distance). Dijkstra’s algorithm was then implemented to find

optimal paths of movement, computed for every paired combination of starting and ending

nodes. These predicted least-cost paths were buffered based on kernel density estimations

(e.g. Cushman et al. 2008). A choice of a Gaussian function was used for the kernel density

buffering (as in Li and Racine 2007). The buffered least-cost paths were then combined

through summation (as in Cushman et al. 2009) to produce maps of connectivity networks

among all pairs of sources and destinations.

Analyzing extent and connectivity of habitat

The analyses described above produced 27 connectivity maps, with nine produced for each

focal species, corresponding to the factorial combination of the three dispersal abilities and

the three levels of relative landscape resistance (high, med, low). In their raw form these

maps depict the expected density of dispersing individuals. These densities indicate the

distribution of connected populations (where the cells are predicted to contain non-zero

occupancy rates for each species) and the spatial variation in expected densities of dis-

persers. These two attributes are the foundation for analyses of population distribution,

identification of core habitats, fracture zones, and barriers to dispersal.

We defined barriers as locations where the resistant kernel predictions became zero (no

movement) between core habitat patches. We defined core habitat patches as contiguous

units with limited restrictions on animal movement as indicated by resistant kernel values

greater than 10 % of the highest recorded for the species. We defined fracture zones as

locations where the resistant kernel predictions were

0\Rk\10 % of maximum:

Thus, we defined fracture zones as areas between core habitat patches where occupancy

and internal movement rates were less than 10 % of the value of the highest recorded for

the species. The upper limit of Rk that defines a fracture zone is arbitrary and represents the

area of the landscape in which the expected density of individuals is less than 10 % of the

maximum density. Total connected habitat is all areas where the resistant kernel predicted

values are greater than zero (core ? fracture zones).

FRAGSTATS metrics

We used FRAGSTATS (McGarigal et al. 2002) to calculate the percentage of the land-

scape, correlation length, largest patch index, and number of patches that are predicted to

be connected habitat or core habitat (the latter being a spatial subset of the former) for each

focal species. The percentage of the landscape is the simplest metric of landscape com-

position, and quantifies how much of the study area is predicted to be connected or core

habitat for each species. Correlation length provides a measure of the average distance an

organism can move within a patch before encountering the patch boundary from a random

starting point (McGarigal et al. 2002). The correlation length gives a global measure of the

connectivity of the landscape and is a more relevant functional measure of habitat avail-

ability than more basic measures such as patch size, nearest neighbor distance, and
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percentage of the landscape in occupied habitat (McGarigal et al. 2002). Third, we cal-

culated the largest patch index (McGarigal et al. 2002) of both predicted connected and

core habitat. This index reports the extent, as a proportion of the size of the study area, of

the largest patch of connected or core habitat. Fourth, we calculated the number of patches

of internally connected habitat for each species across the combination of dispersal ability

and relative landscape resistance.

Multiple species connectivity

We also conducted further analyses to identify the areas that are predicted to be barriers

and fracture zones simultaneously for the three focal species. Management actions will

likely have larger overall benefit if they simultaneously address the ecological needs of

multiple species of concern (Beier and Brost 2010). We intersected the resistant kernel

predictions of all connected habitat, core habitat and fracture zones across the three species

for each combination of dispersal ability and relative landscape resistance.

Results

Lesser prairie-chicken

We mapped nine different alternative models for lesser prairie-chicken habitat connec-

tivity, consisting of the factorial of relative landscape resistance (high, med, low) and

dispersal ability (20, 40, 80 km). Results for medium relative landscape resistance and

40 km dispersal ability are shown in Fig. 1. We chose to illustrate this combination as it is

the intermediate prediction that we feel best reflects the probable pattern of population

connectivity of the species. Maps of predicted connected habitat for all nine combinations

of connected relative landscape resistance and dispersal ability for lesser prairie-chicken

are available for download (http://cel.dbs.umt.edu/cms/index.php/lesserprairiechicken/

chickendetails).

