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CARTAN TRIPLES

ALLAN P. DONSIG, ADAM H. FULLER, AND DAVID R. PITTS

Abstract. We introduce the class of Cartan triples as a generalization of the notion of a Car-
tan MASA in a von Neumann algebra. We obtain a one-to-one correspondence between Cartan
triples and certain Clifford extensions of inverse semigroups. Moreover, there is a spectral theorem
describing bimodules in terms of their support sets in the fundamental inverse semigroup and, as
a corollary, an extension of Aoi’s theorem to this setting. This context contains that of Fulman’s
generalization of Cartan MASAs and we discuss his generalization in an appendix.

1. Introduction

As observed in the seminal work of Feldman-Moore [14, 15], when a von Neumann algebra
contains a Cartan MASA, strong structural results about the algebra may be obtained. However,
many von Neumann algebras do not contain a Cartan MASA; the first examples were found in [32].
Determining which von Neumann algebras have a Cartan MASA and when it is unique is an
important question and has attracted significant attention; for two examples, see [27, 28]. Part
of the interest is that Cartan MASAs are closely connected to crossed product decompositions, as
indeed is clear from the work of Feldman-Moore.

Recall a Cartan MASA D in a von Neumann algebra M is a maximal abelian subalgebra with
two additional properties: it is regular, that is, the span of its normalizers is weak-∗ dense in M;
and there is a faithful, normal conditional expectation from M to D.

In this paper, we study a much larger family of regular abelian von Neumann subalgebras of von
Neumann algebras. Specifically, if M is a von Neumann algebra, we consider an abelian and regular
subalgebra D ⊆ M such that there is a faithful normal conditional expectation onto the relative
commutant Dc of D in M. Because Dc plays an important role in the structure of the algebras, we
name it N and call (M,N,D) a Cartan triple.

In our previous work [12], we showed that Cartan MASAs can be described in terms of certain ex-
tensions of inverse semigroups. In the setting of Cartan triples, our main result is a correspondence
between Cartan triples and a larger class of extensions of inverse semigroups

P →֒ G
q
։ S.

Further, we obtain a Spectral Theorem for N-Bimodules and a version of Aoi’s theorem in this
context of Cartan triples. Although some of the methods from [12] extend naturally, significant
modifications are needed. For example, for Cartan triples, P is not usually an abelian inverse
semigroup, but rather is Clifford, that is, the idempotents of P commute with all elements of P.

Various generalizations of MASAs have been considered in the literature. For example in [13],
Ruy Exel connects the existence of a suitable non-abelian generalization of a MASA in a separable
C∗-algebra to a reduced crossed product decomposition of the containing algebra. Instead of the
inverse semigroup approach considered here, Exel considers a Fell bundle over an inverse semigroup
as the classifying structure. The appropriate variant of Exel’s notion of a generalized Cartan
subalgebra in the von Neumann algebra setting is a full Cartan triple, meaning D is the center of
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N (see Definition 2.3). Our approach using extensions of inverse semigroups for classification, while
related to Fell bundles, is rather different.

Another generalization, also related to crossed product decompositions, has been considered by
Igor Fulman in [17]. Fulman’s generalization of a Cartan MASA is, in our terms, a Cartan triple
with an additional condition, the existence of a subgroup of the unitaries in M that normalizes
D, contains the unitaries of N, and has a suitable fixed point property. We show in Appendix A
that this additional condition can be characterized as the existence of a lift of an inverse semigroup
homomorphism from S into the partial automorphisms of the Cartan triple. Crossed products
by inverse semigroups were first introduced by Nándor Sieben in [29] using such a semigroup
homomorphism into the partial automorphisms of a C∗-algebra. Thus, Fulman’s condition can
be interpreted naturally as saying that the containing algebra is a crossed product by a suitable
inverse semigroup. Fulman’s starting point was to generalize the Feldman-Moore characterization
of Cartan subalgebras [14, 15] using measured equivalence relations. While some of our results
resemble Fulman’s, ours are more general, perhaps because of the comparative simplicity of the
inverse semigroup approach used here.

We now discuss our results and their motivation in more detail. We associate to each Cartan
triple an extension of inverse semigroups, P →֒ G → S where S is a fundamental inverse semigroup,
that is, the only elements commuting with the idempotents of S, denoted E(S), is E(S) itself, and
P is Clifford, meaning all elements of P commute with E(S). To be an extension, the restriction
to idempotents of the maps above must be isomorphisms. It is well known that every inverse
semigroup G may be represented as such an (idempotent-separating) extension; see [21, p. 141].

To construct the extension from a Cartan triple, take P to be the partial isometries in N that
normalize D and G to the partial isometries in M that normalize D, with P →֒ G the inclusion map.
To construct S, we identify elements with the same action on the idempotents, i.e., we quotient by
the Munn congruence.

In [12], the inverse semigroup P was abelian and we required that the character space of E(P)
was hyperstonean. In that case, it was easy to recover D from P, as the continuous functions on
the character space of E(P).

Here, we need a condition that allows us to again recover Dc = N from P: P arises as the partial
isometries in a von Neumann algebra N which normalize a fixed von Neumann subalgebra of the
center of N. In this case, we say that P is an N-Clifford inverse monoid (Definition 2.7).

To see the need for this condition, consider the (degenerate) Cartan triple, (M,M,CI). In this

case, the associated extension has the form U(M)
id
→ U(M) → CI. However, there are von Neumann

algebras not isomorphic to their opposite algebras [10]. The unitary groups of such an algebra and
its opposite are isomorphic, so if the extension was defined purely in terms of inverse semigroups
(and without our stronger condition) it would be possible for non-isomorphic triples to produce the
same extension.

With these definitions in hand and the construction of an extension from a triple (as outlined
above), we show that Cartan triples are isomorphic if and only if their extensions are (in a suitable
sense) isomorphic, Theorem 2.22.

To obtain the converse, we construct a Cartan triple from an extension in Section 3. This is more
subtle, and we build on the strategy of our previous paper. In particular, we use the order structure
of S to construct a reproducing kernel Hilbert N-bimodule, A. We then define a representation, λ,
of G, Theorem 3.2, by partial isometries on A. After tensoring this representation with a faithful
normal representation of N to obtain a suitable representation of G (Theorem 3.2), we define the
Cartan triple of an extension in terms of the double commutants of G, P, and their (common)
idempotents (Definition 4.1). In Theorem 4.11 we complete the circle of ideas by showing that the
extension associated to the Cartan triple constructed is (isomorphic to) the original extension.
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In Section 5 we begin a study of the N-bimodules in a Cartan triple (M,N,D). For our strongest
results we require that D be as large as possible, that is, D is the center Z(N) of N. We call such
a Cartan triple full. When (M,D) is a Cartan pair, (M,D,D) is a full Cartan triple, and so the
class of full Cartan triples properly includes Cartan pairs. Different examples arise when M is type
I, Section 6.1, and when M = N ⋊α G is a crossed product of N by a discrete group G which acts
by properly outer automorphisms on N and Z(N), Theorem 6.3.

Let (M,N,D) be a full Cartan triple, with associated extension P →֒ G
q
։ S. We show in

Theorem 5.2 that if B ⊆ M is a non-zero weak-∗ closed N-bimodule, then G ∩ B 6= {0}. Thus,
every weak-∗ closed N-bimodule gives rise to a non-trivial subset q(B ∩ G) of S. We call such sets
spectral sets, (Definition 5.1). If A ⊆ S is a spectral set, then span{q−1(A)} is an N-bimodule in
M.

Of course, it is conceivable that distinct weak-∗ closed N-bimodules have the same spectral sets.
To study this, we use the Bures-topology on M, induced by the conditional expectation E : M → N.
Whilst the weak-∗ and Bures topologies on M are not, in general, comparable, the Bures-closed N-
bimodules are weak-∗ closed [6, Lemma 3.1]. The advantage of the Bures topology over the weak-∗
topology is that certain Fourier-type series often converge in the Bures topology, while they need
not converge in the weak-∗ topology (or in any other “natural” topology). Indeed, Mercer showed
in [23] that the Fourier series of elements in crossed-product von Neumann algebra converge in the
Bures-topology, but need not converge in the weak-∗ topology. Analogously, when (M,N,D) is a
Cartan triple, we show in Theorem 5.7 that if x ∈ M, then x is the Bures-limit of the net of finite
sums ∑

u∈F⊆GN(M,D)

uE(u∗x).

Similar results for x in a Cartan pair are given in [5, Proposition 2.4.4] and [24, Theorem 4.4].
In Proposition 5.8 we show that if B is a weak-∗ closed N-bimodule, B0 = spanwk

∗
{B ∩ G}, and

B1 = spanBures{B ∩ G}, then B0 ⊆ B ⊆ B1 and each of B0, B and B1 give the same spectral sets.
We do not address when the bimodules B0, B and B1 are necessarily equal. In [5], if all weak-∗
bimodules are necessarily Bures closed, the Cartan pair is said to satisfy spectral synthesis. Even
in the case of Cartan pairs, whether B0 = B1 remains an open problem. There are some special
cases when the result is known. If (M,N,D) is a Cartan triple of the type studied by Fulman [17]
discussed above, with the added condition that M is constructed from a hyperfinite equivalence
relation, then it can be deduced from Theorem 5.10 and [17, Theorem 15.18] that all weak-∗ closed
N-bimodules are necessarily Bures closed. Cameron and Smith [6, 8] studied a related problem in
crossed-products. They showed that if G is a discrete group satisfying the AP condition, acting on
a von Neumann algebra N by properly outer automorphisms, then the weak-∗ closed N-bimodules
in N ⋊α G are necessarily Bures closed.

We give a Spectral Theorem for Bimodules in Theorem 5.10, which gives a one-to-one corre-
spondence between the Bures-closed N-bimodules and the spectral sets in S. We find it striking
that Theorem 5.10 depends only on S and not on the extension G. Fuller and Pitts [16] had previ-
ously observed a similar phenomenon: non-isomorphic Cartan pairs that have isomorphic lattices
of Bures-closed bimodules. Theorem 5.10 generalizes the Spectral Theorem for Cartan pairs found
in [12]; see also [5]. It should be noted that the study of bimodules in Cartan pairs was initiated in
the seminal work of Muhly, Saito and Solel [25]. They present a spectral theorem for weak-∗ closed
bimodules. Their work, however, has a gap. Though not explicitly stated as such, the gap in [25]
amounts to assuming that the weak-∗ closed bimodules are necessarily Bures closed, see [5].

A class of N-bimodules of particular interest are the von Neumann algebras L such that N ⊆
L ⊆ M. In Theorem 5.12 we show that if (M,N,D) is a full Cartan triple and N ⊆ L ⊆ M,
then (L,N,D) is again a Cartan triple. This extends Aoi’s result for intermediate von Neumann
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algebras in Cartan pairs [1]. A key step in the proof is showing that an intermediate subalgebra
L is necessarily closed in the Bures topology. Thus, Theorem 5.12 together with Theorem 5.10
immediately give a one-to-one correspondence between the intermediate von Neumann subalgebras
containing N, and the sub-inverse Cartan monoids of S, Corollary 5.14. We view this as a Galois
correspondence-type result; although we do not have a group to hand, there is the Cartan inverse
semigroup. Corollary 5.14 should be compared with the following well-known result: If N is a factor
and G is a discrete group acting on N by (properly) outer automorphisms, then Izumi, Longo and
Popa [18] show that if L is a von Neumann algebra satisfying N ⊆ L ⊆ N ⋊α G then there is a
subgroupH of G such that L = N⋊αH; see also [6, 9]. That is, there is a one-to-one correspondence
between subgroups of G and the von Neumann algebras M with N ⊆ M ⊆ N⋊αG. A similar Galois
correspondence-type theorem without an explicit group structure has been obtained in [2] for von
Neumann algebras generated by a measured equivalence relation and an appropriate cocycle.

Cameron and Smith have considered similar questions in [6, 7, 8]. They study crossed products
by discrete groups and the bimodule and intermediate algebra structure therein, amongst other
things. There is overlap with our work and [8], with neither work subsuming the other. There they
let N be any von Neumann algebra and let G be a discrete group acting on N by properly outer
automorphisms. If N is abelian, then N is a Cartan MASA in N ⋊α G and so both our settings
cover this case. If N is not abelian, but G also acts on Z(N) by properly outer automorphisms then
it is shown in Theorem 6.3 (N ⋊α G,N,Z(N)) is a Cartan triple.

2. Cartan triples and their extensions

Our main goals in this section are the construction of the extension associated to a Cartan triple,
Proposition 2.13, and the result that two such extensions are isomorphic if and only if they arise
from isomorphic Cartan triples, Theorem 2.22.

We begin by fixing some notation. For M a von Neumann algebra, Z(M) denotes its center and
U(M) the unitary elements. For X ⊆ M, Xc denotes the relative commutant, that is,

Xc := {m ∈ M : xm = mx for all x ∈ X}.

Definition 2.1. Suppose M and L are von Neumann algebras with L ⊆ M. The groupoid normal-
izer of L in M is the set,

GN(M,L) := {v ∈ M : v is a partial isometry and v∗Lv ∪ vLv∗ ⊆ L}.

If the linear span of GN(M,L) is weak-∗ dense in M, we say L is a regular subalgebra of M or that
L is regular in M.

Remark 2.2. When L ⊆ M is an abelian von Neumann subalgebra of M, it is more common to
say L is regular in M if span{U ∈ U(M) : UDU∗ = D} is weak-∗ dense. However, if L is abelian,
then

span{U ∈ U(M) : UDU∗ = D} = spanGN(M,D), (2.1)

thus the two definitions coincide in this case. For a proof of this statement see [5, p. 479, Inclu-
sion 2.8].

We now introduce our main topic of study.

Definition 2.3. A Cartan triple is a triple (M,N,D) consisting of three von Neumann algebras
satisfying:

(a) D is an abelian and regular von Neumann subalgebra of M;
(b) N is the relative commutant of D in M; and
(c) there exists a faithful normal conditional expectation E : M → N.

A Cartan triple (M,N,D) is full when D = Z(N).
4



Remarks 2.4.

(a) For any Cartan triple (M,N,D), M ⊇ N ⊇ D because D is abelian.
(b) If (M,N,D) is a Cartan triple, then (M,N,Z(N)) is a full Cartan triple. Indeed, N = Dc

implies N = (Z(N))c, and since GN(M,D) ⊆ GN(M,Z(N)), Z(N) is regular in M.

Section 6 is devoted to examples of Cartan triples. Here we content ourselves with making two
simple observations regarding what occurs when two of the von Neumann algebras in a Cartan
triple coincide.

Examples 2.5.

(a) Suppose (M,D,D) is a Cartan triple. Then (M,D,D) is full and D is a Cartan MASA in
M. In this sense, the class of Cartan triples includes the class of Cartan pairs.

(b) Now suppose (N,N,D) is a Cartan triple. Then Dc = N. When N has separable predual,

we may write D = L∞(X,µ) and write N =
∫ ⊕

X Nx dµ(x) as a direct integral. When this is

done, GN(N,D) may be identified with the set of all functions f ∈
∫ ⊕

X Nx dµ(x) such that
for almost every x ∈ X, f(x) ∈ U(Nx) ∪ {0}.

Example 2.5(b) shows how the inverse semigroup GN(N,D) can be used to describe a direct
integral. Further, this inverse semigroup approach allows one to work with von Neumann algebras
which do not have separable predual. This example discussed further in Example 2.15.

