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Ellagic acid (EA) is a polyphenol found in various fruits and plants, such as 

berries, pomegranates, muscadine grapes, nuts and bark of oak tree. EA has been known 

to exhibit anti-inflammatory and anti-proliferative effects in various types of cancer. 

However, little is known about the effects of EA on obesity. Herein, 1) the lipid-lowering 

role of EA was identified in primary human adipose stem cells (hASCs) and human 

hepatoma Huh7 cells; 2) the molecular mechanisms by which EA attenuates adipogenesis 

by epigenetic modification were identified; 3) the effects of EA on high fat and high 

sucrose-mediated obesity was determined in young C57BL/6J mice; and 4) the potential 

role of urolithins (Uro), metabolites of EA, in attenuating adipogenesis and lipogenesis of 

adipocytes were investigated. 

In this dissertation research, I firstly identified the novel inhibitory roles of EA on 

hypertrophic (increase in fat cell size) or hyperplastic (new fat cell formation) adipocyte 

expansion. 10 M of EA treatment significantly repressed hypertrophic lipid 

accumulation by inhibiting de novo lipogenesis of fatty acid in mature adipocytes. The 

anti-lipogenic effects of EA was also confirmed in Huh7 cells. EA were able to reverse 

the exogenous fatty acid-induced hepatic triglyceride (TG) accumulation by increasing -

oxidation. These results suggested that EA exerts TG-lowering effects both in adipose 



tissue and liver. Intriguingly, EA were also able to repress adipogenic conversion of 

hASCs by blocking early adipogenic markers. Since epigenetic modification has been 

recently revealed to be a key mechanism regulating adipocyte differentiation, chromatin 

modifying enzymes were measured. Inhibition of adipogenic conversion of EA was 

accompanied with augmentation of histone deacetylase (HDAC) 9 and reduction of 

histone methyltransferase (coactivator associated arginine methyltransferase 1, CARM1) 

activity. Next, we confirmed lipid-lowering effects of EA in vivo. High fat and high 

sucrose diet for 12 weeks resulted in a significantly increase in; 1) body weight, 2) 

plasma cholesterol and TG levels, 3) hepatic endoplasmic reticulum (ER)/oxidative stress, 

and 4) adipose inflammation, which were normalized by EA-containing raspberry seed 

flour (RSF) supplementation without altering food intake. Furthermore, systemic levels 

of glucose and insulin tolerance and hepatic insulin sensitivity were improved by RSF. 

Finally, to determine whether Uro, gut microbiota-derived metabolites from of EA, 

displays anti-adipogenic and anti-lipogenic effects of EA in adipocytes, UroA, B, C, D, 

and iso-UroA were added to differentiating and differentiated hASCs. UroA, C and D are 

biologically active gut metabolites of EA exerting potent lipid-lowering effects in 

adipocyte similar to EA. Overall, these data suggest that EA is a potent dietary factor to 

attenuate obesity and Uro may be novel metabolites manifesting EA’s effects.  
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I. INTRODUCTION: REVIEW LITERATURES 

Obesity has reached epidemic proportions in the United States and worldwide [1, 

2]. A systemic analysis for Global Burden of Disease Study reported that the prevalence 

of obesity has increased from ~30 % to 40 % during 1980-2013 worldwide underlining 

the urgent need of global action to intervene obesity [3].  The major cause of obesity is 

likely attributed to the obesogenic diets, although other factors such as lack of exercise, 

unhealthy eating habits, and genetic preposition expedite the onset of obesity and/or 

exacerbate severity of obesity [4]. Obesity develops from chronic positive energy 

imbalance when food intake exceeds the energy expenditure [5]. The progression of 

obesity is initiated by adipose tissue expansion by depositing surplus energy into the form 

of triglyceride (TG). Adipose tissue expansion occurs by forming new fat cell formation 

(hyperplasia, adipogenesis) or by enlarging its size to aggrandize TG storage capacity 

(hypertrophy) [6]. Several studies have clearly demonstrated that high fat (HF) diet 

triggers visceral fat expansion through adipocyte hyperplasia as well as adipocyte 

hypertrophy [7]. The increased visceral adiposity is accompanied by an increase of 

immune cell infilatration into adipose tissue,  basal (or non-stimulatory) lipolyis, and 

defective adipokine secetion [6, 8]. These immunological and endocrinological changes 

of adipose tissue during pathogenesis of obesity are positively associated with hepatic 

steatosis and systemic levels of glucose intolerance and insulin resistance (Figure I-1) [9, 

10]. Thus, there is an imminent need to devise dietary regimens to disconnect the viscious 

link between diet-induced adipocyte expansion and metabolic dysfunction. 
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Figure I-1 Schematic diagram showing that factors affect the pathogenesis of 

obesity. Obesity is accompanied by oxidative stress, inflammation, and dyslipidemia, 

which synergistically progress to obesity-related diseases, type 2 diabetes and NAFLD. 

 

The increased intake of fruits and vegetables (FV) has been shown to inversely 

correlate with inidence of obesity [11, 12]. In addition to the benefits from fiber 

consumption, dietary polyphenolic compounds in FV have attracted attention due to its 

biochemical ability to modulate signaling pathways of lipid and glucose metabolism. 

Among numerous polyphenolic compounds, we and others have recently recognized that 

ellagic acid (EA), abundant polyphenolic compound found in various berries and nuts, as 

one of promising dietary candidate to control obesity and its associated metabolic 

complications.  Besides to its anti-proliferative function of EA in cancer, there is 

accumulating evidence that EA decreases chronic metabolic diseases such as 

dyslipidemia, insulin resistance and non-alcoholic fatty liver diseases. This review 
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comprised of three sections to provide a novel insight into 1) bioavailability of EA, 2) in 

vitro and in vivo evidence that EA is capable to regulate lipid and glucose metabolism, 

and 3) mode of action that EA counteracts obesity-associated metabolic diseases. 

According to literature search in NCBI Pubmed on July 2015, 1,721 articles have been 

published regarding EA since 1964 (Figure I-2). However, the molecular mechanisms by 

which EA exerts anti-obesogenic effects by modulating lipid and glucose metabolisms 

remain unclear.   

 

Figure I-2 Yearly number of publications related to EA from 1964-2015. Data were 

obtained from PubMed. Data for the year 2015 shows the numbers of publications 

available up through July 31, 2015. 

 

In this review, I thoroughly discuss the emerging evidence that EA alters gene 

expression, cell signaling, and metabolism to reduce overweight and obesity in vitro and 

in vivo. I also comprehensively review the molecular mechanisms by which dietary EA 

attenuates obesity driven-health abnormality, and propose dietary EA as a promising 

polyphenolic compound to combat obesity.  
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Bioavailability of EA 

EA (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde]benzopyran-5,10-dion) was 

firstly discovered by Braconnot in 1831 [13]. EA is a highly thermostable molecule 

(melting point 350 
°
C), with molecular weight of 302.194 g mol

-1
. EA  consists of the 

lipophilic part with four rings and the hydrophilic part with four hydroxyl group and two 

lactone groups [14]. The strong hydrogen-bonding network act as an electron acceptor, 

which in turn enables EA to participate in a number of reactions [15]. EA is naturally 

present in numerous fruits and vegetables including strawberries, blackberries, red and 

black raspberries, and nuts including walnuts, pistachio, cashew nuts, oak acorns and 

pecans [16, 17] in the form of hydrolysable ellagitannins (ETs). ETs are also abundant in 

pomegranates and muscadine grapes especially in seed and skin [18-20]. Following oral 

administration of EA-containing foods, ET is hydrolyzed to form free EA. Subsequently, 

majority of EA undergoes metabolic converion by intestinal gut microbes resulting in 

generation of urolithins (Uro, dibenzopyran-6-one metabolites) through reduction of one 

of the two lactone groups and decarboxylation and dihydroxylation (UroD  UroC  

UroA or iso-UroA  UroB) (Figure I-3) [21]. Besides its microbial conversion into Uro, 

free EA undergoes phases II reactions that are conjugation processes of glucuronidation, 

sulfation and methylation at the large intestine. In physiological condition, virtually very 

low EA can be found in plasma or tissues based on human clinical trials [22] as well as  

on studies with rodents and other small mammals [23, 24]. More specifically, upon 

ingestion, peak plasma concentration of free EA is no more than 100 nM in plasma. 

However, Uro and its conjugated form can reach micromolar concentrations in plasma 

[25]. Furthermore, EA is found only a trace amount in the peripheral tissues, whereas Uro 
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and its conjugates accumulate in the prostate, intestine, and colon [26]. Glucuronides and 

methyl glucuronide of EA, UroA, and UroD present in the bile through enterohepatic 

circulation [27]. Phase II reactions of EA also affect EA uptake in hepatocytes and 

additional metabolism in liver [28]. However, specific bacterial strains that convert EA or 

its intermediate metabolites into UroA, B and D have not been identified yet.  

Likewise to the many other polyphenolic compounds, low bioavailability is the 

major limiting factor for dietary EA to exhibit metabolic activities in vivo. Noticeably, 

however, the most recent study by González-Sarrías et al. reports that EA could be found 

higher concentration than previously reported [29]. Apparently bioavailability of EA is 

regulated by multiple factors including conjugation with tannin, microbial conversion 

into Uro, metabolism in hepatocytes, and phase II reaction. Nonetheless of these limited 

bioavailability, pure EA or EA-containing food seem to effective in normalizing obesity 

and obesity-mediated metabolic dysfunction as we summarize in following sections.  

 

  

Figure I-3 Chemical structures of EA and Uro. A series of metabolites called 

“Urolithins” are formed from EA via enzymatic activation of gut microbes.  
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Effects of EA on obesity 

In vitro evidence 

There are several studies having directly or indirectly investigated the potential 

role of EA in adiposity control using adipocyte cell models (Table I-1). The most 

popular cell used to identify the anti-adipogenic effects is 3T3-L1 cell, a well-established 

murine pre-adipocyte cell line. Using 3T3-L1 cells, Mejia-Meza et al. first reported that 

EA-containing food alter adipocyte differentiation [30]. In their study, it is demonstrated 

that 250 μg/mL of fresh and dried red raspberries, which contain a large amount of EA 

(around 3.7 mg/g dry basis) as well as other polyphenolic compounds, inhibit 

adipogenesis and reduces lipid accumulation in 3T3-L1 cells. Wang et al. found that 15-

20 M of the concentration of EA significantly reduced adipogenesis through inhibition 

of cell cycle progression from G1S transition without causing apoptosis in 3T3-L1 

cells [31]. Consistently, Woo et al. also demonstrated EA significantly reduced lipid 

accumulation and early adipogenic markers such as kruppel-like factor 4 (KLF4), KLF5, 

Krox20 as well as peroxisome proliferator-activated receptor  (PPAR), and 

CCAAT/enhancer binding protein  (C/EBP)via cell cycle arrest [32]. These initial 

results that EA decreases adipocyte differentiation in 3T3-L1 cells were confirmed and 

obtained human relevance by the following studies from primary cultures of human 

adipocytes. Primary human adipogenic stem cells (hASCs), isolated from scavenged 

adipose tissue after liposuction or abdominoplasty surgery [33], have been extensively 

used to investigate adipocyte lipid metabolism in humans. Okla et al. [34] reported that 

muscadine grape polyphenols (MGP), which contains 18.2 mg/g of free EA were able to 

reduce lipid accumulation during adipogenesis in hASCs. Among the polyphenolic 
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constituents of MGP, authors identified that EA (~10 M) was the responsible 

polyphenol that exclusively represses the adipogenesis by decreased the expression of 

adipogenic genes, i.e., PPAR, fatty acid synthase (Fas), adipocyte protein 2 (aP2), and 

C/EBP [34, 35]. 

 Most in vitro studies were focused on investigating the role of EA in inhibiting 

new fat cell formation and few studies investigate the role of EA on terminal stage of 

differentiation or lipogenesis. Interestingly, Okla et al. showed that 3 day incubation of 

EA (10 M) in cultures of mature human adipocytes effectively reduces lipogenesis as 

well as in human hepatocytes. By using the radiolabeled precursor, it has been 

demonstrated that EA significantly reduced de novo lipogenesis, TG esterification, while 

enhanced FA oxidation. These TG-lipid lowering effects of MGP supplementation were 

confirmed in HF-fed C57BL mice showing that both hepatic TG contents and adipose 

tissue mass are reduced. The reduction of TG in liver was associated with increased 

hepatic FA oxidative gene expressions [34] implicating that decreased TG accumulation 

is linked with energy expenditure.  The activation of AMP-activated kinase (AMPK) is 

likely involved in this link, since AMPK activation has shown to regulate energy 

homeostasis [36] by inhibiting adipogenesis, de novo TG synthesis, and by augmenting 

FA oxidation [37]. Supporting this notion, Poulose et al. demonstrated that only 100 nM 

EA treatment for 30 minutes induced AMPK activation in fully differentiated 3T3-L1 

cells [38]. Consistently, Kang et al also showed that activation of AMPK is triggered by 

EA and UroA, C, and D in primary cultured of human adipocytes inhibiting 

differentiation of hASC into adipocytes (under review). Therefore, further analysis is 

required to validate these possibilities.  



8 

 

 

 

In addition to anti-adipogenic/lipogenic effects of EA, Chinese sweet leaf tea 

extract containing 10 g/ml of EA attenuated angiogenic gene expression of vascular 

endothelial growth factor (VEGF) in 3T3-L1 [39]. Another studies reported that EA 

containing pomegranate fruit extract (10-100 g/ml of EA) or pure EA (20-70 M) 

treatment in 3T3-L1 cells reduce resistin release, an anti-insulin sensitizing adipokine 

[40]. There are also another set of evidence that EA not only affects TG metabolism in 

adipocyte and hepatocytes, but also regulate cholesterol metabolism in macrophages. In 

J774A macrophage cell line, treatment of 5 M of EA for 18 hours showed reduced 

cholesterol ester (CE) accumulation by presumably reduced scavenger receptor class B 

member 1 (SR-B1) induction for oxLDL uptake, but increased cholesterol efflux [41].  

This study implicates that EA may be involved in reverse cholesterol transport process 

from the plaque area for attenuation of cardiovascular diseases risk.   

In vivo evidence 

The TG-lowering function of EA observed in in vitro studies is well supported by 

animal studies establishing physiological role of EA against the pathogenesis of obesity. 

A general consensus has found that EA-containing foods are effective in attenuating 

adiposity, plasma markers of metabolic syndrome although the attenuated fat mass were 

variable depending on the source and content of EA as well as supplementation duration 

(Table I-2). The dietary supplementation studies using ‘EA-containing whole foods’ 

such as pomegranate peel extract (6 mg EA/kg BW) [42], blueberry extracts  (150 mg of 

EA/kg BW) [43], Chinese sweet leaf tea  (220 mg EA/kg BW) [39], mango (1 or 10 % in 

diet) [44] and chestnut inner shell extract (150 mg/kg BW) [45], significantly reduced 

body weight as well as white adipose tissue mass in rodents. Moreover, despite same BW 
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changes, loss of visceral fat mass were found in some study such as 0.4% of MGP 

supplementation in C57BL/6 mice [18] and 30 mg/kg BW of Pomegranate fruit extract 

(PFE)-fed ovariectomized ddY female mice [40]. Pomegranate flower at a concentration 

of 0.5% in the diet was also able to reduce epididymal fat mass in aged ddY mice [46]. 

The loss of body weight and/or fat mass are accompanied by the improvement of plasma 

lipid profiles (reduced elevated FFA, TG, total cholesterol (TC), LDL, VLDL but 

increased HDL) and glycemic index (reduced hyperglycemia and hyperinsulinemia).  

Instead of EA-containing whole foods, it is also showed that “pure EA” is also 

able to attenuate obesity or obesity-mediated metabolic complications in animals. 

Furthermore, supplementation of 0.1% EA in KK-Ay mice, a type 2 diabetes mice model, 

ameliorated dysregulation of serum lipid profiles and resistin, and upregulated 

apolipoprotein A-I (ApoA-1), lipoprotein receptor (LDLr), carnitine palmitoyltransferase 

(CPT), and PPAR gene expressions in hepatic tissue resulting in improved hepatic 

steatosis [47]. Panchal et al. and Kannan et al. showed that EA (0.8 g/kg diet and 15 

mg/kg BW respectively) not only ameliorates lipid and  glucose metabolisms but also 

attenuates obesity-associated myocardiac dysfunction and cardiovascular remodeling by 

altered myocardial necrosis and upregulation of nuclear factor erythroid 2–related factor 

2 (Nrf2) and CPT1 expressions in heart and liver [48, 49]. Ahad et al. demonstrated that 

low-dose streptozotocin (STZ) injection with HF-diet triggered the diabetic nephropathy 

in Wistar albino rats, which was significantly prevented by oral administration of EA (40 

mg/kg BW for 16 weeks) attenuating dyslipidemia and onset of diabetic nephropathy [50] 

presumably through inactivation of renal nuclear factor-kappaB (NF-B) activation. 

Collectively, these studies suggest that EA may be beneficial to diabetes-associated 
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microvascular diseases such as cardiovascular diseases and diabetic kidney by decreasing 

chronic inflammation.  

In our effort to obtain a general impact of EA supplementation against 

pathogenesis of obesity, we conducted small meta-analysis using published data from 10 

animal studies with EA supplementation (Table I-3). It is noticeable that experimental 

groups with EA consumption reduced approximately 25% of dyslipidemia (decreased in 

TG) without altering food intake. The improvement of plasma lipid profile was more 

evident than measurable differences in total BW and/or adipose tissue mass. It might be 

attributed to the variable EA bioavailability depending on the source of EA. Further 

research is warranted whether intake of EA with other phytochemicals facilitates the EA 

uptake at the intestinal epithelium barrier. Moreover, future studies to determine 

appropriate dose of EA and the upper limit of safety as well as the underlying 

mechanisms of toxicity are necessary. 
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Table I-1  In vitro studies carried out with plant extracts rich in EA in relation to obesity and its metabolic complication 

Test material Test model  Dose/Duration Cell responses 
Physiological 

effects 
References 

EA 
3T3-L1 

preadipocytes 

5,25, and 50 

M, 6-8 days 

↓ lipid accumulation, PPAR, C/EBP,  

↓ early adipogenic markers KLF4, KLF5, Krox20, 

C/EBP within 24 hours 

Anti-adipogenesis 
Woo et al. 

(2015) 

EA 
Human liver cell 

line Huh7 cells 
10 M, 2 days 

↓ de novo TG synthesis and TG esterification,  

↑ FA oxidation 
Anti-lipogenesis 

Okla and Kang 

et al. (2015) 

EA 
Differentiated 

hASCs 
10 M, 3 or 7 

days 
Inhibits de novo lipogenesis Anti-lipogenesis 

Okla and Kang 

et al. (2015) 

EA hASCs 10 M, 7 days 

↓ adipogenic genes and protein (PPAR, C/EBP, 

aP2, Fas),  

alters epigenetic markers (↑HDAC9, ↓CARM1 

enzyme activity) 

Anti-adipogenesis 
Kang et al. 

(2014) 

EA 
3T3-L1 

preadipocytes 
20 M, 2 days 

↓ early day 2–4 of differentiation,  

↓ clonal expansion,  

block the cell cycle at the G1/S transition and 

Cyclin A  and Rb phosphorylation 

Anti-adipogenesis 
Wang et al. 

(2013) 

EA 

Macrophage-like 

cell line J774A1 

with oxidized LDL 
5 M, 18 hours 

↓ lipid accumulation and SR-B1 induction,  

↓ macrophage lipid uptake to block foam cells and 

↑ cholesterol efflux 

Anti-atherogenesis 
Park et atl. 

(2011) 

Chinese sweet leaf 

tea extract (GER) 

3T3-L1 

preadipocytes 
10 g/ml of 

GER 
↓ the expression of VEGF Anti-angiogenesis 

Koh et al. 

(2011) 

3,3'-di-O-

methylellagic acid 

and EA 

 3T3-L1 adipocytes 1,3,10 M ↓ TG, and GPDH activity Anti-adipogenesis 
Yang et al. 

(2011) 

Pomegranate fruit 

extract and EA 

3T3-L1 

preadipocytes 

10-100 g/ml 

of PFE, 20-70 

M of EA 

↓ resistin release 
Degradation of 

intracellular resistin 

Makino-

Wakagi et al. 

(2012) 

Abbreviation: EA, ellagic acid; PPARg, Peroxisome proliferator-activated receptor gamma; C/EBPa, CCAAT/enhancer binding protein alpha; KLF4, 

Kruppel-like factor 4; TG, triglyceride; hASCs, human adipogenic stem cells, Fas, Fatty acid synthetase; HDAC9, histone deacetylase 9; CARM1, co-

activator arginine methyltransferase 1; SR-B1, Scavenger receptor class B member 1; VEGF, Vascular endothelial growth factor; GPDH, Glycerol-3-

phosphate dehydrogenase 

1
2
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Table I-2 In vivo studies carried out using EA or EA-containing plants in relation to obesity and its metabolic complications 

Test material Test model  Dose/Duration 
Results 

Physiological 

effects 
References 

∆BW ∆Fat Cell responses 

EA 

HFD+STZ induced 

type 2 diabetic 

Wistar albino rats 

EA (40 mg/kg 

BW/day) for 16 

weeks 

- - 

-↓levels of TC, LDL-C, VLDL-C, 

FFA and TG,  

-↑ the levels of HDL-C 

Protection of 

diabetic 

nephropathy 

Ahad et al 

(2014) 

EA 

albino 

Wistar+isoproterenol 

(oxidative stress) 

EA (7.5 and 

15mg/kg BW) 

orally for 10 

days 

- - 

-Restores arrhythmias, ventricular 

hypertrophy, lipid peroxidation,  

-Altered lipid profile and 

myocardial necrosis 

Prevention of 

myocardial 

infarction 

Kannan et al. 

(2013) 

Chinese sweet 

leaf tea extract 

(GER) 

HFD fed male SD 

rats 

0.22g/kg BW, 

12weeks 
↓ ↓ 

-↓ glucose, TG, and cholesterol 

levels in blood 

Improvement of 

Obesity Phenotype 

Koh et al. 

(2011) 

Nanoparticle 

containing EA 

and coenzyme 

Q10 

HFD fed male SD 

rats 

10% (w/w of 

polymer), 2 

weeks 

- - 

-↓ glucose and hyperlipidemic 

conditions, 

-↑endothelial functioning 

Ameliorates 

hyperlipidemia 

Ratnam et al. 

(2009) 

EA 
HFD fed KKAy 

mice 

0.1% of EA in 

diet, 68 days 
- - 

-↓ serum resistin and  

-↓ hepatic steatosis and serum lipid 

profile,  

-↑ ApoA1, LDLr, CPT1, and 

PPAR genes in the liver 

Improves hepatic 

steatosis 

Yoshimura et al. 

(2013) 

Pomegranate 

fruit extract  

Female ddY mice 

(ovariectomized) 

30mg/kg BW, 

12weeks 
- ↓ -↓  serum TC levels 

Degradation of 

intracellular 

resistin 

Makino-Wakagi 

et al. (2012) 

Pomegranate 

leaf extract 

(PLE) 

HFD fed ICR mice 

400 or 

800mg/kg BW 

of PLE, 5 weeks 

↓ ↓ - improves lipid profiles Anti-obesity Let et al. (2007) 

 

  

1
3
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Table I-2 (continued) 

Test material Test model  Dose/Duration 

Results 
Physiological 

effects 
References 

∆BW ∆Fat Cell responses 

EA HFHC fed wistar rat 
 0.8 g/kg of 

BW, 16 weeks 
↓ ↓ 

-Improves cardiovascular 

remodeling,  ventricular function,  

glucose tolerance, non-alcoholic 

fatty liver disease,  

-↑ Nrf2, and CPT1 in heart and liver 

Attenuates high-

carbohydrate, 

high-fat diet-

induced metabolic 

syndrome 

Panchal et al. 