In Fig. 1, predicted ‘‘core’’ habitat is shown in red patches and ‘‘fracture zones’’ of

attenuated connectivity are shown in blue patches. Total area of habitat predicted to be

connected by dispersal is the union of the core habitat and the fracture zone patches. The

figure shows that predicted connected lesser prairie-chicken habitat at the Med 9 40 km

combination of relative landscape resistance and dispersal ability was concentrated in two

regions, one in the southwest, and another in the north-central parts of the study area. The

southwest population was predicted to exist in a single connected patch with large areas of

core habitat and high internal migration rates. The north-central populations were predicted

to be broken up into five patches that were predicted to be isolated from one another and

from the southwestern population. We predicted a relatively large area of core habitat with

high internal migration rates in the central patch in the north-central group. However, the

eastern most patches were predicted to have weak internal migration rates due to the low

number of lesser prairie-chicken location records from that area in the NatureServe

database used to populate the model.

The dispersal corridors predicted by the UNICOR model are shown in an orange color-

ramp, with dark orange corresponding to areas that were predicted to be the strongest

corridors. Figure 1 shows two dominant dark orange corridors connecting the southern
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patch of core habitat to the north central core population and the eastern cluster of sub-

populations. There are corridors of lesser strength connecting the other subpopulations.

We calculated four FRAGSTATS metrics of landscape composition and configuration

on the connected habitat maps for all nine combinations for relative landscape resistance

and dispersal ability for lesser prairie-chicken connected habitat (Table 3). Predicted core

habitat comprised about 1/3 the total area of connected habitat, and had roughly half the

connectivity as measured by correlation length and largest patch index. The percentage of

the landscape, correlation length and largest patch index of connected habitat were pre-

dicted to increase greatly, and the number of patches was predicted to decrease, with

increasing dispersal ability (Table 3). In contrast, extent and connectivity of habitat was

predicted to be largely independent of the relative values of landscape resistance used in

our analysis. Sensitivity analysis confirmed this finding with landscape metrics showing

relatively low sensitive to landscape resistance levels when compared to dispersal ability

(Table 4).

Fig. 1 Lesser prairie-chicken
dispersal corridors and habitat
connectivity for the resistance
map GHRMLM, corresponding
to grassland associated species
with medium relative resistance
due to roads and landuse. The
map shows resistant kernel core
habitat areas (red) and fracture
zones (blue) overlaying the
UNICOR corridor pathways
[gradient from weak (light
orange) to strong (dark orange)].
The boundary of the Great Plains
Landscape Conservation
Cooperative boundary is shown
in dark black line. Interstate
highways are shown in green
lines
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Swift fox

We mapped nine alternative models of habitat connectivity for swift fox, consisting of the

factorial of relative landscape resistance (high, med, low) and dispersal ability (10, 30,

60 km). The results for medium relative resistance and 30 km dispersal ability scenario are

shown in Fig. 2. Maps of predicted connected habitat for all nine combinations of con-

nected relative landscape resistance and dispersal ability for Swift fox are available for

download at http://cel.dbs.umt.edu/cms/index.php/swiftfox/foxdetails.

Table 3 FRAGSTATS results for percentage of landscape in connected habitat (PLAND), largest patch of
connected habitat percentage of study area (LPI), correlation length of connected habitat (CL), and number
of individual patches of connected habitat (NP) across factorial combination of three levels of relative
landscape resistance (high, med, low) and three levels of dispersal ability (20000, 40000, 80000 cost units)
for the lesser prairie-chicken

FRAGSTAT
metric

Landscape
resistance

Dispersal ability (cost units)