We fix some notation for inverse semigroups next. For the most part, our notation follows Section
2 of [12], which also gives much of the inverse semigroup theory we will use. For an in-depth text
on inverse semigroups see [21]. Throughout the paper:

• E(S) will denote the idempotents of the inverse semigroup S;
• we use s† to denote the inverse of the element s in an abstract inverse semigroup; however,
for an inverse semigroup of partial isometries on a Hilbert space, the adjoint v∗ is the inverse
of the element v and we typically use v∗ instead of v† in this setting.

For our extensions, we need two special classes of inverse monoids: Cartan inverse monoids,
defined in [12], and N-Clifford inverse monoids, which are new.

Definition 2.6 ([12, Definition 2.11]). We call an inverse semigroup S a Cartan inverse monoid if

(a) S is fundamental;
(b) S is a complete Boolean inverse monoid; and

(c) the character space Ê(S) of the complete Boolean lattice E(S) is a hyperstonean topological
space.

Definition 2.7. Let N be a von Neumann algebra. An N-Clifford inverse monoid is an inverse
monoid P such that P = GN(N,D), where D is a von Neumann subalgebra of Z(N). If in addition
D = Z(N), we say P is a full N-Clifford inverse monoid.

Remark 2.8. Suppose P = GN(N,D) is an N-Clifford inverse monoid. It is not difficult to show
that

P = {v ∈ N : v is a partial isometry with vv∗ = v∗v ∈ D} and E(P) = proj(D).

In particular, P is a Clifford inverse semigroup of partial isometries.
Since U(N) ⊆ P, every element of N is a linear combination of at most four elements of P.

We need an appropriate notion of isomorphism of such inverse monoids.

Definition 2.9. If for i = 1, 2, Pi are Ni-Clifford inverse monoids, a map α : P1 → P2 is an
extendible isomorphism if there exists a normal ∗-isomorphism θ : N1 → N2 such that α = θ|P1

;
equivalently, there exists a normal isomorphism θ : N1 → N2 such that θ(D1) = D2.
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Obviously, any extendible isomorphism is an isomorphism of inverse semigroups.

Definition 2.10. For i = 1, 2, let Si be Cartan inverse monoids, let Pi be Ni-Clifford inverse

monoids, and suppose Pi
ιi
−֒→ Gi

q
։ Si are extensions of Si by Pi. These extensions are equivalent

if there are semigroup isomorphisms α : G1 → G2, α̃ : S1 → S2 and an extendible isomorphism
α : P1 → P2 such that

α ◦ ι1 = ι2 ◦ α and q2 ◦ α = α̃ ◦ q1.

Remark 2.11. When Pi is the set of partial isometries in C(Ê(Si)) and Ni := C(Ê(Si)), then this
definition reduces to the notion of equivalence for extensions found in [12].

Definition 2.12. Let G be an inverse semigroup. The Munn congruence (also called the Munn
relation) on G is the set

RM := {(v1, v2) ∈ G× G : v1ev
†
1 = v2ev

†
2 for all e ∈ E(G)}.

Then RM is the maximal idempotent separating congruence on G and the set of RM -equivalence
classes equipped with the product [v][w] = [vw] and inverse [v]† = [v†] form a fundamental inverse
semigroup [21, Proposition 5.2.5].

We now show how a Cartan triple gives rise to an extension of inverse semigroups.

Proposition 2.13. Let (M,N,D) be a Cartan triple and set

G := GN(M,D) and P := GN(N,D).

Then G and P are inverse semigroups with P ⊆ G and

E(P) = E(G) = proj(D).

Moreover, the following statements hold.

(a) P is a N-Clifford inverse monoid.
(b) P is the set of elements of G Munn-related to an idempotent.
(c) If S is the quotient of G by the Munn congruence, then S is a Cartan inverse monoid.

Proof. Obviously, P ⊆ G and by definition, P is an N-Clifford inverse monoid. If v ∈ G, then
v∗v ∈ D, so every idempotent of G is a projection in D. Also, every projection in D is an idempotent
in G. It follows that G and P are von Neumann regular monoids for which the idempotents commute,
so both are inverse monoids and

E(P) = E(G) = proj(D).

If v ∈ P, then (v, vv∗) ∈ RM , so every element of P is Munn-related to an idempotent. On the
other hand, suppose v ∈ GN(M,D) is Munn-related to the idempotent e. Then vv∗ = e. Let p be
a projection in D. Then

vp = vpv∗v = epv = pev = pv.

Hence v ∈ N, and so v ∈ P. Thus, P is the set of elements of G Munn related to an idempotent.
We have already observed that S is a fundamental inverse monoid, and it clearly contains a zero

element 0. As the Munn congruence is idempotent separating, E(S) is isomorphic to E(P). The proof
that S is a Cartan inverse monoid now follows exactly as in the proof of [12, Proposition 3.5]. �

As noted in the introduction, any inverse semigroup G may be represented as an extension of a
fundamental inverse semigroup S by a Clifford inverse semigroup C. Indeed, C may be taken to
be the set of elements of G which are Munn-related to an idempotent, and S is the quotient of G
by the Munn relation. We apply this construction to the inverse semigroup G of Proposition 2.13
to obtain the class of extensions studied in this paper.
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Definition 2.14. Let (M,N,D) be a Cartan triple. Put G := GN(M,D), P := GN(N,D), S :=
G/RM , and let q : G → S the quotient map. The extension

P →֒ G
q
։ S. (2.2)

is called the extension associated to (M,N,D).

Example 2.15. We return to the context of Example 2.5(b), that is, of a Cartan triple having
the form (N,N,D). In this setting, P = G consists of the partial isometries in N whose initial and
final spaces coincide and belong to D; S is the projection lattice of D; and q is the map v 7→ v∗v.
Note that N is the linear span of P. When N∗ is separable and N is identified as the direct integral∫ ⊕

X Nx dµ(x), we may view the extension P →֒ P
q
։ S as giving a description of the direct integral

in terms of the linear span of
{
f ∈

∫ ⊕

X
Mx dµ(x) : f(x) ∈ U(Mx) ∪ {0} for almost every x

}
.

The extension approach encodes the measure theory into D, and is a more operator theoretic view
of N as opposed to the point based view of N as a direct integral.

In the study of extensions, it is often useful to choose a section j for the quotient map q, that
is, j is a map such that q ◦ j = id|S. In our context, we will frequently need a section which is
order preserving in the sense that j(1) = 1 and whenever s, t ∈ S and s ≤ t, we have j(s) ≤ j(t)
(see [12, Definition 4.1]). Most of the following result was proved in [12] when P is the set of partial
isometries in C∗(E(S)), but the same proof holds for extensions of S by N-Clifford inverse monoids
considered here.

Recall that q|E(G) is a complete Boolean algebra isomorphism of E(G) onto E(S). Also, as observed

in [12, Remark 4.8], for any s, t ∈ S, (s†t ∧ 1) is the source idempotent for s ∧ t, that is,

(s ∧ t)†(s ∧ t) = s†t ∧ 1. (2.3)

Proposition 2.16 (c.f. [12, Proposition 4.6]). Let P →֒ G
q
։ S be an extension of the Cartan

inverse monoid S by the N-Clifford inverse monoid P. The map (q|E(S))
−1 extends to an order

preserving section j : S → G for q. This section has the property that for s1, s2 ∈ S,

j(s1)
†j(s2)j(s

†
1s2 ∧ 1) = j(s†1s2 ∧ 1). (2.4)

Proof. Equation (2.4) was not proved in [12], so we provide a proof here. Using (2.3), observe

j(s1)
†j(s2)j(s

†
1s2 ∧ 1) = j(s1)

†j(s1 ∧ s2)

=
(
j(s1 ∧ s2)j(s1 ∧ s2)

†j(s1)
)†
j(s1 ∧ s2)

= j(s1 ∧ s2)
†j(s1 ∧ s2) = j(s†1s2 ∧ 1). �

Definition 2.17. We say that the Cartan triples (M1,N1,D1) and (M2,N2,D2) are isomorphic if
there exists a normal ∗-isomorphism θ : M1 → M2 such that θ(D1) = D2.

Our goal is to show that Cartan triples, up to isomorphism, are uniquely determined by their
associated extensions, up to equivalence. We do this in Theorem 2.22. We first need some technical
lemmas.

Throughout the remainder of the section, fix an order-preserving section j for the extension

P →֒ G
q
։ S associated to the Cartan triple (M,N,D).
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Lemma 2.18. Let (M,N,D) be a Cartan triple with conditional expectation E : M → N. Let

P →֒ G
q
։ S be the associated extension. Then E(G) = P. Further, for v ∈ GN(M,D),

E(v) = ve, where e = j(q(v) ∧ 1) ∈ E(G).

Also, E preserves the natural inverse semigroup partial order on G and P in the sense that if
v,w ∈ G with v ≤ w, then E(v) ≤ E(w).

Proof. Each v ∈ G induces a normal ∗-isomorphism θv from v∗vD to vv∗D, given by θv(d) = vdv∗.
Applying Froĺık’s Theorem [26, Proposition 2.11A] to θv we may find elements e0, e1, e2, e3 ∈ E(G)
such that

(a) for i 6= j, ei ∧ ej = 0;
(b) e0 ∨ e1 ∨ e2 ∨ e3 = v∗v;
(c) for i = 1, 2, 3, (vei)

2 = 0; and
(d) q(ve0) ∈ E(S).

If w ∈ G and w2 = 0, then

E(w) = ww∗E(w) = E(w)ww∗ = E(www∗) = 0.

It follows that

E(v) = E(ve0) = ve0.

Let e := e0. Then q(e) = q(v)∧1 because e0 corresponds to the ideal of D consisting of all elements
fixed by θv.

Finally, if v,w ∈ G and v ≤ w, we may find f ∈ E(G) so that v = wf . Then E(v) = E(w)f , so
E(v) ≤ E(w). �

Lemma 2.19. Let (M,N,D) be a Cartan triple, and suppose y belongs to the linear span of
GN(M,D). Then there exists a finite set {wk}

m
k=1 ⊆ GN(M,D) such that E(w∗

jwk) = 0 for j 6= k
and

y =
m∑

k=1

wkE(w∗
ky). (2.5)

Proof. Choose {vj}
N
j=1 ⊆ GN(M,D) and scalars {cj}

N
j=1 so that cjvj 6= 0 for each j and y =∑N

j=1 cjvj. Let si := q(vi) and apply [12, Lemma 4.15] to obtain a finite set {tk}
m
k=1 ⊆ S satisfying

(a) for 1 ≤ j ≤ m, tj 6= 0;
(b) for j 6= k, tj ∧ tk = 0;
(c) for 1 ≤ j ≤ m and 1 ≤ n ≤ N , tj ∧ sn ∈ {0, tj};
(d) for 1 ≤ j ≤ m there exists 1 ≤ n ≤ N such that tj ∧ sn = tj; and
(e) for each 1 ≤ n ≤ N , sn =

∨
{tj : tj ≤ sn}.

Let wk := j(tk). Lemma 2.18 implies that E(w∗
jwk) = 0 when j 6= k.

For 1 ≤ n ≤ N , let In := {i : ti ≤ sn}. Given n and i ∈ In, another application of Lemma 2.18
gives

wiE(w∗
i vn) = wiw

∗
i vnj(t

†
isn ∧ 1) = vn(v

∗
nwiw

∗
i vn)j(t

†
isn ∧ 1) = vnj(t

†
jsn ∧ 1).

Since sn =
∨
i∈In

(ti ∧ sn), we obtain,

vn =
m∑

i=1

wiE(w∗
i vn).

Equation (2.5) follows. �
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We now recall notation regarding weights on a von Neumann algebra used in [30]. Suppose M

is a von Neumann algebra and φ is a weight on M. Recall that

pφ := {x ∈ M+ : φ(x) <∞}, nφ := {x ∈ M : φ(x∗x) <∞} and

mφ :=

{
N∑

k=1

y∗kxk : n ∈ N, xk, yk ∈ nφ

}
.

By [30, Lemma VII.1.2], pφ is a hereditary convex cone in M+, nφ is a left ideal of M, mφ is a
hereditary ∗-algebra of M, and every element of mφ is a linear combination of four elements of pφ.
The semi-cyclic representation πφ of M on the Hilbert space Hφ associated to φ will be denoted
(πφ,Hφ, ηφ). When φ is faithful, normal and semi-finite, πφ is a faithful, normal representation of
M.

Lemma 2.20. Suppose M is a von Neumann algebra, L ⊆ M is a von Neumann subalgebra, and
there exists a faithful normal conditional expectation E : M → L. Let ψ be a faithful, normal,
semi-finite weight on L and let φ := ψ ◦E. Then φ is a faithful normal semi-finite weight on M.

Proof. Since mψ is a ∗-subalgebra of L, a corollary of the Kaplansky density theorem shows there
exists a net (xλ) in pψ with 0 ≤ xλ ≤ I which converges σ-strongly to I. For any z ∈ M+,

xλzxλ ≤ ‖z‖ p2λ ∈ pψ. Therefore, xλzxλ ∈ pφ. Since limσ-strong xλzxλ = z, we have that pφ
generates M. That is, φ is semi-finite on M. �

The following result is the key technical tool used in the proof of Theorem 2.22.

Lemma 2.21. Let (M,N,D) be a Cartan triple, suppose ψ is a faithful normal semi-finite weight
on N and let φ = ψ ◦ E. Then the linear span of {ηφ(vn) : v ∈ GN(M,D) and n ∈ nψ} is dense in
Hφ.

Proof. For m ∈ nφ and v ∈ GN(M,D),

ψ(E(m∗v)v∗vE(v∗m)) = ψ(E(m∗v)E(v∗m)) ≤ ψ(E(m∗vv∗m)) ≤ ψ(E(m∗m)) = φ(m∗m) <∞.

This yields the following.

(a) E(nφ) = nψ (take v = I).
(b) For v ∈ GN(M,D), the map M ∋ m 7→ vE(v∗m) is idempotent and leaves nφ invariant;

hence there is a projection Pv ∈ B(Hφ) whose action on ηφ(nφ) is given by Pvηφ(m) =

ηφ(vE(v∗m)). In addition, notice that rangePv = {ηφ(vn) : n ∈ nψ}.

To prove the lemma, it therefore suffices to show that if ξ ∈ Hφ and Pvξ = 0 for every v ∈ GN(M,D),
then ξ = 0. We begin with a preliminary fact about approximating norms of vectors in Hφ.

Let

Φ := {τ ◦ E : τ ∈ N+
∗ and τ(n) ≤ ψ(n) for all 0 ≤ n ∈ N}.

Clearly Φ ⊆ M+
∗ . For ω ∈ Φ, let (πω,Hω, ηω) be the semi-cyclic representation of M arising from ω.

This representation is actually cyclic and nω = M because ω is a bounded positive linear functional
on M. Define Tω : ηφ(nφ) → Hω by Tωηφ(m) = ηω(m). Write ω = ρ ◦ E for some ρ ∈ N+

∗ . Then
for m ∈ nφ,

‖ηω(m)‖2 = ρ(E(m∗m)) ≤ ψ(E(m∗m)) = ‖ηφ(m)‖2 .

Thus Tω extends to a contraction belonging to B(Hφ,Hω), which we again denote by Tω.
We claim that for any ξ ∈ Hφ,

‖ξ‖ = sup
ω∈Φ

‖Tωξ‖ . (2.6)

9



To see this, fix ξ ∈ Hφ and choose a real number r such that r < ‖ξ‖. Let ε > 0 satisfy 3ε < ‖ξ‖−r.
Choose m ∈ nφ such that ‖ξ − ηφ(m)‖ < ε. By Haagerup’s Theorem (see [30, Theorem VII.1.11]),

ψ(E(m∗m)) = sup{τ(E(m∗m)) : τ ∈ N+
∗ and τ(n) ≤ ψ(n) for all 0 ≤ n ∈ N}.

