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1   |   INTRODUCTION

Vegetable oils extracted from plant seeds have been 
widely used for food, feed, and industrial materials. This 
collection of molecules is composed principally of triacyl-
glycerols (TAGs) in seeds or mesocarps of most oil crops, 
including soybean and oil palm. In seeds, TAGs func-
tion as storage molecules for photosynthetically derived 
fatty acids linked to each of the three carbon atoms of 
a glycerol backbone. The stored carbon provides energy 

and carbon skeletons to support seed germination and 
seedling establishment. Plant fatty acids are often classi-
fied into “common” and “unusual” fatty acids depending 
on their frequency of occurrence in the plant kingdom 
(Cahoon & Li-Beisson, 2020). Common fatty acids, 
including palmitic acid (16:0), stearic acid (18:0), oleic 
acid (18:1Δ9), linoleic acid (18:2Δ9,12), and α-linolenic 
acid (18:3Δ9,12,15), are ubiquitous in plant tissues as 
membrane and storage lipids. In contrast, unusual fatty 
acids have limited occurrence in plants, often as major 
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Abstract
Plant fatty acids are used for food, feed, fuel, and industrial materials. Structurally 
and chemically diverse fatty acids, referred to as unusual or specialized fatty 
acids, are found in the seed oils of diverse plant species. Many unusual fatty 
acids have potential use as alternative and renewable sources of biofuels and bio-
based industrial feedstocks due to their variant structures' physical or functional 
properties. Oils enriched in these fatty acids can increase the value of oilseed 
crops and provide co-products that can be readily extracted from lignocellu-
losic materials in biomass crops. Here, we describe recent progress in strategies 
for enhancement of oil production and quality in oilseed crops and the exten-
sion of this knowledge for metabolic engineering of biomass crops. Successful 
implementation of these strategies, in part, through the use of emerging synthetic 
biology tools, will provide added product value for the economic sustainability of 
biomass crops as bioenergy feedstocks.
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components of seed oils of selected species or families. 
Unusual fatty acids also have divergent chemical struc-
tures compared with common fatty acids. Structural 
variations in unusual fatty acids can include diversity 
in carbon chain lengths (shorter than 16 or longer than 
18), unsaturation (different positions/orientation of dou-
ble and triple bonds), and functional groups (e.g., hy-
droxyl, epoxy, and cyclopropane groups). While unusual 
fatty acids are typically found as major components of 
seed oils, they can also be found in other plant organs, 
tissues, and cells, including trichomes and roots (Busta 
et al., 2018; Ohlrogge et al., 2018; Segura Munoz et al., 
2020). Because of the physical and functional properties 
conferred by their structures, many unusual fatty acids 
have high value for applications such as dietary nutraceu-
ticals and feedstocks for biofuels, cosmetics, and indus-
trial chemicals (lubricants, emulsifiers, and detergents; 
Dyer et al., 2008). As a result, intensive research has been 
conducted to identify sources of unusual fatty acids, elu-
cidate their specialized biosynthetic and oil storage path-
ways for basic and applied knowledge of variant lipid 
metabolism.

Attempts to develop plants that naturally produce 
oils with high levels of unusual fatty acids as agronomic 
crop plants have had only limited success because these 
plants often have unfavorable agricultural trails that can 
include toxic by-products, seed dormancy, seed shat-
ter, tropical adaptation, indeterminate flowering, and 
unsuitable morphologies (Jaworski & Cahoon, 2003). 
Plant biotechnological efforts have been directed at 
transferring these pathways to established oilseed crops 
to address these limitations. More recently, research 
has also been directed at transferring unusual fatty acid 
metabolism to biomass feedstocks, such as sorghum 
and energy cane, to create a high-value co-product that 
can be easily separated from lignocellulosic material 
(Reynolds et al., 2017; Vanhercke et al., 2019; Yurchenko 
et al., 2017). Here, we review recent studies of unusual 
fatty acid biosynthetic and metabolic enzymes and their 
use in metabolic engineering to enhance the value of 
oilseed crops. We also discuss the possible use of vegeta-
tive organs as platforms for the production of vegetable 
oils and specialty oils to promote the economic viabil-
ity of biomass crops as renewable bioenergy feedstocks. 
While the focus of this review is on land plant-based 
production of oils enriched in unusual fatty acids, the 
research described can also be applied toward metabolic 
engineering of the biosynthesis of these oils in microbial 
and algal production platforms. The economic potential 
of these platforms may be comparable or greater than 
that of seed or plant vegetative tissue production of un-
usual fatty acid-enriched oils for high-value, low-volume 
markets.