20,000 40,000 80,000

Core Connected Core Connected Core Connected

PLAND High 0.68 2.39 1.30 5.13 2.51 10.74

Med 0.71 2.53 1.38 5.50 2.66 11.55

Low 0.77 2.76 1.50 6.11 2.90 12.77

NP High 31 25 24 12 18 4

Med 28 25 22 12 18 3

Low 26 22 21 10 16 3

CL High 21129.95 37269.38 30371.50 53830.22 56664.74 127731.1

Med 21205.94 37122.96 30807.03 54081.76 57089.12 127936.5

Low 21180.72 39961.27 31417.42 58962.21 57552.61 127535.4

LPI High 0.34 1.17 0.813 2.20 2.03 6.71

Med 0.35 1.19 0.838 2.27 2.11 7.34

Low 0.36 1.31 0.87 2.38 2.21 8.30

Connected value of the metric for the full extent of habitat connected by the resistant kernel modeling. Core
value of the metric for the portion of the resistant kernel predictions in ‘‘core’’ habitat

Table 4 Relative sensitivity of landscape metrics (PLAND, percentage of landscape in connected habitat;
CL, correlation length of connected habitat; LPI, largest patch of connected habitat percentage of study area;
NP, number of individual patches) to variation in landscape resistance levels and dispersal ability for each
focal species

Focal

species

PLAND CL LPI NP

Landscape

resistance

Dispersal

ability

Landscape

resistance

Dispersal

ability

Landscape

resistance

Dispersal

ability

Landscape

resistance

Dispersal

ability

Lesser

prairie-

chicken

0.085 1.137 0.030 0.880 0.070 1.562 0.089 0.617

Swift fox 0.080 1.129 0.082 1.394 0.113 4.293 0.195 0.612

Massasauga 0.039 0.428 0.028 0.183 0.072 0.621 0.036 0.222
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Swift fox habitat at the Med 9 30 km combination of relative landscape resistance and

dispersal ability was predicted to be relatively widespread across the northwestern 1/3 of

the study area, with four large core habitat concentrations (Fig. 2). The northernmost

populations were predicted to be broken up into two major centers and several smaller

subpopulations were predicted to be isolated from one another. The large west-central area

was predicted to be largely connected into a single large patch containing several large

Fig. 2 Swift fox dispersal corridors and habitat connectivity for the resistance map GHRMLM,
corresponding to grassland associated species with medium relative resistance due to roads and landuse.
The map shows resistant kernel core habitat areas (red) and fracture zones (blue) overlaying the UNICOR
corridor pathways. The boundary of the Great Plains Landscape Conservation Cooperative boundary is
shown in dark black line. Interstate highways are shown in green lines
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core habitat areas with high rates of internal movement, and linked across fracture zones of

attenuated movement rates. Finally, there were several isolated subpopulations predicted in

the southwestern corner of the study area.

The strongest predicted corridors (dark orange) connect the north, central, and southern

core habitat areas in a nearly north–south azimuth (Fig. 2). We also observed an extensive

network of weaker corridors connecting the mosaic of small subpopulations in the northern

and central cluster to each other and to the core habitats in other parts of the study area.

At all levels of dispersal ability and relative landscape resistance, there was a large change in

the FRAGSTATS metrics between analysis of connected habitat and core habitat (Table 5).

Specifically, predicted core habitat comprised about 1/4 to 1/2 of the total area of connected

habitat, and had roughly 1/3 to 1/2 the connectivity as measured by correlation length and

largest patch index. As with the lesser prairie-chicken, the percentage of the landscape, cor-

relation length and largest patch index of connected habitat were predicted to increase greatly,

and the number of patches was predicted to decrease, with increasing dispersal ability (Table 5).

Also similar to the lesser prairie-chicken results, extent and connectivity of connected swift fox

habitat was predicted to be largely independent of the relative values of landscape resistance

used in our analysis. For all four landscape metrics, dispersal ability had much greater effect

than variation in relative landscape resistance (Table 4).

