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planted oscillator with a host extra-SCN oscillator may be found 
in the demonstration of extensive fiber outgrowth from the im- 
plant into the host hypothalamus, preoptic area, and septal re- 
gion. However, the extensive implant fiber outgrowth into the 
surrounding hypothalamus noted in this AH heterograft study 
contrasts with the rather limited neuronal fiber outgrowth re- 
ported in AH homograft studies (Lehman et al., 1987; Canbeyli 
et al., 1991). The difference between these studies is most likely 
explained by the fact that all heterograft neuronal processes orig- 
inating from the implant are revealed by the use of species- 
specific antibodies. In the homograft studies, only a fraction of 
the implant is labeled when antibodies to SCN peptides are used 
for tracing or when anterograde neuronal tracers are placed on 
or injected into the graft (Sollars and Pickard, 1994). Neverthe- 
less, the possibility that fiber outgrowth from neural heterografts 
might be generally more extensive than fiber outgrowth from 
neural homografts cannot as yet be completely eliminated. 

Although the idea that r is not solely a function of the SCN 
is consistent with the data obtained in the current series of ex- 
periments, it stands in apparent contrast to the hamster allograft 
study by Ralph et al. (1990), in which transplantations using the 
7 mutant hamster demonstrated that the restored period was sin- 
gularly determined by the genotype of the donor. The authors 
interpreted this result as an indication “that either the SCN is 
essentially autonomous in determining the primary characteris- 
tics of rhythmicity in hamsters or that the host brain fails to 
make the connections with the tissue graft that are required for 
the brain to influence this period” (Ralph et al., 1990). However, 
while their result clearly demonstrates that the SCN plays an 
active role in’the generation of circadian rhythmicity, and un- 
equivocally demonstrates that the SCN is the only component 
of the hamster’s circadian system that has been altered by the 
tuu mutation, it leaves unaddressed the possibility that an extra- 
SCN oscillator is a fundamental component in the determination 
of the species-typical r of the hamster. 

The counterargument proceeds as follows. If, for example, the 
extra-SCN component of the hamster circadian pacemaker gen- 
erates a period of approximately 23.5 hr (to be consistent with 
the suggestion raised by the current heterograft results), the role 
of the hamster SCN may be a fine-tuning of that period en route 

to its overt expression. Accordingly, a normal hamster SCN 
tunes it slightly upward to 24 hr, whereas a heterozygote tau 

mutated SCN modifies it downward to 22 hr and a homozygote 
tuu mutated SCN drives it further down to 20 hr. Clearly, if the 
tuu mutation has altered only the circadian component resident 
in the SCN (as shown in allograft experiments), then the geno- 
type of the SCN-ablated host becomes irrelevant. Both the nor- 
mal SCNx hamster and the tuu mutant SCNx hamster retain an 
unmutated extra-SCN oscillator with a period (in this example) 
of 23.5 hr, and are indistinguishable from one another as hosts 
in the allograft transplantation experiments. Thus, analogous to 
the cockroach optic lobe transplantation experiment (Page, 
1982), apparent determination of the period by the implant is 
necessary, but does not provide sufficient evidence for an au- 
tonomous or even hierarchically predominant pacemaker within 
the transplanted locus. However, the significant modification of 
the period in the homozygous 7 mutant SCN may provide a 
valuable tool for further examination of the coupling between 
this oscillator and others in the hamster, whether those extra- 
SCN oscillators are subordinate or commensurate. 

In summary, the current study has firmly established the ca- 
pacity of AH heterografts to restore circadian rhythmicity to 

SCN-lesioned hosts, and has provided an evaluation of the donor 
fiber outgrowth into the host hypothalamus, which has so far 
been restricted in the AH homograft and allograft preparations. 
The inability to demonstrate fiber outgrowth in homografts has 
prompted the suggestion by some that the grafts communicate 
with the host via a diffusible substance (Lehman et al., 1987). 
The extent of fiber outgrowth noted in the present study is suf- 
ficiently robust and sustained to strengthen the possibility that 
the observed restoration of locomotor rhythmicity is a conse- 
quence of neuronal donor/host integration, consistent with the 
time course of graft fiber outgrowth, which precedes the time 
course of behavioral restoration (Sollars and Pickard, 1993). Al- 
though the observed graft/host integration favors a synaptic 
mode underlying the restored behavior, it does not eliminate the 
possibility of humoral communication. 

Finally, the two general (albeit diametrically opposed) inter- 
pretations of the behavioral data provide models for which a 
number of experimental tests can be devised. A critical deter- 
minant will be the capacity of the hamster AH graft to generate 
a hamster-typical period in a heterograft preparation. Addition- 
ally, a more systematic analysis of rat AH implants, comparing 
grafts that restore periods of < 24 hr to those that successfully 
restore a more rat-typical period of 24.3 hr, may provide insight 
into the possibility that the rat circadian system has a different 
hierarchical organization than that of the hamster or mouse. A 
clarification of this issue will have especially broad ramifica- 
tions, considering the variety of anatomical differences already 
apparent between the hamster and rat suprachiasmatic nuclei and 
retinohypothalamic projections (Pickard and Silverman, 198 1; 
Card and Moore, 1984; van den Pol and Tsujimoto, 1985; Lev- 
ine et al., 1991) and the burgeoning generation of mouse models 
of circadian rhythmicity as an avenue to the molecular analysis 
of mammalian circadian rhythmicity (Pickard et al., 1994; Tak- 
ahashi et al., 1994; Vitaterna et al., 1994). Thus, the combined 
AH heterograft results may be most valuable in pointing the way 
for further investigations to determine the autonomous function 
of the suprachiasmatic nucleus and the complete locus of the 
mammalian biological clock. 
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