2   |   OVERVIEW OF THE UNUSUAL 
FATTY ACID AND VEGETABLE OIL 
PRODUCTION IN OILSEED AND 
BIOMASS CROPS

2.1  |  Unusual fatty acid biosynthesis

The fatty acid biosynthetic and modification reactions that 
generate unusual fatty acids are distributed between plas-
tids and the endoplasmic reticulum (ER; Figure 1). These 
reactions are catalyzed by functionally and structurally di-
vergent forms of enzymes found widely in the plant king-
dom. These variant enzymes can be classified largely into 
four categories: (1) FatB acyl-acyl carrier protein thioester-
ase variants that generate medium-chain fatty acid (MCFA; 
C8–C14) by premature termination of de novo fatty acid 
biosynthesis prior to the C16 and C18 stages of carbon chain 
elongation; (2) fatty acid desaturase variants that can intro-
duce double bonds at atypical positions or with trans ste-
reochemistry, catalyze alternative oxygenation outcomes 
(e.g., hydroxylation, epoxygenation), or introduce triple 
bonds; (3) β-ketoacyl-CoA synthase- or FAE1 variants that 
extend fatty acid carbon chains beyond C18 to lengths of up 
to C28; and (4) cytochrome P450s that catalyze oxygena-
tion reactions that produce carbon chain modifications 
including hydroxyl and epoxy groups. While these are the 
primary enzyme types associated with unusual fatty acid 
biosynthesis, other enzymes catalyze the biosynthesis of se-
lected unusual fatty acids, such as an S-adenosylmethionine 
methyltransferase variant that produces cyclopropane fatty 
acids (Bao et al., 2002). Collectively, these enzymes con-
fer differences in carbon chain lengths and carbon chain 
modifications (e.g., hydroxylation; Figure 2). Unusual 
fatty acid biosynthesis may use fatty acyl-ACP substrates 
from de novo fatty acid biosynthesis, as is the case for 
FatB and Δ9-stearoyl-ACP desaturase variants (Cahoon & 
Schmid, 2008). Other unusual fatty acid biosynthetic reac-
tions use acyl-CoA or fatty acids linked to lipids, particu-
larly phosphatidylcholine (PC), in the ER following fatty 
acid export from plastids. In addition, the biosynthesis of 
possibly hundreds of other unusual fatty acids remains to 
be elucidated, including those with keto groups and vari-
ations in unsaturation and hydroxylation (Badami & Patil, 
1980; Ohlrogge et al., 2018). Identification of the genes for 
the biosynthetic and associated metabolic enzymes for 
these fatty acids offers additional opportunities to generate 
enhanced biofuel and other bioproduct functionalities.

2.2  |  Triacylglycerol biosynthesis

Seeds that accumulate high levels of unusual fatty acids 
sequester these molecules following their biosynthesis 
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in an inert storage form as TAGs (Cahoon & Li-Beisson, 
2020). TAGs are comprised of three fatty acids linked to a 
glycerol backbone and are formed by numerous acyltrans-
ferases that incorporate fatty acids onto glycerol using 
primarily acyl-CoAs as substrates. In the case of seeds 
that accumulate very high levels of unusual fatty acids, 
specific acyltransferases have also evolved alternative 
substrate specificities to accommodate unusual fatty acid 
accumulation at all three stereospecific positions of glyc-
erol. These include lysophosphatidic acid acyltransferases 
(LPATs) that catalyze the incorporation of fatty acids at 
the sn-2 position of glycerol. LPATs found in seeds of 
most plants have strict substrate specificity for Δ9 double 
bond-containing mono-  or poly-unsaturated fatty acids 
(e.g., oleic, linoleic, and α-linolenic acids) and have little 
activity with a saturated fatty acid or hydroxylated fatty 
acid substrates (Cahoon & Schmid, 2008). In the case of 
seeds from species such as those from the Cuphea genus 
that produce oils with ≥90% of saturated C8 and C10 fatty 
acids or castor bean that accumulates >90% of the Δ12-
hydroxylated ricinoleic acid, structurally and functionally 
variant LPATs have been identified that enable accumula-
tion of these unusual fatty acids at the TAG sn-2 position 
(Kim, Silva, Iskandarov, et al., 2015; Lunn et al., 2019). 
Diacylglycerol acyltransferases (DGATs) of the DGAT1 