(2013) 

Muscadine grape 

phytochemicals 

(MGP) 

HFD fed C57BL/6J 

mice 

0.4% of MGP in 

diet, 15 weeks 
- ↓ 

-Improves glucose, insulin FFA, 

TG, TC and CRP in plasma 

anti-obesity and 

metabolic 

complications 

Gourineni et al. 

(2012) 

Hydro-alcoholic 

fruit extract of 

avocado (HFEA) 

HFD fed SD rats 

100 mg/kg BW 

of HFEA, 11 

weeks 

↓ ↓ 

-↓ TG, TC,  LDL and leptin in 

plasma, 

↓ FASN, LPL, and leptin while ↑ 

FGF21  gene expressions in WAT 

Hypolipidemic 

effect  

Monika et al. 

(2015) 

Abbreviation: EA, ellagic acid; wk, week; HFD, high fat diet; STZ, streptozotocin; TC, total cholesterol; LDL-C, low density lipoprotein-cholesterol; 

VLDL-C, very low density lipoprotein; FFA, free fatty acid; TG, triglyceride; HDL-C, high density lipoprotein-cholesterol; SD, Sprague Dawley; BW, 

body weight; ApoA1,Apolipoprotein A-I; LDLr, LDL receptor; CPT1, Carnitine palmitoyltransferase I; PPAR, Peroxisome proliferator-activated receptor 

gamma; FI, food intake; WAT, white adipose tissue; Nrf2, nuclear factor erythroid 2–related factor 2; NF-kB, Nuclear factor kappa B; HFHC, high fat and 

high carbohydrate; CRP, C-Reactive Protein; BMI, Body Mass Index; FASN, Fatty acid synthetase; LPL, Lipoprotein lipase; FGF21, Fibroblast growth 

factor 21. 

 

 

1
4
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Table I-3 Effect of ellagic acid (EA)-containing diet from different sources intake on 

improvement of lipid profiles in small animals 
1
 

 

 

1
 Analysis was performed using meta-analysis calculator at 

http://www.healthstrategy.com/meta/meta.pl 
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Mechanisms involved in anti-obesity effects of EA 

Oxidative stress and inflammation 

Obesity is defined as chronic low-grade inflammation and increased oxidative 

stress [51]. In obese state, the inflamed adipose tissue is directly associated activation of 

inflammatory signaling with abnormal production of pro-inflammatory adipokine [52]. 

The pro-inflammatory signaling pathways are closely related to oxidative stress via 

reactive oxygen species (ROS) including free radicals [53]. It has been reported that EA 

reduces tumor necrosis factors TNF, interleukin-6 (IL-6) and chemokine C-C motif 

ligand-2 (CCL-2) secretion in lipopolysaccharides (LPS) stimulated macrophages and 

adipocytes, indicating that EA may directly reduce adipose inflammation in vitro [54]. 

Ahad et al. [50] demonstrated that EA inhibits NF-kB inhibitor, the major transcription 

factor for proinflammatory responses, for ameliorating dyslipidemia and diabetic 

nephropathy in rats. The increasing dose of EA administration (20, 40, 80, 100 mg/kg 

BW, 14 days) significantly inhibits NF-Κb-p65, transforming growth factor β (TGF-β) 

and fibronectin and proinflammatory cytokine release with the improvement of insulin 

resistance. Moreover, a recent study showed that EA (0.1 % in diet) [55] or EA-

containing pomegranate fruits extract (30 mg/kg BW) [40] improve hepatic steatosis and 

dyslipidemia by reduction of resistin [47], which is closely associated with obesity and 

chronic inflammation. Reduction of resistin release was confirmed in 3T3-L1 cells with 

20-70 M of EA treatment [40]. The direct anti-inflammatory effects of EA in white 

adipose tissue (e.g. alternative M2 macrophage polarization, changes in innate or 

adaptive immune responses) have not identified. Despite EA shows no evidence in 

accumulating in adipose tissue, our recent study clearly demonstrated that EA decreases 
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proinflammatory cytokine secretion in adipose tissue extract as well as decreases 

macrophage infiltration against high fat high sugar diet (under review).  

In addition to the attenuation of inflammation, EA supplementation is seemingly 

inhibit oxidative stress. High cholesterol/fat diet with EA supplementation (1% w/w diet) 

improved lipid profiles and decreased lipid peroxidation by reducing malondialdehyde 

(MDA) production, caspase-8, caspase-9, Fas ligand levels in aortic arches [56]. 

Consistently, EA supplementation for 14 weeks was able to protect oxidative stress-

induced endothelial dysfunction and atherosclerosis through Nrf2 activation in HF diet-

fed ApoE KO mice [57]. Intriguingly, EA supplementation (2 or 5 % of EA in diet) 

reversed STZ induced type 1 diabetic symptoms decreasing protein glycation levels and 

inflammatory action in male Balb/Ca mice [58]. These data clearly indicated that the anti-

inflammatory and anti-oxidative characteristics are sufficient to attenuate or ameliorate 

metabolic dysfunction due to obesity.  

 

Epigenetic regulation  

Accumulating evidence suggests that HF diet in early life can influence obesity 

phenotype via mechanisms associated with epigenetic modification [59]. Conversely, 

epidemiological studies show that fruits and vegetable consumption shows a reciprocal 

correlation with the incidence of obesity [12]. In respond to this new research initiatives, 

study to determine whether dietary components of fruits and vegetables participate in the 

epigenetic regulation of obesity are gradually increasing. Boque et al. reported that apple 

polyphenol consumption increases DNA methylation by attenuating adipocyte 

hypertrophy in a diet-induced obese rat model [60]. Moreover, Okla et al. also showed 
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that HF diet with MGP supplementation upregulates HDAC9 expression, which is known 

as a negative regulator of adipogenesis [34]. These data implied that dietary polyphenols 

may affect chromatin remodeling to regulate obesity outcome. Interestingly, Kang et al. 

found that EA is the responsible polyphenolic compound in MGP to increase HDAC9 

expressions, and further identified that EA inhibits histone methyltransferase (CARM1), 

an enzyme necessary for adipogenesis, during the differentiation of hASCs [35]. Even 

though there is no direct evidence that EA metabolites alter epigenetic enzymes to 

regulate obesity-associated adipose expansion, UroC was reported to reduce TNF-

induced inflammation through inhibition of histone acetyltransferase (HAT) activity in 

the monocyte cell [61]. It implies the possibility that EA metabolites may resemble the 

action of EA to modulate chromatin remodeling during adipogenesis. Not only EA, but 

also several dietary phytochemicals including curcumin [62], genistein [63], and 

isoflavone [64] are reported to improve obesity-associated metabolic index (dyslipidemia, 

hyperglycemia, and hyperinsulinemia) by altering DNA methylation and/or histone 

acetylation. An increasing number of studies are revealing that FV consumption in 

pregnancy may result in metabolic benefits to the offspring [63]. It is unknown whether 

polyphenolic constituents found in FV (including EA) may positively affect chromatin 

reprogramming of fetus, which may exert lifelong metabolic benefits against obesity and 

its associated metabolic dysfunction. Further studies in this aspect would be important to 

provide novel insights into prevention for childhood obesity as well as for adults.   
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Potential role of gut microbiota 

The gut microbial community has been proposed as a crucial environmental factor 

to control obesity by altering host’s energy homeostasis [65, 66]. The colonic microbiota 

is also responsible for the extensive breakdown of the polyphenolic structures into a 

series of phenolic metabolites that may responsible for the human health effects. Thus, 

recently, many researchers have investigated to establish the relationship between 

polyphenols supplementation and changes in the microbiome. Neyrinck et al. reported 

that mice fed with HF diet with pomegranate peel extract reduces inflammation and 

hypercholesterolemia by promoting the growth of Bifidobacterium spp. in the ceca [42]. 

Anhê et al. also described that a consumption of polyphenol-rich cranberry extract 

protects from HFHS diet-induced obesity, insulin resistance through modulation of 

microbiota ecology (Akkermansia spp. Population) of mice [67]. These data suggested 

the potential implication of the gut microbiota by dietary polyphenols. There is growing 

evidence EA or EA-enriched food consumption may attenuate obesity and its metabolic 

complications through altering gut microflora-associated metabolism, or different Uro 

production by gut microbes. Tomas-Barberan et al. suggested that different Uro is 

produced in response to host's metabolic health and that each Uro may potentiate or 

nullify the health benefits of EA [68]. In other words, metabolically healthy subjects may 

possess microbiota that are able to generate mainly active Uro such as UroA (i.e. subjects 

belonging to the so-called ‘metabotype A’ [68]). In contrast, metabolically unhealthy 

humans may have bacterial communities producing UroA but also other less active 

urolithins such as iso-UroA and UroB (i.e., subjects with ‘metabotype B’ [68]). García-

Villalba et al. reported that there were compositional differences in the gut microbiome 
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between human subjects who produce UroA (effective Uro) and who produce iso-UroA 

and B (less active Uro) [21]. Also, subjects who have a higher risk of chronic illness 

produce iso-UroA and UroB [68], the two inactive EA metabolites in our experimental 

setting (Fig. 2-4). Recently, Gordonibacter urolithinfaciens sp. nov. has been identified 

as a novel bacterial species responsible for converting EA into UroM5 and UroC [69]. 

This bacterium belongs to the family Coriobacteriaceae a family that is associated with 

benefits in obesity [70]. Since the bacterial phylum that specifically transform EA or its 

intermediate metabolites into UroA vs. iso-UroA/UroB have not yet been identified, it 

could be of interest for future studies.   

 

Implications and Conclusion 

The excessive expansion of white adipose tissue during obesity triggers complex 

and multifactorial conditions of chronic inflammation and oxidative stress. In this review, 

we summarized that EA plays a critical role in attenuating the prevalence of obesity by 

decreasing both hyperplastic and hypertrophic adipocyte expansion in vivo and in vitro.  

In terms of mode of action by which EA attenuates obesity-mediated metabolic 

dysfunction, the anti-oxidative and anti-inflammatory characteristics of EA have been 

presented. In addition, we have been addressed the emerging role of EA in modifying 

histone remodeling by altering methylation and/or acetylation levels of histone and 

potential role of Uro in regulating gut microbial community. A better explanation to fill 

the gap between ‘low bioavailability’ and ‘evident benefits of EA in improving plasma 

lipid profiles’ should be identified in future studies.  
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Hitherto, human studies are concentrated on determining the bioavailability of EA 

by using various EA-containing whole foods such as pomegranate extracts, or 

intervention studies for cancer treatment. The investiagtion of metabolic benefits of EA 

in humans against obesity and its metabolic complication, should be the next-step 

challenge to validate the ‘proof of concept’ that we learned from obesity-prone 

experimental animals with EA supplementation. In conclusion, recommanding an 

inclusion of EA-containg fruits and nuts in our daily diets potentially could be a simple 

strategy to lessen adiposity or improve obesity-mediated metabolic complication even 

without weight loss.  
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HYPOTHESIS AND SPECIFIC AIMS 

The central hypothesis for this dissertation research is that dietary ellagic acid 

(EA) attenuates obesity and obesity-mediated metabolic complications.  To test this 

hypothesis, the following four specific aims were pursued using primary cultures of 

newly differentiated / mature human adipocytes as an in vitro model, and obesity-prone 

C57BL/6 mice as an in vivo model (Figure I-5).  

 

Aim 1. Define that EA exerts the lipid-lowering effects both in adipose tissue and 

liver via distinct mechanisms (Chapter I).  

Aim 2. Determine the mechanisms underlying EA’s effects on modulating new fat 

cell formation by CARM1-mediated epigenetic regulation (Chapter II).  

Aim 3. Ascertain the effects of EA on the obesity and obesity mediated oxidative 

stress/inflammation in a mice model (Chapter III). 

Aim 4. Evaluate the effects of gut microbiota-driven EA metabolites, Uro, on 

regulating TG accumulation using primary-cultured human adipocytes (Chapter IV). 
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Figure I-5 The central hypothesis and aims of this dissertation research. 

The central hypothesis of this research project is that dietary ellagic acid (EA) 

attenuates obesity and obesity-mediated metabolic complications. To test the hypothesis, 

in Aim #1, I focused on lipid-lowering effects of EA both in adipose tissue and liver via 

distinct mechanisms. In Aim #2, I focused on anti-adipogenic effects of EA via CARM1-

mediated epigenetic regulation. In Aim #3, I ascertained the effects of EA on the 

prevention of obesity and its metabolic complications in a mouse model. Lastly, in Aim 

#4, I focused on whether EA-metabolites, Uro, resemble the health beneficial effects of 

EA in human adipocytes. 
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Abstract 

Previously, we have reported that supplementation of muscadine grape phytochemical 

(MGP) decreased lipid accumulation against the high fat (HF)-diet. The aim of this study 

was to identify responsible polyphenolic constituents and to elucidate the underlying 

mechanisms. In mice, MGP supplementation significantly reduced visceral fat mass as 

well as adipocyte size. To determine whether MGP affects adipogenesis or hypertrophic 

lipid accumulation, we used human adipogenic stem cell (hASCs) model. Among the 

MGP, ellagic acid (10 mol/L) was identified as a potent negative regulator in repressing 

adipogenesis of hASCs. In addition, ellagic acid substantially decreased the conversion of 

[
3
H]-acetyl CoA into fatty acid, suggesting that ellagic acid inhibits de novo synthesis of 

fatty acid in mature adipocytes. Similarly, MGP supplementation significantly decreased 

hepatic TG contents in liver. The TG-lowering effects of ellagic acid was confirmed in 

human hepatoma Huh7 cells. Ellagic acid reduced 
3
H-oleic acid esterification into [

3
H]-

TG as well as de novo the synthesis of fatty acid from 
3
H-acetyl CoA in Huh7 cells. 

Intriguingly, ellagic acid also increased oxygen consumption rate and -oxidation related 

gene expression. Taken together, ellagic acid attenuates new fat cell formation and fatty 

acid biosynthesis in adipose tissue, while it reduces the synthesis of triglyceride and fatty 

acid and increases fatty acid oxidation in liver. These results suggest that ellagic acid 

exerts unique lipid-lowering effects both in adipose tissue and liver via distinct 

mechanisms. 
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1. Introduction 

Liver and adipose tissue are two major organs regulating the whole body lipid 

metabolism. Excessive lipid accumulation in fat and liver is a hallmark of obesity and 

metabolic syndrome. Obesity is characterized by abnormal expansion of white adipose 

tissue either by increasing number of adipocytes from mesenchymal progenitor cells 

(adipocyte hyperplasia) or by simply increasing its size (hypertrophy). The number of 

adipocytes is tightly controlled after puberty [1]. However, abnormal increase of 

adipocyte number is evident in childhood obesity and also frequently associated with 

extreme obesity in adults [2]. In contrast, enlargement of the adipocytes is the most 

common mechanism to accommodate surplus energy in the form of triglyceride in adults. 

It is well established that the adipocyte hypertrophy is concurred with adipose 

inflammation [3, 4]. Enlarged and inflamed adipocytes are key contributors to the 

pathogenesis of obesity by impairing endocrine function of adipocytes [5]. Although it is 

controversial that hyperplastic expansion of subcutaneous fat could be a defense 

mechanism to attenuate lipotoxicity, adipocyte hyperplasia also results in metabolically 

unfavorable ectopic adipogenesis and increases the risk for cardiovascular diseases 

(reviewed in [6]), suggesting that both hyperplastic and hypertrophic expansion of 

adipocytes are associated with adipocyte remodeling during the pathogenesis of 

metabolic syndrome [7].  

The development of hepatic steatosis is intimately associated with the 

pathological conditions of adipocytes. Redistribution of fat in lipodystrophic conditions 

such as diabetes or uncontrolled lipolysis from the inflamed adipocytes increases the 

influx of FFA into the portal vein leading to hepatic steatosis [8]. Reversely, fatty liver is 
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a significant risk factor for hyperlipidemia, insulin resistance, and diabetes [9]. 

Supporting this notion, it has been reported that 76% of those with nonalcoholic fatty 

liver disease (NAFLD) are obese [10].  

Attenuation of obesity by limiting adipocyte’s capacity to expand (inhibition of 

either hypertrophic or hyperplastic expansion) is a general target of dietary 

supplementation, which may lead to detrimental consequences if the surplus FFA are re-

directed into liver. Some food-borne dietary compounds that were claimed to be effective 

in attenuating adiposity (e.g., trans-10, cis-12 conjugated linoleic acid)  had to be 

reevaluated its value due to an adverse side effect on hepatic steatosis [11, 12]. Recently, 

our group has reported that supplementation of muscadine grape phytochemicals (MGP) 

decreased visceral fat mass [13]. In addition, MGP supplementation was effective in 

reducing systemic and retinal inflammation, and glucose intolerance [13, 14].  However, 

the crosstalk of lipids between liver and adipose tissue by MGP has not been fully 

investigated yet. The aim of this study was 1) to identify the polyphenolic compounds 

posing the lipid-lowering effects of MGP and 2) to investigate the metabolic modification 

by MGP in adipocytes as well as in hepatocytes. Here we identified that ellagic acid 

inhibits adipogenesis and decreases lipid accumulation both in mature human adipocytes 

and hepatocytes via distinct mechanisms. Our results also suggest that ellagic acid may 

constitute consumer-friendly dietary strategy that may effective in reducing lipid 

accumulation both in adipose and liver.    

 

2. Materials and Methods 

2.1 Chemicals  
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Fetal bovine serum (FBS) was purchased from Cellgro. Rosiglitazone (BRL49653) 

was purchased from Cayman Chemical. All other chemicals and reagents were purchased 

from Sigma Chemical Co., unless otherwise stated.  

2.2. Animals 

 The adipose tissue and liver samples were collected from our previous study [13]. 

Tissue was fixed in 10% buffered formaldehyde for paraffin embedding and hematoxylin 

and eosin (H&E) staining. All protocols and procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of Florida.  

2.3. Cell culture 

 For isolation of human adipogenic stem cells (hASCs), abdominal adipose tissue 

was obtained from females with a body mass index (BMI) of ~30 during liposuction or 

abdominal plastic surgeries. Isolation of hASCs and differentiation of adipocytes was 

conducted as we described previously [15]. All protocols and procedures were approved 

by the Institutional Review Board (#693-2011) at the University of Florida and the 

University of Nebraska. Huh7 cells were a kind gift from Dr. Kim (the University of 

Florida). Huh7 cells were maintained in Dulbecco’s modification of Eagle’s medium 

(DMEM) containing 1% L-glutamine, 10% fetal bovine serum, 100 units/ml penicillin, 

100  g/ml streptomycin in 5% CO2 at 37°C. The medium was changed every 3 days.  

2.4. Adipocyte size measurement  

H&E stained-sections of epididymal adipose tissue were used for size 

determination by following the published protocol by Chen et al. [16]. Briefly, adipocyte 

size was examined by analyzing digital images of H&E stained paraffin sections (n=300 
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cells /mouse, total=1,500-2,000 adipocytes from 7-9 mice/diet group) by using Image J 

software.  

1.5. Lipid accumulation  

The colorimetric triglyceride quantification kit (BioVision, K622‐100) was used 

to quantify the hepatic TG contents according to the manufacturer's protocol. To measure 

the lipid accumulation in human adipocytes and Huh7 cells, cells were fixed with 

isopropanol and stained with oil-red O. For determination of relative TG contents, bright 

field images were taken by eVOS XL microscope (AMG), or ORO dye was extracted for 

quantification (OD500 nm).  

1.6. Preparation of MGP and sub-fractionation 

Preparation of MGP has been described by Gourineni et al. [13]. The 

subfractionation of MGP into non-anthocyanin (NAcy) and anthocyanin (Acy) was 

completed as described previously [17]. To examine the effects of different 

phytochemicals on hASCs differentiation, ellagic acid (EA), quercetin (Quer), myricetin 

(My), and kaempferol (KMP) (Sigma) stocks were prepared in dimethyl sulfoxide 

(DMSO); aliquots of each stock were kept at -20 °C and freshly diluted at the time of 

addition to hASCs. The presence of intracellular lipid accumulation was visualized by oil 

red-O (ORO) staining.   

 2.7 [
3
H]-oleic acid and [

3
H]-acetyl CoA incorporation into FFA and TG 

To measure fatty acid esterification rate into triglycerides, we followed the 

previously published methods by Chung et al. [18] in cultures of mature adipocytes or 

human hepatoma Huh7 cells were used. Briefly, cells incubated with serum-free low 



35 

 

 

 

glucose (1,000 mg/L d-glucose) overnight before experiment. 
3
H-oleic acid (Perkin 

Elmer, final concentration of 0.5 Ci/mL) was complexed with fatty acid-free BSA, then 

added to cells for 3 hr (a time course study indicated a linear incorporation into cellular 

TG fraction over a 6 hr period; data not shown). After 3 hr incubation with 
3
H-oleic acid, 

medium containing unincorporated isotope was removed by washing PBS. The cellular 

lipids were extracted by Bligh and Dyer method. Then thin layer chromatography was 

performed to fractionate FFA and TG, and the [
3
H] radioactivity was measured by liquid 

scintillation counting (Beckman LS 6000; Beckman Instruments, Palo Alto, CA). 

Radioactivity was normalized by protein concentration quantified by bicinchoninic acid 

(BCA) colorimetric assay (Pierce, Rockford, IL). Similarly, for the measurement of de 

novo synthesis of fatty acid, [
3
H]-acetyl CoA (Perkin Elmer, final concentration of 0.5 

Ci/mL) were added to cells for 3 hr and unincorporated isotope was removed by 

washing PBS three times. 

2.8. [
3
H] 2-deoxy-glucose uptake 

To determine the basal, and insulin-stimulated glucose uptake, cultures of mature 

human adipocytes were incubated with or without 10mol/L of EA for 3 days. The day 

before the experiment, cultures were incubated with 1ml serum free basal medium 

containing 1,000 mg/L d-glucose and 20 pmol/L human insulin (Thermo scientific, 

SH30021.01) in the presence of vehicle or treatment. After 24hrs serum starvation, 

culture media was removed and replaced with 1 ml of HBSS buffer containing 100 

nmol/L human insulin for 10 min then add [
3
H]-2DOG (Perkin Elmer, final concentration 

was 0.5 Ci/mL) and incubated at 37°C for 90 min. Glucose uptake was terminated by 

adding 1 ml of stop buffer (ice-cold Krebs-Ringers bicarbonate (KRBC) buffer 
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supplemented with 25mmol/L d-glucose. After washing cells with KRBC buffer three 

times to reduce background radioactivity, cells were lysed in 0.1% SDS. The total 

cellular lysates were subjected to determine glucose uptake by liquid scintillation 

counting [19] . 

2.10. Oxygen consumption rate (OCR)  

Huh7 cells were seeded into 96-well clear bottom black polystyrene sterile plate 

(Corning). Oxygen consumption rate (OCR) was determined by using the assay kit 

MitoXpress
®
 (Cayman Chemical, 600800) according to the manufacturer’s protocol. 

Briefly, an increase of phosphoresce signal from the oxygen-sensitive probe was 

measured over 5 hr with 3 minutes interval using Synergy H1 multi-mode microplate 

reader (BioTek).   

2.11. qPCR 

Gene-specific primers for qPCR were obtained from Integrated DNA 

Technologies (Chicago, IL). Total mRNA of hASCs was isolated using Trizol reagent 

(Invitrogen). To remove genomic DNA contamination, mRNA was treated with DNase 

(Mediatech); 2 μg of mRNA was converted into cDNA in a total volume of 20 µL 

(iScript cDNA synthesis kit, Bio-Rad). Gene expression was determined by real-time 

qPCR (CFX96, Bio-Rad), and relative gene expression was normalized by 36b4 (primer 

sequences will be available upon request).  

