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ABSTRACT

Many biochemical and physiological properties of plants that are of interest to breeders and geneticists have

extremely low throughput and/or can only bemeasured destructively. This has limited the use of information

on natural variation in nutrient and metabolite abundance, as well as photosynthetic capacity in quantitative

genetic contexts where it is necessary to collect data from hundreds or thousands of plants. A number of

recent studies have demonstrated the potential to estimate many of these traits from hyperspectral reflec-

tance data, primarily in ecophysiological contexts. Here, we summarize recent advances in the use of hyper-

spectral reflectance data for plant phenotyping, and discuss both the potential benefits and remaining

challenges to its application in plant genetics contexts. The performances of previously published models

in estimating six traits fromhyperspectral reflectance data inmaize were evaluated on new sample datasets,

and the resulting predicted trait values shown to be heritable (e.g., explained by genetic factors) were esti-

mated. The adoption of hyperspectral reflectance-based phenotyping beyond its current uses may accel-

erate the study of genes controlling natural variation in biochemical and physiological traits.
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QUANTIFYING PLANT TRAITS USING
HYPERSPECTRAL REFLECTANCE DATA

When light strikes the surface of a plant, it will experience one of

three fates. First, the light can be absorbed by the plant, by

photosynthesis, converted to heat, or re-emitted as fluorescence

(van Bezouw et al., 2019). Second, the light can be reflected by

the plant, or third, it can be transmitted through the plant and

emerge out the other side. The probability of each of these

fates varies depending on the wavelength of the light and the

properties of the plant the light is striking (Kumar et al., 2002).

Hyperspectral imaging generally captures information about the

intensity of light reflected from the plant across many specific

wavelengths. To interpret this information it is important to

know the relative intensity of the light striking the plant

at different wavelengths. Different hyperspectral imaging

technologies take different approaches when addressing this

question, including providing their own light source with known

properties, using standard panels with known reflective

properties in images, or including a second sensor facing the

opposite direction of the main sensor to directly measure the

intensity of the incoming light at different wavelengths directly.

The technical details of how hyperspectral measurements can

be made are beyond the scope of this review, but have been

well explained elsewhere (Bruning et al., 2020).

Two broad approaches can be taken for deploying measuring

plant phenotypes from hyperspectral data. The first is to identify

a small set of wavelengths where individual values or ratios are

informative. These include, for example, normalized difference

vegetation index (Rouse et al., 1974) or photochemical

reflectance index (Gamon et al., 1992). These indices rely on
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spectral regions that are well-known absorption peaks maxima

for important plant pigments: chlorophyll and carotenoids.

Exposing plants to stress often leads to changes in

concentration of these pigments and also to changes in

vegetation index. This makes such indices robust tools when it

comes to obtaining general information about plant status. The

primary advantages of this approach are, first that sensors can

be made at lower cost, and second that the interpretation of

the resulting models is straightforward. The alternative

approach is to employ sensors that measure many specific

wavelengths, either including only the visible spectrum (350–

700 nm) or expanding to include the near infrared (700–

1100 nm), and sometimes shortwave infrared (1100–2500 nm).

The cost of devices capable of collecting these data is higher

but declining over time. The primary advantages are, firstly that

predictions using values from the full spectrum improve

accuracy, even for traits with well-known reflectance maxima,

such as chlorophyll (Yendrek et al., 2017); and secondly that

the same set of hyperspectral data can be analyzed to quantify

multiple traits. In addition, hyperspectral data collected

in previous years can be reanalyzed with newly trained models,

mining additional information and insight from already

conducted experiments.

Hyperspectral data can be collected from satellites, from un-

manned aerial vehicles (UAVs) or planes, from cameras on the

ground, or from handheld spectrometers in direct contact

with the plant surface. There are several important differ-

ences between handheld spectrometers and hyperspectral

camera carriers on different platforms. First, handheld spectrom-

eters usually measure larger numbers of discrete wavelengths.

Second, measurements are more accurate because those types

of devices have artificial light sources and offer constant calibra-

tion. Third, handheld spectrometers conduct leaf-level (point)

measurements while spectrometers on other platforms conduct

canopy-level measurements. This is a crucial difference, since

canopy structure itself can lead to changes in the hyperspectral

profile (Knyazikhin et al., 2013). Effects of canopy structure can

be minimized with vector normalization (Knyazikhin et al., 2013;

Wang et al., 2020b) or using LiDAR (light detection and ranging)

data (Ewald et al., 2018). However, no such type of research

has been done solely on crop ecosystems (Wang et al., 2020b)

and it will be required before spectrometers mounted on UAVs

can be used routinely in genetics and agriculture. While

collecting data with handheld spectrometers is much more

time consuming compared with other platforms, previously

published research demonstrates that it is possible to collect

data from hundreds of individuals (Yendrek et al., 2017; Ge

et al., 2019), making this technology suitable for the scale

required in genetic studies. Moreover, by eliminating the

confounding effects of variation in illumination and leaf

angle relative to the camera, data collected by handheld

spectrometers require much less pre-processing than imaging-

based systems. Since handheld spectrometers currently have

lower cost, technology, and skill barriers to entry we will concen-

trate on the use of this technology in this review (Figure 1).