Hence there exists ω ∈ Φ such that

‖Tωηφ(m)‖ > ‖ηφ(m)‖ − ε.

Then

‖ξ‖ ≤ ‖ξ − ηφ(m)‖+ ‖ηφ(m)‖ < 2ε+ ‖ηφ(m)‖ − ε

< 2ε+ ‖Tωηφ(m)‖

≤ 3ε+ ‖Tωξ‖ < ‖ξ‖ − r + ‖Tωξ‖ ,

whence r < ‖Tωξ‖. Thus (2.6) holds.
For each ω ∈ Φ and v ∈ GN(M,D), let Pωv be the projection on Hω determined by ηω(m) 7→

ηω(vE(v∗m)),m ∈ M. A routine calculation shows that for every ω ∈ Φ,m ∈ nφ and v ∈ GN(M,D),
TωPvηφ(m) = Pωv Tωηφ(m), so

TωPv = Pωv Tω. (2.7)

Fix ω ∈ Φ. We claim that if ζ ∈ Hω and Pωv ζ = 0 for every v ∈ GN(M,D), then ζ = 0.
Suppose ζ ∈ Hω is such a vector. Given ε > 0, there exists x ∈ M such that ‖ζ − ηω(x)‖ < ε.
Since D is regular in M, and ω ∈ M+

∗ , there exists y ∈ spanGN(M,D) such that ‖ηω(x− y)‖ <
ε. By Lemma 2.19, there exists a finite E-orthogonal set {vk}

m
k=1 ⊆ GN(M,D) such that y =∑m

k=1 vkE(v∗ky). As {Pωvk}
n
k=1 is a pairwise orthogonal set of projections, Q :=

∑m
k=1 P

ω
vk

is a
projection. Therefore,

ηω(y) =

m∑

k=1

Pωvkηω(y) = Qηω(y).

So,

‖ζ‖ ≤ ‖ζ − ηω(x)‖+ ‖ηω(x− y)‖+ ‖ηω(y)‖

< 2ε+ ‖ηω(y)−Qζ‖ = 2ε+ ‖Q(ηω(y)− ζ)‖

≤ 2ε+ ‖ηω(y)− ζ‖

< 4ε.

Thus the claim holds.
Now suppose ξ ∈ Hφ satisfies Pvξ = 0 for every v ∈ GN(M,D). Then for every ω ∈ Φ and

v ∈ GN(M,D),
0 = TωPvξ = Pωv Tωξ.

Hence Tωξ = 0 for every ω ∈ Φ, so ξ = 0 by (2.6). The proof is now complete. �

We come now to the main theorem of this section.

Theorem 2.22. The Cartan triples (M1,N1,D1) and (M2,N2,D2) are isomorphic if and only if

their associated extensions, P1 →֒ G2

q1
։ S2 and P1 →֒ G2

q2
։ S2, are equivalent.

Proof. It is easy to see that if the triples are isomorphic, then their associated extensions are
equivalent.

Suppose now that the associated extensions are equivalent via the triple of maps (α,α, α̃). Then
α|P1

= α, q2 ◦ α = α̃ ◦ q1 and α is an extendible isomorphism, say α = θ|P, where θ : N1 → N2 is
a normal isomorphism with θ(D1) = D2. Let Ei : Mi → Ni be the conditional expectations. By
Lemma 2.18,

E2 ◦ α = (α ◦E1)|G1
, equivalently E2 ◦ α = (θ ◦ E1)|G1

.
10



Let ψ1 be a faithful normal weight on N1 and let ψ2 = ψ1 ◦ θ
−1. Now let φi := ψi ◦ Ei. Then

φi are faithful semi-finite normal weights on Mi. Let (πi,Hi, ηi) be the associated semi-cyclic
representations and let ni := {x ∈ Mi : φi(x

∗x) < ∞}. By Lemma 2.21, span{ηφi(vn) : v ∈
GN(Mi,Di) and n ∈ nψi} is dense in Hi.

Let n ∈ N and suppose v1, . . . , vn ∈ G1 and c1, . . . , cn ∈ nψ1
. Then α(vj) ∈ G2, and, since

(α ◦ E1)|G1
= E2 ◦ α, it follows from the definition of φ2 that

φ2

((
n∑

i=1

α(vi)θ(ci)

)∗( n∑

i=1

α(vi)θ(ci)

))
= φ2




n∑

i,j=1

θ(ci)
∗α(v∗i vj)θ(cj)




= ψ2


E2




n∑

i,j=1

θ(ci)
∗α(v∗i vj)θ(cj)






= ψ2




n∑

i,j=1

θ(ci)
∗E2(α(v

∗
i vj))θ(cj)




= ψ2




n∑

i,j=1

θ(ci)
∗θ(E1(v

∗
i vj))θ(cj)




= ψ1




n∑

i,j=1

E1(c
∗
i v

∗
i vjcj)




= φ1

((
n∑

i=1

vici

)∗( n∑

i=1

vici

))
.

Hence the map

η1

(
n∑

i=1

vici

)
7→ η2

(
n∑

i=1

α(vi)θ(ci)

)

extends to a unitary operator U : H1 → H2. It is routine to verify that for v ∈ G1, Uπ1(v) =
π2(α(v))U . Therefore the map θ : M1 → M2 given by θ(x) = π−1

2 (Uπ1(x)U
∗) is an isomorphism of

(M1,N1,D1) onto (M2,N2,D2). �

3. Representing an extension

In this section we will show how to represent an extension as partial isometries on a right Hilbert-
module. In Section 4 we will show how this gives rise to a Cartan triple. Throughout this section:

• P →֒ G
q
։ S will be an idempotent separating extension of the Cartan inverse monoid S by

the N-Clifford inverse monoid P;
• j : S → G will be a fixed order-preserving section (see Proposition 2.16); and
• D is the von Neumann subalgebra of Z(N) generated by E(P). We will sometimes use the

fact that viewed as a C∗-algebra, D is isomorphic to the universal C∗-algebra C∗(Ê(S))
generated by the meet semilattice E(S), see [12, Proposition 2.2].

We now construct a right reproducing kernel Hilbert N-module. We begin by using the construc-
tion of the right reproducing Hilbert D-module as done in [12, Section 4.2]. Recall that j|E(S) is a
complete lattice isomorphism of E(S) onto E(P) = E(G) ⊆ D. Define K : S× S → D by

K(t, s) = j(s†t ∧ 1).
11



and for s ∈ S, define ks : S → D by

ks(t) = K(t, s).

For d ∈ D and s ∈ S, we use ksd to denote the map from S into D given by S ∋ t 7→ ks(t)d. Put

A0 := span{ksd : s ∈ S and d ∈ D}.

Let u, v ∈ A0. Lemma 4.11 and Proposition 4.12 of [12] show that:

(a) if u =
∑n

i=1 ksidi and v =
∑n

j=1 ktjej , then the formula

〈u, v〉 :=
n∑

i,j=1

d∗iK(si, tj)ej (3.1)

is independent of the choice of the representations for u and v and determines a well-defined
D-valued inner product on A0 which is conjugate linear in the first variable;

(b) for every s ∈ S and u ∈ A0, 〈ks, u〉 = u(s);
(c) the completion AD of A0 with respect to this inner product is a right Hilbert D-module of

functions from S to D; and
(d) span{ks : s ∈ S} is dense in AD.

Next, we “fatten” AD to incorporate the fact that P is an N-Clifford semigroup, not a D-
Clifford semigroup as in [12]. View N as a right Hilbert N-module, with 〈x, y〉N := x∗y. Define a
∗-monomorphism ι : D → L(N) by ι(d)(x) = dx (where d ∈ D and x ∈ N). Put

A := AD ⊗ι N, (3.2)

see [19, pages 38–44]. Then A is a right Hilbert N-module. This is the space on which we shall
define a representation of G. Note that the inner product on the algebraic tensor product AD ⊙ιN

is 〈
N∑

i=1

ksi ⊗ xi,
N∑

i=1

kti ⊗ yi

〉

A

=
N∑

i,j=1

x∗iK(si, tj)yj. (3.3)

We denote the bounded, adjointable operators on A by L(A).

We will presently describe the representation of G on A. First, we need a little more machinery
derived from our extension. It is usual to describe idempotent-separating extensions in terms of
a cocycle function γ : S × S → P. In the case when P is a abelian this is done explicitly by
Lausch [20], leading to a one-to-one correspondence between extensions and the cohomology group
H2(S,P). In the case when P is not abelian D’Alarcao [11] has studied extensions, modelled on
the Schreier extensions of groups. Though no cocycle is explicitly given, the construction again
relies on functions from S × S to P. In our setting, where we are assuming we have an extension
P →֒ G ։ S, we instead work with a cocycle-like function from G×S into P. This leads to significant
computational simplifications when we define our representation of G. To our knowledge, there is
not a cohomological description of extensions when P is not abelian. As our cocycle-like function
includes G a priori, our approach is unlikely to shed further light on that question.

Definition 3.1. Define a cocycle-like function σ : G× S → P by

σ(v, s) = j(q(v)s)†vj(s) = j(s†q(v†))vj(s).

Since

q(σ(v, s)) = s†q(v†v)s ∈ E(S),

σ(v, s) ∈ P. Thus σ indeed maps G× S into P. Observe also that

σ(v, s)∗σ(v, s) = j(s†q(v†v)s) = j(s)†v†vj(s). (3.4)
12



The following result gives the definition of the representation of G in L(A) and is the analog of
[12, Theorem 4.16] suitable for our context. While the outline of the proof is the same as the proof
of [12, Theorem 4.16], there are differences. Due to the importance of the result for our work, we
provide most of the details of the proof.

Theorem 3.2. For v ∈ G, s ∈ S and x ∈ N, the formula,

λ(v)(ks ⊗ x) := kq(v)s ⊗ σ(v, s)x

determines a partial isometry λ(v) ∈ L(A). Moreover, λ : G → L(A) is a one-to-one representation
of G as partial isometries in L(A).

Proof. Fix v ∈ G, and set r := q(v). Given s1, . . . , sN ∈ S, apply [12, Lemma 4.15] to obtain A ⊆ S

satisfying:

(a) 0 /∈ A;
(b) if a, b ∈ A then a ∧ b = 0;
(c) if a ∈ A then a∧sn ∈ {0, a} for 1 ≤ n ≤ N ; and there exists 1 ≤ n ≤ N such that a∧sn = a;
(d) for each 1 ≤ n ≤ N , sn =

∨
{a ∈ A : a ≤ sn}.

Choose c1, . . . , cN ∈ N.
For a ∈ A and 1 ≤ m ≤ N , put

Am := {b ∈ A : b ≤ sm} and ca :=
∑

{cn : a ≤ sn}.

Since Am ⊆ A, the elements of Am are pairwise meet orthogonal. Further,
∨
Am = sm.

As in the proof of [12, Theorem 4.16],

N∑

n=1

ksn ⊗ cn =
∑

a∈A

ka ⊗ ca. (3.5)

Secondly, with routine modifications to the proof of [12, Equation (4.4)], we obtain

N∑

n=1

krsn ⊗ σ(v, sn)cn =
∑

a∈A

kra ⊗ σ(v, a)ca. (3.6)

Notice that if a, b ∈ A are distinct, then ra and rb are orthogonal, so for x, y ∈ N,

〈kra ⊗ σ(v, a)x, krb ⊗ σ(v, b)y〉 = x∗σ(v, a)∗K(ra, rb)σ(v, b)y

= 0

= x∗K(a, b)y

= 〈ka ⊗ x, kb ⊗ y〉 .
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Thus, as D ⊆ Z(N) and using (3.6), then (3.5),
〈

N∑

n=1

krsn ⊗ σ(v, sn)cn,
N∑

n=1

krsn ⊗ σ(v, sn)cn

〉
=

〈∑

a∈A

kra ⊗ σ(v, a)ca,
∑

a∈A

kra ⊗ σ(v, a)ca

〉

=
∑

a∈A

|ca|
2σ(v, a)∗j(a†r†ra)σ(v, a)

=
∑

a∈A

|ca|
2j(a†r†ra)

≤
∑

a∈A

|ca|
2j(a†a)

=

〈∑

a∈A

ka ⊗ ca,
∑

a∈A

ka ⊗ ca

〉

=

〈
N∑

n=1

ksn ⊗ cn,
N∑

n=1

ksn ⊗ cn

〉
.

Therefore, ∥∥∥∥∥
N∑

n=1

λ(v)(ksn ⊗ cn)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

n=1

ksn ⊗ cn

∥∥∥∥∥ .

It follows that we may extend λ(v) linearly to a contractive operator from the algebraic tensor
product A0 ⊙ι N into A. Finally extend λ(v) by continuity to a contraction in B(A), the bounded
operators on A.

We next show that λ(v) is adjointable. As in the proof of the corresponding equality found in
the proof of [12, Theorem 4.16], for s, t ∈ S,

σ(v, s)†K(rs, t) = σ(v†, t)K(s, r†t).

Therefore for any s, t ∈ S and x, y ∈ N,

〈λ(v)(ks ⊗ x), kt ⊗ y〉 = 〈krs ⊗ σ(v, s)x, kt ⊗ y〉 = x∗σ(v, s)∗K(rs, t)y

= x∗σ(v†, t)K(s, r†t)y = x∗K(s, r†t)σ(v†, t)y

= 〈ks ⊗ x, λ(v†)(kt ⊗ y)〉.

This equality implies that λ(v) is adjointable and λ(v)∗ = λ(v†).
We now show that λ is a homomorphism. Suppose that v1, v2 ∈ G, x ∈ N and s ∈ S. Then

λ(v1)(λ(v2)(ks ⊗ x)) = λ(v1)(kq(v2)s ⊗ σ(v2, s)x)

= kq(v1v2)s ⊗ σ(v1, q(v2)s) σ(v2, s)x.

But

σ(v1, q(v2)s) σ(v2, s) = j(q(v1)q(v2)s))
†v1j(q(v2)s) j(q(v2)s)

†v2j(s)

= j(q(v1v2)s))
†v1j(q(v2)s) j(s

†q(v2)
†)v2j(s)

= j(q(v1v2)s))
†v1(v2j(ss

†)v†2)v2j(s)

= j(q(v1v2)s))
†v1v2v

†
2v2j(ss

†)j(s)

= j(q(v1v2)s))
†v1v2j(s) = σ(v1v2, s).
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Hence λ(v1)λ(v2)(ks ⊗ x) = λ(v1v2)(ks ⊗ x). As span{ks ⊗ x : s ∈ S and x ∈ N} is dense in A,
we conclude that λ(v1v2) = λ(v1)λ(v2). It follows that for every e ∈ E(G), λ(e) is a projection.
Furthermore, for v ∈ G, λ(v) is a partial isometry because λ(v)∗ = λ(v†).

It remains to show that λ is one-to-one. We first show that λ|E(G) is one-to-one. Suppose

e, f ∈ E(S) and λ(j(e)) = λ(j(f)). Then for every s ∈ S, σ(j(e), s) = j(s†es) ∈ D and σ(j(f), s) =
j(s†fs) ∈ D. As the tensor product is balanced,

kesj(s
†es)⊗ I = kes ⊗ σ(j(e), s)

= λ(j(e))(ks ⊗ I) = λ(j(f))(ks ⊗ I)

= kfs ⊗ σ(j(f), s) = kfsj(s
†fs)⊗ I,

whence kesj(s
†es) = kfsj(s

†fs). Taking s = 1 gives kej(e) = kf j(f). Evaluating these elements of
AD at t = 1 gives j(e) = j(f), so λ|E(G) is one-to-one.