and DGAT2 classes, which catalyze the introduction of 
the third fatty acid onto glycerol-containing DAG, have 
also evolved variant specificities in selected species to 
promote the efficient accumulation of unusual fatty acids 
in TAGs (Burgal et al., 2008; Iskandarov et al., 2017; Li 
et al., 2010). The evolution of other acyltransferases with 
altered substrate specificities, including phosphatidylcho
line:diacylglycerol acyltransferase1, has also been impli-
cated in the production of TAGs that are highly enriched 
in unusual fatty acids (Lunn et al., 2019). These down-
stream metabolic enzymes, along with variant biosyn-
thetic enzymes, have proved to be vital components of 
successful engineering strategies for oilseeds (e.g., Lunn 
et al., 2019) and the eventual extension of these strategies 
to biomass crops.

After assembly, TAGs with unusual fatty acids are pack-
aged into oil bodies, storage organelles that arise from the 
ER (Chapman et al., 2012; Olzmann & Carvalho, 2019). 
TAGs are deposited between the leaflets of the ER bilayer. 
The lens-shaped structures are enlarged by accumulation 
of TAGs and subsequently bud off from the ER to form 
oil bodies. After budding from the ER, nascent oil bod-
ies grow and expand by fusion and local TAG synthesis. 
Several studies reported that oil body-associated proteins 
such as oleosin, SEIPIN, CGI-58, and SRPs/LDAPs play 

F I G U R E  1   Overview of metabolic engineering strategies for the production of oils containing common or unusual fatty acids. 
Triacylglycerol (TAG) is synthesized by interconnected metabolism in two cellular compartments: plastid and endoplasmic reticulum 
(ER). TAG production and accumulation is mediated by sequential flux from fatty acid biosynthesis, TAG sequestration, and oil body 
formation and maintenance by “push–pull–protect” metabolic modules as noted in the figure. Orange and green lines/ovals represent 
metabolic flux and enzymes for unusual and common fatty acids, respectively. Transcriptional regulation by WRINKLED1 (WRI1) and 
LEAFY COTYLEDON2 (LEC2) is shown, as representative of the function of these and additional transcription factors (e.g., LEC1). ACP, 
acyl carrier protein; AGPase, ADP-glucose pyrophosphorylase; CoA, coenzyme A; DAG, diacylgylcerol; DGAT, DAG acyltransferase; FAE, 
fatty acid elongase; FAD2, fatty acid desaturase2; FAH, fatty acid hydroxylase; FAS, fatty acid synthase; G3P, glycerol-3-phosphate; GPAT, 
G3P acyltransferase; LPA, lysophosphatidic acid; LPAT, LPA acyltransferase; LPC, lysoPC; LPCAT, LPC acyltransferase; OB, oil body; PA, 
phosphatidic acid; PAP, phosphatidic acid phosphatase; PDAT, phospholipid:DAG acyltransferase; PLA2, phospholipase A2; SDP1, sugar-
dependent lipase1; TE, thioesterase. Fatty acid nomenclature: X:Y, X = numbers of carbon atoms in fatty acid chain:Y = numbers of double 
bonds in fatty acid chain
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key roles in oil body biogenesis (Cai et al., 2015; Frandsen 
et al., 2001; Gidda et al., 2016; James et al., 2010; Kim et al., 
2016; Shimada et al., 2018; Siloto et al., 2006). SEIPIN and 
CGI-58 were originally reported as defective genes in the 
human lipid storage diseases and studies of plant homo-
logs suggested conserved function of the genes for cellular 
lipid homeostasis in eukaryotes (Cai et al., 2015; James 
et al., 2010). Oleosin and SRPs/LDAPs are plant-specific 
oil body components and major oil body proteins in seeds 
and leaves, respectively. Their molecular function is yet 
fully characterized but they are regarded as determinators 
for the attachment of other proteins to oil bodies (Huang, 
2018; Pyc et al., 2017). TAGs are highly accumulated during 
seed maturation, a process that is regulated by a network of 
transcription factors including WRINKLED1 (WRI1) and 
LEAFY COTYLEDON2 (LEC2) (Focks & Benning, 1998; 
Stone et al., 2001). LEC2 is one of four master regulators 
for seed maturation along with LEAFY COTYLEDON1 
(LEC1), ABSCISIC ACID INSENSITIVE3 (ABI3), and 
FUSCA3 (FUS3; Giraudat et al., 1992; Keith et al., 1994; 
West et al., 1994). LEC1 has the highest hierarchy in the 
signaling and regulates downstream plant-specific ABI3, 
FUS3, and LEC2 (collectively AFL) networks. AFL regu-
lators control the synthesis of storage molecules during 