A range of approaches to training models used to predict plant

traits from hyperspectral data have been employed. Two of the

most widely used at the moment are partial least squares

regression (PLSR) (Wold et al., 2001) and least absolute

shrinkage and selection operator regression (Tibshirani, 1996).

These approaches have been able to predict a wide range of

biochemical and physiological traits from hyperspectral data. In

recent years, a growing number of studies have demonstrated

the use of hyperspectral reflectance data from spectrometers

to build models that can predict a range of plant traits (Table 1).

These studies have been conducted in different species,

although maize and wheat have been common targets, with the

goal of predicting different output traits from the same initial

data type. The number of paired ground truth and

hyperspectral reflectance data points collected in individual

studies varies dramatically, from 61 to 2478 samples. This

variation reflects the varying degrees of difficulty required to

collect ground truth measurements for different target traits.

Common targets of prediction have included specific leaf area

and its inverse leaf mass per unit area (Serbin et al., 2011,

2019; Silva-Perez et al., 2017; Yendrek et al., 2017; Ely et al.,

2019; Ge et al., 2019) and nitrogen content (Serbin et al., 2011;

Silva-Perez et al., 2017; Yendrek et al., 2017; Ely et al., 2019;

Ge et al., 2019; Wang et al., 2020a). Furthermore, studies have

also demonstrated the potential of training models to predict

the abundance of different sugars and non-structural carbohy-

drates (Ely et al., 2019), phosphorous and other macro and

micro nutrient abundance (Silva-Perez et al., 2017; Ge et al.,

2019), the abundance of a wide range of metabolites (Vergara-

Diaz et al., 2020), and even water use efficiency (Cotrozzi et al.,

2020) from hyperspectral reflectance data. One of the factors

that has attracted the most attention is the potential to estimate

photosynthetic parameters, such as the maximum rate of

carboxylation of ribulose bisphosphate (Vcmax) (Serbin et al.,

2011; Silva-Perez et al., 2017; Yendrek et al., 2017; Fu et al.,

2019; Wu et al., 2019; Wang et al., 2020a). The conventional

approach to collecting measurements of many photosynthetic

parameters is to fit non-linear models to data obtained from

gas-exchange measurements (Farquhar et al., 1980). However,

Figure 1. Collection of hyperspectral reflec-
tance data in a maize genetics experiment.
(A) Use of a portable and battery-powered spec-

troradiometer to collect hyperspectral reflectance

data as part of a maize field experiment conducted

in the summer of 2020.

(B) Variation in patterns of hyperspectral reflec-

tance observed among the leaves of four distinct

maize inbred genotypes. Each datapoint con-

sisted of the measurements of 2151 distinct

spectral intensities between 350 and 2500 nm in

wavelength.
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Reference Species Phenotype R2 Sample size
Modeling
method

Serbin et al. (2011) aspen and

cotton wood

tree

leaf mass per area 0.95 78 PLSR

Nitrogen 0.89 78

maximum rates of RuBP carboxylation (Vcmax) 0.89 78

maximum rates of RuBP regeneration (Jmax) 0.93 78

Yendrek et al. (2017) maize Chlorophyll 0.85 268 PLSR

Nitrogen 0.95 203

specific leaf area 0.67 182

maximum rates of RuBP carboxylation (Vcmax) 0.65 214

Sucrose 0.6 61

Heckmann et al. (2017) maize maximum rate of the A-Ci curve 0.69 50 PLSR

carbon to nitrogen ratio 0.89 50

initial slope of the A-Ci curve 0.58 50

Brassica aximum rate of the A-Ci curve 0.51 50

carbon to nitrogen ratio 0.90 50

Moricandia

(mixed
species)

maximum rate of the A-Ci curve 0.44 50

carbon to nitrogen ratio 0.80 50

initial slope of the A-Ci curve 0.65 50

Silva-Perez et al. (2017) wheat Nitrogen 0.93 525 PLSR

leaf mass per area 0.98 525

Chlorophyll 0.81 614

maximum rates of RuBP carboxylation (Vcmax) 0.74 488

maximum rates of RuBP regeneration (Jmax) 0.70 488

nitrogen content per unit leaf area (Nmass) 0.86 615

phosphorus content per unit leaf area 0.65 431

maximum rubisco activity normalized to

25�C (Vcmax25)