Now suppose v1, v2 ∈ G and λ(v1) = λ(v2). Then

λ(v†1v1) = λ(v†1v2) = λ(v†1v2)
∗ = λ(v†2v1) = λ(v†2v2).

Likewise,

λ(v1v
†
1) = λ(v1v

†
2) = λ(v2v

†
1) = λ(v2v

†
2).

Hence v†1v1 = v†2v2 and v1v
†
1 = v2v

†
2. For any e ∈ E(S), we have

λ(v1j(e)v
†
1) = λ(v1v

†
1v1j(e)v

†
1v1v

†
1) = λ(v1v

†
2v2j(e)v

†
2v2v

†
1) = λ(v2v

†
2v2j(e)v

†
2v2v

†
2)

= λ(v2j(e)v
†
2).

Hence v1j(e)v
†
1 = v2j(e)v

†
2. Since this holds for every e ∈ E(S) and S is fundamental, we conclude

that q(v1) = q(v2).

Let e := q(v†1v1) and s := q(v1). Since the functions λ(v1)ke and λ(v2)ke agree, we obtain,

ksj(s)
†v1 = ksj(s)

†v2. Evaluating these functions at t = s gives, j(s)†v1 = j(s)†v2. Multiplying
each side of this equality on the left by j(s), we obtain v1 = v2. �

Let π : N → B(H) be a normal representation. Recall there is a ∗-representation π∗ : L(A) →
B(A⊗π H) given by

π∗(T )(u ⊗ ξ) = (Tu)⊗ ξ. (3.7)

This representation is strictly continuous on the unit ball of L(A) and is faithful whenever π is
faithful [19, p. 42]. As in [12, Corollary 4.17] we have the following corollary.

Corollary 3.3. Let π : N → B(H) be a ∗-representation of N on the Hilbert space H. Then
λπ := π∗ ◦ λ is a representation of G by partial isometries on A ⊗π H. If π is faithful, then λπ is
one-to-one.

Remark 3.4. Our construction of A ⊗π H depends upon the order structure of S. We show
presently that the range of λπ will generate a Cartan triple. When one starts with a Cartan triple
and applies this construction to the extension associated to the pair, the Hilbert space A⊗πH can
be recognized as arising from the representation associated to a faithful normal weight φ on M such
that φ ◦ E = φ. We will give the formal statement in Proposition 4.13 below.

We close this section with some results which will be needed when constructing a Cartan triple
from an extension in Section 4. They will also be used in Section 5 when we study the N-bimodule
structure for a Cartan triple. Observe that the construction of the right Hilbert D-module AD

above depends only upon S because j|E(S) is the inverse of q|E(P). The τ1-topology described in the
following definition has been considered by several authors, see Section 3.5 of the survey article [22].
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Definition 3.5. Let M be a right Hilbert module over the von Neumann algebra N.

(a) The τ1-topology on M is the topology generated by the seminorms, ξ 7→ φ(〈ξ, ξ〉)1/2, where
φ is a normal state on N.

(b) The τ1-strict topology on L(M) is the topology generated by the seminorms, T 7→ φ(〈Tξ, T ξ〉)1/2

where ξ ∈ M and φ is a normal state on N.

Notice that a net Tα → T in the τ1-strict topology if and only if for every ξ ∈ M,

〈(Tα − T )ξ, (Tα − T )ξ〉 → 0

in the σ-strong topology of N.

The following result can be proved directly in the same way as Proposition 5.2 of [12], but it is
simpler to apply [12, Theorem 4.16 and Proposition 5.2].

Proposition 3.6. For s ∈ S, the map S ∋ t 7→ ks∧t extends to a projection Qs ∈ L(AD) whose
range is span{kt : t ≤ s}. Furthermore, the following statements hold.

(a) Let s, t ∈ S. If s ∧ t = 0, then QsQt = QtQs = 0; if s†t = st† = 0, then Qt +Qs = Qs∨t.
(b) If B ⊆ S is a maximal meet disjoint subset and Λ is the set of all finite subsets of B directed

by inclusion, then the net (
∑

s∈F Qs)F∈Λ converges τ1-strictly to the identity operator in
L(AD).

Proof. By replacing σ(v, t) with the identity operator throughout the proof of [12, Thoerem 4.16]
(or Theorem 3.2 above) one finds that for every s ∈ S, there exists a partial isometry λ0(s) ∈ L(AD)
such that

λ0(s)kt = kst.

Calculations show that for every t ∈ S,

λ0(s)PDλ0(s)
∗kt = ks∧t,

where PDkt := kt∧1 is the projection from [12, Proposition 5.2]. This establishes the existence of
the projection Qs, with the desired range.

The proof of (a) is routine and left to the reader. Let B be a maximal meet disjoint subset of
S. Since the net (

∑
s∈F Qs)F∈Λ is an increasing net of projections, it suffices to show that for each

t ∈ S, the net (∑

s∈F

Qskt

)

F∈Λ

τ1-converges to kt.

For F ∈ Λ, let QF :=
∑

s∈F Qs. For r ∈ S and s1, s2 ∈ F , r ∧ s1 and r ∧ s2 are disjoint elements
of Ar := {t ∈ S : t ≤ r}, so (r ∧ s1) ∨ (r ∧ s2) is defined. Let tF :=

∨
s∈F (r ∧ s). Then tF ≤ r and

QFkr = ktF . Denote by ¬ the NOT operation in the Boolean algebra E(S). We have that

〈QF kr − kr, QF kr − kr〉 = 〈ktF − kr, ktF − kr〉 = j(r†r ∧ ¬(t†F tF )).

Let b :=
∨
F∈Λ(t

†
F tF ). Clearly b ≤ r†r. Set a := r†r ∧ (¬b). Then for s ∈ B,

a ∧ s†s = r†r ∧ s†s ∧ (¬b) ≤ r†r ∧ s†s ∧ ¬((r ∧ s)†(r ∧ s)) = 0.

Now ra∧ s = ra(r†r∧ s†s) = 0, so that ra is meet disjoint from every element of B. By maximality

of B, we obtain ra = 0, whence a = 0. Thus b = r†r, from which it follows that j(t†F tF ) converges

σ-strongly in D to j(r†r). Therefore, QF converges τ1-strictly to IL(AD). �

We now have the following corollary to Proposition 3.6.

Corollary 3.7. The net QF ⊗ IN converges τ1-strictly to IL(A).
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Proof. For n ∈ N and s ∈ S, we have

〈(QF ⊗ IN)(ks ⊗ n)− (ks ⊗ n), (QF ⊗ IN)(ks ⊗ n)− (ks ⊗ n)〉

= 〈(QF ks − ks)⊗ n, (QF ks − ks)⊗ n〉

= n∗ 〈QFks − ks, QF ks − ks〉AD
n

= n∗n 〈QF ks − ks, QF ks − ks〉AD
.

As the last expression tends to zero in the σ-strong operator topology on N, the result follows. �

Now let π : N → B(H) be a faithful normal representation of N and for s ∈ S define projections
on A⊗π H by

Ps,π := (Qs ⊗ IN)⊗ IH. (3.8)

Proposition 3.8. Let B ⊆ S be a maximal meet disjoint subset. Then
∑

s∈B Ps,π converges strongly
to I ∈ B(A⊗π H).

Proof. For any h ∈ H and ξ ∈ A, the map

L(A) ∋ T 7→ 〈((T ⊗ IH)(ξ ⊗ h), (T ⊗ IH)(ξ ⊗ h)〉 = 〈h, π(〈Tξ, T ξ〉A)h〉
1/2
H

is a τ1-strict seminorm on L(A). Therefore, if (Tα) is a bounded net in L(A) which converges τ1-
strictly to T ∈ L(A), (Tα⊗IH) converges strongly in B(H) to T⊗I. An application of Corollary 3.7
completes the proof. �

Remark 3.9. Proposition 3.8 is similar to Lemma 2.21. The initial data for Proposition 3.8 is the

extension P →֒ G
q
։ S and the representation π : N → B(H); its conclusion may be interpreted

as the statement that
∨
s∈S Ps,π = IA⊗πH. On the other hand, Lemma 2.21 deals with the Cartan

triple (M,N,D) and a semi-cyclic representation induced by a suitable weight; its conclusion may
be interpreted as the statement that

∨
v∈GN(M,D) Pv = IHφ , where Pv is defined in the proof of

Lemma 2.21. There is a further relation between these results: when the extension P →֒ G
q
։ S

is the extension associated to the Cartan triple (M,N,D), Proposition 4.13 below implies that for
any v ∈ GN(M,D), the projections Pv and Pq(v),πφ are unitarily equivalent.

4. The Cartan Triple Associated to an Extension

Throughout this section we will consider the extension,

P →֒ G
q
։ S,

where S is a Cartan inverse monoid, and P is an N-Clifford inverse monoid. Assume throughout
that a fixed order-preserving section j : S → G is given. Our goal, achieved in Theorem 4.10, is to
show how the representation of G constructed in Corollary 3.3 gives rise to a Cartan triple with

associated extension P →֒ G
q
։ S. In Theorem 4.11 we further show that the extension associated

to the Cartan triple returns the original extension.
We denote by A the right Hilbert N-module as defined in Equation (3.2). Let π be a faithful,

normal representation of N, and let

λπ : G → B(A⊗π H)

be the representation of G by partial isometries, as constructed in Theorem 3.2 and Corollary 3.3.

Definition 4.1. Let

Mq := (λπ(G))
′′, Nq := (λπ(P))

′′, and Dq := (λπ(E(G))
′′.

17



We will show that (Mq,Nq,Dq) is a Cartan triple. The definitions of Mq, Nq and Dq depend
upon the choice of π and, because λ : G → L(A) depends on the choice of j, Mq, Nq and Dq also
depend on j. However, we shall see in Theorem 4.11 that the isomorphism class of (Mq,Nq,Dq)

depends only on the extension P →֒ G
q
։ S and not upon π or j.

The first step is to show that there is a faithful normal conditional expectation from Mq onto
Nq. This will be used to show that Nq = Dc

q in Proposition 4.9. As in [12], the expectation on Mq

will be induced by the map s 7→ s ∧ 1 on S.
Define ∆ : G → P by

∆(v) := vj(q(v) ∧ 1),

for all v ∈ G. First note that

q(∆(v)) = q(v)(q(v) ∧ 1) = q(v) ∧ 1 ∈ E(S).

Thus ∆(v) ∈ P for all v ∈ G. Further, if v ∈ P then q(v) ∈ E(S), thus

∆(v) = vj(q(v) ∧ 1) = vj(q(v)) = v.

We will show that, given v ∈ G, the formula,

Eq(λπ(v)) := λπ(∆(v))

extends to a faithful conditional expectation Eq : Mq → Nq.

Notation 4.2. Here is some notation.

(a) Let PD ∈ L(AD) be the projection defined in Proposition 3.6, so that PDks = ks∧1. That is,
PD = Q1 as defined in Proposition 3.6. Since A = AD ⊗ι N, the tensor product of PD with
the identity of N gives a projection P ∈ L(A) so that, for s ∈ S and x ∈ N,

P (ks ⊗ x) = ks∧1 ⊗ x. (4.1)

(b) For x ∈ N, and y =
∑n

i=1 ksi ⊗ ni ∈ AD ⊙N, ‖
∑n

i=1 ksi ⊗ xni‖A ≤ ‖x‖ ‖y‖A. It follows that
the map ks ⊗ n 7→ ks ⊗ xn extends to a bounded linear map πℓ(x) on A. A computation
shows that πℓ(x) is adjointable, so there exists a faithful ∗-representation πℓ : N → L(A).
Tensoring with the identity map, we obtain a faithful normal representation πℓ∗ = πℓ ⊗ I
of N on B(A ⊗π H). To be explicit, for x ∈ N, πℓ∗(x) is defined on elementary tensors
(ks ⊗ n⊗ ξ) ∈ A⊗π H by

πℓ∗(x)(ks ⊗ n⊗ ξ) = ks ⊗ xn⊗ ξ = ks ⊗ IN ⊗ π(xn)ξ. (4.2)

Lemma 4.3. For s ∈ S, let Qs be the projection on L(AD) defined in Proposition 3.6 and let
Ps,π := Qs ⊗ IN ⊗ IH ∈ B(A ⊗π H) be the projection defined in Equation (3.8). The following
statements hold.

(a) For v ∈ P, s ∈ S, n ∈ N and ξ ∈ H,

λπ(v)(ks ⊗ n⊗ ξ) = ks ⊗ j(s)∗vj(s)n ⊗ ξ.

(b) Ps,π ∈ N′
q and for every v ∈ P, λπ(v)Ps,π = πℓ∗(j(s)

∗vj(s))Ps,π .

Proof. Since v ∈ P, q(v) = q(vv∗), so σ(v, s) = j(s†q(v)†)vj(s) = j(s)∗vj(s). Therefore,

λπ(v)(ks ⊗ n⊗ ξ) = kq(v)s ⊗ j(s)∗vj(s)n ⊗ ξ = kss†q(v)s ⊗ j(s)∗vj(s)n ⊗ ξ

= ksj(s
†q(v)s)⊗ j(s)∗vj(s)n ⊗ ξ = ks ⊗ j(s†q(v)s)j(s)∗vj(s)n ⊗ ξ

= ks ⊗ j(s)∗vj(s)n ⊗ ξ,

where the third equality follows from [12, Corollary 4.9]. This gives part (a) and shows range(Ps,π)
is invariant for every element of λπ(P). Thus, range(Ps,π) is invariant for Nq. As Nq is a ∗-algebra,
Ps,π reduces Nq, whence Ps,π ∈ N′

q.
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Now suppose t ∈ S, n ∈ N and ξ ∈ H. Note that j(s)j(s†t ∧ 1) = j(s(s†t ∧ 1)) = j(s ∧ t). Then,
again using [12, Corollary 4.9],

Ps,π(kt ⊗ n⊗ ξ) = ks∧t ⊗ n⊗ ξ = ks ⊗ j(s†t ∧ 1)n⊗ ξ. (4.3)

A computation using part (a) and (4.3) now gives the formula in part (b). �

With the obvious modifications to the proof of [12, Proposition 5.2], we obtain the following.

Lemma 4.4. With P defined as in Equation (4.1), the following properties hold:

(a) rangeP = span{ke ⊗ x : e ∈ E(S) and x ∈ N}; and
(b) for v ∈ G,

Pλ(v)P = λ(∆(v))P.

Modifications to the proof of [12, Proposition 5.3] yield the following result.

Lemma 4.5. The map V : H → A⊗π H given by V ξ = (k1 ⊗ IN) ⊗ ξ is an isometry. Moreover,
the following properties hold:

(a) for s ∈ S, x ∈ N and ξ ∈ H, V ∗(ks ⊗ x⊗ ξ) = π(j(s ∧ 1)x)ξ;
(b) V V ∗ = π∗(P ), where π∗ : L(A) → B(A⊗π H) is defined by π∗(T )(u⊗ ξ) = (Tu)⊗ ξ;
(c) for v ∈ G, V ∗λπ(v)V = π(∆(v)).

Lemma 4.6. We have
V ∗MqV = π(N) = V ∗NqV.