seed maturation by activating secondary transcription fac-
tors such as WRI1 (Kong et al., 2020; Kong, Yang, Low, 
et al., 2020). WRI1 is a tissue-specific positive regulator 
of fatty acid synthesis. Not only transcriptional regula-
tion, but WRI1 is also post-translationally regulated by 
phosphorylation and ubiquitination as well as by WRI1-
interacting proteins such as 14-3-3 and mediator complex 
MED15 subunit (Kim et al., 2016; Kong, Yang, Guo, et al., 
2020; Ma et al., 2016; Zhai et al., 2017). WRI1 has not only 
proven useful for oil enhancement in oilseed crops but 
is also widely used to enhance carbon flux for fatty acid 
biosynthetic flux in metabolic engineering of vegetative 
tissues (Van Erp et al., 2014; Xu & Shanklin, 2016).

2.3  |  Vegetative oil production

While plant oils as fuel have several advantages over 
other fuels, the current supply of these energy-rich com-
pounds is constrained by oilseed crop yields, limited 
availability of arable land, and the conflict arising from 
the need to use arable land for food versus biofuel pro-
duction (Durrett et al., 2008; Dyer et al., 2008; Ohlrogge 
& Chapman, 2011). Given these limitations for oilseed 

F I G U R E  2   Major classes of specialized enzymes for unusual fatty acid biosynthesis. As shown, these enzymes are typically associated 
with variant fatty acid chain lengths and/or modifications of the carbon chain (e.g., hydroxylation). These enzymes are typically divergent 
forms of widely occurring acid fatty modification enzymes (shown in black arrows). Modifications of primary structures of these enzymes 
results in specialized activities (shown in red arrows) that are associated with altered catalytic outcomes. ACP, acyl carrier protein; CoA, 
coenzyme A; PAD, palmitoyl-ACP desaturase; CPA, cyclopropane fatty acid; CPS, CPA synthase; DES, desaturase; FAD2, fatty acid 
desaturase 2; FAE1, fatty acid elongase 1; FAH, fatty acid hydroxylase; FatB, fatty acid thioesterase B; KASI, 3-keto-acyl-ACP synthase I; 
KASII, 3-keto-acyl-ACP synthase II; LCFA, long-chain fatty acid; MCFA, medium-chain fatty acid; PC, phosphatidylcholine
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production and the growing global demand for vegetable 
oils, vegetative organs (e.g., leaves, stems, and roots) of 
biomass crops offer an attractive system for expansion of 
vegetable oil production and to overlay unusual fatty acid 
biosynthetic pathways to increase the utility and value of 
oils. The environmental resilience of biomass crops such 
as sorghum, switchgrass, and miscanthus allows for veg-
etable oil production in climates that are not well suited 
to cultivate conventional oilseeds (Ohlrogge & Chapman, 
2011). While all plant cells have the capacity to produce 
TAGs, this is typically a temporary storage repository to 
presumably reduce the lipotoxicity of free fatty acids that 
may arise from stress-induced membrane damage (Xu & 