0.62 488

Rate of CO2 assimilation 0.49 560

Vcmax25/Nmass 0.40 488

Phosphorus 0.40 431

stomatal conductance 0.50 560

Serbin et al. (2019) diverse species leaf mass per area 0.89 2478 PLSR

Wu et al. (2019) tropical tree maximum rubisco activity normalized to

25�C (Vcmax25)

0.89 216 PLSR

Ely et al. (2019) eight eudicot

species

Nitrogen 0.92 178 PLSR

Carbon 0.95 178

carbon to nitrogen ratio 0.92 177

leaf mass per area 0.90 179

leaf water content 0.89 179

Protein 0.85 177

amino acids 0.58 174

Nitrate 0.51 179

Starch 0.80 174

total non-structural carbohydrates 0.70 177

Table 1. Summary of 11 research papers which use hyperspectral reflectance to predict various traits.
(Continued on next page)

Plant Communications 2, 100209, July 12 2021 ª 2021 The Author(s). 3

Hyperspectral reflectance-based phenotyping for quantitative genetics Plant Communications



these measurements require expensive equipment to collect and

significant amounts of time per data point. Even with the most

recent photosynthesis measurement devices, a single

measurement requires at least 5 min and typically 20–

30 min (Stinziano et al., 2019). This substantially constrains the

study of genetic determinants of natural variation in

photosynthetic parameters within species, as if significant

genotype 3 environment interactions (G3E) exist for many of

these parameters. One of the first publications to indicate the

possibility of using hyperspectral reflectance data to estimate

photosynthetic parameters more rapidly than was possible

from conventional gas-exchange phenotyping was by Serbin

et al. (2011). The authors demonstrated the ability to predict

values of both Vcmax and Jmax—the maximum rate of ribulose

bisphosphate regeneration—with R2 values of ~0.9 in a 78-

sample dataset collected from 11 tree species across three

temperature regimes. Variation between species is frequently

lager, and therefore easier to predict, than variation between

individuals of a single species. However, more recent work has

demonstrated that it is also possible to predict Vcmax and Jmax

variation among individuals of a single species by employing

hyperspectral reflectance data collected from several hundred

individuals of maize (Yendrek et al., 2017) and wheat (Silva-

Perez et al., 2017), although with somewhat lower R2 values

than were obtained for between species predictions.

A number of studies have also demonstrated the ability to predict

the abundance of a range of inorganic nutrients and plant metab-

olites from hyperspectral reflectance data. Ely et al. (2019)

quantified the abundance of 9 different metabolites across

roughly 180 samples drawn from 8 plant species. Ely et al. were

able to successfully construct models to predict the abundance

of starch and sucrose with relatively high accuracy (R2 > 0.75),

while the accuracy was lower for glucose and fructose (R2 <

Reference Species Phenotype R2 Sample size
Modeling
method

total sugars 0.69 179

Sucrose 0.76 177

Glucose 0.56 177

Fructose 0.44 179

Ge et al. (2019) maize Chlorophyll 0.94 846 PLSR or SVM

leaf water 0.70 846

specific leaf area 0.55 846

Nitrogen 0.86 846

Phosphorus 0.44 846

Potassium 0.59 846

Fu et al. (2019) tobacco maximum rates of RuBP carboxylation (Vcmax) 0.75 212 Regression

stacking
maximum rates of RuBP regeneration (Jcmax) 0.63 212

Vergara-Diaz et al.

(2020)

durum wheat 74 metabolites 0–0.81 360 LASSO

Cotrozzi et al. (2020) maize rate of CO2 assimilation 0.84 180 PLSR or

LASSO
Transpiration 0.83 180

stomatal conductance, 0.73 180

intercellular CO2 concentration 0.51 180

instantaneous water use efficiency 0.69 180

intrinsic water use efficiency 0.44 180

leaf temperature 0.89 180

Chlorophyll 0.61 180

leaf water potential 0.63 180

leaf osmotic potential 0.60 180

leaf osmotic potential at full turgor 0.53 180

Wang et al. (2020a) maize Chlorophyll 0.95 178 PLSR

Nitrogen 0.96 351

maximum rates of RuBP carboxylation (Vcmax) 0.81 298

Table 1. Continued
R2 values are based on validation dataset. PLSR, partial least squares regression; LASSO, least absolute shrinkage and selection operator; SVM, support

vector machine.
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0.60). The same study observed that the total protein content can

be predictedwith high accuracy (R2 > 0.8). Aswith photosynthetic

parameters, a key question was whether the prediction accuracy

of models based on data from multiple species could be

replicated with data from a single species. In a study employing

data from a maize association panel grown in three

environments, Ge et al. (2019) demonstrated the ability to

predict leaf nitrogen, phosphorus, and potassium content with

good accuracy from hyperspectral reflectance data. Using 360

samples from durum wheat, Vergara-Diaz et al. (2020)

demonstrated the ability to predict the gas chromatography-

mass spectrometry-measured abundance of at least 15

metabolites with acceptable performance (R2 > 0.5) in each of

three tissues—leaves, lemmas, and glumes—using models

trained on hyperspectral reflectance data. Those metabolites

have played roles in physiological functions, such

as photosynthesis metabolism, carbon partitioning, and storage

(sucrose and glucose); osmotic adjustment and stress tolerance

(raffinose, maltose, glycerol, and proline); photorespiration

intermediates (glycerine and serine); and organic acids related

to osmoprotection and respiratory metabolism (malate and

fumarate). Various metabolites in this study have shown poor

predictive performance, such as lysine, glycine, and fucose.