Proof. Lemma 4.5(c) shows that for x ∈ Mq, V
∗xV ∈ π(N), so V ∗MqV ⊆ π(N). On the other

hand, for v ∈ P we have
V ∗λπ(v)V = π(∆(v)) = π(v), (4.4)

so V ∗NqV ⊆ π(N). Since every element of N is a linear combination of at most four elements of P,
we obtain the result. �

Thus, the map Mq ∋ x 7→ π−1(V ∗xV ) is a normal, completely positive contraction of Mq onto
N. We now show this map gives an isomorphism of Nq onto N.

Lemma 4.7. The map α : Nq → N defined by α(x) = π−1(V ∗xV ) is a normal isomorphism of Nq

onto N.

Proof. The definition of α shows it is normal. Next we show that α is a homomorphism. For
v1, v2 ∈ P, Lemma 4.5(c) gives

V ∗(λπ(v1))V V
∗λπ(v2)V = π(v1)π(v2) = π(v1v2) = V ∗λπ(v1v2)V.

Thus α is multiplicative on λπ(P). It follows that α is multiplicative on span(λπ(P)). As mul-
tiplication is σ-strongly continuous on bounded sets, the Kaplansky density theorem ensures α
multiplicative. Lemma 4.6 now shows α is a ∗-epimorphism.

It remains to show α is one-to-one. To do this, we show α is isometric on span(λπ(P)). Suppose
n ∈ N, cj ∈ C, vj ∈ P and x =

∑n
j=1 cjλπ(vj). Put y = α(x) so that y =

∑n
j=1 cjvj by Equation 4.4.

By Lemma 4.3, for each s ∈ S,
xPs,π = πℓ∗(j(s)

∗yj(s))Ps,π,

and hence ‖xPs,π‖ ≤ ‖y‖. Now suppose B is a maximal meet-disjoint subset of S. Then for distinct
s, t ∈ B, Ps,π and Pt,π are orthogonal projections. By Proposition 3.8,

‖x‖ = sup
s∈B

‖xPs,π‖ ≤ ‖y‖ = ‖α(x)‖ ≤ ‖x‖ .

So α is isometric on span(λπ(P)). �

At last, we can define the conditional expectation Eq.
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Proposition 4.8. The formula,

Eq(x) := α−1(π−1(V ∗xV )) (4.5)

gives a faithful normal conditional expectation of Mq onto Nq. Furthermore, for v ∈ G,

Eq(λπ(v)) = vλπ(∆(v)). (4.6)

Proof. Lemmas 4.6 and 4.7 imply Eq is a normal conditional expectation of Mq onto Nq. It remains
only to establish that Eq is faithful. The proof that Eq is faithful is modeled on the proof of [12,
Proposition 5.9].

Let C denote the center ofMq. We claim that Eq|C is faithful. Let x ∈ C and supposeEq(x
∗x) = 0.

The definition of Eq from Equation 4.5 shows that V ∗x∗xV = 0 and hence xV = 0. Notice that

σ(j(s), 1) = j(s†s) so that for n ∈ N, λ(j(s))(k1⊗n) = ksj(s
†s)⊗n = ks⊗n (see [12, Corollary 4.9]).

Hence for s ∈ S, n ∈ N and ξ ∈ H,

x(ks ⊗ n⊗ ξ) = xλπ(j(s))(k1 ⊗ n⊗ ξ) = λπ(j(s))x(k1 ⊗ n⊗ ξ) = λ(j(s))xV π(n)ξ = 0.

Since the span of such vectors is a dense subspace of A⊗π H, we conclude that x = 0.
Let J := {x ∈ Mq : Eq(x

∗x) = 0}. Then J is a left ideal of Mq. Compute as in the second part
of [12, Lemma 5.8] to find that for x ∈ J and v ∈ G,

Eq(λπ(v)
∗x∗xλπ(v)) = λπ(v)

∗Eq(x
∗x)λπ(v) = 0.

Thus, xλπ(v) ∈ J. It now follows that J is a two-sided ideal of Mq as well. Since J is weak-∗-closed,
by [31, Proposition II.3.12], there is a projection Q ∈ C such that J = QMq. As Q ∈ J and Eq|C
is faithful, we obtain Q = 0. Thus J = (0), that is, Eq is faithful. The equality (4.6) follows from
Lemma 4.5. �

Proposition 4.9. The algebra Nq is the relative commutant of Dq in Mq. That is, Nq = Dc
q.

Proof. Notice that v ∈ G commutes with every element of E(G) if and only if v ∈ P. Since λπ is a
isomorphism of G onto λπ(G), we obtain λπ(G) ∩Dc

q = λπ(P). Therefore, Nq ⊆ Dc
q.

Take x ∈ Dc
q. Suppose w ∈ λπ(G) satisfies w

2 = 0. Then

Eq(w
∗x) = w∗wEq(w

∗x) = Eq(w
∗x)w∗w = Eq(w

∗xw∗w) = Eq((w
∗)2wx) = 0. (4.7)

Now choose an arbitrary v ∈ λπ(G). Our goal is to show that (again with x ∈ Dc
q)

Eq(v
∗x) = Eq(v

∗)Eq(x). (4.8)

As in Lemma 2.18, v defines a map θv on Dq (d 7→ vdv∗). By Frol̀ık’s Theorem (see [26, Proposi-
tion 2.11a]) there are orthogonal projections e0, e1, e2, e3 ∈ Dq such that

v =

3∑

k=0

vek,

θv|De0 = id|De0 , and θv(ek)ek = 0 for k = 1, 2, 3.
As e0 is the largest projection in Dq on which θv|De0 = idDe0 , it follows that ve0 = Eq(v). Also,

as θv(ek)ek = 0, it follows that (vek)
2 = 0, for k = 1, 2, 3. By (4.7), for k = 1, 2, 3, Eq(ekv

∗x) = 0.
Thus

Eq(v
∗x) =

3∑

k=0

Eq(ekv
∗x) = Eq(e0v

∗x) = Eq(v
∗)Eq(x),

so (4.8) holds.
Since λπ(G) spans a weak∗-dense subset of Mq, it follows that for x ∈ Dc

q we have

Eq(x
∗x) = Eq(x

∗)Eq(x).
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Hence, if x ∈ Dc
q we have

Eq((x− Eq(x))
∗(x− Eq(x)) = Eq(x− Eq(x))

∗Eq(x−Eq(x)) = 0.

Since Eq is faithful, it follows that x = Eq(x) ∈ Nq. �

Proposition 4.8 and Proposition 4.9 now immediately give the first main theorem of this section.

Theorem 4.10. (Mq,Nq,Dq) is a Cartan triple.

The second main theorem of this section is that the extension associated to (Mq,Nq,Dq) gives

back the original extension P →֒ G
q
։ S.

Theorem 4.11. Let P be a N-Clifford inverse monoid and suppose P →֒ G
q
։ S is an exten-

sion of the Cartan inverse monoid S by P. Let (Mq,Nq,Dq) be the Cartan triple constructed in
Theorem 4.10. The extension associated to (Mq,Nq,Dq) is equivalent to the extension

P →֒ G
q
։ S

from which (Mq,Nq,Dq) was constructed.
Moreover, the isomorphism class of (Mq,Nq,Dq) depends only upon the equivalence class of the

extension (and not on the choice of representation π or section j).

Remark 4.12. In the proof of Theorem 4.11 and also in the proof of Theorem 5.2 below, we shall
utilize a result of Arveson, [3, Theorem 6.2.2]. In [3], Arveson makes the blanket assumption that
all Hilbert spaces are separable (see [3, Section 1.2]). However the proof of [3, Theorem 6.2.2] does
not require separability.

Proof. The argument below is a modification of the proof of [12, Theorem 5.12]. Let RM and
RM,π be the Munn congruences for G and λπ(G) respectively. Since λπ is an isomorphism of G
onto λπ(G), (v,w) belongs to RM if and only if (λπ(v), λπ(w)) belongs to RM,π. Let qπ : λπ(G) →

λπ(G)/RM,π be the quotient map. The fact that S is fundamental implies that λ̃π := qπ ◦λπ ◦ j is a

multiplicative map of S onto λπ(G)/RM,π. In fact, λ̃π is an isomorphism satisfying λ̃π ◦ q = qπ ◦λπ,
and furthermore, λπ|P is an isomorphism of P onto λπ(P). Let v ∈ P. By Equation (4.4) (see
Lemma 4.6), V ∗λπ(v)V = π(v). Thus in the notation of Lemma 4.7, α−1(v) = λπ(v). Therefore
λπ|P = α−1|P. It is now clear that the extensions

P →֒ G
q
։ S

and

λπ(P) →֒ λπ(G)
qπ
։ λ̃π(S)

are equivalent. For later use, note that in particular, λπ|E(G) is an isomorphism of E(G) onto
E(λπ(G)).

Our next task is to show that
λπ(G) = GN(Mq,Dq). (4.9)

It will then follow immediately that λπ(P) →֒ λπ(G)
qπ
։ λ̃π(S) is the extension associated to

(Mq,Nq,Dq).
Claim 1: If u ∈ GN(Mq,Dq), then uEq(u

∗) is a projection in Dq, and

uEq(u
∗) = Eq(uEq(u

∗)) = Eq(u)Eq(u
∗). (4.10)

Let Λ be an invariant mean on the abelian group U(Dq). By [3, Theorem 6.2.2],

uEq(u
∗) = Λ

g∈U(Dq)

(ugu∗)g∗ ∈ Dq.
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Next,

uEq(u
∗)uEq(u

∗) = uEq(u
∗uEq(u

∗)) = uu∗uEq((Eq(u
∗)) = uEq(u

∗),

so uEq(u
∗) is a projection in Dq. The equality (4.10) is now obvious, so Claim 1 holds.

By construction, λπ(G) ⊆ GN(Mq,Dq). To establish the reverse inclusion, fix v ∈ GN(Mq,Dq);
without loss of generality, assume v 6= 0.

Claim 2: There exists p ∈ λπ(E(G)) such that: a) vp ∈ λπ(G), b) p ≤ v∗v, and c) vp 6= 0.
Since λπ(G)

′′ = Mq, it follows (as in the proof of [5, Proposition 1.3.4]) that there exists w ∈ λπ(G)
such that wEq(w

∗v) 6= 0. Let p = v∗wEq(w
∗v). By Claim 1, p ∈ Dq is a projection, so in particular,

p ∈ λπ(E(G)). It is evident that p ≤ v∗v. By (4.10),

Eq(v
∗w)Eq(w

∗v) = p,

so x := Eq(w
∗v) is a partial isometry in Nq with source projection p ∈ Dq. On the other hand, let

p′ := w∗vEq(v
∗w). Claim 1 gives p′ ∈ Dq and p′ = Eq(w

∗v)Eq(v
∗w). We have thus shown that

both the source and range projections for x belong to Dq ⊆ Z(Nq). Therefore,

p = x∗x = x∗(xx∗)x = (x∗x)(xx∗) = x(x∗x)x∗ = xx∗ = p′.

Hence Eq(w
∗v) is a partial isometry in Nq whose source and range projections both equal p ∈

Dq. Thus, Eq(w
∗v) ∈ GN(Nq,Dq) = λπ(P). This gives wEq(w

∗v) ∈ λπ(G). Since Eq(w
∗v) =

w∗v(v∗wEq(w
∗v)), we obtain,

0 6= wEq(w
∗v) = w(w∗v(v∗wEq(w

∗v))) = vv∗wEq(w
∗v) = vp.

Thus Claim 2 holds.
Now argue exactly as in the proof of [12, Theorem 5.12] to conclude that v ∈ λπ(G). Therefore,

we have shown that λπ(G) = GN(Mq,Dq). Hence

λπ(P) →֒ λπ(G)
qπ
։ qπλ̃π(S)

is the extension for (Mq,Nq,Dq).

Suppose that π̃ is a faithful normal representation of N and j̃ : S → G is an order preserving
section for q. Let (M̃q, Ñq, D̃q) be the Cartan triple constructed using π̃ and j̃ as in Theorem 4.10.

Then the previous paragraphs show that the extensions associated to (Mq,Nq,Dq) and (M̃q, Ñq, D̃q)

are equivalent extensions. By Theorem 2.22, (Mq,Nq,Dq) and (M̃q, Ñq, D̃q) are isomorphic Cartan
triples. The proof is now complete. �

Let (M,N,D) be a Cartan triple and let φ be a faithful normal semi-finite weight on M satisfying
φ ◦ E = φ. We end this section by relating the semi-cyclic representation (πφ,Hφ, ηφ) and the

reproducing kernel Hilbert N-module A⊗N constructed from the extension P →֒ G
q
։ S associated

to (M,N,D).

Proposition 4.13. Let (M,N,D) be a Cartan triple, suppose ψ is a faithful, normal semi-finite
weight on N, and put φ := ψ◦E. Let (πψ,Hψ , ηψ) and (πφ,Hφ, ηφ) be the semi-cyclic representations
of N and M associated with ψ and φ respectively. Let

P →֒ G
q
։ S

be the extension associated to (M,N,D) and let j : S → G be an order-preserving section for q. For
s ∈ S, n ∈ N and x ∈ nψ, j(s)nx ∈ nφ, and the map

(AD ⊗ι N)⊗πψ Hψ ∋ ks ⊗ n⊗ ηψ(x) 7→ ηφ(j(s)nx) ∈ Hφ

extends to a unitary operator W : A⊗πψ Hψ → Hφ such that for every v ∈ G,

Wλπψ(v)W
∗ = πφ(v).
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Proof. For i = 1, 2, let si ∈ S, ni ∈ N and xi ∈ nψ. Then

φ((j(si)nixi)
∗(j(si)nixi)) = ψ(x∗in

∗
iE(j(si)

∗j(si))nixi) ≤ ‖ni‖
2 ψ(x∗i xi),

so j(si)nixi ∈ nφ. Recall that for any v ∈ GN(M,D), E(v) = vj(q(v) ∧ 1). In particular, using
Proposition 2.16, we have

E(j(s1)
∗j(s2)) = j(s1)

∗j(s2)j(s
†
1s2 ∧ 1) = j(s†1s2 ∧ 1).

So

〈(ks1 ⊗ n1 ⊗ ηψ(x1)), (ks2 ⊗ n2 ⊗ ηψ(x2))〉 = ψ(x∗1n
∗
1j(s

†
1s2 ∧ 1)n2x1)

= ψ(x∗1n
∗
1E(j(s1)

∗j(s2))n2x1)

= 〈ηφ(j(s1)n1x1), ηφ(j(s2)n2x2)〉 .

As every element in span{ks⊗n⊗x : s ∈ S, n ∈ N, x ∈ nψ} can be written as
∑

a∈A ka⊗na⊗xa
where A ⊆ S is a finite pairwise meet disjoint set, {na : a ∈ A} ⊆ N and {xa : a ∈ A} ⊆ nψ, it follows
that ks ⊗ n⊗ x 7→ ηφ(j(s)nx) extends to an isometry W : A⊗πψ Hψ → Hφ. By Proposition 2.21,
span{ηφ(j(s)nx) : s ∈ S, n ∈ N, x ∈ nψ} is dense in Hφ, so W is a unitary operator.

If v ∈ GN(M,D), s ∈ S, n ∈ N and x ∈ nψ,

Wλπψ(v)(ks ⊗ n⊗ x) =W (kq(v)s ⊗ σ(v, s)n ⊗ x)

= ηφ(j(q(v)s)σ(v, s)nx)

= ηφ(vj(s)nx) = πφ(v)W (ks ⊗ n⊗ x).