2.12. Western blot analysis 

To prepare tissue lysates, 0.1 g of snap-frozen tissue was homogenized in ice-cold 

RIPA buffer (Thermo Scientific) with protease inhibitors (Sigma) and phosphatase 

inhibitors (2 mmol/L Na3VO4, 20 mmol/L β-glycerophosphate and 10 mmol/L NaF). 
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Lysate of adipose tissue was incubated in ice for 10 minutes to remove the solidified fat 

cake. To prepare total cell lysates, monolayers of differentiated cultures of human 

adipocytes were harvested with RIPA buffer. Proteins were fractionated onto 4-15% pre-

casted SDS-PAGE (Biorad), transferred to PVDF membranes with a semi-dry transfer 

unit (Hoefer TE77X) and incubated with the relevant antibodies. Chemiluminescence 

from ECL (Western Lightning) solution was detected with FluorChem E (Cell 

Biosciences) imaging system. Polyclonal or monoclonal antibodies targeting to FAS 

(3180), β-actin (4967), and H3K9Ac (AcH3, 9649) were purchased from Cell Signaling 

Technology. Antibodies targeting HDAC9 (ab 59718) and histone H3 (ab1791) were 

purchased from Abcam. The mouse monoclonal antibodies for PPAR (sc-7273), FABP 

(aP2, sc-271529) were purchased from Santa Cruz Biotechnology.  

2.13. Statistical analysis 

Results are presented as the mean ± SEM. The data were statistically analyzed 

using Student’s t-test or one-way ANOVA with Tukey’s multiple comparison tests. For 

the analysis of adipocyte size, Gaussian curve fitting and linear regression were 

performed. To calculate oxygen consumption rate, linear regression (95% confidence, 

p<0.05 significant) was conducted. All analyses were performed with GraphPad Prism 6 

(Version 6.02).  

 

3. Results 

3.1 MGP supplementation attenuated adipocyte size in C57BL/6 mice  
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Previously, we reported that the supplementation of MGP (Vitis rotundifolia) 

significantly reduced HF-diet induced epididymal fat mass [13]. However, mechanistic 

details by which MGP supplementation reduced adiposity is unknown. To determine 

whether MGP decreases adipocyte hypertrophy, we first examined epididymal adipocyte 

size by analyzing digital images of H&E stained paraffin sections. Consistent with the 

reduced epididymal fat mass (Fig. 1A), adipocyte size was significantly reduced with 

MGP supplementation compared to HF alone (Fig. 1B, 86.8 ± 2.8, 100.6 ± 3.3 and 86.5 ± 

1.4 µm for LF, HF, and HF+MGP, respectively). Histograms of adipocyte size 

distribution also demonstrated a clear shift toward smaller sizes for the HF+MGF group, 

which is comparable to LF control (Fig. 1C, D).  

 

3.2. EA in MGP is a potent negative regulator of adipogenesis 

To gain insights into whether MGP supplementation also decreases hyperplastic 

expansion of adipocytes (adipogenesis) as well as hypertrophic expansion of adipocytes 

(Fig 1), we examined protein expression that are known to influence adipogenesis. As we 

expected, PPAR expression levels were higher in the HF group in comparison to LF or 

HF+MGP group. Interestingly, HDAC9 expression, a negative regulator of adipogenesis 

[20], was reduced in the HF group compared to LF or HF+MGP. Conversely, histone 

lysine 9 acetylation (H3K9Ac) levels, a positive epigenetic marks for adipocyte 

differentiation, were markedly increased in the HF group compared to LF or HF+MGP 

(Fig. 2A), providing a hint that adipocyte differentiation might be reduced by MGP 

supplementation. To pursue this possibility, we conducted in vitro studies using adipose-

derived human stem cells (hASCs). First, we fractionated MGP into Acy and NAcy 
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fractions. The effect of each fraction on adipocyte development was examined. The 

anthocyanin fraction had significant but minor impact on adipogenesis. In contrast, the 

NAcy fraction dramatically suppressed lipid accumulation in a dose-dependent manner as 

assessed by oil red O (ORO) staining (Fig. 2B,C). Consistent with reduced TG 

accumulation, the NAcy fraction of MGP dramatically suppressed adipogenic gene 

expression including PPAR and adipocyte protein 2 (aP2) (Fig 2D). Next, we performed 

HPLC analysis and found that the NAcy fraction composed of four major polyphenols, 

EA, My, Quer and KMP (Fig. 3A). When hASCs were exposed to 10 µM of these 

individual pure polyphenols, EA almost exclusively repressed the adipogenesis compared 

to the other polyphenols. In in vitro model of human adipocytes, EA decreased: 1) TG 

accumulation as assessed by ORO-staining (Fig. 3B); 2) adipogenic gene expression by 

qPCR including PPAR, CCAAT/enhancer binding protein alpha (C/EBP), aP2, and 

fatty acid synthase (FAS) (Fig. 3C); and 3) adipogenic protein expression including 

PPAR, aP2, and FAS (Fig. 3D).  

 

3.3. EA attenuated lipid accumulation in mature adipocytes 

Next, we asked whether EA is the key polyphenolic component that antagonizing 

the adipocyte hypertrophy as we have observed in Fig.1, as well as suppressing 

adipogenesis. To answer this question, EA was treated to the fully-differentiated cultures 

of human adipocytes (d7). EA incubation was last for 3 or 7 days depends on 

experimental design in Fig 4A. Addition of 10µM EA for 7 days caused a significant 

reduction of triglyceride accumulation by oil red O staining (Fig. 4B). To test whether the 

decrease of triglyceride accumulation is due to an alteration of lipogenic pathways, [
3
H]-
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acetyl CoA and [
3
H]-oleic acid was added to the adipocytes and examined its conversion 

into triglyceride. The conversion of [
3
H]-acetyl CoA to radiolabeled FFA (Fig. 4C) and 

TG (Fig. 4D) was almost completely blunted by 3 days of EA treatment. However, 

exposure of EA exert no significant impact on conversion of 
3
H-oleic acid into [

3
H]-TG 

at 3days (Fig. 4E). In addition, the basal- and insulin-stimulated [
3
H]-2-deoxyglucose 

uptake was not affected by EA treatment (Fig. 4F). The extended treatment of EA for 7 

days decreased adipocyte specific mRNA expression including PPAR, C/EBP, and 

fatty acid synthase (FAS) compared to vehicle control (no changes in adipogenic genes in 

EA treatment for 3 days, data not shown). There were no significant changes in fatty acid 

oxidation-related gene expression (PPAR and CPT1), but lipolysis related genes 

expression (i.e., hormone sensitive lipase (HSL) and adipocyte triglyceride lipase 

(ATGL)) was substantially lower in EA treated adipocytes (Fig. 4G). Taken together, 

these data implicates that the inhibition of de novo synthesis of fatty acid is accompanied 

by transcriptional regulation of lipogenic gene expression in EA-treated human 

adipocytes.  

3.4. MGP decreased hepatic lipid accumulation in C57BL/6 mice  

Attenuation of adipogenesis could cause hepatic steatosis if the liver mishandles 

fatty acid (FA) influx from adipose tissue [21]. To determine the effects of MGP on 

hepatic lipid metabolism, we also measured hepatic TG contents. H&E staining showed a 

reduction of hepatic lipid accumulation in HF+MGP group compared to HF only group, 

which was confirmed by ~50 % reduction of hepatic TG content in MGP-fed group 

compared to HF group (Fig. 5A,B). Interestingly, fatty acid oxidation-related genes 

including PPAR, FGF21, ACOX1 and CPT1 were significantly higher in the MGP 
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group (Fig. 5C), suggesting that MGP decreased hepatic TG accumulation, at least in part, 

by augmenting hepatic fatty acid oxidation as well as attenuating adipocyte expansion.  

3.5. EA attenuated lipid accumulation in Huh7 cells 

 To determine whether EA is the primary polyphenolic compound in reducing 

hepatic triglyceride accumulation, we further examined effects of EA on fatty acid 

esterification, de novo synthesis, and FA oxidation in human hepatocarcinoma Huh7 cells. 

Pretreatment with EA for 24 hr significantly attenuated lipid accumulation in a dose-

dependent manner in Huh7 cells (Fig. 6A). In parallel to MGP-fed mice this, mRNA 

expression of fatty acid β-oxidation relative genes such as PPAR and carnitine 

palmitoyltransferase 1 (CPT1) was up-regulated, but not ACOX1, in EA treated samples. 

In contrast, genes involved in lipogenesis, i.e., FAS and diacylglycerol acyltransferase 2 

(DGAT2), were significantly reduced by EA treatment without affecting stearoyl-CoA 

desaturase 1(SCD1) gene expression (Fig. 6B). Accordingly, the oxygen consumption 

rate, measured by oxygen-sensitive phosphoresce probe, was higher in Huh7 cells treated 

with EA than vehicle control (Fig. 6C) demonstrating an up-regulation of fatty acid 

oxidation by ellagic acid in hepatocytes. Interestingly, the uptake of [
3
H]-oleic acid (OA) 

into the cells was similar between groups (Fig. 6D), while incorporation of [
3
H]-oleic into 

TG was significantly lower in Huh7 cells treated with EA (Fig. 6E). Similar to adipocytes, 

incorporation of 
3
H-acetyl CoA into FFA and TG was markedly decreased with EA 

treatment (Fig. 6F,G). Collectively, our data clearly showed that MGP and its active 

polyphenolic constituent ellagic acid decrease hepatic lipid accumulation by targeting 

multiple mechanisms including FFA synthesis, TG esterification, and FFA oxidation.    
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4. Discussion 

Obesity and hepatic steatosis are the two manifest phenotypes of metabolic 

syndrome and are inextricably linked together. The simultaneous reduction of lipid 

accumulation both in adipose tissue and liver would be the ultimate goal for the dietary 

intervention strategies. The present study was designed to determine the TG-lowering 

effect of MGP supplementation on adipose and liver, and to identify the metabolic 

alterations by ellagic acid by using the human model of adipocyte and hepatocytes in 

parallel. We demonstrated that the supplementation of MGP attenuated hypertrophic 

obesity (Fig. 1) and hepatic steatosis (Fig. 5) in HF-fed mice. Ellagic acid has been 

identified as the active polyphenolic compound that suppressed the hyperplastic 

expansion of adipocytes (Fig. 2, 3). Besides, ellagic acid exerted the distinctive lipid-

lowering properties by decreasing biosynthesis of fatty acid in both adipocytes and 

hepatocytes but by augmenting fatty acid oxidation only in hepatocytes (Fig. 4, 6). Our 

data provide the first evidence that ellagic acid plays separate roles in manipulating 

excess lipid in adipocytes versus hepatocytes, resulting in a concerted attenuation of 

obesity and hepatic steatosis. Collectively, our results suggest that ellagic acid-containing 

foods may constitute a novel and effective dietary strategy to prevent and/or treat obesity 

and metabolic syndrome. 

Muscadine grape (V. rotundifolia) contains an array of health-promoting bioactive 

phytochemicals [22-24]. Our previous study has provided the implication that unique 

lipid-lowering property of MGP may attribute to the high content of ellagic acid [13]. In 

the present study, we proved that ellagic acid exhibits broad action spectrum by targeting 

to multiple mechanisms, i.e., adipocyte differentiation, de novo synthesis of fatty acid, 
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FA esterification, and FA oxidation, probably through different mechanisms in liver and 

adipose tissue. Numerous reports implicated that ellagic acid-containing fruits, vegetables, 

and nuts are effective dietary sources to attenuate obesity. However, direct evidence of 

the underlying mechanism of how ellagic acid displays an anti-obesity effect, has not 

been addressed yet. To better understand the relationship between the ellagic acid intake 

and adiposity, we have reviewed and combined the results from published, peer-reviewed 

literature, mainly in rodents [13, 25-31] (Supplement Table 1). Despite the variations 

related to the differences in sources and contents of ellagic acid,  daily intake of ellagic 

acid in the range of 5-88 mg/kg BW was strongly correlated with >25% decrease of fat 

mass (with minor impact on lean body mass), and improvement of glucose metabolism. 

The conclusion deduced from these summary (Supplement Table 1) correlates with our 

present data that EA-enriched MGP is associated with a reduction of fat mass, adipocyte 

hypertrophy, and hepatic lipid accumulation. Interestingly, the muscadine wine extract 

that has almost identical phytochemical composition except for markedly reduced ellagic 

acid content due to filtration [32], was lack of lipid-lowering effects. It provides us with 

additional rationale to draw the conclusion that ellagic acid is a key ingredient of MGP to 

reduce fat mass.  

It has been well documented that ellagic acid possesses anti-proliferative and anti-

inflammatory characteristics in various cancerous cell lines [25, 33]. Also, ellagic acid 

has shown to be effective in reducing atherosclerotic lesions [34] and increasing 

cholesterol efflux in macrophages [35]. In this study, we add the previously 

unappreciated value of ellagic acid as a lipid-lowering dietary compound both in adipose 

and liver. The reduction of adiposity attribute to a reduction of both hyperplastic and 
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hypertrophic expansion of adipocytes. The inhibitory effects of MGP (or ellagic acid) on 

adipogenesis seem to be associated with, at least partly, epigenetic modification (Fig. 2, 

3). Recently, ellagic acid was identified as a negative regulator of histone 3 arginine 17 

methylation (H3R17me) by inhibiting CARM1 (coactivator-associated arginine 

methyltransferase 1) in cancerous cells [36]. Given to the fact that CARM1 activity is 

required for adipogenesis [37], we investigated the epigenetic regulation of adipogenesis 

by ellagic acid in a separate study using the same primary human adipocytes. In that 

study, we demonstrated that ellagic acid alters epigenetic marks of adipocyte 

differentiation by altering histone deacetylase (HDAC) activity, acetylation, and 

methylation levels. It may align well with the study by Wang et al. showing that ellagic 

acid inhibits differentiation of 3T3L1 preadipocyte into adipocytes by inhibiting mitotic 

clonal expansion [38], although primary adipogenic progenitor cells do not enter mitotic 

clonal expansion and the involvement of CARM1 need to be verified in 3T3L1 cells.  

The attenuation of the hypertrophic expansion (increase in size by excessive TG 

accumulation) was clearly detectable both in epididymal fat of MGP-fed mice (Fig. 1) as 

well as in the ellagic acid-treated mature adipocyte cultures (Fig. 4). A reduction of FA 

biosynthesis in mature adipocytes (Fig. 4C) was an earlier event than transcriptional 

down-regulation of adipogenic gene expression (Fig. 4G). Conversely, FA esterification 

into TG, glucose uptake (both basal- and insulin-stimulated), and fatty acid oxidation 

were not altered by ellagic acid at the same window of time when fatty acid biosynthesis 

is markedly reduced by ellagic acid. It is unlikely that the inhibition of fatty acid 

synthesis is due to diminished CARM1 activity, as we do not examine the differences in 

H3R17me levels in mature adipocytes before and after ellagic acid treatment (data not 
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shown). Based on our results, there is a likelihood that ellagic acid may directly affect 

fatty acid synthase (FAS). We are currently under investigation whether ellagic acid 

alters global lipid metabolism using the different mutant strains of yeast (Saccharomyces 

cerevisiae) carrying deletion of critical genes related to lipid metabolism.   

The impact of MGP and ellagic acids on lipid metabolism in the liver was more 

phenomenal than in adipose tissue. MGP supplementation decreased hepatic TG content 

by ~50% compared to HF alone, probably through the augmented fatty acid oxidation 

(Fig. 5). In agreement with our findings, Yoshimura et al. reported that supplementation 

of 0.1% of ellagic acid for 68 days was effective in decreasing hepatic steatosis by 

increasing mRNA expression of PPAR and CPT1 genes in  KK-A
y
 mice, a model of 

obesity type 2 diabetes [39]. Consistently, we were able to reproduce that ellagic acid 

lowered TG accumulation (Fig. 6A), increased of fatty acid oxidation-related gene 

expression (Fig. 6B) and, more importantly, oxygen consumption rate (Fig. 6C) in human 

hepatoma cells. Moreover, despite that it was less evident in MGP-fed mice, ellagic acid 

decreased FA uptake, de novo synthesis, and its esterification into TG (Fig6. D-G). These 

TG-lowering effects are also supported by ellagic acid supplementation in rats [31], and 

our pilot study with pure ellagic-fed mice supplementation (unpublished data). The exact 

mechanistic nature by which ellagic acid targets to multiple metabolic pathways in liver 

is uncertain. Some potential mechanism that ellagic acid represses de novo synthesis of 

FA could be found. Sarikaya et al. showed that  ellagic acid is an inhibitor of carbonyl 

anhydrolase (CA) activity [40], and a reduction of CA activity has been associated with 

lowering  hepatic de novo lipid synthesis in primary rat hepatocytes [41]. We are 

currently investigating the two possibilities that 1) ellagic acid may change epigenetic 

http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae
http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae
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marks such as H3R17me2 by CARM1 [36],  leading to transcriptional inhibition of 

lipogenic gene expression in hepatocytes, and 2) ellagic acid directly inhibits lipogenic 

enzyme activities including fatty acid synthase (FAS) and acetyl CoA carboxylase 

activity (ACC). 

Free ellagic acid can be found in plasma up to ~1mol/L concentration after oral 

administration [42], but it rapidly metabolizes into urolithins by gut microbes [43]. Our 

current study design has the obvious limitations to translate into humans, as we used the 

10 mol/L ellagic acid in 0.1 % DMSO, and metabolite information was not taken into 

consideration in cellular studies. Intriguingly, treatment of physiologically achievable 

concentration of ellagic acid (<1 mol/L), took the longer period of time to detect the 

measurable reduction of TG levels in hepatocytes and adipocytes (unpublished data), 

implicating that reduction of lipid accumulation could be attainable via chronic 

supplementation of ellagic acid-containing diet. Actually, pure ellagic acid (0.08 %) 

supplementation for 8 wks was effective in reducing fat pad size and liver weight against 

HF diet in rats [31].  Our pilot study with 0.1 % of ellagic acid supplementation for 12 

wks reduced the liver lipid contents (data not shown). We are under investigation to 

determine whether urolithin A, the major metabolite of ellagic acid, could reiterate 

multiple lipid-lowering effects of ellagic acid with greater biological potency than ellagic 

acid.    

In summary, here we identified ellagic acid as the primary polyphenolic 

component to lower triglycerides among MGP, and delineated the metabolic pathways 

that affected by ellagic acid in adipocyte and hepatocytes. There are unanswered 

questions regarding physiological levels of ellagic acid and generation of microbial 
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metabolites, but we believe, nonetheless, our works provide mechanistic insights into 

lipid-lowering effects of ellagic acid. It is the first report that separately investigated the 

lipid-lowering effects of ellagic acid in adipose and liver. More research will be 

implemented for better understanding of multiple metabolic benefits of ellagic acid-

containing foods.  
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Figure II-1 MGP supplementation attenuated fat mass and adipocyte size.   
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Figure II -2 NAcy constituents of MGP were associated with a decrease of adipocyte 

differentiation. 

A, Protein expression of PPAR, aP2, HDAC9, H3K9Ac, and H3 by western blot 

analysis from the mice fed with either low fat (LF), high fat (HF), or HF+0.4% MGP for 

15 wks. Cultures of hASCs were differentiated and incubated with either Acy or NAcy 

fractions for seven days. B, Triglyceride Lipid accumulation in 96 well culture plates was 

visualized by ORO-staining (upper). Extracted ORO-staining was quantified (OD500 nm) 

(lower). C, Bright field images with ORO-staining for cultures differentiated with 

different doses of NAcy and Acy. D, Adipogenic gene expression of PPARand aP2 by 

qPCR analysis. All values are presented as the mean ±SEM. Means not sharing a 

common superscript differ, p<0.05.    
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Figure II -3 EA suppressed adipogenesis of hASCs. 

Cultures of hASCs were induced to differentiation in the presence of either vehicle (Veh) 

or 10 μmol/L of NAcy components of EA, My, Quer, and KMP. A, HPLC chromatogram 

showing major phenolic constituents of NAcy fraction in MGP. B, Effects of individual 

polyphenols on TG accumulation measured by ORO-staining. C, Adipogenic gene 

expressions of PPAR, aP2, C/EBPand FAS by qPCR analysis. D, Adipogenic protein 

expression of PPAR, Fas, and aP2 by western blot analysis. All values are presented as 

the mean ±SEM. Means not sharing a common superscript differ, p<0.05.   
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Figure II -4 EA decreased triglyceride accumulation in mature human adipocytes. A. 

Experimental scheme. 

EA (10M) was added to the newly differentiated human adipocytes (at day 7) and 

incubated for 3-7 day. Experiments were conducted at the given time (arrows). B, Lipid 

accumulation was visualized by ORO-staining. C, Conversion of [
3
H]-acetyl coA into 

[
3
H]-fatty acid. D, Conversion of [

3
H]-acetyl CoA into [

3
H]-triglyceride. E, Conversion 

of [
3
H]-oleic acid into 

3
H-TG. F, Basal and insulin-stimulated [

3
H]-2-deoxyglucose 

uptake. G, Gene expression levels of PPAR, C/EBP, FAS, PPAR, and CPT1 by 

qPCR. In C-F, data were normalized by protein concentration. All values are presented as 

the mean ±SEM, * p< 0.05, **p<0.01, and **** P < 0.0001 by student t-tests.    
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Figure II -5 MGP supplementation decreased hepatic lipid accumulation. 

C57BL/6 mice were fed with either high fat (HF) or HF + 0.4% MGP for 15 wks. A, 

H&E staining for liver tissues. B, TG content in liver. C, mRNA levels of PPARα, 

FGF21, ACOX1 and CPT1 in liver by qPCR. All values are presented as the mean ±SEM, 

**** P < 0.0001, * P< 0.05.  
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Figure II -6 EA decreased triglyceride accumulation in human hepatoma Huh7 cells. 

Huh7 cells were preincubated overnight with or without (w/o) ellagic acid (EA). A, Lipid 

accumulation quantified by oil red O staining in Huh7 cells that received 5 or 10 mol/L 

of EA. B,  mRNA expression levels involved in FA β-oxidation and lipogenesis by qPCR. 

C, Oxygen consumption rate (OCR) in the presence or absence of EA. D, Uptake of 
3
H-

oleic acid (OA) into cells. E., Conversion of   [
3
H]-OA into [

3
H]-triglyceride (TG). F, 

Conversion of [
3
H]-acetyl CoA into [

3
H]-FFA. G, Conversion of [

3
H]-acetyl CoA into 

[
3
H]-TG.  
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Supplement Table 1. Effect of ellagic acid (EA)-containing diet on adiposity from 

different sources
1
  

 

1 
Analysis was performed using meta-analysis calculator at 

http://www.healthstrategy.com/meta/meta.pl 
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ABSTRACT 

Chromatin remodeling is a key mechanism in adipocyte differentiation. However, it is 

unknown whether dietary polyphenols are epigenetic effectors for adiposity control. 