There are several possible explanations: they do not produce

any differentiable or appreciable spectral absorption, their

signals are masked by signals from other traits (such as

chlorophyll or water), or their content or inter-sample variation

was too small to be accurately quantified. Since only four geno-

types were employed in this study, the latter reasons seem to

be likely, and research on larger sample sizes are needed to

exclude this possibility. Similar to the earlier multi-species study

(Ely et al., 2019), prediction accuracy for fructose was again

inferior to that of sucrose. This suggests that the properties that

make a trait feasible to predict, or not as the case may be, may

be generalizable across species and studies. Several studies

have demonstrated the ability to accurately estimate leaf water

content from hyperspectral reflectance data (Ely et al., 2019; Ge

et al., 2019). However, hyperspectral reflectance data may be

able to predict more features related to plant water use than

simply instantaneous water content. A study employing six

maize hybrids with diverse degrees of drought stress tolerance

demonstrated that traits, including stomatal conductance and

leaf temperature, in addition to relative water content, could be

predicted from hyperspectral reflectance data (R2 > 0.7). In the

same study, leaf water potential and osmotic potential could be

predicted with accuracies in the range of R2 from 0.5 to 0.7

(Cotrozzi et al., 2020). As a dataset of only 180 paired

hyperspectral and ground truth datapoints were employed, it

may be possible to increase the prediction accuracy for these

water use-related traits by employing models trained with larger

datasets.

Taken together, the above examples demonstrate that hyper-

spectral data are able to effectively estimate values for a wide

range of plant traits of interest to plant geneticists and plant

breeders. However, as shown above, efforts to develop and

validate these approaches have been driven primarily by

biochemical and physiological applications. The application of

hyperspectral data to address quantitative genetics challenges,

such as mapping genes while controlling within-species variation

for traits of interest, will first require evaluation of whether or not

predicted values are heritable, that is if the variation in them

can be explained by genetic factors.

CHALLENGES IN QUANTITATIVE
GENETICS

Once it is possible to accurately measure a trait across hundreds

of individuals of a target species, quantitative genetic tools can

be used to identify regions of the genome or specific genes con-

trolling variation in the target trait. Similarly, traits scored across

hundreds of individuals can be used to train genomic prediction

models that can guide the breeding of new varieties with

improved values for the target trait. Traits which are expensive

to measure or that require significant labor per data point are

less likely to be targets of quantitative genetic investigations

even when those same traits may be valued by farmers, con-

sumers, or policy makers. Plant nutrient status, photosynthetic

capacity, and stress tolerance are all traits which are of value to

agriculture, but investigations of genetic regulators and breeding

of these characteristics have been slowed by the expense of col-

lecting data (nutrient status), the time-consuming nature of data

collection (photosynthesis), or the logistical challenges of

creating repeated and equivalent environmental stresses. Adding

to the challenge, plant nutrient status, photosynthesis, and meta-

bolism are all sensitive to environmental perturbations. As a

result, quantitative genetic analysis of genes controlling these

traits requires the collection of data from hundreds of individuals

not once, but repeatedly across many diverse environments.

Studies of the genetic control of easily measured plant traits can

demonstrate the size and complexity of data collection necessary

to employ quantitative genetic tools, such as the genome-wide as-

sociation study (GWAS) in plant species. In addition to the effort

required to accurately measure a trait, another key metric which

determines the effectiveness of GWAS is the heritability of the trait

in question (Miao et al., 2019). Heritability is an estimate of the

proportion of total variance for a given trait in a population that is

explained by genetic variation between individuals in that

population. Two types of heritability can be calculated: narrow

sense and broad sense. Narrow-sense heritability reflects only

additive effects. For sets of unrelated genotypes, narrow-sense

heritability can be calculated from genotype means or

unreplicated data from individuals. However, calculating narrow-

sense heritability requires the availability of genetic marker

information. Broad-sense heritability incorporates additive, domi-

nance, and epistatic genetic effects. In contrast to narrow-sense

heritability, broad-sense heritability can be calculated for unrelated

sets of genotypes in the absence of genetic marker information,

provided that individual genotypes are replicated. In principle,

broad-sense heritability is a superset of narrow-sense heritability

and should always be an equal or higher number. However, the

estimation of heritability is imprecise and influenced by experi-

mental, technical, and quantitative factors (Lynch and Walsh,

1998), so this will not always be the case.