Shanklin, 2016). The introduction of three key steps for 
oil biosynthesis confers seed-specific pathways for TAG 
production and storage to vegetative organs of biomass 
crops such as sugar cane and sorghum (Napier et al., 2014; 
Vanhercke et al., 2014; Zale et al., 2016). These three steps, 
referred to as “push–pull–protect” or “3P,” include: (1) 
“Push” or enhance glycolytic and fatty acid biosynthetic 
flux by use, transcription factors, such as WRI1, or by redi-
rection of carbon from competing pathways such as starch 
biosynthesis (Sanjaya et al., 2011; Vanhercke et al., 2014); 
(2) “Pull” or enhance the sequestration of fatty acids into 
TAGs by enhanced catalysis by enzymes such as DGAT 
(Vanhercke et al., 2014); and (3) ”Protect” or mitigate the 
catabolism of TAGs by lipases and subsequent fatty acid 
β-oxidation by downregulation of these metabolic pro-
cesses and by the introduction of oil body coat proteins, 
such as oleosins, seipins, and SRPs/LDAPs (Cai et al., 
2015; Eastmond, 2006; Gidda et al., 2016; Kim, Park, et al., 
2016). This “3P” strategy has been widely adopted to en-
hance the accumulation of oil and oil with unusual fatty 
acids in seeds and vegetative organs (Napier et al., 2014; 
Song et al., 2017; Vanhercke et al., 2014). To reduce yield 
penalties, the implementation of this strategy has to bal-
ance the needs of photosynthetic carbon and redox state 
to support growth and carbon stored in vegetative organs 
(Horn, 2021). The challenges of combining the 3P strategy 
with the introduction of unusual fatty acid biosynthetic 
and metabolic pathways are described below.

3   |   RECENT EXAMPLES 
OF UNUSUAL FATTY ACID 
METABOLIC ENGINEERING 
IN OILSEEDS

Extensive efforts have been directed toward discovering 
genes for biosynthetic and specialized metabolic enzymes 
for metabolic engineering of unusual fatty acid-rich oil 
production in oilseed models (e.g., Arabidopsis) and es-
tablished crops (e.g., rapeseed, soybean, and camelina). 

Technical advances in transcriptomics and genomics have 
accelerated the identification of novel enzymes for these 
metabolic pathways (Kim, Silva, Vu, et al., 2015; Li et al., 
2018; Nguyen et al., 2013). Examples are provided below 
of efforts directed at transferring pathways from seeds of 
plants with the limited agronomic potential to produce 
medium-chain and hydroxy fatty acids. These examples 
illustrate the necessity of multigene engineering to pro-
duce unusual fatty acids and efficiently sequester the fatty 
acid onto the three stereospecific carbon atoms of the TAG 
glycerol backbone. The example of hydroxy fatty acid pro-
duction shows that the efficient assembly of unusual fatty 
acids for TAG formation maintains a high rate of total oil 
production. The strategies described for oilseeds will also 
guide efforts to produce unusual fatty acids in vegetative 
organs of biomass crops.