Massasauga

We mapped nine alternative models of habitat connectivity for the massasauga, consisting

of the factorial of relative landscape resistance (high, med, low) and dispersal ability (2, 4,

6 km) for the massasuaga. Figure 3 shows the strong effect of the limited dispersal ability

Table 5 FRAGSTATS results for percentage of landscape in connected habitat (PLAND), largest patch of
connected habitat percentage of study area (LPI), correlation length of connected habitat (CL), and number
of individual patches of connected habitat (NP) across factorial combination of three levels of relative
landscape resistance (high, med, low) and three levels of dispersal ability (10000, 30000, 60000 cost units)
for the swift fox

FRAGSTAT
metric

Landscape
resistance

Dispersal ability (cost units)

10,000 30,000 60,000

Core Connected Core Connected Core Connected

PLAND High 1.28 4.40 2.71 11.11 6.04 18.76

Med 1.31 4.61 2.88 11.84 6.49 20.00

Low 1.38 5.01 3.17 13.14 7.21 22.08

NP High 148 114 120 52 84 22

Med 144 112 112 41 85 15

Low 140 95 108 30 75 12

CL High 8990.68 22280.20 32729.71 76067.72 67448.92 109790.70

Med 9931.55 22165.44 35700.49 77680.42 68799.49 111916.60

Low 11783.55 27465.05 39240.69 80848.34 71451.68 130739.70

LPI High 0.131 0.59 1.177 5.15 3.70 9.11

Med 0.133 0.60 1.267 5.52 3.94 9.91

Low 0.208 0.73 1.380 6.19 4.37 11.42

Connected value of the metric for the full extent of habitat connected by the resistant kernel modeling. Core
value of the metric for the portion of the resistant kernel predictions in ‘‘core’’ habitat
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of this species, with connected habitat concentrated in close proximity to the occurrence

records taken from the NatureServe database. Maps of predicted connected habitat for all

nine combinations of connected relative landscape resistance and dispersal ability for

massasauga are available for download (http://cel.dbs.umt.edu/cms/index.php/massasuga/

snakedetail).

The population of this species was concentrated in the west-central area of the study

area (Fig. 3). Most of the predicted occurrences were united by dispersal into a single

patch, with a number of apparently isolated satellite subpopulations. There were also

several small and isolated subpopulations in the central and northeast parts of the study

area. Figure 3 also shows the predicted network of corridors that unite core habitat along

least-cost routes. There is a single dominant corridor that connects the west-central cluster

of core populations to the east-central cluster along a corridor that arcs strongly to the

south. There is also a network of corridors of lesser predicted strength connecting the full

network of species occurrence records.

In contrast to the previous focal species, there was a relatively small decrease in the

FRAGSTATS metrics between analysis of all predicted connected habitat and core habitat

Fig. 3 Massasauga dispersal
corridors and habitat connectivity
for the resistance scenario
GHRMLM, corresponding to
grassland associated species with
medium relative resistance due to
roads and landuse. The map
shows resistant kernel core
habitat areas (red) and fracture
zones (blue) overlaying the
UNICOR corridor pathways. The
boundary of the Great Plains
Landscape Conservation
Cooperative boundary is shown
in dark black line. Interstate
highways are shown in green
lines
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(Table 6). This decrease reflected the limited dispersal ability of the species, which con-

centrates patches into core habitat with limited fracture zone area. As in the previous cases,

the percentage of the landscape, correlation length and largest patch index of predicted

connected habitat increased, and the number of patches decreased, with increasing dis-

persal ability (Table 6). Also consistent with the previous two species, extent and frag-

mentation of connected massasauga habitat was predicted to be largely independent of the

relative values of landscape resistance used in our analysis. For all four landscape metrics,

dispersal ability had more than ten times greater effect than variation in relative landscape

resistance (Table 4).