The ideal trait for breeding or gene mapping is characterized by

high heritability. For example, the broad-sense heritability of

both flowering time and plant height of maize in a nested associ-

ation mapping (NAM) population are estimated to be >0.9 (Peiffer

et al., 2014). However, successful GWAS have also been

Plant Communications 2, 100209, July 12 2021 ª 2021 The Author(s). 5
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conducted in maize for metabolites related to carbon and

nitrogen metabolism with low to moderate heritability (0.14–

0.68) (Zhang et al., 2015). It should be noted that the NAM

population used in this study was very large (n > 4000). Using a

smaller population of 289 diverse individuals, Riedelsheimer

et al. (2012) were only able to map the quantitative trait locus

(QTL) for biochemical compounds that have repeatabilities

higher than 0.63. This indicates that mapping genes for a trait

with lower heritability requires either greater replication, larger

mapping populations, or a more favorable genetic architecture

(Miao et al., 2019). Heritability values are not fixed and they can

change during developmental stages (Liang et al., 2017; Miao

et al., 2020) or because of time of exposure to stress (Chen

et al., 2014; Feldman et al., 2018). This is also true for QTL

effect and it is known that a given QTL can have different

impacts on a given trait at different stages in development

(Muraya et al., 2017; Feldman et al., 2018). Yet, as a result, the

high cost and labor-intensive nature of phenotypic data

collection, GWAS using trait data from the same population at

multiple time points remains the exception rather than the rule.

Since the concept of association mapping was introduced to plant

biology (Thornsberry et al., 2001), it became one of the most

important tools to link genomic regions with various phenotypes.

Lots of attention was given to decoding the genetic architecture

of different morphological and developmental traits, such as

flowering time in maize (Buckler et al., 2009), various agronomic

traits in rice (Huang et al., 2010), height of maize (Peiffer et al.,

2014) and sorghum (Miao et al., 2020), or the root architecture of

maize and sorghum (Zheng et al., 2020). Because these types of

traits are relatively easy and cheap to measure, it is not

uncommon that they are evaluated in many environments and in

a few different populations. Such data provide clear benefits.

Using data from three big maize populations (Ames, Chinese, and

US-NAM), (Li et al., 2016) conducted a large-scale GWAS on

maize flowering time data from multiple environments. For days

to anthesis they were able to find 77 QTL, among which only 18

overlapped between CN and US-NAM, whereas for days to silk

they found 78 QTL, with 19 overlapped, respectively. This results

clearly demonstrate that, using a single population for QTL map-

ping, may be not sufficient to obtain the full picture of the genetic

architecture of the trait of interest. However, generating such

amounts of physiological and biochemical data is much more

expensive and technically challenging.

Alongside morpho-developmental traits, various studies were

done on biochemical and physiological traits. Zhang et al.

(2015) analyzed 12 key carbon and nitrogen metabolites in a

US-NAM population using 100 000 enzymatic assays. They

were able to identify 514 candidate genes, among which

extensive pleiotropy were found. However, this research was

done based on samples from one year and one location, so the

level of environmental effect and G3E remains unknown. The

same population was used for analyzing 20 elements in kernel

composition from plants grown in four different environments

(Ziegler et al., 2017). Variance partitioning reveals massive G3E

effect for every element. In each case, more than half of the

observed phenotypic variation was explained by the G3E

effect. These contrast with traits, such as height or flowering

time. A study on the same maize NAM population found that,

for these traits, more than half of the variation was explain by

genotype effect and only 0.2 by G3E in the case of flowering

time and about 0.1 in height (Peiffer et al., 2014). The

importance of environmental effects on traits related to

elements also came from the work of Yang et al. (2018). They

measured 17 elements across a diverse panel of 529 rice

accessions in two locations in three parts of plants and found

72 loci responsible for controlling variation in these traits. While

30 QTL were common across environments, 42 were specific

for one place. Results from this work clearly show that

measurements across multiple environments have to be

done to fully understand the genetic architecture underlining

composition of elements in various plant tissues.

Perhaps the most difficult traits to quantify are those related to

abiotic and biotic stress response. Stress in general affects

many traits simultaneously; however, effect size on various traits

can be different. It is known that many studies tend to use very

high levels of stress in experiment design and concentrate on

traits that are largely affected by the given stressor (Claeys

et al., 2014). However, less attention has been given to mild

stress, which is much more common in nature. Moreover, it is

not uncommon for different stresses to appear in various

parallel combinations. When a plant is exposed to such

conditions during its whole life cycle no obvious response may

appear; however, the impact on yield may be substantial.

Therefore, proper tools to study mild stress should be improved.