3.1  |  Medium-chain fatty acids

Medium-chain fatty acids are composed of 8–14 carbon 
atoms rather than the C16 and C18 fatty acids typically 
found in seed oils. These fatty acids are important sub-
strates for various industrial applications such as cosmet-
ics, detergents, emulsifiers, and soaps. (Dyer et al., 2008; 
Knaut & Richtler, 1985). Studies of MCFA production in 
living organisms have received more commercial atten-
tion as renewable sources for the hydrocarbon component 
of transportation fuels (e.g., Jet A fuel: C8-C16; gasoline: 
C4-C12; diesel: C10-15; Kallio et al., 2014; Knothe et al., 
2009). Palm kernel (Elaeis guineensis Jacq.) and coconut 
(Cocos nucifera L.) oils have been used as major sources 
of plant-derived MCFAs. Other plant-derived sources of 
MCFAs are seeds from Cuphea species native to temperate 
regions (Graham, 1989; Graham et al., 2016). High levels 
of MCFA are accumulated in seeds of Cuphea species. For 
example, Cuphea palustris seeds contain ~64 mol% myris-
tic acid (C14:0) and ~20 mol% caprylic acid (C8:0), Cuphea 
pulcherrima seeds contain ~95  mol% C8:0, and Cuphea 
viscosissima seeds contain ~64 mol% C8:0 and ~25 mol% 
C10:0. Cuphea species have been the subject of genetic 
improvement for production as an oilseed crop with lim-
ited success (Berti & Johnson, 2008). Given its genetic 
diversity for variations in MCFA content and composi-
tion, the Cuphea genus has been genetically “mined” to 
identify genes for specialized enzymes controlling MCFA 
biosynthetic and metabolic pathways. Several studies have 
revealed that variant FatBs from Cuphea species have a 
catalytic activity to release fatty acids from ACP during de 
novo fatty acid synthesis in plastids to generate fatty acids 
such as C8:0, C10:0, C12:0, and C14:0 (Dehesh et al., 1996; 
Jones et al., 1995; Kim, Silva, Iskandarov, et al., 2015; 
Kim, Silva, Vu, et al., 2015). Co-expression studies using 
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combinations of variant FatBs showed that transgenic 
Camelina could synthesize oil with mixtures of MCFAs, 
suggesting that the application of tailored oil production 
for biofuels is feasible. Notably, MCFA-containing oil pro-
duction increases in Camelina seeds when MCFA-specific 
acyltransferases are co-expressed (Iskandarov et al., 2017; 
Kim, Silva, Iskandarov, et al., 2015; Kim, Silva, Vu, et al., 
2015). The results indicate that the substrate specificity 
of acyltransferases is one of the key determinants for the 
accumulation of unusual fatty acids. Moreover, introduc-
ing MCFA-specific LPAT and diacylglycerol acyltrans-
ferase 1 (DGAT1) from Cuphea species in combination 
with MCFA-specific FatB into oilseed crops provided 
direct evidence for metabolic cooperation of these two 
acyltransferases in channeling MCFAs into TAGs en-
riched in fatty acids such as 10:0 at each of its three ste-
reospecific positions (Iskandarov et al., 2017). Notably, 
these studies showed that the transgenic co-expression of 
a specialized LPAT and DGAT1 from Cuphea species in 
camelina seeds resulted in C10:0 accumulation in TAGs 
and excluded this fatty acid from membrane phospholip-
ids, the desired outcome for agronomic fitness of engi-
neered seeds and other plant organs.

3.2  |  Hydroxy fatty acids

Hydroxy fatty acids increase TAG functionality for lubri-
cant applications (Durrett et al., 2008; Dyer et al., 2008). 
The main commercial source of hydroxy fatty acids is 
the seed oil of castor (Ricinus communis), which contains 
~90 mol% ricinoleic acid (C18:1-OH). Ricinoleic acid con-
tains Δ9 unsaturation and a hydroxyl group at its C-12 
position. Commercial production of castor is limited due 
to the toxic protein ricin found in its seeds (Patel et al., 
2016; Severino et al., 2012). Seeds from certain Physaria 
and Paysonia species of the Brassicaceae family also syn-
thesize and accumulate diverse mono-hydroxy fatty acids 
(e.g., C18:1-OH, C18:2-OH, C20:1-OH, and C20:2-OH; 
Chen et al., 2011; Dierig et al., 2011; Hayes et al., 1995; 
Mikolajczak et al., 1962). Hydroxylation of fatty acids is 
mediated by ER-localized variant form of the Δ12 ole-
oyl-PC desaturase encoded by FAD2 (Vandeloo et al., 
1995). A structure–function study between the hydroxy-
lase variant FAD2 (FAH) and a typical FAD2 showed 
that swapping as few as six amino acid residues is suf-
ficient to switch enzyme activities between desaturation 
to hydroxylation (Broun et al., 1998). Introducing FAH 
cDNA into model plants exhibited low total oil content, 
and impaired germination and seedling establishment 
were observed in transgenic plants (Adhikari et al., 2016; 
Bates et al., 2014). Although this mechanism is not fully 
understood, there is a strong correlation between the 