Recently, we have identified that ellagic acid (EA), a naturally occurring polyphenol in 

numerous fruits and vegetables, represses adipogenic conversion of human adipose-

derived stem cells (hASCs). In the present study, we sought to determine whether EA 

inhibits adipogenesis by modifying chromatin remodeling in hASCs. qPCR microarray of 

chromatin modification enzymes revealed that 10 mol/L of EA significantly inhibits 

histone deacetyase (HDAC) 9 down-regulation. In addition, EA was associated with an 

up-regulation of HDAC activity and a marked reduction of histone acetylation (HAc) 

levels. However, chemical inhibition of HDAC activity or depletion of HDAC9 by 

siRNA were not sufficient to reverse the anti-adipogenic effects of EA. Intriguingly, EA 

treatment was also associated with reduced histone 3 arginine 17 methylation levels 

(H3R17me2), implying the inhibitory role of EA in coactivator-associated arginine 

methyltransferase 1 (CARM) 1 activity during adipogenesis. Boosting CARM1 activity 

by delivering cell-penetrating peptides of CARM1 (CPP-CARM1) not only recovered 

H3R17me2, but also restored adipogenesis evidenced by H3K9Ac, HDAC9 

downregulation, PPAR expression, and triglyceride accumulation. Taken together, our 

data suggest that reduced CARM1 activity by EA results in a decrease of H3R17me2 

levels, which may interrupt consecutive histone remodeling steps for adipocyte 

differentiation including histone acetylation and HDAC9 dissociation from chromatin. 

Our work provides the mechanistic insights into how EA, a polyphenol ubiquitously 
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found in fruits and vegetables, attenuates human adipocyte differentiation by altering 

chromatin remodeling.    

 

1. Introduction 

Epigenetic modification refers to the inheritable changes of gene expression in the 

absence of a change in the DNA sequence itself. Epigenetic modification comprises DNA 

methylation in CpG islands, covalent modification of histone tails, and noncoding 

microRNA-mediated gene silencing [1-6]. In particular, histone modification is a key 

mechanism in the switching on and off of genes for differentiation; N-terminal tails of H3 

and H4 interact with the negatively charged DNA backbone in unmodified states. Histone 

modifying enzymes target specific amino acids of histones, producing changes in 

acetylation, methylation, phosphorylation or ubiquitination status. Modifications of these 

histone codes alter chromatin conformation, which subsequently induce dissociation of 

transcriptional (co)repressors as well as recruitment of transcriptional (co)activators [7-

10]. In general, histone acetylation on lysine residues decreases chromatin compactness, 

increases accessibility to genes, and thereby induces transcriptional activation. Several 

transcriptional co-activators possess histone acetyltransferase (HAT) activity to transfer 

acetyl groups to lysine residues in histones, promoting conformational change in 

euchromatin structure [11-14]. In contrast, transcriptional co-repressors often possess 

HDAC activity to remove acetyl moieties from histone tails, leading to a less accessible 

heterochromatin conformation [15, 16]. Regulation of transcription by histone 

methylation is more complex than by histone acetylation. Histone methylation can be 

correlated with either gene activation or repression depending on histone residues (lysine 
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or arginine), specific genetic loci, or distinctive methylation pattern (e.g., asymmetric or 

symmetric) [17-21]. 

A growing body of literature has revealed that epigenetic regulation is a key 

mechanism for adipocyte differentiation. Although considered controversial, an increase 

in global histone acetylation is preceded by adipocyte differentiation as the consequence 

of decreased HDAC activity [22]. More specifically, H3 acetylation at lysine 9 

(H3K9Ac), and H3 methylation at lysine 4 (H3K4Me2) have been implicated for positive 

regulation of adipocyte differentiation [23]. The obligatory suppression of Wnt signaling 

is also regulated by chromatin modification via H3 lysine 27 (H3K27Ac vs. H3K27me3) 

[24]. Several histone modification enzymes, e.g., protein arginine methyltransferase 4 

(PRMT4 also known as coactivator-associated arginine methyltransferase 1 (CARM1)) 

[25], PRMT5 [26], histone methyltransferase G9a [27], and HDAC9 [28], have been 

identified as either positive or negative regulators for adipocyte differentiation. Moreover, 

recent advances in  chromatin immunoprecipitation (ChIP) methodology has revealed 

that activation of transcriptional cascade networks during early adipogenesis coincides 

with the regulation of histone modification of key transcription factors such as 

peroxisome proliferator-activated receptor gamma (PPAR [25]. These studies have 

clearly demonstrated that chromatin remodeling dictates adipocyte differentiation. 

However, less information is available whether environmental effectors are able to 

reprogram epigenetic codes for adipocyte differentiation. Interestingly, accumulating 

evidence suggests that our daily diet is an important epigenetic determinant regulating 

obesity. Exposure to a HF-diet early in life can alter chromatin structure, leading to an 

increased risk of obesity in adulthood [29-31]. Conversely, consumption of fruits and 
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vegetables (FV) is inversely associated with obesity [32]. It is largely unknown whether 

epigenetic regulation could be a viable mechanism to explain reduced adiposity by FV 

consumption. By displacing energy-dense foods, FV consumption increases satiety, 

decreases food intake, and therefore induces weight loss [33]. Besides this satiety effect, 

it is plausible to hypothesize that FV contain principle phytochemicals that can modulate 

the activity of chromatin-modifying enzymes, thereby reducing adiposity. Recently, our 

group has reported that supplementation of muscadine grape phytochemicals (MGP) 

decreased visceral obesity and obesity-mediated metabolic complications without altering 

food intake [34]. Among the polyphenolic compounds of MGP, EA has identified as the 

most potent polyphenol in inhibiting adipogenic conversion (under review).  These 

studies led us to raise the question of whether EA regulates epigenetic regulatory factors 

in adiposity. Here, we present evidence that EA, a polyphenol commonly found in many 

FV, attenuates adipocyte differentiation by modulating histone arginine methylation and 

subsequent histone acetylation levels. 

 

2. Materials and Methods  

2.1. Materials  

All cell culture dishes were purchased from Fisher Scientific. Fetal bovine serum 

(FBS) was purchased from Cellgro. Rosiglitazone (BRL49653) was purchased from 

Cayman Chemical. All other chemicals and reagents were purchased from Sigma 

Chemical Co., unless otherwise stated.  

2.2. Preparation of human adipogenic stem cells (hASCs) and adipogenic differentiation 
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Abdominal adipose tissue was obtained from females with a body mass index (BMI) 

of ~30 during liposuction or abdominal plastic surgeries. Isolation of hASCs and 

differentiation of adipocytes were conducted as described by Skurk et al. [35]. All 

protocols and procedures were approved by the Institutional Review Board (#693-2011) 

at the University of Florida. After removing initial monocytic cells (selective adherence 

to plastic), the released stromal vascular fractions were passaged down no more than 

three times. These  adipogenic stem cell rich stromal vascular (SV) fractions are regarded 

as human adipogenic stem cells (hASCs) without further purification procedures [36]. A 

pool of hASCs from three or four different human subjects was used for each experiment 

to avoid individual variation. Conditions for hASCs proliferation and differentiation were 

described previously [37, 38]. Ellagic acid (E2250, Sigma) stock was prepared in 

dimethyl sulfoxide (DMSO); aliquots of stock (10 mmol/L) were kept at -20 ̊C and 

freshly diluted at the time of addition to hASCs. For induction to adipogenic 

differentiation, cells were seeded (5 × 105/cm2) in 35mm plates and allowed to attach for 

24 hours in proliferation medium. After attachment, cultures were grown for the next 3 

days in differentiation medium containing 0.25 mmol/L isobutylmethylxanthine, 1 

μmol/L rosiglitazone, and 500 nmol/L human insulin in commercially available human 

adipocyte medium (AM-1, ZenBio). Adipocyte medium (AM-1) was replenished every 3 

days. Under these conditions, cultures of hASCs were induced to differentiation in the 

presence of 10 μM EA or DMSO (vehicle) for seven days. The presence of intracellular 

lipid accumulation was visualized by oil red-O (ORO) staining.   

 

2.3. qPCR and microarray analysis  
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Gene-specific primers for qPCR were obtained from Integrated DNA Technologies 

(Chicago, IL). Total mRNA of hASCs was isolated using Trizol reagent (Invitrogen). To 

remove genomic DNA contamination, mRNA was treated with DNase (Mediatech); 2 μg 

of mRNA was converted into cDNA in a total volume of 20 l (iScript cDNA synthesis 

kit, Bio-Rad). Gene expression was determined by real-time qPCR (CFX96, Bio-Rad), 

and relative gene expression was normalized by the average of two reference genes, 36B4 

and/or GAPDH (primer sequences will be available upon request). The complete gene 

lists can be found in Supplemental Table 1. For PCR microarray analysis, RT
2
 profiler 

PCR array for Human epigenetic chromatin modification enzymes (QIAGEN, PAHS-

085Z) was used according to the manufacture’s protocol. For each group, pools of equal 

amounts of total mRNA provided from four different human subjects were used. The 

results were analyzed using software provided by QIAGEN 

(http://www.sabiosciences.com/pcrarray data analysis.php#Excel). 

 

2.4. Western blot analysis 

To prepare total cell lysates, monolayers of differentiated cultures of human 

adipocytes were harvested with ice cold RIPA buffer (Thermo Scientific) with protease 

and phosphatase inhibitors (Sigma). For nuclear extract preparation, NE-PER nuclear and 

cytoplasmic extraction kit (Thermo Scientific) was used according to the manufacturer's 

protocol. Proteins were fractionated onto 4-15% pre-casted SDS-PAGE (Biorad), 

transferred to PVDF membranes with a semi-dry transfer unit (Hoefer TE77X), and 

incubated with the relevant antibodies. Chemiluminescence from ECL solution (Western 

Lightning) was detected with FluorChem E (Cell Biosciences) imaging system. 

http://www.sabiosciences.com/pcrarray
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Polyclonal or monoclonal antibodies targeting to β-actin (4967), H3K9Ac (AcH3, 9649), 

HDAC1 (5356), HDAC2 (5113), HDAC3 (3949), HDAC4 (7628), HDAC5 (2082), 

HDAC6 (7558), AcH4 (2594), H3K27Ac (4353), H4 (2935), lamin A/C (4777), CARM1 

(3379) were purchased from Cell Signaling Technology. Antibodies to HDAC9 (ab 

59718), and histone H3 (ab1791) were purchased from Abcam. PPAR(sc-7273) and 

FABP (aP2, sc-271529) were purchased from Santa Cruz Biotechnology. The polyclonal 

antibody for detecting histone 3 asymmetric-dimethyl Arginine 17 (H3R17me2, NB21-

1132) was purchased from Novus Biotechnology. 

2.5. HDAC enzyme activity assays 

Total cellular histone deacetylase enzymatic activity was measured using a 

commercial HDAC assay kit (Upstate Biotechnology) according to the manufacturer’s 

protocol. Briefly, 30 g of nuclear lysate were incubated with fluorescent substrate in 

HDAC assay buffer for 45 minutes at 30 ̊C. An activator solution was added to release 

the fluorophore from the deacetylated substrates, and fluorescence was measured in a 

multichannel fluorometer (Synergy H1, Biotech). 

2.6. Depletion of HDAC9 using siRNA 

For silencing HDAC9, hASCs were seeded at confluent density and allowed to attach 

for 24 hours in a proliferation medium. Culture of hASCs were transfected with either 

200 nmol/L of human HDAC9 ON-TARGET plus SMART pool siRNA (Thermo 

Scientific) or 200 nmol/L non-targeting control siRNA (Thermo Scientific) at 48 hours 

prior to adipogenic stimulation using DharmaFECT1 transfection reagent according to 

the manufacturer's protocol. The transfection efficiency was determined by Cy3-tagged 
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siGLO (Thermo Scientific). After 48 hours of transfection, hASCs were stimulated for 

differentiation in the presence and absence of EA during 72 hours (Fig. 3. A).  

2.7. Immunocytochemistry of H3R17me2 and HDAC9 

hASCs were cultured onto coverslips and immunostained for immunofluorescence 

microscopy as described previously [37]. Briefly, cells were fixed with 3.7 % 

paraformaldehyde for 20 minutes. After quenching paraformaldehyde with glycine, 

coverslips were permeabilized with ice cold Triton X-100 (0.1 %) and blocked with 1.25 

mg/ml normal goat serum for 1 hour. The coverslips were incubated overnight with 1:100 

dilution of the antibodies of H3R17me2 (ab8284) and HDAC9 (ab18970) antibody 

(Abcam) at 4 ̊C, followed by incubation for 1 hour with a 1:300 dilution of rhodamine 

red-conjugated goat anti-rabbit IgG (Jackson Immunoresearch). Fluorescent images were 

captured using a digital inverted fluorescence EVOS microscope (AMG Inc.). DAPI 

staining was used for counter-staining of the nucleus.   

2.8. Cell permeable peptide-CARM1 (CPP-CARM1) 

Purified CPP-CARM1 was a generous gift from Dr. Dong Ryul Lee at the CHA 

University in South Korea [39]. CPP-CARM1 (2 g/mL) was delivered to hASCs 24 

hours prior to adipogenic stimulation with or without EA. This allows sufficient time for 

CPP-CARM1 to translocate into the nucleus before hASCs are exposed to EA. Every two 

days, fresh CPP-CARM1 was added during routine media changes.   

2.9. Statistics 

All data are presented as the mean ± SEM. The data were statistically analyzed using 

a Student’s t-test or one-way ANOVA with Tukey’s multiple comparison tests. All 

analyses were performed with GraphPad Prism 5 (Version 5.04).  
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3. Results 

3.1. EA alters HDAC9 expression and HDAC activity during adipocyte differentiation 

Recently, we have identified that EA is most potent polyphenols that exerts the anti-

adipogenic property (under review). To gain an insight into whether EA regulates 

epigenetic factors of adipogenesis, we performed qPCR microarrays for chromatin 

modification enzymes. Among the 84 genes that regulate chromatin accessibility to 

genomic DNA or histones (by altering the status of acetylation, methylation, 

phosphorylation or ubiquitination), 10 genes were upregulated (> 2 fold) by EA treatment 

without any specific genes being significantly downregulated (< 2 fold) (Fig 1A, also see 

Supplemental Table 2). In particular, HDAC9 gene expression levels were ~20 fold 

higher than that of vehicle control. To validate the array results, HDAC gene expression 

was measured using individual gene-specific primers. As we expected, no difference was 

found in Class I (HDAC 1, 2, 3, 4, and 8) or Class III HDAC genes between EA-treated 

vs. control human adipocyte samples. In parallel to results from the qPCR array, HDAC9 

gene expression was specifically higher in EA-treated adipocytes compared to vehicle 

controls among the Class II DAC genes (HDAC 5, 7, 9, 10). Interestingly, for HDAC11, 

a class IV HDAC enzyme, mRNA levels were also significantly higher than control (Fig 

1B). HDAC9 protein levels were higher in EA-treated nuclear fraction, while other 

HDAC protein levels were similar between the two groups (Fig 1C).  

Next, we examined whether EA also alter HDAC activity and histone acetylation 

levels. There was a < 50% reduction of global HDAC activity during the early 

differentiation period (4 days after exposure to differentiation stimuli), which was almost 

completely dampened in cultures grown with EA (Fig 2A). In the presence of 100 nM 
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trichostatin A (TSA), a pan-HDAC inhibitor, there was an additional decrease of HDAC 

activity in the nuclear extract of differentiated cultures; only ~10% of HDAC activity 

remained in comparison to undifferentiated hASCs (Fig 2B, the second bar). In contrast, 

EA-treated nuclear extracts still possessed 50% of HDAC activity in the presence of TSA 

(Fig 2B, the last bar). Consistent with the literature [22, 24], differentiation of hASCs 

significantly increased acetylation levels of H3K9Ac, H3K27Ac as well as AcH4 (Fig 

2C, left panel). Intriguingly, differentiation of hASCs with EA remarkably decreased 

histone acetylation levels (Fig 2C, right panel). To answer the question of whether the 

inhibition of HDAC activity is able to reverse the inhibitory effects of EA on 

adipogenesis, TSA was added to the hASCs along with EA. Consistent with results from 

Chatterjee et al. [28], the addition of TSA during the adipocyte differentiation procedures 

did not inhibit adipogenesis (Fig 2D, upper panel). Similarly, addition of TSA to EA-

treated cultures during adipocyte differentiation failed to restore both adipocyte 

morphology (Fig 2D) and PPAR expression (Fig 2E). Notably, HDAC9 gene expression 

was even higher with TSA treatment, suggesting that HDAC9 expression is not regulated 

by TSA-sensitive HDAC activity (Fig 2E). These results collectively demonstrate that: 1) 

EA inhibits downregulation of HDAC activity, presumably the TSA-insensitive portion; 

and 2) chemical inhibition of HDAC activity by TSA was unable to reverse EA-mediated 

HDAC9 expression as well as inhibition of adipogenesis.  

3.2. Silencing of HDAC9 is not sufficient to reverse the reduction of adipocyte 

differentiation by EA 

It has been shown that HDAC9 is a transcriptional co-repressor of adipogenesis by 

preventing the activation of C/EBP [28]. Our next question was whether the knockdown 
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of HDAC9 could reverse the anti-adipogenic effects of EA. To address this question, we 

used siRNA to deplete HDAC9. Transfection efficiency of hASCs was > 90 % estimated 

by Cy3-tagged non-targeting siGLO (data not shown). To knockdown HDAC9, 200 

nmol/L of siCont (non-targeting) or siHDAC9 were transfected with hASCs for 48 hours 

followed by adipogenic differentiation for 72 hours (Fig 3A). Transfection of siHDAC9 

attenuated HDAC9 gene expression approximately ~70% compared to siCont (Fig 3B), 

which remained constant throughout the experiment (data not shown). Reduction of 

HDAC9 protein levels in nucleus by siHDAC9 was comparable to siCont transfected 

cells without EA control (Fig 3C). Surprisingly, a substantial decrease of HDAC9 by 

siHDAC9 had minimal impact on EA-mediated suppression of adipogenic gene 

expression, C/EBP and PPAR or on H3K9 acetylation (Fig 3B, C). These data showed 

that reduction of HDAC9 was unable to reverse inhibition of adipogenesis by EA. 

Additionally, this implicates that additional regulatory factor(s) might be involved in the 

suppression of adipocyte differentiation by EA other than HDAC9 regulation per se.      

3.3. Inhibition of CARM1 by EA plays a key role in suppressing adipogenesis  

Recently, EA has been identified as a novel inhibitor for CARM1 [40], whose activity 

is required for asymmetric transfer of two methyl groups to the H3R17me2 (Fig 4A). 

Consistently, immunostaining of differentiated human adipocyte cultures (heterogeneous 

culture containing ~50 % adipocytes) with an H3R17me2 antibody showed that CARM1 

activity is restricted to lipid-laden adipocytes, but not in undifferentiated hASCs (Fig 4B). 

To further determine whether inhibition of CARM1 activity by EA would be a key 

mechanism to block hASCs differentiation, we examined the H3R17me2 levels during 

differentiation with or without EA incubation. Supporting the important role of CARM1 
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activity in adipocyte differentiation, EA treatment significantly reduced H3R17me2 

levels compared to vehicle control from the nuclear extract fraction used in Fig 1C (Fig 

4C). However, there was no significant difference in mRNA or protein levels of CARM1 

(Fig 4C, D), suggesting that EA inhibits enzyme activity of CARM1 rather than by 

transcriptional or translational modification of CARM1.  

If the inhibition of CARM1 activity by EA is the major mechanism to block 

adipogenesis, the replenishment of CARM1 activity can rescue adipocyte differentiation. 

To test this concept, 2 g/mL of recombinant cell penetrating peptide CARM1 (CPP-

CARM1) [39] were added to hASCs throughout the adipogenic differentiation with 10 

mol/L EA. Although adipocyte morphology was not completely restored, addition of 

CPP-CARM1 substantially increased TG accumulation compared to EA only treatment 

assessed by ORO-staining (Fig 5A). Accordingly, co-stimulation of CPP-CARM1 with 

EA significantly increased PPAR gene and protein level compared to EA treatment 

alone (Fig 5B, C). The restoration of CARM1 activity by addition of CPP-CARM1 also 

increased H3R17me2 and H3K9 acetylation levels (Fig 5C). Moreover, immunostaining 

of HDAC9 revealed that addition of CPP-CARM1 reduced EA-mediated retention of 

HDAC9 in nucleus (Fig 5D). Taken together, these data strongly suggest that inhibition 

of H3R17me2 by EA is the key step to repress the subsequent H3K9 acetylation, HDAC9 

dissociation from chromatin, and PPAR activation. 

 

4. Discussion  

White adipose tissue (WAT) is not only a storage organ for surplus energy, but is also 

active endocrine tissue critical in energy and glucose homeostasis [41-43]. The metabolic 
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and endocrine function of adipocytes correlate to the dynamics of adipocytes, i.e., 

adipocyte size and numbers [44]. Plasticity of the adipocytes seems to be dictated by 

chromatin remodeling and transcriptional networks in response to environmental 

effectors such as diet [45, 46]. Currently, little is known about the regulatory role of 

dietary polyphenols on epigenetic remodeling in adipocyte. The goal of this study was to 

identify potential links between dietary EA and epigenetic regulation of adipogenesis. We 

demonstrated that EA, a ubiquitous polyphenol in fruits and vegetables, inhibits 

adipocyte differentiation through CARM1-mediated epigenetic modification. Based upon 

our results, we propose the following working model (Fig 6): uncommitted hASCs are 

associated with high levels of HDAC9 that repress transcriptional activation of 

adipogenic genes [28]. Upon adipogenic stimuli, CARM1 enzyme facilitates the transfer 

of two methyl moieties to H3R17, which is accompanied by a subsequent H3K9 

acetylation and HDAC9 dissociation. In the presence of EA, inhibition of CARM1 

activity by EA results in suppression of H3R17 methylation, which in turn abolishes 

H3K9 acetylation and HDAC9 dissociation, and ultimately represses adipogenesis.  

Extensive research from several groups has identified that histone modifying enzymes 

play pivotal roles in adipocyte development: 1) Deletion of histone methyl-transferase 

enhancer of zeste homolog (Ezh2) abolished trimethylation on H3K27 of Wnt promoter 

region, resulting in constitutive activation of Wnt signaling and transcriptional inhibition 

of adipogenesis [24]; 2) Silencing of PRMT5 repressed adipogenic gene expression, 

which was reversed by PRMT5 overexpression [26]; 3) Histone methyltransferase G9a 

seemed to play dual roles for turning on or off adipogenic signaling based on its 

methylation sites by serving as either a co-activator or co-repressor [47]; 4) Class II 
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HDACs have been reported to control PPAR signaling [48]. Among the Class II HDACs, 

HDAC9 has been identified as a unique transcriptional co-repressor on C/EBP promoter 

[28]; and 5) Mice born with the deletion of CARM1 lacked in fat pad development [49, 

50], identifying the adipose specific role of CARM1 as a coactivator for PPAR [25].   

Despite accumulating evidence demonstrating the critical roles of individual histone 

modifying enzymes in adipogenesis, few studies have identified specific effectors that 

directly alter histone reprogramming by modulating histone modifying enzymes. In this 

study, we have identified that EA alters at least three distinctive epigenetic factors during 

adipogenesis of hASCs. 

The first modification that we immediately noticed was the abnormally high 

expression of HDAC9 via qPCR microarray of histone modifying enzymes (Fig 1). 

However, an increase of HDAC9 levels did not seem to be the major cause for EA-

mediated inhibitory effects on adipogenesis due to the following: 1) depletion of HDAC9 

upto ~70% had minimal effects on adipogenesis (Fig 3), suggesting the existence of anti-

adipogenic regulatory factor(s) occur ahead of the inhibition of HDAC9 downregulation; 

and 2) the possibility that EA increases HDAC9 activity does not seem to contribute anti-

adipogenic effects of EA. If HDAC9-mediated HDAC activity is the key mechanism to 

inhibit adipogenesis, inhibition of HDAC9 activity by TSA (it has been shown that 

HDAC9 activity is inhibited by TSA treatment [22]) should restore adipogenic potential, 

which was not the case in our experiment (Fig 2D, E). These results are consistent with 

conclusion from Chatterjee et al [28] demonstrating that HDAC9 represses the 

adipogenic transcription factor in a deacetylase-independent mechanism. Based on our 
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observations, EA seems to cause an earlier modification before the HDAC9 dissociation 

step, which is necessary but not sufficient to initiate adipogenesis. 