Another difficulty in measuring stress response is time depen-

dency. Depending on how long a plant was exposed to the

stressor, the effects on phenotypes might be different. So far,

only a small number of studies measure GWAS on plant stress

response traits during different time points (Campbell et al.,

2015; Guo et al., 2018; Ubbens et al., 2020). These types of

studies are technically challenging, especially in terms of

biochemical traits, since those measurements are usually

destructive. This makes them difficult to monitor over time

without substantially increasing the sample size. Hyperspectral

reflectance offers the great opportunity to predict many of the

discussed traits in a nondestructive manner, allowing

researchers to monitor stress response over time. Moreover,

because many traits can be predicted from single

measurements, this offers opportunities to study plant

responses to stress at biochemical and physiological levels.

However, to be useful in genetic research, this prediction has to

be heritable. To our very best knowledge, this very important

problem has not yet been addressed in literature.

TRAITS ESTIMATED FROM
HYPERSPECTRAL DATA ARE HERITABLE

As shown above, many researchers have demonstrated the abil-

ity to predict trait values for a range of various biochemical and

physiological plant properties using hyperspectral reflectance

data. However, these studies primarily focus on the overall accu-

racy of prediction and cross-validation within a single dataset.

With the exception of Wang et al. (2020a), current studies

generally do not test out of sample datasets and do not

estimate the heritability of the predicted trait values produced

by analysis of hyperspectral reflectance data. To address both

of these questions we employed published data from Ge et al.
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(2019) collected from greenhouse- and field-grown plants of the

Buckler-Goodman maize association panel (Flint-Garcia et al.,

2005) in 2018, and a second set of previously unpublished data

collected using the same protocol from field-grown plants in

2019. The Buckler-Goodman panel has been resequenced,

providing high-density SNP marker data that enable the

calculation of narrow-sense heritability (Bukowski et al., 2017).

A detailed description of methods used in this analysis can be

found in the supplemental information.

In both 2018 and 2019 data from field-grown plants were collected

from high- and low-nitrogen application field plots. We focused on

ground truth data for six different traits: abundance of chlorophyll,

nitrogen, phosphorus, potassium in leaf tissue, leaf water content,

and specific leaf area (mass per unit area). We built prediction

models using 2018 data and evaluated the performance of these

models using new reflectance and ground truth data collected in

2019. Good correlations between predicted and ground truth

data were observed for chlorophyll and nitrogen content, moder-

ate correlation for specific leaf area and leaf water content and

rather low correlation for potassium and phosphorous (Figure 2).

Of the six traits evaluated, chlorophyll, specific leaf area, and

nitrogen all exhibited only modest declines in prediction

accuracy relative to estimates of prediction accuracy obtained

from cross-validation within the 2018 dataset (Ge et al., 2019).

The accuracy with which models trained on 2018 leaf water

content data could predict 2019 leaf water content was

substantially lower than estimates from cross-validation within

the 2018 data (R2 = 0.59 versus 0.76). Prediction accuracy for

the abundance of potassium and phosphorous showed the

greatest declines in between years versus within year prediction

accuracy (R2 = 0.35 versus 0.71 and R2 = 0.13 versus 0.45).

While potassium, phosphorous, and leaf water content exhibited

greater declines between years prediction accuracy, it may still

prove possible to train models that generalize well across

environments employing expanded sets of training data

collected across a wider range of environments. A good example

of the potential of such an approach is the work of Serbin et al.

(2019), who were able to achieve a prediction accuracy for

Figure 2. Evaluation of model performance
built from data from 2018 (Ge et al., 2019)
on data from 2019.
Upper left R2 values show coefficient of determi-

nation for presented data, whereas bottom right R2

values are obtained by cross-validation on 2018

data (Ge et al., 2019). CHL, chlorophyll content;

LWC, leaf water content; SLA, specific leaf area;

N, nitrogen content; K, potassium content; P,

phosphorus content.

specific leaf area of R2 = 0.89 by

incorporating data collected from multiple

species using different spectrometer

instruments across 11 environments. A

recent study also found that published

ecological models developed for a range of

species in eastern North America (Wang

et al., 2020b) were able to predict within-

species variation in chlorophyll and nitrogen

in maize with accuracies of R2 = 0.88 and

R2 = 0.85, respectively (Wang et al., 2020a). However, studies of

the transferability of models remain rare and more work is

needed to fully evaluate the potential unified and transferable

models to predict the same traits in different environments and

species. However, in the cases of chlorophyll, specific leaf area,

and nitrogen, existing prediction models for maize are already

providing consistent accuracy across years and environments

(Figure 2). The question that naturally arises is how heritable are

these estimates of plant leaf properties? How much of the

observed variance is explained by genetic factors?