amount of hydroxy-containing PCs and downregulated 
fatty acid synthesis/reduced oil content. Given that the 
amount of hydroxy-PC does not exceed 4% of total PC 
in castor seeds (Thomaeus et al., 2001), a radioisotope 
labeling study suggested that insufficient accumulation 
of hydroxy fatty acid in TAGs is caused by the inefficient 
conversion of hydroxy fatty acid-containing DAG or PC to 
TAGs in non-host plants (Bates & Browse, 2011). Recent 
studies showed that co-expression of FAH12 with three 
specialized acyltransferases—GPAT, LPAT, and PDAT—
from castor targeting incorporation of hydroxy fatty acid 
into TAGs with each stereochemical position (sn-1, sn-2, 
and sn-3, respectively) successfully rescued both low oil 
content and impaired seedling establishment phenotype 
of transgenic plants which FAH12 is introduced indi-
vidually (Lunn et al., 2019). Moreover, it was notable that 
increasing the capacity of unusual fatty acid incorporation 
into TAGs by co-expression of specialized acyltransferases 
also affects the general utilization of TAGs. Similar strate-
gies of combining biosynthetic enzymes for unusual fatty 
acid biosynthesis with specialized fatty acid metabolic 
enzymes (e.g., acyltransferases) has also been applied to 
the engineering of other unusual fatty acids, including 
epoxy and cyclopropane fatty acids (Li, Yu, Hatanaka, 
et al., 2010; Li et al., 2010; Yu et al., 2018, 2019).

Research into the engineering of ricinoleic acid biosyn-
thesis has also uncovered the effects of inefficient metab-
olism of unusual fatty acids on the regulation of de novo 
fatty acid biosynthetic flux. In this regard, Arabidopsis 
seeds engineered for ricinoleic acid production have ≤50% 
reduction in total oil content (Bates et al., 2014). Reductions 
in oil content were rescued mainly by approaches to over-
come fatty acid flux regulation or to increase the efficiency 
of hydroxy fatty acid incorporation into TAGs (Adhikari 
et al., 2016; Lunn et al., 2019; Yu et al., 2021).

In addition to ricinoleic acid and its elongated forms, 
a seed oil was recently reported containing two C24 fatty 
acids with hydroxyl groups at their C-7 and C-18 posi-
tions. Fatty acid hydroxylation is also catalyzed during 
“discontinuous” elongation steps in the ER (Li et al., 
2018). Thin-layer chromatography analysis has shown 
that the seed oil of Chinese violet cress (Orychophragmus 
violaceus) contains very long-chain dihydroxy fatty 
acids nebraskanic [7,18-(OH)2-24:1Δ15] and wuhanic 
[7,18-(OH)2-24:2Δ15,21] acids. In these two novel dihy-
droxy fatty acids, hydroxylation in the C-18 position is 
mediated by variant FAD2 type hydroxylase (OvFAD2-2) 
as a similar homolog from previously reported FAHs. In 
contrast, hydroxylation in the C-7 position is catalyzed 
by a divergent 3-ketoacyl-CoA synthase (OvFAE1-1) that 
uses a 3-OH intermediate at the C20 stage of fatty acid 
elongation (Li et al., 2018). This process, which baypasses 
the subsequent stages of typical fatty acid elongation, 
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is referred to as “discontinuous” elongation. Oil from 
Chinese violet cress showed an exceptional lubricating 
property compared with conventional castor oil, which 
arises from the natural accumulation of TAG estolides 
rather than typical TAG species (Li et al., 2018; Romsdahl 
et al., 2019). TAG estolides are high molecular TAG species 
produced by polymerizing fatty acids through ester link-
ages between hydroxy fatty acids. In Chinese violet cress 
oil, identified TAG estolides can contain 132 FA carbon 
atoms, 10 total double bonds, and eight substituted or free 
hydroxyl groups (Romsdahl et al., 2019). Understanding 
more about the biosynthetic pathway of TAG estolides in 
Chinese violet cress could provide new insights into the 
diversity of plant metabolic pathways.