Thus, Wλπψ(v)W
∗ = πφ(v). �

5. The spectral theorem for bimodules and Aoi’s theorem

Throughout this section, (M,N,D) will be a Cartan triple with associated extension

P →֒ G
q
։ S,

and j : S → G will be a fixed choice of an order-preserving section for q. The goal in this section is
study the N-bimodules in M. Recall the following definition from [12].

Definition 5.1. A subset A of a Cartan inverse monoid S is a spectral set if

(a) s ∈ A and t ≤ s implies that t ∈ A; and
(b) if {si}i∈I is a pairwise orthogonal family in A, then

∨
i∈I si ∈ A.

In Theorem 5.10 we prove a Spectral Theorem for Bimodules. Will show a one-to-one corre-
spondence between the spectral sets in S and a large class of weak-∗ closed N-bimodules: the
Bures-closed N-bimodules (see Definition 5.5). We go on to study the intermediate von Neumann
algebras N ⊆ L ⊆ M, giving a generalization of Aoi’s Theorem [1] in Theorem 5.12. Several of
these theorems require that the Cartan triple is a full Cartan triple.

5.1. N-bimodules. We begin by showing that weak-∗ closed N-bimodules give rise to non-empty
spectral sets. In particular, Theorem 5.2 shows that when (M,N,D) is a full Cartan triple, any
weak-∗ closed N-bimodule contains an abundance of elements of GN(M,D). Example 5.4 below
gives a simple example showing fullness is necessary.

Theorem 5.2. Let (M,N,D) be a full Cartan triple. Suppose (0) 6= B ⊆ M is a weak-∗-closed
N-bimodule. Then

{0} 6= GN(M,D) ∩B.

In fact, for every x ∈ B and v ∈ GN(M,D), vE(v∗x) is a linear combination of at most four
elements of GN(M,D) ∩B.
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Proof. Let x ∈ B be non-zero. Since M is the weak-∗ closed span of GN(M,D), there exists v ∈
GN(M,D) such that E(v∗x) 6= 0, and hence vE(v∗x) 6= 0. By [3, Theorem 6.2.2] (see Remark 4.12
above), for any y ∈ M,

E(y) = Λ
U∈U(D)

U∗yU.

Therefore,

vE(v∗x) = Λ
U∈U(D)

(vU∗v∗)xU ∈ B.

Let J be the weak-∗ closed, two-sided ideal in N generated by E(v∗x). For any n1, n2 ∈ N we
have

v(n1E(v∗x)n2) = (vn1v
∗)(vE(v∗x))n2 ∈ B.

Since B is weak-∗ closed, it follows that vJ ⊆ B. Let p ∈ Z(N) = D be such that J = pN. Then,
vp ∈ B ∩ GN(M,D). Since vE(v∗x) = vpE(v∗x), 0 6= vp.

Since pN is a von Neumann algebra (with unit p), E(v∗x) is a linear combination of four unitary
elements of pN. As p ∈ Z(N), U(pN) = {pw : w ∈ U(N)}. Also, for any unitary w ∈ U(N) we have
vpw ∈ GN(M,D). Thus, vE(v∗x) is a linear combination of at most four elements of GN(M,D). �

The following corollary of the proof of Theorem 5.2 will be needed in the sequel.

Corollary 5.3. Let (M,N,D) be a (not necessarily full) Cartan triple. For any x ∈ M and
v ∈ GN(M,D), vE(v∗x) belongs to the weak-∗ closed D-bimodule generated by x.

Example 5.4. Let M be any von Neumann algebra with non-trivial center. Then (M,M,CI) is
a Cartan triple which is not full. Let p be a central projection in M with 0 < p < I. Then Mp is
a weak-∗ closed M-bimodule. However Mp ∩ GN(M,CI) = {0}. Thus, the condition of fullness in
Theorem 5.2 is necessary.

A natural problem is to characterize the weak-∗ closed N-bimodules in M. Given a weak-∗ closed
N-bimodule B ⊆ M, one might hope to use Theorem 5.2 to reconstruct a given element x ∈ B
from the elements of B ∩ GN(M,D). However, for doing this, the weak-∗ topology is not generally
the appropriate topology. Instead, as Mercer shows in [23], the Bures-topology turns out to be
the “right” topology to handle such reconstruction problems. This phenomenon was also observed
in studying bimodules in the Cartan pair case by Cameron, Pitts and Zarikian [5] (see also [12]),
and in the crossed-product von Neumann algebras by Cameron and Smith [6, 8]. Our next goal is
Theorem 5.7, which gives a method for reconstructing x ∈ B using GN(M,D) ∩B when B ⊆ M is
a Bures-closed N-bimodule. We begin with recalling the definition of the Bures-topology.

Definition 5.5. Let L ⊆ M be an inclusion of von Neumann algebras and assume there is a faithful
normal conditional expectation EL : M → L. The EL-Bures topology (or simply Bures topology
when the context is clear) is the locally convex topology determined by the family of seminorms,

M ∋ x 7→ ρ(E(x∗x))1/2, ρ ∈ L+
∗ .

The Bures topology was introduced in [4] in the case when M is a factor and L is abelian. By [6,
Lemma 3.1], for any convex set C ⊆ M, the Bures closure of C contains the weak-∗ closure of C,
that is,

clweak-∗(C) ⊆ clBures(C).

Take x ∈ M. We showed in Theorem 5.2 and Corollary 5.3 that for each v ∈ GN(M,D), vE(v∗x)
is in the N-bimodule generated by x. We now show that, in the Bures topology, we can recover x
from the elements of the form vE(v∗x).
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Definition 5.6. For a Cartan triple (M,N,D), a subset Y ⊆ GN(M,D) is E-orthogonal if whenever
v,w ∈ Y with v 6= w, E(v∗w) = 0.

Theorem 5.7. Let (M,N,D) be a (not necessarily full) Cartan triple and let Y ⊆ GN(M,D) be
a maximal E-orthogonal subset. Let Λ be the set of all finite subsets of Y directed by inclusion.
For x ∈ M and F ∈ Λ, let xF :=

∑
u∈F uE(u∗x). Then the net (xF )F∈Λ converges in the Bures

topology to x.

Proof. Let P →֒ G
q
։ S be the extension associated to (M,N,D), let ψ be a faithful, normal

semi-finite weight on N, let φ = ψ ◦ E, and let (πφ,Hφ, ηφ) be the semi-cyclic representation of M
associated to φ. For any v ∈ G, the map M ∋ x 7→ vE(v∗x) leaves nφ invariant and depends only on
s = q(v). Further, when x ∈ nφ, ηφ(x) 7→ ηφ(vE(v∗x)) is contractive, and extends to a projection
Ps ∈ B(Hφ). (In the notation of Lemma 4.3 and Proposition 4.13, Ps =WPs,πφW

∗). When s = 1,
write P instead of P1.

Arguing as in [5, Lemma 2.2], we find that the two families of semi-norms on M,

{M ∋ m 7→
√
τ(E(m∗m)) : τ ∈ N+

∗ } and {M ∋ m 7→ ‖πφ(m)ξ‖ : ξ ∈ range(P )}

coincide. These families of semi-norms define the Bures topology on M (see [5, Definition 2.2.3]).
We now argue exactly as in the proof of [5, Proposition 2.4.4]. Let n ∈ nφ ∩N. Then

πφ(xF )ηφ(n) =
∑

u∈F

ηφ(uE(u∗xn))

=
∑

u∈F

πφ(u)Pπφ(u)
∗ηφ(xn)

=
∑

u∈F

Pq(u)ηφ(xn) =
∑

u∈F

Pq(u)πφ(x)ηφ(n).

Hence for every ξ ∈ ηφ(nφ ∩N),

πφ(xF )ξ =
∑

u∈F

Pq(u)πφ(x)ξ.

By Proposition 3.8 and Proposition 4.13, I =
∑

u∈Y Pq(u) (where the sum converges strongly in

B(Hφ)). Thus for every ξ ∈ ηφ(nφ ∩N),

πφ(xF )ξ → πφ(x)ξ.

Therefore, xF
Bures
→ x. �

We now show that the Bures closure of a weak-∗ closed N-bimodule B contains exactly the same
groupoid normalizers as B itself. The reader should note that this result gives the versions of [5,
Proposition 2.5.3 and Theorem 2.5.1] appropriate to our context.

Proposition 5.8. Let B ⊆ M be a weak-∗ closed N-bimodule, and set

B0 = spanw∗(GN(M,D) ∩B) and B1 := spanBures(GN(M,D) ∩B),

Then B0 and B1 are weak-∗ closed N-bimodules satisfying B0 ⊆ B1 and

GN(M,D) ∩B0 = GN(M,D) ∩B = GN(M,D) ∩B1.

Furthermore, when (M,N,D) is a full Cartan triple,

B0 ⊆ B ⊆ B1 = B
Bures

.
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Proof. Notice that if (xλ) is a net in M which Bures-converges to x ∈ M, then for any a ∈ M

and b ∈ N, limBures axλb = axb. It follows that B1 is a weak-∗ closed N bimodule. That B0 is an
N-bimodule follows from the fact that U(N)GN(M,D)U(N) = GN(M,D) and that spanU(N) = N.
Clearly B0 ⊆ B1.

Suppose v ∈ GN(M,D)∩B1. If (xλ) is a net inB with limBures xλ = v, we find limBures v∗xλ = v∗v.

As E is Bures continuous, we have that limBuresE(v∗xλ) = E(v∗v) = v∗v. Since the relative Bures
topology on N is the σ-strong topology on N, E(v∗xλ) converges weak-∗ to v∗v. By Corollary 5.3,
vE(v∗xλ) is a net in B converging weak-∗ to v, showing that v ∈ GN(M,D)∩B. Thus, GN(M,D)∩
B0 = GN(M,D) ∩B = GN(M,D) ∩B1.

Now suppose (M,N,D) is a full Cartan triple. Clearly B0 ⊆ B ⊆ B1. Let L be the linear span

of GN(M,D) ∩ B and choose x ∈ B
Bures

. By Theorem 5.2, for each u ∈ GN(M,D), uE(u∗x) ∈ L,

so Theorem 5.7 shows x ∈ B1, whence B1 = B
Bures

. �

Notation 5.9. For a Bures-closed N-bimodule B ⊆ M, let GN(B,D) := GN(M,D) ∩ B. Define
Θ(B) ⊆ S by

Θ(B) = q(GN(B,D)).

Further, define a map Ψ from the collection of spectral sets (see Definition 5.1) in S to Bures-closed
N-bimodules in M by

Ψ(A) = spanBuresq−1(A) = spanBures{j(a)n : a ∈ A,n ∈ N},

which is necessarily a Bures-closed N-bimodule.

When (M,N,D) is full, Theorem 5.2 shows that GN(B,D) is non-zero whenever B 6= (0). We
now extend the spectral theorem for bimodules in Cartan pairs (see [5, Theorem 2.5.8] and [12,
Theorem 6.3]) to the context of Bures closed bimodules in a Cartan triple. Theorem 5.10 below
should also be compared with [16, Theorem 4.3].

Suppose for i = 1, 2 that Pi are full Ni-Clifford inverse monoids, S is a Cartan inverse monoid,

Pi →֒ Gi
qi
։ S are extensions of S by Pi, and let (Mi,Ni,Di) be the corresponding Cartan triples.

Theorem 5.10 implies the striking fact that the lattice structure of the Bures-closed Ni-bimodules
in Mi is isomorphic to the lattice of spectral sets in S. Thus, S completely determines the lattice
structure of the Bures-closed Ni-bimodules regardless of the choice of extension of S.

Theorem 5.10 (Spectral Theorem for Bimodules). Let (M,N,D) be a full Cartan triple. The map
Θ is a lattice isomorphism between the family of Bures-closed N-bimodules in M and the family of
spectral sets in S. Moreover, Θ−1 = Ψ.

Proof. Let B be a Bures-closed N-bimodule in M and let A := Θ(B). We will first show that A is a
spectral set in S. Suppose s ∈ A and t ≤ s. Then there exists an e ∈ E(S) such that t = se. Write
s = q(v) for some v ∈ GN(B,D), and e = q(p) for some projection p ∈ D, we find t = q(vp), so
t ∈ A. Next, suppose that {si}i∈I is a pairwise orthogonal family in A and let s =

∨
si. For i 6= k,

the orthogonality of si and sk implies that j(si) and j(sk) are partial isometries with orthogonal
initial spaces and orthogonal range spaces. Therefore, the sum

∑
i∈I j(si) converges strong-∗ to an

element v ∈ GN(M,D). As the Bures topology is weaker than the strong-∗ topology, v ∈ GN(B,D).

For every i ∈ I, q(vj(s†i si)) = si, and it follows that q(v) = s. Thus j(s) ∈ B, and hence s ∈ A.
Therefore A = Θ(B) is a spectral set.

Proposition 5.8 shows that B is generated as a N-bimodule by B ∩ GN(M,D). It follows that
Ψ(Θ(B)) = B.

We now prove that A = Θ(Ψ(A)). Clearly, A ⊆ Θ(Ψ(A)). Choose s ∈ Θ(Ψ(A)) and let
B := Ψ(A). By definition, there exists v ∈ GN(B,D) such that q(v) = s. Let

r = sup{p ∈ proj(D) : q(vp) ∈ A}.
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Then q(r) is the maximal idempotent in E(S) such that s q(r) ∈ A. Thus if a ∈ A, s q(r⊥) ∧ a = 0.
Therefore, for any n ∈ N,

E((vr⊥)∗j(a)) = 0 = E((vr⊥)∗j(a)n).

Hence for any x ∈ span(q−1(A)), E((vr⊥)∗x) = 0. As E is Bures continuous, we find that
E((vr⊥)∗x) = 0 for every x ∈ B. As vr⊥ ∈ B and E is faithful, we obtain vr⊥ = 0. Hence
v = vr. Applying q we obtain, s = s q(r) ∈ A, as desired.

Finally, the order preserving properties follow by the definitions of Θ and Ψ. �

5.2. Intermediate von Neumann algebras. Our next goal is to give a version of Aoi’s Theorem
appropriate to our context. We first note the following technical result.

Proposition 5.11. Let M ⊇ N be an inclusion of von Neumann algebras and let D ⊆ Z(N) be a von
Neumann subalgebra. Assume further that there exists a faithful, normal conditional expectation

E : M → N. Let ψ be a faithful normal semi-finite weight on N and let φ = ψ ◦ E. Let σφt be the
modular automorphism group for φ. The following statements hold.

(a) The centralizer, Mφ := {x ∈ M : σφt (x) = x ∀ t ∈ R}, for σφt contains D.

(b) If v ∈ GN(M,D), then for every t ∈ R, σφt (v) ∈ GN(M,D). Further σφt (v) is Munn related
to v;

(c) If A is a von Neumann algebra such that N ⊆ A ⊆ M and D is regular in A, then there
is a unique faithful normal conditional expectation EA : M → A such that φ = φ ◦ EA. In
addition, EA has the following properties:
(i) EAE = EEA = E; and
(ii) EA is continuous when regarded as a map of (M, E-Bures) into (M, E-Bures).

Proof. For x ∈ M and d ∈ D, E(x∗d∗dx) ≤ ‖d‖2E(x∗x) and

E(d∗x∗xd) = E(x∗x)1/2d∗dE(x∗x)1/2 ≤ ‖d‖2E(x∗x).