Correlations between predicted and ground truth values across

an entire dataset collected inmultiple environments do not neces-

sarily indicate that predicted measurements will be under strong

genetic control. Theproportion of variance explainedbygenotype

to genotype variation will vary among traits even when consid-

ering ground truth data. For traits where environmental differ-

ences—in this case high- and low-nitrogen treatments—explain

a large proportion of total variance, it would be possible for a

model to achieve significant predictive value only by learning to

distinguish between plants grown under different treatment con-

ditions, while not learning how to predict between plant variation

in a single environment. Narrow-sense heritability in high- and

low-nitrogen environments was first calculated from ground truth

measurements collected in 2019. If ground truth measurements

are perfectly accurate and disagreement between ground truth

and predicted values are explained solely by random error, the

maximum narrow-sense heritability of estimated trait values

derived from hyperspectral reflectance data should be equal to

the product of narrow-sense heritability and the R2 observed be-

tween ground truth and predicted trait values (Figure 3). In five of

six cases evaluated, the heritability of trait values estimated from

hyperspectral reflectance data equalled or exceeded the product

of these two values. This suggests oneor both of twoconclusions.

Firstly, ground truth measurements are unlikely to be perfectly

accurate. In fact, it is quite plausible for models trained on large

amounts of noisy data to exceed the prediction accuracy of the

data used to train them. Secondly, errors in phenotyping data

are unlikely to be entirely random. For example, more than half
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the error inmaize biomass estimates from imagedata is explained

by genotype to genotype variation in the size and direction of

error (Liang et al., 2017). In general, for some traits, current

models for predicting trait values using hyperspectral

reflectance data appear to be as good, or nearly as good, as

methods used for ground truth data collection, at a fraction of

the cost and time of conventional methods. The narrow-sense

heritability of trait estimates derived from hyperspectral

reflectance data is sufficiently high that it should indeed be

possible to identify genes controlling trait variation within single

environments and, with properly replicated studies, genes

controlling genotype 3 environment variation across multiple

environments or treatments.

FUTURE PERSPECTIVES

The adoption of trait value estimation from hyperspectral data

has the potential to significantly benefit both quantitative genetics

and plant breeding. A significant barrier to adoption is a commu-

nication gap between those who are developing and testing pre-

dictive models, and those who could potentially employ the same

models in quantitative genetic and plant breeding contexts. Here,

we summarize several approaches to accelerate the adoption

and deployment of hyperspectral reflectance phenotyping in

plant quantitative genetics contexts. We urge researchers devel-

oping new models to employ experimental designs that make it

possible to calculate broad-sense heritability from repeatedly

measuring genetically identical individuals. Broad-sense herita-

bility tends to provide a more reliable and stable estimate of the

genetic contribution to variance than estimates of narrow-sense

heritability derived from marker data of unrelated populations of

individuals. Reporting estimates of heritability, regardless of

broad sense or narrow sense, in concert with the correlation be-

tween ground truth and predicted values would benefit plant sci-

ence researchers substantially in evaluating which models for

which traits are worth incorporating into their research or

breeding programs. Obviously genetic study is not the direct

goal of many researchers. However, the calculation and reporting
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Figure 3. Comparison between narrow-
sense heritability for ground truth and pre-
dicted from spectra values.
Dashed lines indicate expected narrow-sense

heritability value obtain by multiplying ground

truth narrow-sense heritability value with R2 values

from model performance evaluation. CHL, chloro-

phyll content; N, nitrogen content; SLA, specific

leaf area; HN, high nitrogen condition; LN, low

nitrogen condition.

of heritability values, regardless of broad

sense or narrow sense, in concert with the

correlation between ground truth and pre-

dicted values would substantially benefit

those researchers interested in genetic in-

vestigations. It may also be a relatively low

effort to increase the reuse and citation of

studies that are already being conducted.

A second question of substantial interest to

both quantitative geneticists and breeders

is how well models trained using existing data will perform in

new years or new locations. There is no easy answer. More

data is always better, but, unlike incorporating the calculation

of heritability, the decision to collect more data points across

more environments entails a substantial increase in the total

time and resources required to complete a given study. One par-

tial solution would be to encourage the implementation of open

science conventions widely adopted in genomics and metabolo-

mics for the deposition and sharing of raw datasets. Conventions

on data deposition and sharing in phenomics are much less well

defined because of the much greater diversity of data types that

fall within the broad umbrella of phenomics data. Phenomics is a

label that can apply to anything from a simple flat text with numer-

ical gas-exchange measurements, to archives of tens of thou-

sands of RGB images, LiDAR point clouds, or hyperspectral

data cubes (Yang et al., 2020). By comparison, hyperspectral

reflectance data collected from spectrometers is one of the

easier data types to share and disseminate. The structure of

the data lends itself well to being shared in flat text files with

ground truth measurements incorporated as part of the same

data frame. Files incorporating records from even thousands of

individuals are still sufficiently small to be deposited in open

data repositories, such as Zenodo, Figshare, or DataDryad, or

in dedicated repositories for hyperspectral data, such as the

Ecological Spectral Information System (ecosis.org) (Wagner

et al., 2018). While this repository is primarily targeted at

ecological studies, at least one research group succeeded

in using models originally constructed in an ecological

research context to predict within-species variation in maize

(Wang et al., 2020a). The accumulation of publicly available

hyperspectral data would not only aid in evaluating model

performance across years and locations, but also accelerate

the training of robust multi-species, multi-environment models

for various physiological and biochemical traits similar to those

demonstrated for specific leaf area (Serbin et al., 2019).