Multiple species connectivity

We found relatively limited ability to simultaneously optimize protection for connected

habitat for all three species (Fig. 4). Specifically, there was relatively little overlap of

predicted connected habitat among the three species. Less than 1/3 of the total extent of

connected habitat across the three species is simultaneously connected for two of the three

species, and less than 10 % provides connected habitat for all three species simultaneously.

Discussion

Many connectivity assessments have focused on establishing or protecting narrow linear

corridors of habitat between core populations (Harris and Gallagher 1989; Beier and Loe

1992; Harrison and Bruna 1999). However, there is considerable doubt regarding the utility

Table 6 FRAGSTATS results for percentage of landscape in connected habitat (PLAND), largest patch of
connected habitat percentage of study area (LPI), correlation length of connected habitat (CL), and number
of individual patches of connected habitat (NP) across factorial combination of three levels of relative
landscape resistance (high, med, low) and three levels of dispersal ability (2000, 4000, 6000 cost units) for
the massasuaga

FRAGSTAT
metric

Landscape
resistance

Dispersal ability (cost units)

2,000 4,000 6,000

Core Connected Core Connected Core Connected

PLAND High 0.23 0.35 0.266 0.49 0.32 0.66

Med 0.21 0.32 0.267 0.50 0.329 0.67

Low 0.21 0.33 0.271 0.52 0.341 0.71

NP High 30 29 30 22 21 19

Med 31 34 30 21 21 19

Low 31 34 30 21 20 19

CL High 13966.87 16159.06 13970.47 18969.24 18293.45 19879.41

Med 13501.83 13612.7 13983.17 18994.64 18300.92 19855.07

Low 13498.96 13617.15 13890.8 18953.08 18768.55 19781.07

LPI High 0.093 0.18 0.11 0.26 0.184 0.33

Med 0.079 0.12 0.11 0.26 0.186 0.34

Low 0.079 0.12 0.11 0.27 0.197 0.35

Connected value of the metric for the full extent of habitat connected by the resistant kernel modeling. Core
value of the metric for the portion of the resistant kernel predictions in ‘‘core’’ habitat
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of these small, narrow, linear features to provide population subsidization and recoloni-

zation among patches (Hobbs 1992; Simberloff et al. 1992; Rosenberg et al. 1997). It is

more likely that organisms experience their surroundings as gradients of differential

quality in relation to ecological and life-history characteristics (McGarigal and Cushman

2005; Cushman et al. 2009, 2010c). Considering connectivity from this perspective also

allows a shift in the scale of focus from linear corridors between patches, which are usually

small relative to the vagility of the organism and the distribution of its population, to a

broader scale analysis of how landscape patterns of differential resistance to movement

affect connectivity at scales relevant to the population-level processes that are central to

effective conservation (Berger et al. 2006; Cushman 2006; Cushman et al. 2009).

Fig. 4 Intersection map for
predicted connected habitat. The
colors depict different species
combinations
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We assessed broad scale population connectivity, including the extent and pattern of

core habitat areas, the location of fracture zones, barriers and corridors between core

habitat patches, which enabled us to integrate the effects of differential sensitivity to

landuse and differential dispersal ability on population connectivity. Instead of computing

pair-wise corridors between a priori defined sources (e.g. Beier et al. 2007), we combined

resistant kernel and factorial least-cost path approaches to predict spatially synoptic pat-

terns of connectivity and identify all-directional dispersal (e.g. Compton et al. 2007;

Cushman et al. 2010a, Cushman and Landguth 2012b), providing a more complete picture

of connectivity across continuous space. In addition, we evaluated scale dependency across

three dispersal distances, corresponding to an eightfold range in dispersal ability, enabling

us to evaluate the sensitivity of individual species’ connectivity to dispersal ability. By

combining a range of alternative resistance models with multiple dispersal distances, we

quantified the relationships between dispersal ability and ecological characteristics in

driving multi-species connectivity across a large area of the American Great Plains.