The second modification that we noticed was decreased histone acetylation levels and 

increased HDAC activity by EA (Fig 2A, C). The role of histone acetylation on 

adipogenesis seems to be inconsistent; inhibition of HDAC activity by TSA inhibits 

adipogenesis in 3T3-L1 cells [22], while it fails to inhibit adipogenesis in primary 

adipogenic precursor cells in mice and humans [28]. One thing we confirmed is that 

TSA-sensitive HDAC activity is not required for adipogenesis at least in hASCs ([28], 

our data Fig 2). Thus, downregulation of the TSA-insensitive portion of HDAC activity 

might be critical to initiate adipogenic differentiation. This is based upon our data 

showing that EA treatment during adipogenesis almost completely blocked the 

adipogenic cocktail-mediated HDAC activity; also that a significant amount of HDAC 

activity remained even with TSA treatment without promoting adipogenesis (Fig 2). 

Conversely, it indicates that downregulation of TSA-insensitive HDAC activity may be 

required for adipogenesis. Intriguingly, we did not find any evidence that EA directly 

alters HDAC or HAT activity (data not shown). This is also consistent with the report 

from Selvi et al. [40]. Although the mechanistic link between EA treatment and ‘HDAC 

activity and histone acetylation status’ is uncertain, our results suggest that EA may 

inhibit earlier signals that could lead to global histone acetylation for facilitation of 

adipogenesis. 

 The third and the most fundamental epigenetic modification that we have identified is 

the attenuation of H3R17me2 levels by EA, due to reduced CARM1 activity (Fig 4). 

Yadav et al. have established the role of CARM1 as a PPAR coactivator in adipose 
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tissue [25], and Selvi et al. have reported the general effects of EA on CARM1 enzyme 

[40]. However, our work is the first to report that EA inhibits asymmetric dimethylation 

of H3R17 during adipogenic differentiation in hASCs by linking CARM1 activity to anti-

adipogenic effects of EA. It was unexpected to find that HDAC9 depletion could not 

restore H3R17me2 in the presence of EA in hASCs (Fig 3). This implies that the 

modification of CARM1 activity may precede the dissociation of transcriptional repressor 

HDAC9. It was important to note that regaining CARM1 activity by adding CPP-

CARM1 recovered HDAC9 dissociation from the nucleus, histone acetylation, as well as 

adipogenic gene expression and TG accumulation (Fig 4). These data clearly demonstrate 

that the modulation of CARM1 by EA is the key mechanism to inhibit successive 

epigenetic modification for adipocyte differentiation, i.e., releasing transcriptional 

(co)repressors. The exact mechanistic regulations collaboratively control methylation on 

H3R17, releasing HDAC9 from chromatin (probably from PPRE; PPAR response 

elements), and acetylation of histone are currently unknown. A recent work by Wu et al. 

demonstrated that arginine methylation on H3R17 and H3R26 by CARM1 is associated 

with discharging the transcriptional co-repressor NuRD, a nucleosome remodeling and 

the deacetylase complex, by facilitating histone acetylation in MEF cells [51]. This study 

supports our proposed model (Fig 6) in terms of connecting CARM1-mediated histone 

arginine methylation to the dissociation of HDAC activity-possessing transcriptional 

repressors and augmentation of histone acetylation.  

Although our proposed model has built upon the data obtained from human adipogenic 

progenitor cells (hASCs), it still contains limitation to apply to humans: 1) we used the 10 

mol/L of EA, which is difficult to be achieved in regular diets. Our unpublished data 
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showed that EA could be effective in inhibiting adipogenesis and altering histone 

acetylation with the concentration as little as 2.5 mol/L in hASCs. More information 

about optimal EA concentration to exhibit physiological effectviness in vivo is required; 2) 

current study does not include the information about EA metabolites. There is emerging 

evidence that EA-derived gut microbial metabolite urolithin A exerts various health 

benefits [52, 53]. Therefore, it needs to be determined whether urolithin A is also 

proficient in modulating epigenetic factors that are proposed in this study. To investigate 

nutritional significance of EA in vivo, we are currently conducting animal studies by 

feeding HF diet with or without EA supplementation. In addition, to further establish the 

adipose tissue-specific role of CARM1 on metabolic syndrome, we are under preparation 

to generate adipocyte specific knockout mice of CARM1.  

In conclusion, our present study provides mechanism-based evidence that EA 

attenuates adipogenesis and offers novel insights into targeting epigenetic modification 

for adipogenesis control using a dietary EA.   
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Figure III-1 EA alters HDAC9 expression during adipocyte differentiation. 

Cultures of hASCs were induced to differentiation in the presence of 10 μmol/L EA or 

DMSO (vehicle) for seven days. (A) Microarray analysis of human chromatin 

modification genes (84 genes) by qPCR from the hASCs treated with either 10 μM EA or 

vehicle for seven days during differentiation. Pooled mRNA from four different human 

subjects was used for analysis. Broken lines indicate 2-fold expression of differences 

between treatments. (B) Gene expression levels of Class I, II, IV of HDAC and sirt1 and 

2 (Class III) by qPCR. (C) Protein expression levels of HDAC 1, 2, 3, 4, 6 and 9 in 

nuclear extract. H3 and lamin A/C were used for loading control. * P< 0.05, *** P < 

0.001 by student’s t-test.  
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Figure III -2 EA alters HDAC activity during adipocyte differentiation. 

 (A) Nuclear HDAC enzyme activity in undifferentiated (Diff -) and differentiated (Diff +) 

adipocytes in the presence or absence of EA for four days. (B) HDAC activity with or 

without pan-HDAC inhibitor TSA (100 nmol/L). (C) Western blot analysis for detecting 

H3K9Ac and H3K27Ac and AcH4. H3, H4, lamin A/C were used for loading control and 

aP2 used as an adipocyte marker. (D) Phase contrast images of hASCs differentiated with 

either EA or TSA only, or co-treatment of TSA+EA for seven days. (E) PPARand 

HDAC9 gene expression grown in the presence or absence of TSA and EA. Data are 

expressed as the mean ± SEM from n = 4 samples of two separate experiments. Means 

are not sharing a common superscript differ by one-way ANOVA with Turkey's multiple 

comparison (p < 0.05).  
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Figure III -3 Depletion of HDAC9 in hASCs has minimal impact on EA-mediated 

inhibition of adipogenesis.   

 (A) Experimental scheme for depletion of HDAC9 before adipogenic differentiation 

with or without EA. hASCs were transfected with siCont or siHDAC9 at 48 hours before 

differentiation. Differentiated cultures were kept for 3 days before harvest of mRNA and 

protein after differentiation. (B) Relative gene expression of HDAC9, C/EBP and 

PPAR by qPCR analysis. (C) Protein levels of HDAC9, AcH3, H3R17me2, aP2, lamin 

A/C, and total H3 in siCont or siHDAC9 transfected cells. All values are presented as the 

mean ±SEM. * P < 0.05 by one-way ANOVA.     
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Figure III -4 EA inhibits H3R17me2 without affecting CARM1 expression levels.   

 (A) EA inhibits CARM1-mediated methylation of H3 arginine 17 in adipocytes. (B) 

Immunolocalization of H3R17me2 (red) and DAPI (blue). Differentiated hASCs were 

immunostained with H3R17me2 antibody and the nuclei were counterstained by DAPI. 

Phase contrast image (40X) was overlapped to distinguish lipid loaded adipocytes vs. 

undifferentiated cells. (C) Inhibition of H3R17me2 by EA without changes of CARM1 

protein levels. Lamin A/C were used for loading control and PPAR used as an adipocyte 

marker. (D) CARM1 gene expression measured by qPCR. Data are presented as the mean 

±SEM. ns= not significant by student’s t-test.  
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Figure III -5 Rescue of CARM1 activity by delivering CPP- CARM1 partially 

reverses EA-mediated adipogenesis of hASCs.   

CPP-CARM1 was delivered to hASCs at 24 hours prior to adipogenic differentiation then 

differentiation was induced in the presence or absence of EA for seven days. (A) TG 

accumulation was visualized by ORO-staining. Black boxes show magnified images. (B) 

PPARgene expression determined by qPCR. (C) Protein levels of H3R17me2, H3K9Ac, 

H3, and PPARby western blot analysis. (D) Immunostaining of HDAC9 was merged 

with DAPI staining to show decreased HDAC9 levels in CPP-CARM1 added cultures. 

Data are presented as the mean ±SEM., ** P < 0.001 by student’s t-test. 
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Figure III -6 Epigenetic modification of adipogenesis by EA through the mechanism 

involved in CARM1 inhibition in hASCs 

A working model illustrating the mism by which EA inhibits adipogenesis in hASCs. (A) 

Uncommitted hASCs are associated with high levels of HDAC9, a transcriptional 

corepressor of adipogenic genes. (B) Upon adipogenic stimuli (including HF diet and 

high insulin), CARM1 enzyme facilitates the transfer of two methyl moieties to H3 

arginine 17 sites (H3R17m2), which subsequently increases histone acetylation and 

HDAC9 dissociation from chromatin. (C) In the presence of EA, EA inhibits CARM1 

activity, which blocks subsequent epigenetic modification, resulting in transcription 

inactivation of adipogenic genes.     
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Abstract 

Chronic intake of high sucrose (HS) diet exacerbates high fat (HF) diet-induced obesity 

and its associated metabolic complications. Previously, we have demonstrated that ellagic 

acid (EA), an abundant polyphenol found in some fruits and nuts, exerts distinct lipid-

lowering characteristics in hepatocytes and adipocytes. In this study, we hypothesized 

that EA supplementation inhibits HS diet-mediated hepatic toxicity and its accompanied 

metabolic dysregulation. To test this hypothesis, C57BL/6 male mice were randomly 

assigned to three isocaloric HF diets (41 % calories from fat) containing either no-sucrose 

(HF), high-sucrose (HFHS), or high-sucrose plus EA (HFHS-R) from raspberry seed 

flour (RSF, equivalent to 0.03 % of EA), and fed for 12 weeks. The inclusion of EA from 

RSF significantly improved HFHS diet-mediated dyslipidemia and restored glucose 

homeostasis levels similar to the HF diet-fed mice. Despite marginal difference in hepatic 

triglyceride content, the addition of EA substantially reversed the activation of 

endoplasmic reticulum (ER) stress and oxidative damage triggered by HFHS diet in the 

liver. These effects of EA were further confirmed in human hepatoma cells by reducing 

ER stress and reactive oxygen species (ROS) production. Moreover, HFHS-R diet 

significantly decreased visceral adipocyte hypertrophy and adipose tissue inflammation 

evidenced by reduced pro-inflammatory gene expression and macrophage infiltration. In 

summary, EA supplementation from RSF was effective in reducing HFHS diet-mediated 

metabolic complication by attenuating hepatic ER and oxidative stresses as well as 

adipocyte inflammation. Our results suggest that the inclusion of EA in diets may 

normalize metabolic insults triggered by HS consumption.    
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1. Introduction 

Obesity is defined as a chronic low-grade inflammatory condition, which causes 

major health problems in the United States and many parts of the world [1]. The obesity 

epidemic appears to have emerged largely from the imbalance between energy intake and 

energy expenditure. The critical role of HF diets on the pathogenesis of obesity has been 

well-established over the past fifteen years [2, 3]. In addition to the positive correlation 

between obesity and HF diets, accumulating evidence pinpoints that consumption of high 

contents of sucrose (or fructose) is an independent metabolic risk factor to exacerbate 

obesity and its accompanied health complications [4, 5].   

Although it is controversial, the overall consumption of total sugar and sweeteners 

has increased in the United States over the past few decades [6, 7]. The surge of fructose 

into portal vein perturbs hepatic glucose and lipid metabolisms. High sugar intake is 

associated with reduced glucose uptake, elevated gluconeogenesis and hepatic glucose 

output, enhanced de novo TG synthesis, and promoted ER stress and hepatic 

inflammation [8]. These metabolic modifications appear to underlie the induction of 

insulin resistance commonly observed with HS feeding in both humans and rodent 

models of obesity. Moreover, epidemiological studies have revealed that sugar 

consumption is positively correlated with weight gain [7]. Given the deleterious 

contribution of HS intake to metabolic syndrome, there is an immense need for 

developing new strategies to counteract the HS diet-mediated metabolic insults. 

EA is a dietary polyphenol abundantly found in many fruits such as pomegranate, 

berries, muscadine grapes and mangos, as well as nuts [9, 10]. EA exhibits anti-
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proliferative, chemo-preventive, and anti-atherogenic properties in various cell types [11-

14]. The major mechanism of action of EA includes 1) inhibition of redox stress 

responses [15] and 2) attenuating inflammatory damage through the regulation of NF- B 

[16]. In addition, our group has identified that EA exerts lipid-lowering characteristics by 

inhibiting hyperplastic and hypertrophic expansion of adipocytes [17, 18], and by 

attenuating hepatic lipid accumulation [17]. Based on these unique properties, EA may 

downregulate the signaling modification triggered by HS diets, attenuating the attendant 

metabolic dysregulation. However, this possibility has not been investigated yet.   

The objective of this study is to explore the role of EA-containing RSF on HS 

diet-mediated hepatic toxicity and its metabolic consequences. To achieve this goal, we 

prepared three isocaloric HF diets containing no sucrose (HF), high sucrose (HFHS) and 

HS plus EA (HFHS-R) from RSF as a source of EA. Here, we report that inclusion of EA 

in HFHS diets was effective in reversing HS-mediated 1) ER and oxidative stress 

responses in liver and 2) adipocyte hypertrophy and pro-inflammatory responses in 

adipose tissue.  

  

2. Materials and Methods  

2.1. Chemical reagents  

All cell culture dishes were purchased from Fisher Scientific. Fetal bovine serum 

(FBS) was purchased from GIBCO. Pure EA (from tree bark) was purchased from Sigma 

Chemical Co. (#E2250). EA stock at 10 mM was prepared in dimethyl sulfoxide (DMSO) 

as described previously [17, 18]. Small aliquots of EA stocks were kept at -20 oC and 
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freshly diluted to 10 M with DMSO at the time of treatment in Huh7 cells. All other 

chemicals and reagents were purchased from Sigma Chemical Co., unless otherwise 

stated.  

2.2. Analysis of phenolic compounds in RSF 

Raspberry seed flour was purchased from Millennium©Health (Meeker Red 

Raspberry seed flour). For the analysis of phenolic compounds of RSF, 10 mg of RSF 

was extracted with 1 mL of methanol:DMSO:water (40:40:20) acidified with 0.1% HCl. 

The mixture was vortexed, subjected to ultrasonic bath for 10 minutes, and centrifuged at 

14,000g for 5 min in a Sigma 1-13 microcentrifuge (Braun Biotech. International, 

Germany). The supernatant was filtered through a 0.45 µm polyvinylidene difluoride 

(PVDF) filter. The sample was analyzed in an Agilent 1200 high-performance liquid 

chromatography (HPLC) system equipped with a ultraviolet-visible diode array detector 

(UV-Vis-DAD) (Agilent Technologies, Waldbronn, Germany) and an Esquire 1100 ion 

trap mass spectrometer (IT) with an electrospray interface (ESI) (Agilent). 

Chromatographic separation was carried out on a reverse phase Pursuit XRs C18 column 

(Agilent) (250x4 mm, 5 µm particle size) using water:formic acid (99:1, v/v) (A) and 

acetonitrile (B) as mobile phases. The gradient profile was: 0–20 min, 5–30% B; 20–30 

min, 30–55% B; 30–38 min, 55–90% B. This percentage was maintained for 2 min and 

then the column was equilibrated with the initial conditions for 8 min. A volume of 8 µL 

of sample was injected onto the column operating at room temperature and a flow rate of 

0.8 mL/min. The separated compounds were monitored in sequence with DAD (280 and 

360 nm) and with a mass spectrometry (MS) detector. Nitrogen was used as drying gas 

and nebulizing gas in the mass spectrometry detector with the following conditions: 
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nebulizer pressure 65 psi, dry gas flow 11 L/min, and dry gas temperature 350 ºC. Mass 

scan (MS) and daughter (MS-MS) spectra were measured in the m/z range of 100-1800 in 

the negative ionization mode. Phenolics were identified according to their UV and MS 

spectra, as well as MS/MS fragments. The extracts were chemically hydrolyzed as 

previously reported [19].  

2.3. Animal study 

Male C57BL/6 mice at six weeks of age were purchased from Jackson Laboratory 

(Bar Harbor, ME) and housed in a specific-pathogen free facility at the University of 

Nebraska-Lincoln. All animal experimental procedures were approved by the 

Institutional Animal Care and Use Committee at the University of Nebraska-Lincoln. At 

eight weeks of age, mice were randomly assigned to one of three experimental groups fed 

with different diets: isocaloric HF diets (41% calories from fat) containing either no-

sucrose (HF group), HS (HFHS group, 37% calories from sucrose), or HS plus EA 

(HFHS-R group) from RSF (equivalent to 0.03% of EA based on RSF analysis) and fed 

for 12 weeks. Diet preparation was adapted from the AIN-93G diets. For HFHS-R diet, 

cellulose was substituted for RSF (mainly dietary fibers), and thus the total dietary fibers 

among the diets were not different (Supplemental Table 1). Mice were given fresh ration 

every other day and fed ad libitum.  The daily food consumption per mouse was 

measured for 3 days at the last week of feeding before sacrifice. Changes in body weight 

(BW) of all mice were monitored weekly throughout the study (Supplemental Fig. 1).  

2.4. Cell culture and EA treatment 

Huh7 cells were maintained in Dulbecco’s modification of Eagle’s medium 

(DMEM) /Ham's F12 containing 1 mM glucose, 1% L-glutamine, 10% fetal bovine 
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serum, 100 units/mL penicillin, and 100 g/mL streptomycin in 5% CO2 at 37 °C. Huh7 

cells were seeded into 6-well plates (0.25×106) and pre-incubated with 10 M of EA for 

48 hours. To mimic the postprandial conditions of HFHS diet, Huh7 cells were 

challenged with mixtures of glucose (25 mM), fructose (50 mM) and palmitate-BSA 

complex (800 M) (Glc/ Fr/ PA).  

2.5. Measurement of blood biochemical parameters 

Enzymatic colorimetric assay kits were used to determine plasma levels of TG 

(Wako Diagnostics), total cholesterol (Roche Applied Sciences), and high-density 

lipoprotein (HDL) cholesterol (BioAssay Systems). Plasma low-density lipoprotein (LDL) 

cholesterol (mg/dL) was calculated from the Friedwald Equation [20]. Fasting blood 

glucose levels (mg/dL) were measured using a glucometer (Bayer, Contour). Commercial 

ELISA kit was used to determine plasma levels of insulin (Crystal Chem). 

2.6. Glucose and insulin tolerance tests 

A glucose tolerance test (GTT) was performed on overnight fasted C57BL/6 mice 

by intraperitoneal (i.p.) injection of 10% D-glucose solution (0.5 g/ kg BW). Blood 

glucose levels (mg/dL) were measured at 0, 15, 30, 60 and 120 min after injection using a 

glucometer (Bayer, Contuor). For insulin tolerance test (ITT), overnight fasted C57BL/6 

mice were administered 0.75 U/kg BW of insulin (Novolin R). Blood glucose levels were 

measured at 0, 10, 20, 30, 60 and 120 min after injection. The HOMA-IR (homeostasis 

model assessment of insulin resistance) index was calculated as [fasting plasma glucose× 

fasting plasma insulin/22.5] to assess insulin resistance. 

2.7. H&E staining, adipocyte size measurement and F4/80 staining. 
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Upon necropsy, liver and adipose tissues were dissected from the mice and 

immediately fixed in 10% buffered formalin. Tissues were embedded in paraffin, cut to 

5-7 micrometer sections, and processed for hematoxylin and eosin (H&E) staining as 

described previously [17]. H&E stained-sections of epididymal adipose tissue were used 

for size determination by following the published protocol by Chen et al. [21]. Briefly, 

adipocyte size was examined by analyzing digital images of H&E stained paraffin 

sections by using Image J software. For fluorescent immunohistochemistry (IHC)-F4/80 

staining, paraffin embedded adipose tissue sections were stained with a primary F4/80 

antibody (dilution 1:50, Abcam), followed by incubation with Alexa Fluor® 488 (Cell 

Signaling). Images were taken by using an EVOS microscope (AMG Inc.) 

2.8. Hepatic lipid accumulation  

The colorimetric triglyceride quantification kit (BioVision, K622‐100) was used 

to quantify the hepatic TG contents according to the manufacturer's protocol.  

2.9. Quantitative Real-Time PCR 

Gene expression analysis was performed as described previously [17]. Relative 

g

raw data to 36B4 (primer sequences in Supplemental Table 1).  

2.10. Western blotting analysis 

Snap frozen adipose and liver samples were homogenized with a polytron 

homogenizer (Elkhart, IN). Huh7 cell cultures were scraped in ice-cold radioimmune 

precipitation assay (RIPA) buffer (Thermo Scientific) with protease inhibitors and 

phosphatase inhibitor as described previously [22]. Proteins were separated using 8 or 10% 
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SDS-PAGE gels, transferred to PVDF membranes, and incubated with the relevant 

antibodies. Chemiluminescence was detected with ECL solution (PerkinElmer) using a 

FluorChem E system (Protein Simple). Polyclonal or monoclonal antibodies targeting 

phospho-JNK (4668), phospho-p38 (4511), phospho-eukaryotic translation initiation 

factor 2eIF2 (9721), phospho-Akt (Ser473, 4060), total Akt (9272) and -actin 

(4967) were purchased from Cell Signaling Technology (Danvers, MA). Phospho-insulin 

receptor substrate 2 (IRS2) (Ser388, 07-15171) or total-IRS2 (MABS15) were purchased 

from Invitrogen.  

 2.11. Measurement of hepatic oxidative stress 

For the determination of hepatic oxidative stress, liver tissue (50-100 mg) was 

homogenized. Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit (Invitrogen) were 

used to determine hepatic H2O2 content according to the provider’s instruction. To 

measure the intracellular accumulation of ROS in Huh7 cells, commercial kit of 2,7-

dichloro-dihydro-fluorescein diacetate (DCFDA) cellular ROS detection assay was used 

(Abcam). Briefly, Huh7 cells were pre-incubated with either DMSO or EA (0-40 M) in 

a dose-dependent manner for 2 days. Then, Huh7 cells were treated with Glc (25 mM), Fr 

(50 mM), and PA (800 M) with or without EA. After 12 hours later, Huh7 cells were 

washed with hanks' balanced salt solution (HBSS), and loaded with 20 μM DCFDA for 1 

hour at 37 °C. After 1 hour incubation, unincorporated dye was removed by washing with 

HBSS. Then 250 μM of H2O2 (t-butyl hydroperoxide (Sigma Aldrich)) was spiked to 

Huh7 cell with experimental conditioned media in the presence or absence of EA. 

Fluorescence intensity was measured by Synergy H1 (Biotech). Oxidation of DCFDA to 
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the highly fluorescent 2,7-dichloro-fluorescein (DCF) was proportionate to ROS 

generation. 

2.12. Inflammatory cytokine assay 

Homogenized epididymal adipose tissue and plasma were prepared for testing the 

levels of multiple inflammatory cytokines by using the Mouse Inflammation Array C1 

(Ray Biotech, Norcross, GA) according to the manufacturer's protocol. The complete 

blots were imaged by a FluorChem E System (Proteinsimple, Santa Clara, CA).  