Currently, the majority of models trained to predict phenotypes

from hyperspectral data employ PLSR (Serbin et al., 2011;
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Silva-Perez et al., 2017; Yendrek et al., 2017; Ely et al., 2019;

Cotrozzi et al., 2020). This approach works well in a wide range

of cases. However, there may be room to further improve

prediction accuracy through the evaluation of additional

machine learning algorithms. For example, Fu et al. (2019)

found that a support vector machine showed the best

prediction for maximum rate of carboxylation of ribulose

bisphosphate (Vcmax) in tobacco (R2 = 0.67), while PLSR has

the lowest prediction performance among six compared

methods with R2 = 0.60. Moreover, regression stacking, a

technique that is used to mix different predictors to improve

prediction accuracy (Wolpert, 1992), improves the R2 to 0.75.

Software packages, such as caretEnsemble in R, can automate

the process of fitting various models and exploring parameter

space, reducing the additional work required to test and

evaluation of a range of models (Deane-Mayer and Knowles,

2019). The potential of future algorithmic innovations to train

more accurate models from the same datasets is another

motivation to ensure the effective annotation and storage of

hyperspectral reflectance data and associated ground truth

measurements.

One challenge to the wider adoption of hyperspectral phenotyp-

ing for genetics and breeding is that the models to predict traits

from these data are often essentially "black boxes" without a

clear understanding of the underlying mechanisms at play. In

some cases it is possible to understand the workings of the

model by estimating variable importance across different hyper-

spectral wavelengths (Wold et al., 2001). Those values indicate

how important a given wavelength is in predicting the value for a

particular trait. This approach works well for pigments, which

have known absorption light maxima and interpretation is

straightforward. However, for traits which we do not have

such a well-defined interactions with light, interpreting results

might be much more difficult. While the black-box nature of

trait prediction based on hyperspectral data is not inherently a

problem for the use of hyperspectral phenotyping in genetics

research, genetics may be able to help address this issue.

Studies on rice demonstrated that it is possible to successfully

identify casual loci for a particular wavelength or spectral

index (Feng et al., 2017; Sun et al., 2019). When casual loci

are identified and the function of the underlying gene is

known, this knowledge can help interpret the biological source

of variation in a given wavelength and thus provide insight on

the biological role of this wavelength in prediction of a given

trait (see Box 1).

The genetic mechanisms responsible for controlling many

biochemical and physiological traits in plants remain partially or

completely unknown. Quantitative genetic studies leveraging

natural genetic variation have enabled the identification of genes

controlling a wide range of plant properties. Hyperspectral reflec-

tance data have the potential to substantially expand the range of

traits studied using quantitative genetics, including many

biochemical and physiological traits where the genes controlling

natural variation remain partially or completely unknown. Howev-

er, it would be a mistake to think of this as simply a new technol-

ogy for measuring individual phenotypes. The real long-term

potential of this technology is that the same reflectance data

can be employed by different models to estimate a wide range

of related or unrelated traits. Hyperspectral reflectance data

collected from a large replicated GWAS population by one

research group to study the genes responsible for variation in ni-

trogen uptake efficiency could, with a properly trained model, be

employed by another research group to map genes controlling

variation in water use efficiency, and by a third interested in the

genes regulating the accumulation of various specialized metab-

olites. It is this potential for reusable phenotypic datasets to

address distinct research questions, just as early QTL mapping

and association populations created the potential for reusable

genotypic datasets, that makes the potential of hyperspectral

reflectance phenotyping to both expand our current genetic

knowledge and address the challenges of breeding for the 21st

century so exciting.
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Box 1. Potential aid of hyperspectral phenotyping for quanti-
tative genetics and vice versa

How hyperspectral phenotyping can aid quantitative genetics:

d Quantitative genetics requires a lot of measurements

d Many agriculturally or biologically important traits are

expensive or slow to score

d Many research groups cannot execute large multi-

environment field trials

d Hyperspectral reflectance data collected from large as-

sociation populations grown in multiple environments

can enable in silico GWAS

How quantitative genetics can aid hyperspectral phenotyping:

d The mechanism underling hyperspectral prediction for

many traits is unclear

d The lack of clear and established mechanisms slows

adoption

d GWAS conducted using hyperspectral phenotypes can

identify specific genes with known functions that may

shed light on the mechanistic basis for hyperspectral

phenotyping of specific traits
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