There have been few published studies that have utilized spatially synoptic connectivity

modeling that incorporated differential dispersal ability. Compton et al. (2007) used the

resistant kernel approach to rank vernal pools in Massachusetts by local, neighborhood,

and regional connectivity and identify the most functionally connected pool complexes.

Cushman et al. (2010a) evaluated effects of changing population size, dispersal ability and

landscape resistance on population connectivity of pond breeding amphibians in Massa-

chussetts. They found that population connectivity was a complex interaction between

dispersal ability, population size and the landscape factors influencing resistance to

movement, highlighting the importance of correctly specifying species dispersal ability and

explicitly incorporating it into connectivity analyses.

Similar to Compton et al. (2007) and Cushman and Landguth (2012a, b), our analysis

provides mapped predictions of connectivity that could potentially be used to prioritize

areas for conservation that maximally protect the total connectivity of the population. Our

results also support the findings of Cushman et al. (2010a) who found that dispersal ability

played a larger role than relative landscape resistance in affecting the degree of connec-

tivity across resistant landscapes. It is interesting to note that most efforts to delineate

corridors or linkage zones have not explicitly addressed the issue of dispersal ability.

Our mapping of core habitat, fracture zones, and corridor areas in the GPLCC for the

three focal species indicated that the populations of all three species are fragmented. The

massasauga would appear to be the most vulnerable to fragmentation given its highly

limited dispersal ability. However, the apparently aggregated distribution of this species

may reduce this effect. The main core population appears to be relatively well connected,

with a few internal fracture zones and gaps spanned by potentially important corridors. We

believe, therefore, that the main risks to massasauga are related to limited population size

and area of occupied habitat, and conservation actions may be most effective if they focus

primarily on protecting and expanding core habitat areas.

Lesser prairie-chicken and swift fox have relatively large dispersal abilities, which

should help mitigate the effects of habitat fragmentation. However, the scale at which the

populations of these species are broken into patches may produce severe fragmentation.

For both species, the main areas of occupied core habitat are separated by large gaps that

are wider than the predicted dispersal abilities of the species, which may increase local

extinction risk. For these species, mitigating areas of limited connectivity among core

habitat patches and enhancing potential linkage corridors may be nearly as important as

protecting core habitat. Protecting core habitat we feel should usually be the first priority,
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but for these species increasing connectivity between isolated core patches also could be

critically important.

Multiple-species connectivity: quantifying strength of linkage

Linkage refers to portions of a landscape intended to support the connectivity of multiple

focal species and ecosystem processes (Beier and Brost 2010). There have been few

evaluations of the efficacy of proposed corridors or linkage zones for multiple species.

While Haddad et al. (2003) found that narrow, experimentally created corridors influenced

the movement rates of ten focal species, it is unclear the extent to which these short term

observations of movement influence population processes such as gene flow and demo-

graphic exchange. Beier et al. (2006, 2007) designed large-scale linkage plans in California

and Arizona to simultaneously meet the needs of 10–30 focal mammals, reptiles, fishes,

amphibians, plants, and invertebrates. However, these efforts did not explicitly model how

effective the linkages would be across the range of dispersal abilities of the focal species.

We found relatively limited ability to simultaneously optimize protection for connected

habitat for all three species, with little overlap of predicted core habitat among the three

species. The inability of one of our three focal species to provide umbrella protection for

the others suggests that it will likely be challenging to simultaneously protect these three

species in a single multi-species conservation effort. Given their independent distributions

and complex patterns of habitat connectivity, it is likely that conservation strategies will

have to be optimized for each of these species separately.

Scope and limitations

There are several limitation to this analysis that need to be considered in interpreting the

results, including the importance of empirically validating predicted corridors, uncertainty

in species responses to landscape composition, uncertainty in species dispersal abilities,

and uncertainty in species distributions.