2.13. Statistical analysis 

The data were statistically analyzed using one-way ANOVA analysis of variance 

with Tukey’s multiple comparison tests or Student’s t-test. All analyses were performed 

with GraphPad Prism 5 (Version 5.04). Results are presented as mean ± SEM.  

3. Results 

3.1. Raspberry seed flour (RSF) is a natural source of free EA and its precursors    

To investigate the potential role of dietary EA in normalizing the HS intake-

mediated metabolic complications, we prepared HFHS diet with or without EA from 

natural sources. We selected RSF as the source of EA as it has been reported to contain 

high levels of EA, ellagitannins (ETs), and its derivatives [23]. Our analysis shows that 

there were a negligible amount of anthocyanins or flavonols in RSF (Table 1). RSF 

mainly contained different proanthocyanidins (condensed tannins) and ETs (hydrolysable 

tannins), confirming that RSF was prepared from achenes of raspberries. Free EA content 

in the RSF was 1.1 mg/g whereas gallic acid was found only in trace amounts. To release 

the EA from tannins, RSF was hydrolyzed and neutralized for further analysis. After 
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hydrolysis, the amount of free EA increased up to 7 mg/g and gallic acid up to 0.39 mg/g 

(Fig. 1). In addition, valoneic acid dilactone (2 mg/g), another hydrolysis product of ETs, 

was also found upon hydrolysis. Based on this analysis, the maximally attainable EA 

contents by the ingestion of RSF (sum of parental compounds, EA and potential other 

metabolites) would be approximately 10 mg/g (1% in RSF). As we added 3 % of RSF to 

HFHS diet (Supplementary Table 1), we assume that total EA and its responsible 

derivatives in HFHS-R preparation would be equivalent to 0.03 % of EA. Furthermore, as 

the complete hydrolysis of ETs may not be achievable in vivo, we regarded HSHS-R as a 

source of EA no more than 0.03 % for the rest of the study.  

3.2. RSF supplementation attenuated HFHS diet-induced metabolic parameters 

and dyslipidemia in C57BL/6 mice 

We first investigated whether RSF supplementation alters HFHS diet-induced 

obesity. As seen in Table 2, there was no difference in food intake between the groups. 

After 12 weeks of the diet, mice fed with HFHS diet significantly promoted BW gain 

compared to mice fed with HF alone, which was partially normalized in mice fed with 

HFHS-R. Similarly, the extent to which HFHS diet promoted liver and visceral fat 

(epididymal and mesenteric) mass gain compared to HF diet, was partly attenuated by 

HFHS-R diet. However, liver/BW ratio did not reach statistical significance among 

groups despite the trend of stepwise decline in mice fed with HFHS>HFHS-R>HF. Next, 

we investigated whether the inclusion of RSF in HFHS diet improves plasma lipid 

profiles. As we expected both plasma TG and total cholesterol levels were higher in 

HFHS group than HF control. The elevated levels of TG and total cholesterol by HFHS 
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diet were almost completely dampened in HFHS-R group comparable to HF control. 

Consistently, decreased HDL cholesterol and elevated LDL cholesterol levels were 

restored in HFHS-R group close to the HF-fed control mice (Table 2). These data 

demonstrated that EA-containing RSF supplementation confers a resistance to HS-

mediated exacerbation of obesity and dyslipidemia.  

3.3. RSF supplementation normalized HS diet-mediated abnormal glucose 

metabolism 

Next, we asked whether RSF modulates HS-mediated abnormal glucose 

metabolism. As expected, HFHS fed mice exhibited higher fasting glucose and insulin 

levels than HF fed mice. Consistent with the improved plasma lipid profile by RSF 

(Table 2), inclusion of RSF decreased HS-mediated abnormal increase of blood glucose 

and insulin concentration to the levels of HF only group (Fig. 2A, B). The HOMA-IR 

index, an indicator of insulin resistance, revealed the HFHS-R fed group was 

approximately 3-fold more sensitive to insulin than HFHS group; sensitivities between 

HFHS-R fed group and HF fed group were similar (Fig. 2C). To confirm this, glucose 

(GTT) and insulin tolerance tests (ITT) were conducted. During GTT, glucose disposal 

was significantly slower in HFHS fed mice than HF fed mice. HFHS diet-mediated 

glucose tolerance was improved by RSF supplementation, which was confirmed by 

quantification of GTT area under curve (AUC) (Fig. 2D). In parallel, HFHS fed mice 

maintained higher glucose levels than HF fed mice during ITT. In contrast, glucose 

disposal rate between mice fed HFHS-R and HF alone was almost identical, showing no 
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difference in AUC (Fig. 2E). These data suggested that EA-containing RSF 

supplementation normalized the HS-induced glucose and insulin resistance in mice. 

3.4. RSF supplementation attenuated HS-mediated hepatic ER stress.  

HS intake has known to alter hepatic lipid metabolism and cause hepatic ER 

stress [24]. Given the significant improvement in plasma lipid profile by RSF (Table. 2), 

we hypothesized that RSF supplementation attenuates HS diet-induced hepatic steatosis 

and ER stress. The gross images of liver fed HFHS-R showed darker brownish color than 

HFHS fed liver, implicating that TG accumulation might be decreased. H&E staining of 

liver section revealed that TG accumulation appeared to be lower in HFHS-R fed group 

than HFHS fed mice (Fig. 3A). There was a decrease in TG content in HFHS-R fed group 

from HFHS, but it was not significant (Fig. 3B). It may reflect that HFHS-R diet showed 

a tendency to decrease liver mass compared to HFHS, but it was not significant (Table 2). 

Despite the marginal difference in liver mass, lipogeneic related gene expression of 

stearoyl CoA desaturase-1 (SCD-1), lipoprotein lipase (LPL) and diacylglycerol 

acyltransferases 2 (DGAT2) were markedly decreased in mice fed with HFHS-R 

compared to HFHS. However, hepatic gene expression levels of carbohydrate response 

element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c 

(SREBP1c) did not differ between HFHS and HSHS-R fed mice (Fig. 3C). Intriguingly, 

the two genes promoting gluconeogenesis, glucose 6-phosphase (G6Pase) and 

phosphoenoylpyruvate carboxyl kinase (PEPCK) were also significantly down-regulated, 

suggesting that HS-mediated hepatic glucose output may be decreased by EA-containing 

RSF supplementation (Fig. 3D).  
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HS-mediated hepatic ER stress is associated with hepatic steatosis and 

upregulation of gluconeogenesis [25]. Thus, we determined the expression of ER stress 

markers in mice fed with HFHS vs. HFHS-R diet. RSF supplementation attenuated 

phosphorylation of JNK (p-JNK), p38 mitogen-activated protein kinase (p-p38 MAPK), 

and eukaryotic translation initiation factor 2A (p-eIF2) compared to HFHS feeding (Fig. 

3E). To validate these results in vitro system, we simulated ER stress condition in human 

hepatoma Huh7 cells by insulting cells with the combination glucose (Glc), fructose (Fr) 

and palmitate (PA). Pre-incubation of EA abolished the HFHS-triggered activation of p-

JNK and p-p38 in a dose-dependent manner (Fig. 3F). To determine whether EA 

attenuates HFHS-mediated inhibition of hepatic insulin signaling, basal and insulin-

stimulated phosphorylation of IRS-2 and Akt were measured in huh 7 cells (Fig. 3G). 

Huh 7 cells pre-treated with or without EA were simulated for ER stress by adding a high 

concentration of Glc, Fr and PA. Even in basal conditions, phosphorylation levels of IRS-

2 and Akt appear to be increased slightly in the presence of 10 M EA (Fig 3G, lane 1 vs. 

2). Insulin-stimulated p-IRS-2 and p-Akt were markedly higher in EA treated Huh7 cells 

(Fig 3G, lane 3 vs. 4), indicating that EA protects insulin signaling pathways against 

HSHS-mediated ER stress.  

3.5. RSF supplementation attenuated hepatic oxidative stress.  

Prolonged ER stress leads to ROS production and causes oxidative stress [26]. 

We hypothesized that RSF supplementation reduces HFHS-mediated hepatic oxidative 

stress. To address this, we first determined the hepatic H2O2 levels (mol/ mg protein), 

an indicator of ROS production in liver, was significantly higher in mice fed with HFHS 
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diet compared to mice fed with HSHF-R and mice fed with HF diet alone, which showed 

similar values (Fig. 4A). To confirm the effects of EA on ROS production in vitro, we 

measured ROS production in the presence or absence of EA by measuring DCFDA 

fluorescence levels in Huh7 cells. The ROS production rate (DCFDA fluorescence) 

increased drastically upon stimuli with high concentration of Glc, Fr and PA cocktail, 

which was significantly decreased in EA pretreated cells (Fig. 4B, also see Supplemental 

Fig. 2 for kinetic production of ROS). Collectively these data suggest that EA in RSF 

may contribute to a reduction in HSHS-mediated hepatic ROS production. 

3.6. RSF supplementation attenuated the HS-mediated adipose tissue 

inflammation  

To determine whether inclusion of RSF alters HFHS diet-induced adipose tissue 

remodeling, we first examined morphological changes of epididymal fat. H&E staining 

of adipose tissue clearly revealed that HFHS diet promotes adipocyte hypertrophy and 

macrophage infiltration compared to isocaloric HF diet. Despite the marginal difference 

in visceral fat mass (Table 2), HFHS-R diet significantly decreased adipocyte size and 

immune cell infiltration compared to HFHS diet (Fig. 5A). The analysis of adipocyte size 

and distribution confirmed these morphological changes. HFHS-R diet normalized 

HFHS-mediated adipocyte size expansion (111.53 ± 1.09 vs. 95.37 ± 0.86, HFHS vs. 

HFHS-R) (Fig. 5B) nearer to the HF control. Similarly, adipocyte size distribution from 

HFHS-R fed mice was shifted toward smaller sizes similar to HF diet feeding (Fig. 5C). 

Reflecting the smaller and more insulin-sensitized adipocytes, plasma levels of 

adiponectin levels (Fig. 5D) as well as adiponectin gene expression (Fig. 5E) were 
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significantly higher with HFHS-R diet than HFHS diet. The proinflammatory gene 

expressions including IL-6, IL-8, F4/80 (a marker for monocytic cells), tumor necrosis 

factor  (TNF) and monocyte chemoattractant protein 1 (MCP-1) were significantly 

reduced in HFHS-R-fed adipose tissue compared to HFHS-fed adipose tissue (Fig. 5E). 

The decrease of macrophage infiltration by HFHS-R was also confirmed by 

immunostaining of F4/80 (Fig. 5F). Inflammatory protein profiles were also determined 

using the membrane-based inflammatory cytokine array in adipose tissue and plasma. 

HFHS diet decreased proinflammatory adipokine production from epididymal adipose 

tissue including leptin, C-X-C motif chemokine 5 (CXCL5), chemokine (C motif) ligand 

(XCL1), MCP-1, macrophage colony-stimulating factor (M-CSF), soluble tumour 

necrosis factor receptor 1 (sTNFR1), and sTNFR2 (Fig. 5G, upper) and decreased plasma 

levels of proinflammatory cytokines XCL1, MCP-1, M-CSF, sTNFR1, and sTNFR2 (Fig. 

5G, below). Collectively, these data demonstrated that EA-containing RSF 

supplementation attenuated HS diet-mediated adipose inflammation and as well as 

systemic levels of inflammation. 

  

4  Discussion 

Western diet, high in saturated fat and sugar, but low in fresh fruits and vegetables, 

is the primary culprit to increase the risk of obesity and its associated metabolic 

dysfunction. This study was specifically designed to test the hypothesis whether the 

inclusion of EA in HFHS diet reverses the HS-induced metabolic complications. Here, 

we demonstrated that addition of EA-containing RSF significantly normalizes HFHS-
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induced dyslipidemia (Table 2), enhances hepatic and systemic insulin sensitivity (Fig. 2, 

3), reduces hepatic ER and oxidative stress (Fig. 3, 4), and inhibits proinflammatory 

adipose tissue remodeling and adipose dysfunction (Fig. 5) in C57BL/6 mice. To our 

knowledge, this is the first study to report the previously unrecognized function of EA in 

attenuating high sugar intake-inducible metabolic dysfunction by alleviating hepatic 

stress and adipose tissue inflammation.   

Despite the numerous health beneficial effects of EA, low bioavailability is the 

biggest caveat for the practical use of EA [27]. However, a recent study has suggested 

that plasma concentrations of free EA in peripheral human plasma could be higher than 

previously expected (80 nM vs. 10 nM), and the concentrations of EA in liver tissues 

could also be relevant [28]. Furthermore, EA is extensively metabolized by gut microbes 

producing urolithins. Although there are several studies showing that urolithins may 

resemble metabolic characteristics of EA [29, 30], it is difficult to estimate the exact 

physiological contribution of urolithins to metabolism. Moreover, urolithin production is 

highly compounding with the individual variability of microbiome [31]. Prior to this 

study, we had conducted a pilot study by feeding HF diet with 0.1 % of pure EA from 

tree bark (unpublished data). To our disappointment, we were not able to observe 

physiological benefits that we proposed in our cellular studies [17, 18]. We speculated 

that free EA consumption may dilute the EA’s health benefits due to its insolubility or 

prompt microbial conversion into urolithins. In this study, our criteria for selecting EA 

source were, 1) to use natural dietary source  (ET form) rather than synthetic EA or 

isolated EA from tree bark, 2) to avoid complete conversion into urolithins before 

absorption, and 3) to minimize the other bioactive polyphenolic contamination to isolate 
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the role of EA. RSF appeared to fit our experimental requirements because 1) raspberry is 

an affordable fruit with easy access, 2) RSF contains very few other polyphenolic 

compounds (Table 1), and 3) the ratio of free EA to EA precursors (mostly ETs) was 

roughly 1:6 (based on before and after hydrolysis of RSF), which may allow sufficient 

time to be released from tannin and absorbed in the gut, delaying microbial action. 

Supporting our rationales, Kosmala et al. has recently analyzed the chemical composition 

of raspberry vs. strawberry seeds; the main component of raspberry seed was fiber and 

the major polyphenols were polymerized ETs (dimer or trimer), while strawberry seed 

mainly composed of monomers of ET [23]. Proanthocyanidins (condensed tannin), the 

other polyphenolic compounds found in RSF, were relatively low compared to ET-

containing compounds [23]. Furthermore, the concentrations to exert bioactivity (lipid 

lowering and anti-inflammation) of depolymerized proanthocyanidins were in range of 

50-100 g/mL in vitro (our unpublished data), whereas EA is in 10 uM (2.7 g/mL) [17, 

18]. Therefore, RSF effects are likely due to combinatory of EA, ET, and its metabolites 

rather than other phytochemicals. In accordance with our results, raspberry ETs was more 

effective in lowering plasma TG levels than that of strawberry seed, suggesting that 

degree of conjugation with tannin (dimer/trimer>monomer> free EA) might regulate 

bioavailability of EA [23].  

A growing body of evidence suggests that there is a substantial link between HS 

consumption and metabolic dysfunction including non-alcoholic fatty liver diseases 

(NAFLD), obesity, dyslipidemia, and insulin resistance (sugar toxicity) [8, 32]. To test 

the central hypothesis that EA inhibits sugar toxicity, we prepared HFHS diets with and 

without RSF and compared their metabolic markers with isocaloric HF diet with no 
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sucrose. The inclusion of RSF in HFHS diet was associated with at least three metabolic 

outcomes attenuating 1) obesity and dyslipidemia, 2) hepatic ER/oxidative stress and 3) 

adipose inflammation.   

The first systemic metabolic benefit that we immediately noticed after RSF 

supplementation was the improvement of dyslipidemia and insulin sensitivity against 

HFHS diet (Table 1 and Fig. 1). Numerous studies in experimental animals and humans 

(both epidemiological and clinical intervention studies) have established that 

consumption of high-fructose promotes obesity, dyslipidemia (increased in plasma TG, 

LDL cholesterol, but decreased in HDL cholesterol) and insulin resistance [8, 33]. In 

agreement with this notion, switching carbohydrate source from dextrin (HF) to sugar 

(HFHS) without altering total calories, effectively promoted weight gain, dyslipidemia, 

and insulin resistance. These sugar toxicity-mediated metabolic abnormalities were 

ameliorated in the presence of RSF (Table 1). As RSF contains few other bioactive 

phytochemicals, the improvement of lipid profile and insulin sensitivity must be 

originated from EA and its derivatives in RSF. It is supported by growing evidence that 

consumption of EA-containing fruits protects high fructose-mediated metabolic abnormal 

modifications [34, 35]. The most noticeable benefits by RSF was a normalization of HS-

mediated elevation of total and LDL cholesterol (Table 2). It implicates that RSF may 

promote LDL catabolism. In fact, HFHS diet reduced hepatic LDL receptor (LDLr) 

resulting in an accumulation of LDL particles while inclusion of EA in HFHS diet 

upregulated LDLr and apoA-I (Supplemental Fig. 3). In agreement with our results, 

Yoshimura et al. showed that EA effectively upregulates LDLr gene expression in 

diabetic KK-Ay mice [36]. Several papers reported that either free EA or EA (or ET)-
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containing berries improve glucose and insulin tolerance against diet-induced obesity [35, 

37]. As an underlying mechanism, it has been suggested EA and gallic acid selectively 

inhibit -glycosidase, suppressing entry of monosaccharides from the lumen to intestinal 

epithelium [38]. If the inhibition of -glycosidase enzyme activity by RSF was the key 

mechanism to reduce plasma glucose level, HFHS-R-fed mice may exhibit lower blood 

glucose than HF-fed mice, because HF diet contains the same amount of -glycosidase 

bondages with HFHS-R. However, it does seem to be the case since RSF 

supplementation improved the only HS-mediated metabolic abnormality (comparable 

with HF only group). However, at this point, we do not entirely exclude the possibility 

that inhibition of -glycosidase by RSF contributes to the improvement of insulin 

tolerance against sugar toxicity. Unexpectedly, the apparent improvement in dyslipidemia 

and insulin sensitivity with 0.03% of EA supplementation was not directly correlated 

with the decrease in BW or adipose tissue weight; HS-mediated weight gain was 

significantly (p<0.05) reversed by RSF but to a lesser magnitude. We assume that 

modulation of adiposity may require a higher concentration of EA than controlling 

insulin sensitivity or plasma lipids. Taken together, the inclusion of no more than 0.03 % 

of EA in HFHS diet (roughly 30 mg EA /kg BW/day or ~1.8 g/60 kg BW) substantially 

reversed sugar-mediated insulin resistance and dyslipidemia. We believe that RSF-

mediated normalization of glucose tolerance would be the consequences of alleviated 

metabolic stress primarily from liver. 

Subsequently, we examined the potential benefit of RSF against sugar toxicity in 

the liver, the primary metabolic target organ for sugar toxicity. There is convincing 

literature demonstrating that HS intake promotes hepatic lipogenesis. It is due to unique 
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properties of fructose metabolism that 1) fructose is mostly metabolized in liver (about 80% 

in contrast to only 20% for glucose) [39], 2) entry of fructose into hepatic glycolysis 

bypasses the regulatory control of phosphofructokinase (PFK) producing unregulated 

lipogenic and proinflammatory precursors [39], and thus 3) fructose activates lipogenic 

transcription factors of SREBP1c, and ChREBP [25] leading to ER stress and insulin 

resistance. Furthermore, high fructose intake also impedes fatty acid oxidation and 

augments very-low-density lipoprotein (VLDL) secretion expediting hepatic lipid 

accumulation and systemic obesity [40]. Complying with metabolic modification by HS 

intake, our results showed that HFHS diet was associated with a 2-fold increase of 

hepatic TG deposition and significant upregulation of both lipogenic transcription factors 

(SREBP1c and ChREBP) and their target genes compared to isocaloric HF diet. 

Unexpectedly, hepatic TG contents were not apparently different between mice fed with 

HFHS and HFHS-R. These results are conflicting with our previous in vitro study 

showing that EA attenuated hepatic TG accumulation by decreasing both de novo 

synthesis FA and its esterification [17]. However, it is notable that hepatic lipogenic gene 

expressions of SCD-1, LPL and DGAT2 were downregulated in mice fed with HFHS-R 

compared to HFHS (Fig. 3C), despite insignificant differences in transcription factor 

levels of SREBP1c and ChREBP. More importantly, two critical regulators of 

gluconeogenesis and hepatic glucose output, G6Pase and PEPCK, were significantly 

lower in HFHS-R mice (Fig. 3D). This supports our finding that HSHF-R-fed mice were 

more glucose tolerant than HFHS-fed mice (Fig. 2). Augmented insulin sensitivity may 

be attributed to the decreased hepatic ER stress and ROS production (Fig. 3, 4). In 

agreement with our results, a few studies supported the notion that EA is capable of 
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scavenging free radicals and decreasing ROS production [41]. It is unclear why EA is 

more sensitive in repressing oxidative stress signaling than the transcriptional repression 

of lipogenic genes. It could be attributed to limited accessibility of EA to the nucleus or 

higher concentration of EA may be required for optimal regulation of gene regulation. 

Further studies should be conducted to validate these possibilities. Taken together, herein 

we report that EA supplementation by RSF could effectively suppress HS-induced 

hepatic ER stress, ROS production, and hepatic glucose output in the absence of an 

obvious reduction in hepatic TG content.  

Lastly, we assessed the impact of RSF on obesity and adipose tissue inflammation. 

The rank order of visceral adiposity among the mice fed with 12 weeks of isocaloric diet 

was, HFHS>HFHS-R>>HF, paralleling changes in body and liver weight. More 

importantly, there was a distinct improvement of adipose tissue remodeling by decreasing 

adipocyte size, immune cell infiltration and pro-inflammatory gene and protein 

expression (Fig. 5). Supporting our finding, the recent study by Winand et al. 

demonstrated that EA decreased TNF, IL-6 and chemokine (C-C motif) ligand-2 (CCL-

2) secretion in lipopolysaccharides (LPS) induced macrophage and adipocyte [42]. 

Notably, minor changes in adiposity by HFHS-R, promoted almost complete reversal of 

adipose tissue inflammation. At this point, it is unknown whether the reversal of HS-

mediated adipose tissue inflammation reflects role of EA in adipose tissue in situ, or 

indirect influence primarily from metabolic adaptation in liver (e.g., reduced VLDL 

secretion). We have previously reported that EA may impose direct lipid-lowering effects 

in human adipocytes. Several other studies have demonstrated that EA can impede 

adipocyte differentiation in vitro [43, 44]. Also, our preliminary work in human 
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adipocytes showed that urolithins are able to regulate adipogenesis or lipogenesis in vitro 

(unpublished). Future studies that analyze tissue levels of EA and its urolithin metabolites 

are necessary to identify whether EA or its metabolites urolithins directly target adipose 

tissue metabolism.  

In summary, here we tested an innovative idea whether inclusion of EA in HF diet 

could inhibit high sugar intake-mediated metabolic dysfunction. We identified that RSF, 

as a source of EA, effectively antagonized the effects of sugar toxicity including 

dyslipidemia, hepatic ER stress and ROS, and pro-inflammatory adipose tissue 

remodeling. Whether these initial findings in rodents will be confirmed in humans must 

await future studies. Nevertheless, we believe that our study shed new insight into EA-

containing foods consumption for the prevention of sugar toxicity.   

  



109 

 

 

 

Table IV-0-1 Main phenolic compounds identified in RSF. 