Thus nφ is a D-bimodule. Recalling that

mφ :=





n∑

j=1

y∗jxj : n ∈ N, xj , yj ∈ nφ



 ,

we see that mφ is also a D-bimodule. Furthermore, for any d ∈ D and x ∈ mφ, we have

φ(xd) = ψ(E(xd)) = ψ(E(x)d) = ψ(dE(x)) = ψ(E(dx)) = φ(dx).

An application of [30, Theorem VIII.2.6] now gives part (a).

Now let v ∈ GN(M,D) and let w = σφt (v). Using (a) we have

w∗dw = σφt (v
∗dv) = v∗dv.

Thus w ∈ GN(M,D) and w is Munn related to v, proving part (b).

The regularity of D in A and part (b) show that σφt (A) ⊆ A for every t ∈ R. Lemma 2.20 gives
φ|A is a faithful, semi-finite normal weight on A. By [30, Theorem IX.4.2], there exists a unique
normal conditional expectation EA : M → A such that φ ◦ EA = φ. Since N ⊆ A, EA ◦ E = E.
Let Φ := E ◦EA. Then Φ is a conditional expectation of M onto N which satisfies φ ◦Φ = φ. The
uniqueness assertion of [30, Theorem IX.4.2] gives Φ = E. We thus have the formula in part (c(i)).
As E is faithful, so is EA.

Finally, suppose (xλ) is a net in M converging to x in the E-Bures topology. Applying E to both
sides of the inequality,

(EA(xλ)− EA(x))
∗(EA(xλ)− EA(x)) = EA(xλ − x)∗EA(xλ − x) ≤ EA((xλ − x)∗(xλ − x))
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and using the fact that EEA = E shows that EA(xλ) → EA(x) in the E-Bures topology. Thus EA

is E-Bures continuous. �

Theorem 5.12 (Aoi’s Theorem for Cartan Triples). Let (M,N,D) be a Cartan triple and suppose
A is a von Neumann algebra such that N ⊆ A ⊆ M. Then A is Bures closed. Furthermore, if
(M,N,D) is full, then (A,N,D) is a Cartan triple.

Proof. Let A0 be the weak-∗ closure of spanGN(A,Z(N)). Then A0 is a von Neumann algebra and,
as U(N) ⊆ GN(A,Z(N)), A0 ⊇ N. Thus, A0 is a weak-∗ closed N-bimodule.

By Proposition 5.11, there exists a faithful, normal conditional expectation EA0
: M → A0. Since

EA0
is E-Bures continuous, it follows that A0 is E-Bures closed. By Proposition 5.8,

A0 ⊆ A ⊆ A
Bures

= spanBuresGN(A,Z(N)) = A0
Bures

= A0,

so A is Bures closed.
When (M,N,D) is full, that is, D = Z(N), the previous paragraph shows that D is regular in A,

so (A,N,D) is a Cartan triple. �

Remark 5.13. With the notation of Theorem 5.12 and its proof, let A00 be the weak-∗ closure of
spanGN(A,D). Then N ⊆ A00 ⊆ A0, and A00 is Bures closed. However, we have been unable to
show A00 = A0 in general, which is why we required the fullness hypothesis to conclude (A,N,D)
is a Cartan triple. However, this hypothesis is rather mild, and is satisfied when D is a Cartan
MASA in M. Thus Theorem 5.12 is indeed a generalization of Aoi’s theorem for Cartan pairs.

As an immediate corollary, we use the Spectral Theorem for Bimodules to parametrize the
intermediate von Neumann algebras for a full Cartan triple. As with Bures-closed bimodules, this
parametrization depends only on the Cartan inverse monoid and not the extension.

Corollary 5.14. Let (M,N,D) be a full Cartan triple. Set

vN(M,N,D) := {A : A is a von Neumann algebras such that N ⊆ A ⊆ M} and

sub(S) := {T ⊆ S : T is a Cartan inverse submonoid of S with E(T) = E(S)}.

Then the restriction of Θ to vN(M,N,D) gives a bijection between vN(M,N,D) and sub(S).

6. Examples

In this section, we give several examples of Cartan triples.

6.1. Type I examples. Suppose a Hilbert space H is decomposed as as a direct sum, H =⊕
i∈I Hi, where for all i, j ∈ I, dimHi = dimHj . Let M = B(H) and D be the von Neumann

algebra generated by {Pi : Pi is the projection onto Hi, i ∈ I}. Then N = D′ = ⊕i∈IB(Hi) and
(M,N,D) is a full Cartan triple. Indeed,

M ∼= B(ℓ2(I))⊗B(H1),D ∼= D(ℓ2(I))⊗CIH1
, and N ∼= D(ℓ2(I))⊗B(H1), (6.1)

where D(ℓ2(I)) are the diagonal operators in B(ℓ2(I)).
We now show every Cartan triple (M,N,D) with M = B(H) has the form outlined above,

and hence is necessarily full. Showing that D is atomic is the key step. To start, let P be the
projection onto the closure of the span of the ranges of the minimal projections in D. We argue by
contradiction to show P = I. If P 6= I, fix a unit vector η ∈ P⊥H and a positive integer n. Choose
a maximal chain P in proj(P⊥D) (with respect to the ordering ≤ in proj(P⊥D)). The map from
P into [0, 1] given by P ∋ R 7→ ‖Rη‖ is onto [0, 1] since P has no atoms. So for 0 ≤ j ≤ n, let
Rj ∈ P be such that ‖Rjη‖ = j/n and for 1 ≤ j ≤ n put Qj := Rj −Rj−1. Thus ‖Qjη‖ = 1/n for
every j.
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If X is the rank-one projection onto the span of η, then

E(X) = E

(
n∑

i=1

QiX

)
=

n∑

i=1

QiE(X) = E

(
n∑

i=1

QiXQi

)
.

As ‖QiXQi‖ = 1/n for each i, ‖E(X)‖ ≤ 1/n for all choices of n and so E(X) = 0, contradicting
faithfulness of E. Thus P⊥ = 0 and D is atomic.

Finally, since GN(M,D) spans M, any two atoms of D, say A and B, must have the same
dimension, since otherwise AMB ∩ GN(M,D) = {0}, contradicting the regularity of D in M.

By the previous paragraph, for every non-zero minimal projection P ∈ Z(M), (MP,NP,DP ) is
a full Cartan triple. As a consequence, we have the following observation.

Proposition 6.1. If (M,N,D) is a Cartan triple with dim(M) <∞, then (M,N,D) is full.

6.2. Tensoring Cartan pairs. Equations (6.1) decomposed a Cartan triple into tensor products,
where M ∼= B(ℓ2(I))⊗B(H1) and N = D(ℓ2(I))⊗B(H1). Note that D(ℓ2(I)) is a Cartan subalgebra
of B(ℓ2(I)). In fact, starting with any Cartan pair we can create a Cartan triple by tensoring with
a von Neumann algebra.

SupposeM is a von Neumann algebra, D ⊆ M is a Cartan MASA and let N be any von Neumann
algebra. Consider the von Neumann algebras

D⊗ IN ⊆ D⊗N ⊆ M⊗N.

Since D is regular in M it follows that D ⊗ IN is regular in M⊗N. Further, the conditional
expectation E : M → D induces a faithful conditional expectation E⊗idN : M⊗N → D⊗N. By [31,
Theorem IV.5.9 and Corollary IV.5.10], D⊗N = (D⊗IN)

c. Thus (M⊗N,D⊗N,D⊗ IN) is a Cartan
triple. Further, if N is a factor (M⊗N,D⊗N,D⊗ IN) is a full Cartan triple.

6.3. Crossed products by discrete groups. Cartan triples arise naturally as crossed product
von Neumann algebras. In Section 6.3.1 we will show that if G is a discrete group acting on an
abelian von Neumann algebra D then (D⋊αG,D

c,D) will always give a Cartan triple. If a discrete
group G acts on a (not necessarily abelian) von Neumann algebra N, and D = Z(N), we give
necessary and sufficient conditions for (N ⋊α G,N,D) to be a Cartan triple in Section 6.3.2.

Let G be a discrete group acting on a von Neumann algebra N by automorphisms α. Let
M = N⋊αG. The von Neumann algebraM is generated by a copy of N and a unitary representation
of G, {ug}g∈G such that αg(d) = ugdu

∗
g. There is a faithful, normal conditional expectation EN

from M onto N. Each element x ∈ M is uniquely determined by a Fourier series

x =
∑

g∈G

xgug, where xg := EN(xu
∗
g) ∈ N.

This series converges in the Bures-topology on M induced by EN [23].
Cameron and Smith [6, 8] have studied Bures-closed bimodules and intermediate von Neumann

algebras in a large class of crossed products. We will see in Theorem 6.3 that there is overlap in
our work and theirs. However, neither work subsumes the other.

6.3.1. Crossed products of abelian algebras.

Theorem 6.2. Let D be an abelian von Neumann algebra and let G be a discrete group acting on
D by automorphisms α. Let M := D⋊α G and N = Dc. Then (M,N,D) is a Cartan triple.

Proof. Since D is clearly regular in D ⋊α G, we only need to note that there is a faithful normal
conditional expectation from M onto N. Since there is a faithful, normal conditional expectation
ED from M onto D, D is regular in N, and D ⊆ N ⊆ M, this follows from Proposition 5.11(c).
Alternatively, the existence of the conditional expectation onto N also follows from the proof of
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Theorem 3.2 of [8]. In [8] it is assumed that the action of G is by properly outer automorphisms,
though this is not needed in the proof. �

We give further details on the structure of this Cartan triple. For each g ∈ G, let pg be the
largest projection in D such that αg|Dpg is the identity. We note pg is the Froĺık projection e0
for adug on D described in the proofs of Lemma 2.18 and Proposition 4.9. By [26, Lemma 2.15],
ugpg = pgug ∈ N and EN(ug) = ugpg.

Since EN is Bures continuous, we can explicitly describe EN by

EN


∑

g∈G

xgug


 =

∑

g∈G

xgpgug.

6.3.2. Crossed products of non-abelian algebras. An automorphism α on a von Neumann algebra
N is properly outer if there are no nonzero central projections z ∈ Z(N) such that α|Nz is inner.
Equivalently α is properly outer if and only if

yx = xα(y)

for all y ∈ N implies that x = 0. In [8] crossed products by properly outer automorphisms are
studied and the Bures-closed bimodules and intermediate von Neumann algebras are characterized.
We show now that the crossed products studied in [8] give rise to full Cartan triples under the
assumption that the restriction of the action to the center Z(N) is also properly outer.

Theorem 6.3. Let N be a von Neumann algebra and let G be a discrete group acting on N by
properly outer automorphisms α. Let M = N ⋊α G. Then (M,N,Z(N)) is a Cartan triple if and
only if the action of G restricted to the center Z(N) is properly outer.

Proof. Suppose x ∈ Z(N)′ ∩M. Let x =
∑

g∈G xgug be the (Bures convergent) Fourier series for x.

Since x ∈ Z(N)′ it follows that if xg 6= 0 then for d ∈ Z(N),

dxg = EN(dxu
∗
g) = EN(xu

∗
g(ugdu

∗
g)) = xgαg(d). (6.2)

Let Jg be the two-sided ideal in N generated by xg. It follows from (6.2) that xd = xα(d) for all
x ∈ Jg and all d ∈ Z(N). Since Jg is a two-sided ideal, there is a central projection zg ∈ Z(N) such
that Jg = Nzg. Thus zgd = zgαg(d) for all d ∈ Z(N). That is, αg|Z(N)zg = id|Z(N)zg .

It follows that N = Z(N)c if and only if for all g 6= e, αg|Z(N) is properly outer. �

6.4. Crossed products by equivalence relations. Igor Fulman in [17] studied a class of Cartan
triples which he called crossed products by an equivalence relation. A crossed product by an
equivalence relation is a Cartan triple satisfying the condition in Definition 6.4 below, which we
also call Fulman’s condition. In Appendix A we provide a conceptual framework in terms of inverse
semigroups for Fulman’s condition and show that Fulman’s condition amounts to a lifting problem.
Here we give a class of Cartan triples which satisfy Fulman’s condition.

Suppose (M,N,D) is a Cartan triple with associated extension,

P →֒ G
q
։ S

and fixed order preserving section j.

Definition 6.4. A regularizer is a subgroup R ⊆ U(M) satisfying:

(a) U(N) ⊆ R ⊆ GN(M,D);
(b) spanR is weak-∗ dense in M;
(c) there is a homomorphism α : R→ Aut(N) such that

(a) if p is a projection in D such that αu|Dp = id|Dp then αu|Np = id|Np.
(b) αu(d) = udu∗ for each u ∈ R and d ∈ D.
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We will call a map α satisfying conditions (i) and (ii) of part (c) a regularizing map for R.
When the Cartan triple (M,N,D) has a regularizer, we say (M,N,D) satisfies Fulman’s condi-

tion.

Note that if R is a regularizer with regularizing map α, then kerα = U(N) ([17, Remark, pg.
41]).

Example 6.5. Let N be a von Neumann algebra and let D = Z(N). Let G be a discrete group
acting on N by properly outer automorphisms. Further assume that the restriction of the action
of G to D is properly outer. Let M = N⋊α G. Then by Theorem 6.3 (M,N,D) is a Cartan triple.
Let R be the group generated by

{ug : g ∈ G} ∪ {u ∈ N : u unitary}.

Let R := {ug : g ∈ G} and let α : R → Aut(N) be ug 7→ adug . Since G acts by properly outer
automorphisms on Z(N), α is a regularizing map for R so that R is a regularizer. Thus (M,N,D)
satisfies Fulman’s condition.

Appendix A. An Inverse Semigroup Description of Fulman’s Condition

Fulman’s condition as stated in Definition 6.4, is mysterious. Our goal in this appendix is to
establish Theorem A.8, which shows Fulman’s condition is equivalent to the statement that a rather
natural lifting problem for inverse semigroups (Diagram A.1) has a positive solution. We begin
with a definition.

Definition A.1. Let (N,D) be a pair of von Neumann algebras with D a von Neumann subalgebra
of Z(N). A partial automorphism of (N,D) is a triple (e, α, f) consisting of projections e, f ∈ D

and a normal ∗-isomorphism α : fN → eN satisfying α(eD) = fD. We will use pAut(N,D) for the
set of all partial automorphisms of (N,D). If f = 0 (or e = 0) we say (e, α, f) is the zero element
of pAut(N,D). Further, define an involution and a product in pAut(N,D) via,

(e, α, f)† := (f, α−1, e) and (e1, α1, f1)(e2, α2, f2) := (α1(f1e2), (α1 ◦ α2)|α−1

2
(e2f1)

, α−1
2 (f1e2)).

Then pAut(N,D) is an inverse monoid with 0. Also

E(pAut(N,D)) = {(e, id|eN, e) : e ∈ proj(D)}

and hence may be identified with proj(D). For γ = (e, α, f) ∈ pAut(N,D) and x ∈ fN, we write
γ(x) for the value of α at x.

We require the following notions for an inverse semigroup R.

• Two elements s, t ∈ R are compatible if st† and s†t are idempotents; a subset A ⊆ R is
compatible ([21, page 26] if every pair of elements of A is compatible.

• R is infinitely distributive ([21, page 28]) if whenever I is an index set and {ri}i∈I ⊆ R is
such that

∨
i∈I ri exists then for any s ∈ R,

∨

i∈I

sri and
∨

i∈I

ris exist and s

(∨

i∈I

ri

)
=
∨

i∈I

sri,

(∨

i∈I

ri

)
s =

∨

i∈I

ris.

• R is complete ([21, page 27]) if whenever A ⊆ R is a compatible subset,
∨
A exists.