Validating predicted corridors

Modeled predictions of core habitat areas, fracture zones, and corridors have sometimes

been criticized because they lack supporting movement data (Simberloff et al. 1992;

Rosenberg et al. 1997) and because they may contain errors in model parameters or

incorrect assumptions (Spear et al. 2010). It would be valuable to conduct research to test

whether individual animals are preferentially moving through predicted habitat or corri-

dors. One way to test the robustness of our predictions would be to monitor movement of a

large number of individuals and statistically evaluate the frequency of movement through

predicted connected habitat and corridors relative to availability. In addition, genetic mark-

recapture or parentage analysis could be used document movement of individuals or

parent-offspring pairs through predicted connected habitat or predicted corridors relative to

availability.

Uncertainty in landscape resistance

Most of the published studies using landscape resistance maps have relied on expert

opinion to estimate resistance of landscape features to movement (Zeller et al. 2012) given
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the lack of detailed information on animal movement or gene flow for most species.

However, basing analyses on unvalidated expert opinions is not desirable (Seoane et al.

2005), and landscapes are perceived by particular species in ways that may not correspond

to our assumptions concerning connectivity and habitat quality (With et al. 1997; Wiens

2001; Shirk et al. 2010). We sought to mitigate this uncertainty by evaluating a range of

potential landscape resistance parameterizations for each focal species. We recommend

further investment of resources to test and validate the resistance maps produced by this

analysis using movement (e.g. Short Bull et al. 2011; Cushman and Lewis 2010; Reding

et al. 2013) and landscape genetic methods (e.g. Cushman et al. 2006; Wasserman et al.

2010; Shirk et al. 2010).

Uncertainty in dispersal ability

What constitutes functional connectedness is highly dependent on the dispersal behaviour

of the particular species in question. The cumulative cost distances organisms are able to

traverse, and the probability distributions of movements as a function of cost distances

between sources and potential destinations vary greatly among species. We reviewed the

literature on the dispersal abilities of the three focal species, and chose to evaluate three

different dispersal distances for each. The goal was to evaluate a ‘‘low end’’, ‘‘middle’’ and

‘‘high end’’ estimate of dispersal ability to quantify the effects of differential mobility on

predictions of the extent and connectivity of habitat in the GPLCC. Our results indicate

that predictions of the extent and pattern of core habitat areas, and the degree to which they

are linked by dispersal are highly sensitive to dispersal ability. In our analysis, variation in

dispersal ability was generally 10–20 times more impactful on our predictions than vari-

ation in landscape resistance parameterization. Given high sensitivity to dispersal ability,

further research is warranted to evaluate the dispersal behaviour and quantify the distri-

bution of dispersal distances for our three study species.

Uncertainty in species distributions

The methods we employ are based on predicting population cores, fracture zones, and

corridors based on modeling dispersal from source locations in the landscape. Therefore,

meaningful inferences are conditioned on comprehensive landscape occupancy data for

species of interest. Accurate information on the distribution of species is fundamental to

reliable predictions. However, obtaining reliable and consistent information of spatial

patterns of species distributions is very challenging. We tried to address this uncertainty by

utilizing all element occurrences recorded since 1970 in the NatureServe database, which

is arguably the best synoptic database of distribution and occurrence across the full

GPLCC. However, there are a number of caveats associated with the use of NatureServe’s

data to document current landscape occupancy patterns including the absence of consistent

and systematic inventory methods that can lead to geographic variation in survey/col-

lecting effort. We believe that it is likely that the data quality is high and survey effort is

relatively consistent across space for swift fox and prairie chicken, given they are large,

charismatic animals of high public interest. Thus we feel the occurrence data for these two

species is probably reliable and reflects their distributions and relative densities quite well.

The data on massasauga occurrence, on the other hand, may be of variable quality given

the species’ cryptic nature and the typically high spatial variability in survey effort for

reptiles.
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A second caveat associated with NatureServe’s data concerns the temporal dynamics of

populations, particularly in highly fragmented systems like those in the Great Plains.