Compound Retention time m/z
-
 MS/MS 

Flavan-3-ol and 
proanthocyanidins 

   

Proanthocyanidin dimers 
(epi)catechin-(epi)catechin 

10.82; 12.33;14.82 577 451, 425, 407, 289 

(Epi)catechin (monomer) 11.76 289 271, 245, 161, 125 

Proanthocyanidin trimer 3 
(epi)catechin 

12.90 865 289 

Proanthocyanidin dimers 
(epi)afzelechin-(epi)catechin 

13.19; 14.26; 
15.25;17.06 

561 543, 435, 407, 289 

proanthocyanidin trimer 2 
(epi)catechin-(epi)afzelechin 

15.04 849  

Proanthocyanidin dimer 
(epi)afzelechin-(epi)afzelechin 

16.05 545 549,419,273,164 

Proanthocyanidin trimer 2 
(epi)afzelechin-(epi)catechin 

16.41 833  

Ellagic acid derivatives and ellagitannins 

*HHDP-hexoside 3.28 481 301 

bis-HHDP-hexoside 
(pedunculagin isomers) 

7.47; 9.52 783 481,301 

Castalagin/vescalagin isomers 8.52; 15.69, 16.70 
466 (double 
charged) 

865, 781, 631, 481, 
451, 301 

Galloyl-HHDP-glucose (corilagin 
isomers) 

8.91;9.69;11.42 633 481, 463, 301 

Valoneic acid dilactone isomers 8.98;11.54;14.20 469 425 

Digalloyl hexoside  10.60 483 331, 313, 271, 169 

Ellagitannin (unidentified) 13.50 
631 (double 
charged) 

938, 783, 695, 451, 
301 

Galloyl bis HHDP-glucoside 
isomers 

14.97;15.69;16.70, 
17.35 

467(double 
charged) 

751, 633, 451, 391, 
301 

Di-galloyl HHDP glucoside 15.25 785 633, 483, 301 

Ellagitannin (unidentified) 15.54 
551(double 
charged) 

765, 631, 448, 301 

Ellagic acid pentoside isomers 16.84;17.35 433 301 

Ellagic acid 18.28 301 257 

Phenolic acid derivatives     

Caffeoyl hexoside 2.51 341 179, 161 

  



110 

 

 

 

Table IV-0-2  Food intake, metabolic parameters and blood lipid profiles * 

Group
 

HF
 

HFHS
 

HFHS-R
 

p-value
 

Food intake 

(g/mouse/day)
 

3.43 ± 0.13
 

3.45 ± 0.13
 

3.27 ± 0.04
 

0.840
 

Phenotypes
     

BW (g)
 

36.67 ± 0.74 
b 

45.00 ± 0.59 
a 

40.50  ± 0.73 
ab 

0.011
 

∆ BW (g)
 

10.00 ± 0.46 
b 

18.5 ± 0.27 
a 

14.50 ± 0.77 
ab 

0.002
 

Liver  (g)
 

1.57 ± 0.04 
b 

2.97 ± 0.18 
a 

1.97 ± 0.07 
ab 

0.046
 

Liver/BW (%)
 

4.27 ± 0.10
 

5.93 ± 0.49
 

4.86 ± 0.18
 

0.223
 

Epididymal fat (g)
 

1.82 ± 0.07 
b 

2.51 ± 0.048 
a 

2.14 ± 0.08 
ab 

0.040
 

Mesenteric fat (g)
 

0.60 ± 0.07 
b 

1.08 ± 0.07 
a 

0.88 ± 0.07 
ab 

0.015
 

Blood Chemistry    
 

Triglyceride (mg/dL)
 

25.59 ± 0.77 
ab 

38.93 ± 2.41 
a 

21.67 ± 2.07 
b 

0.056
 

Total Cholesterol 

(mg/dL)
 

110.33 ± 4.12 
b 

184.50 ± 2.36 
a 

122.83 ± 1.83 
b 

0.001
 

HDL (mg/dL)
 

71.28 ± 0.48 
a 

60.82 ± 0.22 
b 

72.13 ± 0.40 
a 

< 0.0001
 

LDL (mg/dL) 33.94 ± 0.48 
c
 115.80 ± 0.22 

a
 45.89 ± 0.40 

b
 <0.0001 

*
 Values are mean ± SEM. All groups, n = 6. Column not sharing a common letter are 

significantly different (p < 0.05) 
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Figure IV -1 Identification of ellagic acid and its derivatives after hydrolysis of RSF. 
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Figure IV-2  RSF supplementation ameliorated glucose and insulin tolerance in 

C57BL/6 mice against HS diet. 

Eight-week old male C57BL/6 mice were fed with isocaloric HF (grey), HFHS (white), 

or HFHS-R (black) diet for 12 weeks (n = 6 per group). (A) Fasting plasma glucose 

levels (mg/dL), (B) Fasting plasma insulin levels (ng/mL) quantified by ELISA, (C) 

HOMA-IR, (D) Glucose tolerance tests (GTT), (E) Insulin tolerance tests (ITT). Data are 

means expressed as mean ± SEM (n = 6). Bars with different letters are significantly 

different by one-way ANOVA. *P<0.05 (HF vs. HFHS), #P<0.01, and ###P<0.0001 

(HFHS vs. HFHF-R) by Student’s t-test. 
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Figure IV -3 RSF supplementation attenuated hepatic ER stress and insulin 

sensitivity against HS diet. 

Eight-week old male C57BL/6 mice were fed with isocaloric HF (grey), HFHS (white), 

or HFHS-R (black) diet for 12 weeks (n=6 per group) (A-E). (A). Gross images and 

representative microscopic images of liver revealed by H&E staining after 12 weeks of 

feeding with HFHS or HFHS-R, (B) Hepatic TG contents (mg/g liver), (C) Hepatic 

mRNA expression of  SCD-1, LPL, DGAT2, ChREBP and SREBP1c by qPCR, (D). 

Hepatic mRNA expressions of gluconeogenic genes of G6Pase and PEPCK by qPCR, (E). 

Western blot analysis of phosphorylation of JNK, p38, and eIF2 in liver fed with either 

HFHS or HFHS-R. Huh7 cells were pre-incubated with either DMSO or EA before 

stimulation with the mixture of glucose (Glc), fructose (Fr) and palmitate (PA) (F, G). (F) 

Phosphorylation of JNK, and p38 expression by western blot. (G) Phosphorylation of 
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IRS2 and Akt by western blot with and without insulin (100 nM) treatment. -actin was 

used for loading control. Data are expressed as mean ± SEM (n = 6). Bars with different 

letters are significantly different by one-way ANOVA. 
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Figure IV -4 RSF supplementation reduced hepatic oxidative stress against HS diet. 

Eight week-old male C57BL/6 mice were fed with HF (grey), HFHS (white), or HFHS-R 

(black) diet for 12 weeks (n=6 per group). (A) H2O2 level (mol/ mg protein) in liver 

sample. (B) Relative ROS production in huh 7 cells with or without EA using DCFDA 

florescence as molecular probe for detecting ROS production (Left). DCF fluorescence 

was visualized by fluorescence microscopy (Right). Data are expressed as mean ± SEMs. 

Bars with different letters are significantly different by one-way ANOVA.  
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Figure IV -5 RSF supplementation attenuated visceral adipocyte hypertrophy and 

adipose inflammation against HS diet. 
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Eight week-old male C57BL/6 mice were fed with HF, HFHS, or HFHS-R diet for 12 

weeks (n=6 per group). (A) Representative microscopic images of epididymal adipose 

tissue by H&E staining. Arrows indicate macrophage infiltration, (B) Average size 

(diameter) of epididymal adipocytes (n=6 mice per group), (C) Adipocyte size 

distribution, The line of best fit is shown (Gaussian curve fitting), (D) Plasma adiponectin 

levels (ng/mL) quantified by ELISA, (E) mRNA expression levels of adiponectin, IL-6, 

IL-8, F4/80, TNF and MCP1 in epididymal adipose tissue quantified by qPCR. (F) 

Immunofluorescent staining of F4/80 (Green). The nuclei counterstained by DAPI (Blue) 

and phase contrast images were overlapped. (G) Homogenized epididymal adipose tissue 

and plasma (pooled sample n=6 per group) from HFHS or HFHS-R fed mice were used 

for simultaneous detection of multiple inflammatory cytokines using mouse 

inflammatory array C1. Data are expressed as mean ± SEMs. Bars with different letters 

are significantly different by one-way ANOVA. **P< 0.01, ***P< 0.001 (HFHS vs. 

HFHF-R) by Student’s t-test. 
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Supplemental Table 1. Dietary composition of isocaloric HF diet, HFHS diet, and 

HFHS diet containing different ingredients fed to male C57BL/6J mice for 12 weeks
1
. 

Ingredients   

HF 

diet 
  

HFHS  

diet  
  

HFHS-R 

diet  

       

  

g/kg 

 

g/kg 

 

g/kg 

       Casein 
 

195 
 

195 
 

195 

L-Cystine 
 

3 
 

3 
 

3 

       
Sucrose 

 
0 

 
435 

 
435 

Corn Starch 
 

435 
 

0 
 

0 

Maltodextrin 
 

50 
 

50 
 

50 

       
Lard 

 
175 

 
175 

 
175 

Soybean oil 
 

39 
 

39 
 

39 

       
Cellulose 

 
40 

 
40 

 
10 

HPMC 
 

10 
 

10 
 

10 

Mineral Mix 
 

35 
 

35 
 

35 

Calcium 

Carbonate  
4 

 
4 

 
4 

Vitamin Mix 
 

10 
 

10 
 

10 

Choline 

bitartrate  
2 

 
2 

 
2 

RSF 
 

0 
 

0 
 

30 

Total  998  998  998 

       

  Kcal (%)  Kcal (%)  Kcal (%) 

Carbohydrate  42.2  42.2  42.2 

(Sucrose)  (0.0)  (37.0)  (37.0) 

Protein  16.9  16.9  16.9 

Fat  41.0  41.0  41.0 

Kcal/g  4.7  4.7  4.7 
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Supplemental Table 2. Primer sequences for qPCR 

Gene Forward/Reverse Sequence (5′-3’) 

mAdiponectin 

Forward ACAATGGCACACCAGGCCGT 

Reverse TGCCAGGGGTTCCGGGGAAG 

mChREBP 

Forward ATATCTCCGACACACTCTTCACC 

Reverse GTCAGGTCTGGCTGGATCATG 

mDAGT2 

Forward CCGCAAAGGCTTTGTGAAG 

Reverse GGAATAAGTGGGAACCAGATCA 

mF4/80 

Forward CTTTGGCTATGGGCTTCCAGTC 

Reverse GCAAGGAGGACAGAGTTTATCGTG 

mG6Pase 

Forward CGACTCGCTATCTCCAAGTGA 

Reverse GTTGAACCAGTCTCCGACCA 

mIL-6 

Forward CTGCAAGAGACTTCCATCCAGTT 

Reverse AGGGAAGGCCGTGGTTGT 

mIL-8 

Forward GGTCTGCTACGGGCTCACA 

Reverse CCCGGTGTTTCTGCCTCAT 

mLPL 

Forward CATCTCATTCCTGGATTAGCAGAC 

Reverse CCGATACAACCAGTCTACTACAATG 

mLXR 

Forward AACCTCAAGATGCAGGAGACC 

Reverse GACTCCAACCCTATCCCTAAAGC 

mMCP1 

Forward AGGTCCCTGTCATGCTTCTG 

Reverse GCTGCTGGTGATCCTCTTGT 
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mPEPCK 

Forward CTGCATAACGGTCTGGACTTC 

Reverse CAGCAACTGCCCGTACTCC 

mSCD-1 

Forward GGGACAGATATGGTGTGAAACTATG 

Reverse TTACAGACACTGCCCCTCAAC 

mSREBP1c 

Forward GTGAGCCTGACAAGCAATCA 

Reverse GGTGCCTACAGAGCAAGAGG 

mTNF 

Forward GGCTGCCCCGACTACGT 

Reverse 

ACTTTCTCCTGGTATGAGATAGCAA

AT 
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Supplemental Fig. 1. Changes in BW were monitored by weekly of all mice. 
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Supplemental Fig. 2. Kinetic productions of ROS were monitored by measuring 

fluorescence intensity up to 10 min in Huh7 cells. 
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Supplemental Fig. 3. (A) Hepatic LDLr gene expressions in HF, HFHS, and HFHS-R 

fed mice. (B) Plasma levels of apoA-I and apoB by western blot. 
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Abstract  

Scope: Urolithins (Uro) are ellagic acid (EA)-derived metabolites produced by gut 

microbes. There is a growing interest in the biological activities of Uro. Our aim was to 

evaluate the impacts of Uro on regulating triglyceride (TG) accumulation using primary 

cultures of human adipocytes. 

Methods and Results: UroA, B, C, D, and iso-UroA, were used to determine the effect 

of Uro on adipogenesis and lipogenesis. Individual Uro (30 M) were added to human 

adipogenic stem cells (hASCs) during differentiation. UroA, C and D, but not iso-UroA 

and UroB, significantly inhibited new fat cell formation by decreasing TG accumulation 

and adipogenic protein and gene expressions. The regulation of TG synthesis by Uro was 

investigated via metabolic chasing with radiolabeled precursors. UroA, C, and D 

attenuated the conversion of [
3
H]-acetate into [

3
H]-TG as well as [

14
C]-oleic acid (OA) 

into [
14

C]-TG, while increasing the conversion of [
3
H]-OA to [

3
H]-H2O (FA oxidation). 

Furthermore, UroC, D and A  promoted the phosphorylation of AMP-activated protein 

kinase (AMPK), implicating that Uro may alter energy-sensing metabolic pathways in 

primary human adipocytes.  

Conclusions: Taken together, our results demonstrated that UroA, C, and D reduce TG 

accumulation and increase FA oxidation via AMPK-associated mechanisms in primary 

cultures of human adipocytes. 
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1 Introduction 

Ellagitannins (ETs) and ellagic acid (EA) derivatives are naturally occurring 

polyphenols found in pomegranate, berries, and nuts. It has been reported that EA exerts 

various health benefits including free radical scavenger activity and anti-proliferative 

effects in various types of cancer in vivo and in vitro [1-3]. There is a substantial body of 

evidence that supplementation with pure EA alone or consumption of EA-enriched fruits 

and nuts attenuates body fat mass and liver lipids [4-6], suggesting that EA possesses 

lipid-lowering characteristics. Supporting this, our group has recently reported that EA 

reduces adipogenesis through the inhibition of co-activator arginine methyltransferase 1 

(CARM1) in primary human adipogenic stem cells (hASCs) [7], alters lipid mechanisms 

both in human adipocytes and hepatocytes [8], and normalizes high sugar-mediated 

metabolic dysfunction (under review).  

Likewise to many other health-promoting polyphenolic compounds, low 

bioavailability of EA remains paradoxical. Oral administration of pure EA or EA-

containing products in both rodents and humans showed that ~ 1 M of EA can be found 

in plasma or tissues [9, 10]. This is attributed to the fact that EA undergoes extensive 

metabolic transformation prior to absorption [11]. In the intestinal lumen, EA is 

extensively metabolized by gut microbes producing a series of metabolites called 

urolithins (Uro). Uro are characterized by a common 6H-dibenzo[b,d]-pyran-6-one 

nucleus and a decreasing number of phenolic hydroxyl groups (UroDUroC UroA or 

iso-UroAUroB) (Fig. 1A) [12]. Among Uro species, UroA is the major metabolite 

observed in humans while Iso-UroA and UroB conjugates are also observed in some, but 
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not all, humans. As the result of microbial actions, EA is converted into bioavailable Uro 

which can reach significant concentrations in plasma and tissues [12-15]. 

Recently, several studies have demonstrated that Uro have metabolic 

characteristics of EA showing anti-inflammatory [16], anti-cancer [17, 18], anti-glycative 

[19] and anti-oxidant [20] properties. However, it is largely unknown if Uro have TG-

lowering effects by altering lipid metabolism. To address this issue, we investigated the 

effects of individual Uro on lipid metabolism in human adipocytes and confirmed 

augmented fatty acid (FA) oxidation in human hepatoma Huh7 cells. Here, we are the 

first to report that Uro (30 M) possess biological activites to downregulate adipogenesis 

and lipogenesis similar to EA in human adipocytes. We also demonstrated that Uro alter 

lipid metabolism via AMPK activation.  

   

2 Materials and methods 

2.1 Chemical reagents 

 All cell culture supplies were purchased from Fisher Scientific. Fetal bovine 

serum (FBS) and penicillin-streptomycin were purchased from Cellgro Mediatech, Inc. 

(Herndon, VA). Rosiglitazone (BRL49653) was purchased from Cayman Chemical (Ann 

Arbor, MI). EA was purchased from Sigma-Aldrich (St. Louis, MO). UroA, B, C, D and 

iso-UroA were obtained as described elsewhere [21]. All other chemicals and reagents 

were purchased from Sigma Chemical Co (St. Louis, MO), unless otherwise stated. 

2.2 Cell culture 
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All protocols and procedures were approved by the Institutional Review Board at 

the University of Nebraska-Lincoln. For isolation of human adipogenic stem cells 

(hASCs), abdominal adipose tissue was obtained from females with a body mass index 

(BMI) of ~30 during liposuction or abdominal plastic surgeries. Isolation of hASCs and 

differentiation of adipocytes was conducted as we described previously [7, 8]. Each 

independent experiment was repeated at least three times using a pool of hASCs from 

three or four human subjects to avoid individual variation. Huh7 cells were maintained in 

Dulbecco’s modification of Eagle’s medium (DMEM) containing 1% L-glutamine, 10% 

fetal bovine serum, 100 units/ml penicillin, 100  g/ml streptomycin in 5% CO2 at 37°C. 

The medium was changed every 3 days. 

2.3 Cell viability assay 

 The cytotoxic effects of Uro and EA were determined using the XTT Cell 

Viability Kit (Cell Signaling Technology, Danvers, MA) according to the manufacturer’s 

protocol. Briefly, undifferentiated hASCs, fully differentiated hASCs, and Huh7 cells 

were cultured in 96-well plates using a seeding density of ~20,000 cells per well. Cells 

were incubated with either dimethyl sulfoxide (DMSO) or increasing concentrations of 

Uro and EA for 24 hours (Fig. 2, 5). Culture medium was then replaced with fresh 

medium containing XTT solution for 3 hours at 37℃ before measurement of OD 450 nm 

using a Synergy™ H1 hybrid plate reader (BioTek, Winooski, VT). 

2.4 Lipid accumulation  

To measure the lipid accumulation in human adipocytes, cells were fixed with 10% 

formalin and stained with Oil Red O (ORO). Bright field images were taken by EVOS® 
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XL microscope (AMG), or ORO dye was extracted by isopropanol to quantify relative 

TG accumulation (at OD 500 nm). 

2.5 [14C]-oleic acid (OA) and [3H]-acetate incorporation into FA and TG 

The measurement of TG esterification rate and de novo lipid synthesis in cultures 

of mature adipocytes or human hepatoma Huh7 cells was conducted as described 

previously [8]. Briefly, cells were incubated with serum-free low glucose (1,000 mg/L d-

(+)-glucose) overnight before the experiment. [14C]-OA (final concentration of 0.5 

μCi/mL, Perkin Elmer) and [3H]-acetate (final concentration of 0.5 μCi/mL, Perkin 

Elmer) were mixed with conditioned media or sodium oleate (Sigma)-Bovine Serum 

Albumin (BSA, fatty acid free, Sigma) complex, then added to cells for 3 hours. After 3 

hours incubation with [14C]-OA and [3H]-acetate, medium (containing unincorporated 

isotope) was removed by washing with phosphate-buffered saline (PBS). Cellular lipids 

were extracted using the Bligh and Dyer method [22]. Next, thin layer chromatography 

was performed to fractionate FA and TG, and the [14C] and [3H] radioactivity was 

measured by liquid scintillation counting (Tri-Carb 2000TR, Packard). Radioactivity was 

normalized by protein concentration quantified by bicinchoninic acid (BCA) colorimetric 

assay (Pierce, Rockford, IL).  

2.6 Fatty acid oxidation rate using [3H]-OA 

To measure the FA oxidation rate in cultures of mature adipocytes or human 

hepatoma Huh7 cells, we followed previously published methods [23]. Briefly, cells were 

incubated with serum-free low glucose (1,000 mg/L d-(+)-glucose) before the experiment. 

[3H]-OA (final concentration of 0.5 μCi/mL, Perkin Elmer) was mixed with sodium 

oleate-BSA complex, and then added to cells for 2 hours. [3H] radioactive containing 
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medium was harvested, and precipitated using trichloroacetic acid (TCA) solution. After 

precipitation, 6N NaOH was added to reach a final concentration of 0.8-1.0N, resulting in 

an alkaline supernatant. Next, supernatant was put through columns filled with Dowex™ 

ion-exchange resin (ACROS Organics™) to capture [3H]-H2O. Finally, radioactivity was 

measured by liquid scintillation counting. 

2.7 qPCR  

Gene-specific primers for qPCR were obtained from Integrated DNA 

Technologies (Chicago, IL). Total RNA was isolated using TRIzol® reagent (Invitrogen). 

To remove any potential genomic DNA contamination, mRNA was treated with DNase 

(iScript™ cDNA Synthesis Kit, Bio-Rad). Gene expression was determined by real-time 

qPCR (ABI7300, Applied Biosystems), and relative gene expression was normalized by 

36B4 (primer sequences available in Supplemental Table 1).  

2.8 Western blot analysis 

To prepare total cell lysates, monolayers of hASC cultures and fully differentiated 

adipocytes were scraped with ice cold radioimmune precipitation assay (RIPA) buffer 

(Thermo Scientific) containing protease inhibitors (Sigma) and phosphatase inhibitors (2 

mM Na3VO4, 20 mM β-glycerophosphate and 10 mM NaF). Proteins were fractionated 

using 8 or 10% SDS-PAGE, transferred to PVDF membranes, and incubated with the 

relevant antibodies. Chemiluminescence from ECL (Western Lightning) solution was 

detected using a FluorChem E Imaging System (Cell Biosciences). Polyclonal or 

monoclonal antibodies targeting phospho- AMP-activated protein kinase (AMPK) 

(Ser473, #4060), total AMPK (#9279), CCAAT/enhancer binding protein  (C/EBP 
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(#2295), fatty acid synthase (Fas) (#3180), and β-actin (#4967) were purchased from Cell 

Signaling Technology. The mouse monoclonal antibodies for fatty acid binding protein 4 

(aP2) (sc-271529) and PPAR (sc-7273) were purchased from Santa Cruz Biotechnology 

(Dallas, TX).  

2.9 Statistical analysis 

Results are presented as means ± SEM. The data were statistically analyzed using 

one-way ANOVA with Tukey’s multiple comparison tests. All analyses were performed 

with GraphPad Prism 5 (Version 5.04).   

  

3 Results 

3.1. Urolithins do not affect the viability of primary human adipogenic stem cells 

(hASCs) at concentrations of 0-30 M  

Currently, it is unknown whether Uro affect the cell viability of human adipocytes. 

To address this question, cytotoxic effects of individual Uro were determined both in 

undifferentiated hASCs and fully differentiated adipocytes. UroA, B, C, D, iso-UroA and 

EA were incubated with either hASCs or mature adipocytes for 24 hours before XTT 

assay. Similar to EA, Uro treatment slightly affected cell bioavailability (~80%) but no 

specific cytotoxic effects were observed in up to 30 M concentrations (Fig. 1B-G). 

Based on these results, for the remaining experiments we used the 30 M of Uro in order 

to augment the potential action but without causing cellular damage.  

