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Abstract

The research objective is to develop a non-destructive testing (NDT) method to evaluate
the prestress loss in prestressed concrete bridge girders using ultrasonic waves. The work
principle is based on acoustoelastic effect - ultrasonic wave velocity varies with stress level
in prestressed concrete. A self-reference test setup was proposed to measure wave velocity
in two orthogonal directions (prestress and unstressed directions) in the girder. This setup
will be able to reduce effects of material variation and temperature change.

The concept was first validated on small concrete specimens (cylinders and beams) in
laboratory. A signal analysis algorithm was developed to reliably measure P wave velocity
change with stress, i.e. the acoustoelastic coefficient. Then the proposed technique was
applied to a full-scale prestressed concrete bridge girder (131 ft long) to monitor the stress
release process. The stress change monitored by the ultrasonic test showed good agreement
with the result from the strain measurement. In both the small beam test and the large girder
test, the measured acoustoelastic coefficients were in the range of 0.7%/ksi.

The temperature effects on acoustoelastic coefficient were investigated on two pre-
stressed concrete members. Experimental results showed a slight difference between tem-
perature induced velocity changes in the prestress and unstressed directions. Although
temperature variation can cause large change of velocity, the self-reference setup will be
able to correct about 80% of temperature effect. The relationship between relative wave ve-
locity changes and stress changes in two orthogonal directions after temperature correction
can be used to predict the stress level in concrete and reduce environmental influences.
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Fig. 4.7. Test on an one-way prestressed concrete slab in PKI structural laboratory to
investigate the temperature effect on the ultrasonic wave velocity in prestressed concrete
members.

4.3.2 Results of temperature effect

Using the analysis method described in section 3.3, the relative velocity change dv/v caused
by temperature are presented in figure 4.8 for the bridge girder and figure 4.9 for the
prestressed concrete slab. In all tests, the wave velocities in both directions are affected by
temperature and they decrease with increasing temperature. In the bridge girder test, the
velocity change reached 0.35% in 5 ◦C temperature range.

The curves in two tests have different slopes, which are caused by different materials and
temperature gradient. However, within each test, the velocity in the prestressed direction
has a slightly smaller slope than in the unstressed direction. The slope difference between
two directions is only 0.0235 %/ oC in both tests. This difference can be explained by
the nonlinear behavior of concrete material. When the concrete is prestressed, it becomes
denser and has lower nonlinearity than in the unstressed condition. In the stressed direction,
the velocity is also less sensitive to temperature change than in the unstressed direction.

If the prestress level is low, then the dv/v ∼ T slope difference between two directions
is small, i.e., the temperature effects on velocity in both directions are almost equal. The
self-reference test setup will automatically cancel the temperature effect by measuring the
velocity difference between two directions. When the prestress level is high, as in the case
of the bridge girder test, using the self-reference setup will still be able to reduce the 70%
to 80% of temperature induced measurement error. The remaining temperature effect can
be further compensated by using the slope difference between two directions.
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Fig. 4.8. Relative velocity change with temperature on the prestressed concrete bridge
girder.
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Fig. 4.9. Relative velocity change with temperature on the one-way prestressed concrete
slab.
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Chapter 5

Conclusions and future work

In this study, we experimentally investigated the ultrasonic acoustoelastic effects in concrete,
using small scale specimens and full-size prestressed concrete bridge girders. Accuratewave
velocity measurements are needed in order to estimate prestress loss using this technique.
Coda wave interferometry (CWI) is commonly used for analysis of small wave velocity
change in concrete. Our study showed the results from CWI analysis are strongly affected
by the time window position in signals. We proposed to only use the direct P-wave part in
the time range of [tp,1.5tp] for CWI analysis and obtained consistent results.

In both the small beam and big girder tests, along the direction parallel to the applied
stress, thewave velocity increaseswith compressive stress level and shows highest sensitivity
to stress change. In the transverse direction (no stress), the velocity decreases with stress
due to Poisson’s effect and it has the lowest sensitivity.

The proposed ultrasonic method was validated on a 131-ft long prestressed concrete
girder at Coreslab Structures in Omaha. We monitored the entire prestress release process
using ultrasonic waves. The ultrasonic method clearly shows the stress release process
and indicates each strand cut detail. The measured acoustoelastic is 0.731%/ ksi in the
prestressed concrete girder, similar to the value obtained in laboratory specimens.

We also investigated the temperature effect on ultrasonic wave velocity in prestressed
concrete members. Although temperature has significant effect on wave velocity mea-
surement, the proposed self-reference test setup can effectively cancel or compensate the
temperature effect by using the velocity measurement in the unstressed direction as the
reference.

This phase I research proved the feasibility of using ultrasonic waves for evaluation of
prestress loss in prestressed concrete girders. Camber is another important parameter in
construction and placement of prestressed concrete girders. The future work will be focused
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on prediction of prestress loss and camber growth of prestressed concrete girders during the
period from release to deck construction. In order to apply this NDT technique to practice,
the future works include:

1. build the relationship between ultrasonic wave velocity and strain in concrete based
on measurements on Nebraska prestressed concrete girders;

2. develop an instrument and algorithm capable of measuring wave velocity differences
with high accuracy;

3. understand and correct temperature effects on ultrasonic and camber measurements;
4. develop a calculation procedure to predict stress loss and camber from production to

deck placement based on ultrasonic measurement;
5. improve the current camber calculation procedure by measuring actual modulus of

elasticity E using ultrasonic waves before prestress release.
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