Although the use of occupancy data over the long term (e.g., since 1970) will serve to

increase landscape sample coverage, there is a challenge associated with the use of

Fig. 5 Key fracture zones for swift fox. The panel at upper left shows the extent of the GPLCC specified by
a green outline. State boundaries are shown in dark green and interstate highways are shown as gray lines.
The yellow boxes show the locations of the key fracture zones we identified as being particularly important
to regional connectivity. The inset panels at right and below show the key fracture zones we identified as
most important to maintaining regional connectivity of the swift fox in the GPLCC. The colormap ranges
from red (high predicted movement rate) to dark blue (low predicted movement rate). Black areas are
predicted to have zero occupancy
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occurrence records over time as to whether they reflect the true current landscape occu-

pancy for the species of interest. Although the habitat layers represent relatively current

snapshots, the occurrence data are cumulative since the 1970s and it is possible that

distributional shifts may have occurred such that some of the NatureServe records corre-

spond to locations where the species no longer persist. Therefore, our predictions may not

Fig. 6 Key corridors for swift fox. The panel at lower left shows the extent of the GPLCC specified by a
green outline. State boundaries are shown in dark green and interstate highways are shown as gray lines.
The red boxes show the location of key potential movement corridors between isolated populations. The
inset panels at right and above show the key corridors we identified as most important to maintaining
regional connectivity of the swift fox. The colormap ranges from red (high corridor strength) to dark blue
(low corridor strength). Black areas are predicted to not be part of the predicted corridor
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reflect the true pattern of occurrence and relative abundance of our focal species, and the

degree to which this departure affects the reliability of our predictions is not known. For

this reason, the predictions of core habitat areas, fracture zones, and corridors produced by

this analysis should be treated as hypotheses that should be subject to further testing before

they are utilized to guide management actions. More comprehensive monitoring efforts,

both targeted and surveillance (Nichols and Williams 2006; McComb et al. 2010), will

serve to improve both our modeling efforts and the testing of their predictions. However,

given the geographic scope and the growing number of species of conservation concern, it

is likely that unconventional monitoring techniques involving non-invasive genetic sam-

pling will be required if such efforts are to be feasibly implements (Schwartz et al. 2007).

Toward optimized conservation actions

Despite uncertainties associated with our understanding of dispersal ability, landscape

resistance, and species occupancy across broad landscapes, our results provide an example

of how broad-scale, spatially explicit modeling of core habitat areas (Fig. 5), fracture

zones, and corridors (Fig. 6) could inform conservation strategies to maintain or enhance

population connectivity for species of conservation concern. Our results suggest a hier-

archy of conservation actions that are conditioned on where conservation opportunities fall

with respect to core habitat areas, fracture zones, or movement corridors. In core habitat

areas, land use incentives that promote habitat retention, conservation easements, or out-

right acquisition should be pursued. In fracture zones, habitat quality is known to be

limiting since movement is more restrictive than in core habitats. Under these circum-

stances incentives, easements, or acquisition will do little in the absence of habitat res-

toration efforts that improve habitat quality and facilitate species movement. Finally, areas

identified as potential movement corridors must be considered adaptively. Certainly land

use restrictions or incentives, land protection, or restoration should be considered within

movement corridors, however conservation actions should be couched within an adaptive

management framework because of the uncertainty associated with whether species are

actually using these predicted movement corridors, and if they are, if the exchange occurs

regularly or rarely. Although the potential for strategic conservation planning is great under

spatially explicit treatment of species occupancy and movement across broad geographic

areas, so too is the potential for squandering limited conservation resources in ways that

ultimately fail to improve population connectivity among species of conservation concern.

Conservation practice will only overcome the inertia for action by coupling comprehensive

occupancy monitoring data, spatially explicit connectivity analyses as outlined here, with

real land management planning and implementation—all under the rigors of active

adaptive management (e.g., McCarthy and Possingham 2007).
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