3.2 Urolithins inhibit adipogenesis in hASCs 
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We previously demonstrated that EA suppressed adipogenic differentiation in 

hASCs [7, 8]. To determine whether Uro were abl

individual Uro was added to hASCs during differentiation (Fig. 2A). The presence of Uro, 

but not iso-UroA, caused a significant reduction of TG accumulation measured by ORO 

staining (Fig. 2A, B). The rank order of anti-adipogenic potential was UroA, C, D >> 

UroB > iso-UroA as assessed by TG accumulation using ORO staining. To further 

confirm the anti-adipogenic effects of Uro, adipogenic gene and protein expression levels 

were determined by qPCR and Western blot. Consistent with reduced TG accumulation, 

Uro treatment, except for iso-UroA, significantly suppressed adipogenic gene expression 

including PPAR and Fas (Fig. 2C). Adipogenic protein expression including aP2, Fas, 

PPAR, and C/EBP were also dramatically reduced in cultures treated with UroC and D 

and to a lesser magnitude with iso-UroA (Fig. 2D). To gain insight into whether Uro alter 

epigenetic marks similar to their parent compound EA [7], histone 3 arginine 17 

methylation (H3R17me2), and histone acetylation (AcH3) levels were examined. 

Interestingly, only UroC incubation, but no other Uro treatment, markedly suppressed the 

epigenetic markers (Supplemental Fig. 1).  

Several phytochemicals are known to inhibit adipogenesis through the mechanism 

related to AMPK activation [24-27]. AMPK is a major energy-sensor triggering a variety 

of catabolic processes and suppressing anabolic pathways simultaneously [28]. Treatment 

with EA increased AMPK phosphorylation dose-dependently (Fig. 2E). To further 

identify whether Uro are also able to regulate AMPK activation, we examined 

phosphorylated and total AMPK levels. Interestingly, UroA, C, and D increased 
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phosphorylated AMPK levels (Fig. 2F), which is consistent with the trend of the anti-

adipogenic role of Uro. 

3.3 Urolithins attenuate lipid accumulation in cultures of human adipocytes  

Next, we asked whether Uro could antagonize adipocyte hypertrophy. To examine 

this, fully differentiated cultures of human adipocytes were exposed to Uro for seven 

days based on the experimental design (Fig. 3A, upper). Exposure to 30 M Uro for 

seven days caused a significant reduction of TG accumulation, but not UroB and iso-

UroA, as measured by ORO staining (Fig. 3A, below). To test whether the reduction of 

TG accumulation was aligned with lipogenic transcriptional inhibition, we measured 

mRNA expressions. Uro treatment (A, C, and D) decreased lipogenic-specific gene 

-CoA 

desaturase-1 (SCD-1) compared to vehicle control (Fig. 3B). UroC and D are potent EA-

derived metabolites in upregulating AMPK activation in fully differentiated adipocytes 

(Fig. 3C).  

3.4 Urolithins regulate lipid metabolisms in cultures of human adipocytes 

We then investigated whether lipid-lowering effects of Uro are due to an 

alteration of lipogenic pathways. Fully differentiated adipocytes were incubated with 

radioactive precursors of [3H]-acetate and [14C]-OA to measure their conversion into 

[3H]-TG (de novo synthesis of TG) and [14C]-TG (esterification of TG). The conversion 

of [3H]-acetate into [3H]-TG was significantly dampened in UroA and UroD treated 

adipocytes (Fig. 4A). Consistently, UroA and D incubation was associated with a 

significant decrease of conversion of [14C]-OA into [14C]-TG, indicating a decrease of 

TG esterification by UroA and D (Fig. 4B). To determine whether FA oxidation is 
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involved in lipid-lowering effects of Uro, we measured FA oxidation rate in Uro-treated 

adipocytes. FA oxidation by determining [3H]-H2O release from [3H]-OA clearly 

showed that UroA, C, and D markedly increased FA oxidation, but not in iso-UroA and 

UroB treated adipocytes (Fig. 4C). Taken together, these data implicate that the inhibition 

of de novo synthesis of TG and FA esterification are accompanied by transcriptional 

regulation of lipogenic gene expression in Uro-treated human adipocytes.   

3.5 Urolithins regulate lipid metabolism in Huh7 cells  

We further examined the effects of Uro on TG esterification, de novo synthesis 

and FA oxidation in human hepatoma Huh7 cells. Prior to analysis of lipid metabolism, 

we first measured the cytotoxic effects of individual Uro in Huh7 cells. The 

concentrations (0-30 M) of UroA, B, C, D, iso-UroA and EA treatment slightly affected 

cell bioavailability (~80%) but no specific cytotoxic effects were observed in up to 30 

M concentrations (Fig. 5A). Next, to test whether Uro alter the lipogenic pathways, 

radiolabeled precursors were incubated with Huh7 cells, as with human adipocytes. 

Incorporation of [3H]-acetate into [3H]-FA and [3H]-TG were markedly decreased with 

UroC and D (Fig. 5B and C). Conversion of [14C]-OA into [14C]-TG was clearly 

inhibited by UroC treatment (Fig. 5D). FA oxidation rate was increased by UroA and C 

treated Huh7 cells, which was confirmed by [3H]-H2O release from [3H]-OA (Fig. 5E).  

  

4 Discussion 

Uro are gut microbiota-derived metabolites of EA and ETs. Different types of Uro 

(Fig. 1A) are produced by intestinal microbes, which may reflect the metabolic health 

status of hosts [29]. Although it has long been known that Uro may be critical 
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determinants of the effectiveness of EA supplementation, it is largely unknown whether 

different species of Uro possess different biological activities in humans. Recently, a 

number of studies have reported the unique role of Uro species by evaluating their 

efficacy in various cancer [17, 30], and inflammatory diseases [16, 31]. One recent study 

[29] and other unpublished observation correlate a higher prevalence of the metabotype 

producing iso-UroA and UroB in overweight and obese individuals, while UroA is 

associated with healthy individuals. However, no studies have been conducted to 

determine the function of individual Uro in human obesity. The present study was 

specifically designed to assess the role of individual Uro species in manipulating lipid 

metabolism using primary human adipocytes. Here we demonstrated that UroA, C and D 

are effective in attenuating TG accumulation and increasing FA oxidation through 

AMPK-dependent mechanisms in primary human adipocytes as well as in Huh7 cells. 

These results may provide a novel insight into a ‘structure and function’ relationship 

among Uro, which may lead to a unique therapeutic design to control adiposity.   

An accumulating body of evidence suggests that the gut microbial community 

affects the host’s energy homeostasis by altering energy metabolism [32-34]. To 

corroborate this concept, production of different Uro may comprise a part of the 

mechanism in which gut microbes regulate the host’s energy metabolism. In other words, 

metabolically healthy subjects may possess microbiota that are able to generate mainly 

active Uro such as UroA (i.e. subjects belonging to the so-called ‘metabotype A’ [29]). In 

contrast, metabolically unhealthy humans may have bacterial communities producing 

UroA but also other less active urolithins such as  iso-UroA and UroB (i.e., subjects with 

‘metabotype B’ [29]). García-Villalba et al. reported that there were compositional 
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differences in the gut microbiome between human subjects who produce UroA (effective 

Uro) and who produce iso-UroA and B (less active Uro) [11]. Also, subjects who have a 

higher risk of chronic illness produce iso-UroA and UroB [29], the two inactive EA 

metabolites in our experimental setting (Fig. 2-4). Recently, Gordonibacter 

urolithinfaciens sp. nov. has been identified as a novel bacterial species responsible for 

converting EA into UroM5 and UroC [35]. This bacterium belongs to the family 

Coriobacteriaceae a family that is associated with benefits in obesity [36]. Since the 

bacterial phylum that specifically transform EA or its intermediate metabolites into UroA 

vs. iso-UroA/UroB have not yet been identified, it could be of interest for future studies.  

Numerous studies in animals and humans have demonstrated that free EA can be 

found in no more than 100 nM concentrations after oral administration of EA or ET-

containing foods [9, 10]. The low bioavailability of EA is largely due to limited solubility 

and its rapid metabolism into Uro by the gut microbiome [10]. As a metabolic 

consequence, Uro can reach relevant concentrations in the blood stream and human colon 

microenvironment [12, 13]. Although Uro might not be accumulated in metabolic tissues, 

i.e., adipose tissue, liver or muscle, a few reports have shown that Uro are able to 

circulate enterohepatically [37]. In terms of cytotoxicity, 50-150 M of Uro have 

exhibited anti-cancer properties by inhibiting cell proliferation and cell cycle progression 

in various carcinoma cell lines [17, 38]. In this study, we first assessed the cytotoxicity of 

Uro treatment does not seem to affect cell viability in non-carcinogenic cells [31], 

implying that Uro might induce apoptosis in malignant tumor cells but not in 
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treatments showed no sign of cytotoxicity in time frames of both early- and terminal-

stages of adipogenesis. The anti-adipogenic and anti-lipogenic effects of Uro in our study 

were not due to the apoptotic property of Uro (Fig. 1B-G). Thus, we regarded 30 M of 

Uro as a non-toxic concentration to assess potency of individual Uro in regulating lipid 

metabolism in human adipocytes. In our study, Uro treatment in adipocytes was 

associated with at least three metabolic outcomes: 1) attenuating adipogenesis, 2) 

inhibiting TG accumulation, and 3) increasing AMPK activation. 

The major distinctive metabolic consequences that we immediately noticed was 

that Uro differentially impacted adipogenesis in hASCs. UroA, C and D treatment, but 

not iso-UroA or UroB, interfered with adipogenic differentiation (Fig. 2). Recently, 

estrogen receptor  (ER) has been proposed as a negative regulator of adipocyte 

development in preadipocytes [39]. Interestingly, Larrosa et al. showed that UroA 

possesses higher ER binding affinity than UroB in breast cancer cells suggesting that 

UroA plays a role as a phytoestrogen (ER binding affinity of UroA:  > ) [40]. In terms 

of structural differences, EA, UroA, C and D have common hydroxyl position at number 

8 carbon (-OH at C8) compared to iso-UroA or UroB. González-Sarrías et al. also 

proposed that phase II phenolic enzymatic activities are crucially affected by reactive 

moieties such as hydroxyl groups [17]. This interpretation aligns with our results showing 

that the absence of -OH moiety at C8 position of Uro, due to isomerism (iso-UroA) or 

metabolic loss (UroB) is inversely correlated with the ability to downregulate adipogenic 

differentiation. Thus, it may also be reasonable to assume that -OH moiety at C8 position 

might affect binding affinity to ER. Further studies are necessary to validate the 

aforementioned structure-function relationship in adipogenic differentiation. The other 
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possible mechanism of Uro’s anti-adipogenic effect could be explained by its ability to 

alter epigenetic marks. We have previously shown that EA modified histone 

methyltransferase (CARM1) enzyme activities during adipogenesis [7]. Consistently, we 

were able to observe that UroC downregulated histone arginine 17 methylation during 

adipogenesis (Supplemental Fig. 1). UroC was also reported to reduce TNF-induced 

inflammation through inhibition of histone acetyltransferase (HAT) activity in the 

monocyte cell [41]. At this point, we speculate UroC may have stronger DNA binding 

affinity comparable to EA [42, 43] than the other Uro intermediates, conferring ability to 

edit epigenetic codes such as histone methylation and/or acetylation. Collectively, 

differential regulation of adipogenesis by Uro likely originates from their structural 

difference of Uro. Future studies are required to scrutinize the metabolic contribution of 

C8 hydroxyl moiety of Uro to ER binding affinity, CARM1 activity, and AMPK 

activation.   

Subsequently, we examined the potential role of Uro in regulating lipid 

metabolism in fully differentiated adipocytes and hepatoma Huh7 cells. Previously, we 

showed that EA modulates global lipid metabolism by attenuating TG accumulation in 

both adipocytes and hepatocytes [8]. This TG-lowering effect seems to be conserved in 

mammalian cells [8] and even in yeasts (data not shown). In this current research setting, 

we found that Uro effectively reduced de novo synthesis and TG esterification and 

enhanced FA oxidation in adipocytes (Fig. 3, 4). These data revealed that EA apparently 

gradually lost its ability to downregulate lipid accumulation while EA is successively 

metabolized by gut microbes until its conversion to the least effective UroB. Therefore, 

the potency of Uro in regulating TG metabolism could be ranked as earlier metabolites 
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(UroC and D) > intermediate metabolite (UroA) > later metabolite (UroB). Agreeing to 

the fact that EA shows a global impact in lowering lipids in various cells, Uro were also 

effective in attenuating TG accumulation in Huh7 cells (Fig. 5). The simultaneous lipid-

lowering action in both adipocytes and hepatocytes is one of the ultimate goals for weight 

loss as dietary intervention agents. To accomplish this goal, upregulation of FA oxidation 

is critical; otherwise the failure of FA accumulation in adipose tissue triggers lipotoxicity 

and hepatic steatosis. It is interesting that UroC was more potent in modulating TG 

accumulation than UroD in hepatocytes. More noticeably, UroA, C and D significantly 

elevated FA oxidation ([3H]-OA[3H]-H2O) in hepatocytes, satisfying the criteria for 

effective dietary supplementation to mitigate lipid accumulation both in adipocytes and 

hepatocytes. Further studies should be conducted to determine the efficacy of UroC, D 

and A in vivo.   

Lastly, we have found AMPK activation could be a link mediating anti-

adipogenic and anti-lipogenic effects of Uro. AMPK is an energy sensor that shuts down 

anabolic pathways [44]. Phosphorylation of AMPK inhibits transcriptional activation for 

adipogenesis, TG synthesis, and FA oxidation [45]. Here, we showed EA promotes 

AMPK activation during adipogenesis of hASC (Fig. 2E); Wang et al. also showed the 

implication of AMPK activation by EA in 3T3-L1 cells [46]. Consistently, our results 

showed that upregulation of AMPK phosphorylation by UroA, C, and D attenuated: i) 

adipogenesis (Fig. 2); ii) de novo lipogenesis (gene expressions and metabolic conversion 

of radiolabeled precursors) and TG esterification (Fig. 3, 4, 5); and iii) FA oxidation (Fig. 

4, 5). Our in vivo data also supports that ET-containing raspberry seed flour 

supplementation promotes AMPK activation in adipose tissue against high fat and high 
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sugar fed C57BL/6 mice (under review), thereby leading to attenuation of adiposity. 

Consistently, the recent animal study showed that punicalagin (ET)-enriched 

pomegranate consumption prevents obesity associated-cardiac metabolic disorders 

through AMPK activation [47]. The regulation of AMPK by the structural specificity of 

EA and Uro will be of interest for future study to further elucidate the ultimate role of EA 

in regulating lipid metabolism. 

In our study, we revealed the previously unknown function of Uro, gut 

metabolites of EA, as potential regulators of lipid metabolism in adipocytes. We also 

compared whether individual Uro could exert a differential impact on lipogenesis and FA 

oxidation in adipocytes and hepatocytes. We identified that UroA, C, and D are more 

plausible to reduce TG accumulation, but not iso-UroA and UroB. Whether the 

differential impact of Uro in lipid metabolism is dictated by structural differences of Uro, 

and these initial findings in vitro will be confirmed in vivo, must await future studies. 

Also, following studies should define whether the mode of action from the tentative 

mixtures of Uro (that are pertinent to human physiology) would be additive, synergistic 

and/or counteractive. Nevertheless, we believe that our study sheds new insight into Uro, 

gut metabolites of EA, as new dietary strategies to attenuate adiposity by activation of 

AMPK. 
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Figure V -1 Metabolism of EA to produce Uro and the effects of Uro on cell viability 

in primary human adipocytes. 

 (A) Microbial enzymatic transformation to produce a series of Uro metabolites from EA. 

Chemical structures of test compounds are shown. Culture of hASCs containing 

undifferentiated and differentiated cells were treated with either 10M EA (B) or 30 M 

UroA (C), iso-Uro A (D), UroB (E), UroC (F), and UroD (G) for 24 hours. XTT reagent 

was added 3 hours before measurement of OD 450nm. Data are expressed as a 

percentage of the vehicle control (DMSO). Each data point represents the mean ± S.E.M 

(n=3).  
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Figure V -2 Uro, but not iso-UroA, suppressed adipogenesis in hASCs. 

 (A, upper) Experimental Scheme: hASCs were seeded the day before differentiation (d0). 

Cultures of hASCs were induced to differentiation (d1*) in the presence of either DMSO 

visualized by Oil Red O staining and representative images from three separate 

experiments are shown. (B) Extracted staining was quantified (OD 500 nm) and relative 

TG accumulations to the DMSO control are shown. (C) Adipogenic gene expression of 

PPAR, and Fas by qPCR. (D) Adipogenic protein expressions of aP2, Fas, PPAR, and 

C/EBP by Western blot analysis. (E) Culture of hASCs was differentiated for 2 days in 

the presence or absence of 0, 4, and 8 M EA. Total cell extracts were immunoblotted 

with phosphor or total antibodies targeting AMPK. (F) Immunoblot of phosphor or total 

antibodies targeting AMPK in Uro treated hASCs. All values are presented as the mean 

±S.E.M. Bars with different letters are significantly different by one-way ANOVA. 
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Figure V -3 Uro, but not iso-UroA, suppressed lipogenesis in mature human 

adipocytes. 
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 (A, upper) Experimental Scheme: hASCs were seeded the day before differentiation (d0) 

and induced to differentiation (d1*). hASCs were kept differentiated into fully 

differentiated adipocytes until d10. 30 M Uro was added to the fully differentiated 

human adipocytes (d10) and incubated for 7 days. (A, below) Relative TG accumulations 

stained by Oil Red O. (B) Relative gene expressions levels of PPAR, Fas, ATGL and 

SCD1 by qPCR. (C) Cultures of fully differentiated adipocytes were treated with 30 M 

Uro for 3 days. Total cell extracts were immunoblotted with phosphor or total antibodies 

targeting AMPK. All values are presented as the mean ±S.E.M. Bars with different letters 

are significantly different by one-way ANOVA. 
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Figure V -4 Uro regulated lipid 

metabolisms in human adipocytes. 

Uro (30 M) was added to the differentiated 

human adipocytes (d10) and incubated for 3 

days.  

(A) Conversion of [
3
H]-acetate into [

3
H]-TG. 

(B) Conversion of [
14

C]-OA into [
14

C]-TG. 

(C) [
3
H]-OA into [

3
H]-H2O. All values are 

presented as the mean ±S.E.M. Bars with 

different letters are significantly different by 

one-way ANOVA. 
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Figure V -5 Uro, but not iso-UroA, regulated lipid mechanisms in human hepatoma 

Huh7 cells. 

 (A) Cultures of Huh7 cells were treated with either 10M EA or 30 M UroA, iso-Uro 

A, UroB, UroC, and UroD for 24 hours. XTT reagent was added 3 hours before 
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measurement of OD 450nm. Huh7 cells were pre-incubated with Uro (30 M) for 48 

hours and 0.4 or 0.8 mM BSA-OA complex was loaded for 3 hours with radiolabeled 

precursors ([
3
H]-acetate, [

14
C]-OA, [

3
H]-OA). (B) Conversion of [

3
H]-acetate into [

3
H]-

FA. (C) Conversion of [
3
H]-acetate into [

3
H]-TG. (D) Conversion of [

14
C]-OA into [

14
C]-

TG. (E) Conversion of [
3
H]-OA into [

3
H]-H2O. All values are presented as the mean 

±S.E.M. Bars with different letters are significantly different by one-way ANOVA.   
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Supplemental Fig. 1. Cultures of hASCs were induced to differentiation (d1) in the 

presence of either DMSO (vehicle control) or 30 M Uro for 10 days. Nuclear extracts 

from Uro treated hASCs were immunoblotted for histone modification enzyme 

(H3R17me2, AcH3, and PPAR). 
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Supporting Information 

Supplemental Table 1. Primer sequences for qPCR 

Gene Forward/Reverse Sequence (5′-3’) 

h36B4 

Forward GAAGGCTGTGGTGCTGATG 

Reverse GTGAGGTCCTCCTTGGTGAA 

hATGL 

Forward CTGACCACCCTCTCCAACAT 

Reverse ACCAGGTACTGGCAGATGCT 

hFas 

Forward GGCAAGCTGAAGGACCTGTCTA 

Reverse AATCTGGGTTGATGCCTCCGT 

hPPAR 

Forward TGCTGTTATGGGTGAAACTCTG 

Reverse TCAAAGGAGTGGGAGTGGTC 

hSCD1 

Forward GGGTGAGGGCTTCCACAACTA 

Reverse CGGCCATGCAATCAATGAA 
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Supporting Information 

Supplemental Table 1. Primer sequences for qPCR 

Gene Forward/Reverse Sequence (5′-3’) 

h36B4 

Forward GAAGGCTGTGGTGCTGATG 

Reverse GTGAGGTCCTCCTTGGTGAA 

hATGL 

Forward CTGACCACCCTCTCCAACAT 

Reverse ACCAGGTACTGGCAGATGCT 

hFas 

Forward GGCAAGCTGAAGGACCTGTCTA 

Reverse AATCTGGGTTGATGCCTCCGT 

hPPAR 

Forward TGCTGTTATGGGTGAAACTCTG 

Reverse TCAAAGGAGTGGGAGTGGTC 

hSCD1 

Forward GGGTGAGGGCTTCCACAACTA 

Reverse CGGCCATGCAATCAATGAA 

 

 

 

 

  



159 

 

 

 

OUTLOOK 

The results indicated that 10 M of EA inhibits adipogenic conversion as well as 

hypertrophic lipid accumulation in hASCs. Distinctive mechanisms are involved for 

reduction of lipid accumulation by EA in adipocytes. 1) During adipogenesis, EA 

reduced CARM1 activity results in a decrease of H3R17me2 levels, which may interrupt 

consecutive histone remodeling steps for adipocyte differentiation including histone 

acetylation and HDAC9 dissociation from chromatin. 2) During the mature stage of 

adipogenesis, EA reduced TG levels, glucose uptake and conversion of acetyl CoA to TG, 

but no significant impact on FA uptake or FA conversion to TG. Consistently, EA 

reduced TG contents in Huh7 hepatoma cells, which was accompanied by reduction of 

FA uptake, FA esterification into TG, de novo synthesis of TG as well as augmentation of 

FA oxidation. These lipid-lowering effects of EA in vitro were further confirmed in vivo 

by using C57BL6/J mice. EA supplementation by RSF (3% in diet) significantly reduced 

HFHS diet-induced body weight gain and dyslipidemia and improved insulin resistance. 

Furthermore, EA supplementation ameliorated fructose-induced hepatic toxicity through 

inhibition of ER/oxidative stress, which indirectly attenuated adipose/systemic 

inflammation. Lastly, we found the evidence that gut microbiota-derived metabolites, 

Uro, might resemble anti-adipogenic/lipogenic effects of EA. UroA, C, and D were 

biologically active metabolites to reduce lipid accumulation in both adipocyte and 

hepatocytes, which was comparable with EA treatment. Overall, these data suggested that 

EA is a potent dietary factor to attenuating obesity and Uro may be used as novel 

metabolites mediating EA’s effects on obesity and metabolic disorders. 
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These outcomes describe the association between EA treatment/ intake and 

outcomes in reducing obesity and obesity-associated complications. Mechanistic studies 

should be conducted to investigate EA’s anti-obesity effect. Secondly, dose-reponse 

studies in animal studies will be needed to determine the efficacy and safety ranges of EA 

dose. Determination of tissue distribution and plasma peak concentration of EA and EA-

metabolites after consumption of EA will be informative. As emerging evidence indicates 

that Uro may potentiate or nullify the health benefits of EA, the health beneficial results 

of EA will be compared between control conventional mice and germ-free mice and/or 

anti-biotic treated model (no Uro produced group).  This experiment is also significant in 

defining a potential role of gut microbiome ecology in lipid metabolisms. Regarding 

epigenetic regulation, as CARM1 is a key regulator to control adipogenesis by EA in 

adipose tissue, determine the adipose tissue-specific role of CARM1 in obesity-related 

disease would be of interest. Lastly, for practical applications the effects of EA 

fortification on the physical and chemical properties of the food products should be 

determined. 
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