Lemma A.2. The inverse semigroup pAut(N,D) is infinitely distributive and complete.

Proof. As proj(D) is a complete Boolean algebra, [21, Proposition 1.4.20] shows pAut(N,D) is an
infinitely distributive inverse semigroup.

We turn now to showing pAut(N,D) is complete. Given a = (ea, αa, fa) ∈ pAut(N,D), identify
a†a with fa and aa† with ea, so that the source and range of a belong to proj(D).
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First suppose that A ⊆ pAut(N,D) is a finite and orthogonal set. Let e =
∨
a∈A aa

† and

f =
∨
a∈A a

†a. For n ∈ Nf , n =
∑

a∈A na
†a and define

α(n) :=
∑

a∈A

αa(na).

Then (e, α, f) ∈ pAut(N,D). For a ∈ A, (e, α, f)(fa, id|Nfa , fa) = a so a ≤ (e, α, f). Further, if
for every a ∈ A, a ≤ (e′, α′, f ′), then (e, α, f) = (e′, α′, f ′)(f, id|Nf , f) = (e, α, f). Thus, (e, α, f) =∨
A. So joins exist for finite orthogonal sets.
Next, suppose A is a finite compatible set. Let B be the (finite) Boolean algebra generated by

{a†a : a ∈ A}. The identity of B is f :=
∨
a∈A a

†a. Let atom(B) be the (finite) set of atoms of B.
Let C := {ap : a ∈ A, p ∈ atom(B)}. Then C is a finite orthogonal set of elements in pAut(N,D).
Let (e, α, f) :=

∨
C. Let a ∈ A and Pa := {p ∈ atom(B) : ap 6= 0}. Then a =

∑
p∈Pa

ap and

a†a = fa =
∑

p∈Pa
p ≤ f . So for every p ∈ Pa, (e, α, f)(p, id|Np, p) = ap. Thus

(e, α, f)(p, id|Np, p) = ap, whence (e, α, f)(fa, idNfa , fa) = a.

This shows that for every a ∈ A, a ≤ (e, α, f). On the other hand, if a ≤ (e′, α′, f ′) for every
a ∈ A, then (e′, α′, f ′)(f, id|Nf , f) = (e, α, f) so (e, α, f) =

∨
A, showing joins exist for any finite

compatible set.
Finally, let A ⊆ pAut(N,D) be an arbitrary compatible subset. Let F be the set of all finite

subsets of A ordered by inclusion and for F ∈ F, let aF =
∨
F . Notice that if F1 ⊆ F2, then

aF1
≤ aF2

. Write aF = (eF , αF , fF ). Let e =
∨
{aa† : a ∈ A} =

∨
F∈F eF and f =

∨
{a†a : a ∈ A} =∨

F∈F fF . For n ∈ Nf , the net αF (nfF ) converges strongly, and we define α(n) = limαF (nfF ).
Then (e, α, f) =

∨
A. �

The inverse semigroup pAut(N,D) may be written as an extension,

Cliff(pAut(N,D)) →֒ pAut(N,D)
π
։ Fund(pAut(N,D))

where Cliff(pAut(N,D)) is the Clifford inverse subsemigroup of all elements of pAut(N,D) which
are Munn related to an idempotent, and Fund(pAut(N,D)) is the quotient of pAut(N,D) by the
Munn relation.

Henceforth, fix a Cartan triple (M,N,D) with associated extension P →֒ G
q
։ S and order-

preserving section j. We shall be interested in the semigroup pAut(N,D) arising from this Cartan
triple.

The idempotents of pAut(N,D) (and hence those of Fund(pAut(N,D))) may be identified with
E(S). We shall show that for any Cartan triple, there is a one-to-one inverse semigroup homomor-
phism θ : S → Fund(pAut(N,D)) which fixes idempotents. Our goal in this section is to show
that Fulman’s condition is satisfied if and only if there is a lifting of θ to an inverse semigroup
homomorphism α so that the following diagram commutes:

pAut(N,D)

π

��

S
θ

//

α

77
♣

♣

♣

♣

♣

♣

♣

Fund(pAut(N,D)).

(A.1)

For (e, α, f) ∈ pAut(N,D), let [e, α, f ] ∈ Fund(pAut(N,D)) denote the Munn equivalence class of
(e, α, f). It will be helpful to have an explicit description of the Munn relation on pAut(N,D).

Lemma A.3. For i = 1, 2, let (ei, αi, fi) ∈ pAut(N,D). The following are equivalent.

(a) (e1, α1, f1) is Munn related to (e2, α2, f2);
(b) for every d ∈ proj(D), α1(df1) = α2(df2);

32



(c) e1 = e2, f1 = f2 and α1|f1D = α2|f2D.

Proof. Suppose (a) holds. Then for any d ∈ proj(D), (d, id|dN, d) ∈ E(pAut(N,D)), so

(ei, αi, fi)(d, id|dN, d)(fi, α
−1
i , ei) = (αi(dfi), idαi(dfi)N, αi(dfi)), (A.2)

which yields (b).
Now suppose (b) holds. Taking d ∈ {f1, f2, f1f2} gives α1(f1) = α2(f1f2) = α1(f1f2) = α2(f2),

so that f1 = f2 and e1 = e2. Since fiD is generated by proj(fiD), we obtain (c).
Finally, assume (c) holds. Let d ∈ proj(D). Examining (A.2) we obtain

(e1, α1, f1)(d, iddN, d)(f1, α
−1
1 , e1) = (α1(df1), idα1(df1)N, α1(df1))

= (α2(df2), idα2(df2)N, α2(df2))

= (e2, α2, f2)(d, iddN, d)(f2, α
−1
2 , e2).

Thus (a) holds and the proof is complete. �

We now observe that there is always a one-to-one inverse semigroup homomorphism of S into
Fund(pAut(N,D)). Note that if v ∈ G, then v defines a partial automorphism in pAut(N,D).
Indeed if we define adv by

adv : v
∗vN → vv∗N

v∗vx 7→ vxv∗,

then (vv∗, adv, v
∗v) ∈ pAut(N,D). We define a map θ : S → Fund(pAut(N,D))) by

θ(s) = [j(ss†), adj(s), j(s
†s)].

By Lemma A.3, if v,w ∈ G and v and w are Munn equivalent, then [vv∗, adv, v
∗v] = [ww∗, adw, w

∗w].
Hence the map θ is independent of the choice of j. Indeed, for any w ∈ q−1{s}, θ(s) = [ww∗, adw, w

∗w].
Thus we may use any of

[j(ss†), αj(s), j(s
†s)], [ss†, αs, s

†s], or [j(ss†), αs, j(s
†s)]

to denote θ(s).

Proposition A.4. The map θ : S → Fund(pAut(N,D)) given by

θ(s) := [j(ss†), ads, j(s
†s)]

is a one-to-one homomorphism of inverse semigroups such that θ|E(S) is an isomorphism of E(S)
onto E(Fund(pAut(N,D))).

Proof. For e ∈ E(S), θ(e) = [j(e), idj(e)N, j(e)], so θ|E(S) is an isomorphism of E(S) onto E(Fund(pAut(N,D))).
Take s1, s2 ∈ S. Then

θ(s1s2) = [j(s1s2s
†
2s

†
1), ads1s2 , j(s

†
2s

†
1s1s2)].

On the other hand, ad−1
s2 (j(s

†
1s1s2s

†
2)) = j(s†2s

†
1s1s2) and ads1(j(s

†
1s1s2s

†
2)) = j(s1s2s

†
2s

†
1), so

[j(s1s
†
1), ads1 , j(s

†
1s1)][j(s2s

†
2), ads2 , j(s

†
2s2)] = [j(s1s2s

†
2s

†
1), ads1 ◦(ads2 |j(s†

2
s†
1
s1s2)N

), j(s†2s
†
1s1s2)].

Thus to show that θ is a homomorphism it suffices to show that

ads1s2 = ads1 ◦(ads2 |j(s†
2
s†
1
s1s2)N

).

Note that for each s ∈ S and e ∈ E(S),

θ(s)(j(e)) = j(s)j(e)j(s)∗ = j(ses†).
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Hence for e ∈ E(S), ads1s2(j(e)j(s
†
2s

†
1s1s2)) = ads1(ads2(j(e)j(s

†
2s

†
1s1s2))). An application of

Lemma A.3 now shows that θ is multiplicative on S. Hence θ is an inverse semigroup homo-
morphism.

If θ(s1) = θ(s2), then for every e ∈ E(S), ads1 |j(e)D = ads2 |j(e)D, so that in particular, s1es
†
1 =

s2es
†
2 for every e ∈ E(S). As S is fundamental, s1 = s2, whence θ is one-to-one. �

We now show that a regularizer may be viewed as a homomorphism of q(R) into Aut(N) satisfying
Fulman’s conditions.

Lemma A.5. Suppose a regularizer R exists for (M,N,D). Let α : R→ Aut(N) be a regularizing
map. Then α induces a one-to-one group homomorphism α̃ : q(R) → Aut(N,D) such that for every
e ∈ E(P) and U ∈ R,

α̃q(U)(e) = adU (e) = j(q(U))ej(q(U))∗ .

Proof. By condition (c)(ii) of Definition 6.4, (I, αU , I) ∈ Aut(N,D) for every U ∈ R. Applying
condition (c)(i) of Definition 6.4, it follows that there exists a one-to-one group homomorphism
α̃ : q(R) → Aut(N,D). If e ∈ E(P), and U ∈ R, then α̃q(U)(e) = αU (e) = UeU−1. �

Lemma A.6. Let R be a regularizer for (M,N,D) and let R := {q(s)e : s ∈ R, e ∈ E(S)}. Then R

is an inverse semigroup and S is isomorphic to the join completion of R.

Proof. A calculation shows R is an inverse semigroup, and by definition, S is complete. Notice that
every compatible order ideal of R is also a compatible order ideal of S. Thus by the proof of [21,
Theorem 1.4.23], the join completion of R is contained in S.

Take s ∈ S and let t =
∨
{q(r)∧s : r ∈ R}. Suppose t 6= s. As {a ∈ S : a ≤ s} is a Boolean algebra,

there is a u ∈ S such that u ∨ t = s and u ∧ t = 0. There is a w ∈ GN(M,D) such that q(w) = u.
As R densely spans M, there is a U ∈ R such that E(U∗w) 6= 0. Hence v = UE(U∗w) 6= 0. Note
that v ∈ GN(M,D) and

q(v) = q(U)q(E(u∗w)) = q(U)(q(U∗)q(w) ∧ 1)

= q(w) ∧ q(U) ≤ s ∧ q(U).

Hence q(v) ≤ t. However, q(v) ≤ u. Hence u = 0, and t = s. For every r ∈ R, q(r) ∧ s ∈ R. Hence
the completion of R is S. �

Next we show that Fulman’s condition implies that there is a homomorphism of S into pAut(N,D)
which lifts the map θ described in Proposition A.4.

Lemma A.7. Suppose Γ ⊆ S is a group (under the multiplication inherited from S) whose unit is
1 ∈ S. Assume that α : Γ → Aut(N,D) is a one-to-one homomorphism such that for every s ∈ Γ,
Fulman’s condition (c) is satisfied for αs, that is,

(i) if p ∈ proj(D) satisfies αs|pD = id|pD, then αs|pN = id|pN; and
(ii) for d ∈ D, αs(d) = j(s)dj(s)∗.

Let SΓ ⊆ S be the smallest Cartan inverse submonoid of S containing Γ and E(S). Then α extends
uniquely to a one-to-one homomorphism α′ : SΓ → pAut(N,D). In addition π ◦ α′ = θ|SΓ.

Proof. Let R := {se : s ∈ Γ, e ∈ E(S)}. Since Γ is a group, R is an inverse semigroup. As in the
proof of Lemma A.5(b), SΓ is the join completion of R. We shall show that there is a multiplicative
map of α′ : R → pAut(N,D).

Suppose s, t ∈ Γ. Fulman’s condition (c) applied to s†t shows that if p ∈ proj(D) and αs|pD =
αt|pD, then αs|pN = αt|pN. For s ∈ Γ and e ∈ E(S), define

α′(se) := (j(ses†), αs|j(e)N, j(e)).
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Note that this is well-defined, for if se = tf for some idempotents e, f and t ∈ Γ, then αs†t|feD =
id|feD, so αs|efN = αt|efN. Thus, α

′ : R → pAut(N,D) is well-defined. For s, t ∈ Γ and e, f ∈ E(S)
a calculation shows that α′((se)(tf)) = α′(st)α′(tf), so α′ is a homomorphism. Also, for any s ∈ Γ
and e ∈ E(S), π(α′(se)) = θ(se).

By [21, Theorem 1.4.24], α′ extends uniquely to a join-preserving homomorphism of SΓ into
pAut(N,D). Take s ∈ Γ. Recall θ(s) = [j(ss†), ads, j(s

†s)] = [j(1), ads, j(1)]. Since αs(d) =
j(s)dj(s)∗ for all d ∈ D, by Lemma A.3, π ◦ α(s) = θ(s). That π ◦ α′ = θ|ΓS

now follows from the
definition of α′. Since θ is a one-to-one map it follows that α′ is one-to-one. �

We now are prepared to recast Fulman’s condition as a lifting problem.

Theorem A.8. Let (M,N,D) be a Cartan triple with associated extension P →֒ G
q
։ S. Then

(M,N,D) satisfies Fulman’s condition if and only if there exists a homomorphism of inverse semi-
groups α : S → pAut(N,D) such that π ◦ α = θ.

Proof. Suppose (M,N,D) satisfies Fulman’s condition. Combining Lemmas A.5 and A.7 we obtain
a homomorphism α : S → pAut(N,D) such that π ◦ α = θ.

Conversely, suppose α : S → pAut(N,D) is a homomorphism satisfying π ◦ α = θ. Let R :=
U(M) ∩ G. Clearly U(N) ⊆ R ⊆ GN(M,D) and spanR is weak-∗ dense in M. Let τ := α ◦ q|R.
Then τ : R→ Aut(N) is a homomorphism. For u ∈ R write τu instead of τ(u).

We claim that for u ∈ R and d ∈ D, τu(d) = udu∗. Since π◦τ = θ, we obtain π(τu) = θ(q(u)), that
is, [1, τu, 1] = [1, adq(u), 1]. By Lemma A.3, we obtain τu|D = adq(u) |D. But, using Proposition A.4,
for every d ∈ D, adq(u)(d) = udu∗. The claim follows.

Suppose e ∈ proj(D) and τu|eD = id|eD. Let s = q(ue) and note that s†s = q(e). For f ∈ E(S)
we have

sfs† = q(uej(f)pu∗) = q(τu(ej(f))) = q(ej(f))) = q(e)fq(e)†.

Since S is fundamental, we obtain s = q(e). So s is an idempotent. Therefore α(s) ∈ pAut(N,D)
is idempotent, which is to say that α(s) = id|eN. Since α(s) = τu|eN, we find that τu|eN = id|eN.
This completes the proof. �

Remark A.9. While we do not presently have an example, it seems unlikely that for a general
Cartan triple, this lifting problem will have a solution. Thus, we expect that there should be an
example of a Cartan triple which is not a crossed product by an equivalence relation.

A sufficient condition for a solution to the lifting problem is if the map j : S → G can be chosen
so that j(st)∗j(s)j(t) ∈ D. In this case the map α : s 7→ (j(ss†), ads, j(s

†s)) can be shown to be
homomorphism. Clearly θ = π ◦ α.
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