Overall, the development of engineered crops produc-
ing unusual fatty acid-enriched oils is highly dependent 
on understanding the metabolic bottleneck of unusual 
fatty acids in the target tissue and/or plants may give in-
sights for enhanced production of beneficial vegetative oil 
without abnormal growth phenotype. These efforts will 
likely be advanced by functional genomics efforts that link 
biochemical characterizations with emerging genomic in-
formation, such as that from the recent elucidation of ge-
nome of jojoba (Simmondsia chinensis) that accumulates 
wax esters, variant fatty acid storage forms, in its seeds 
(Sturtevant et al., 2020).

4   |   TOWARD PRODUCTION 
OF UNUSUAL FATTY ACIDS IN 
BIOMASS CROPS

Although seeds are the predominant oil storage organ in 
plants, there are several exceptions, such as oil accumula-
tion in mesocarp cells of avocado, olive, and palm (Dabbou 
et al., 2011; Horn et al., 2013; Tranbarger et al., 2011). The 
capacity of non-seed tissues such as fruit mesocarps for 
TAG production and storage points to the feasibility of 
engineering oil production in vegetative tissues. Building 
on this, current research has focused mainly on the 3P 
strategy to elevate oil accumulation in leaves and stems 
(Parajuli et al., 2020; Vanhercke et al., 2019; Zale et al., 
2016). By contrast, only limited research has explored the 
production of unusual fatty acids in vegetative organs, 
and research to date has largely been limited to model 
systems such as Arabidopsis and Nicotiana benthami-
ana (Okada et al., 2020; Reynolds et al., 2015; Yurchenko 
et al., 2017). Early studies on the production of unusual 
fatty acids in vegetative organs included research into the 
constitutive expression of divergent FAD2 hydroxylases in 
N. tabacum and Arabidopsis (Broun et al., 1998; Vandeloo 
et al., 1995). In these studies, production of the hydroxy-
lated fatty acid ricinoleic acid was observed in seeds but 

not in leaves or roots. In the case of the expression of the 
lesquerella FAD2-type hydroxylase in Arabidopsis, the 
transcript of this gene from CaM35SV-mediated expres-
sion was detectable in roots. Still, amounts of the corre-
sponding protein were low or below detection, although 
hydroxylase activity was measurable in root microsomes 
(Broun, Boddupalli, et al., 1998). These findings suggested 
that post-transcriptional regulation limits hydroxylase 
levels and/or catabolic reactions prevent hydroxy fatty 
acid accumulation in roots (Broun, Boddupalli, et al., 
1998). More recently, transgenic and transient expression 
results showed that combinatorial expression of unusual 
fatty acid biosynthetic enzymes successfully allows the ac-
cumulation of unusual fatty acid-containing oil in plant 
leaves. The 3P strategy was employed with specialized 
enzymes to engineer unusual fatty acid-containing oil 
production in vegetative tissues because the accumula-
tion of free unusual fatty acids or unusual fatty acids in 
membrane lipids is toxic to cellular tissues (Iskandarov 
et al., 2017; Kim, Silva, Iskandarov, et al., 2015; Kim, Silva, 
Vu, et al., 2015; Lunn et al., 2019; Reynolds et al., 2015; 
Yurchenko et al., 2017). For example, impaired growth 
phenotypes of eleostearic acid (18:3-Δ9,11,13)-producing 
transgenic Arabidopsis such as yellow leaves and low 
conductivity were partially restored by co-expression of 
DGAT2 (Yurchenko et al., 2017). In a transient expression 
assay, co-expression of an MCFA-specific LPAT led to the 
formation of tri-MCFA TAG species, suggesting that the 
3P strategy is helpful in vegetative tissues for accumula-
tion of unusual fatty acids while avoiding undesired plant 
growth defects (Reynolds et al., 2015).

However, there are still possibilities that the metabolic 
context of vegetative oil production could differ from that 
in seeds. Thus, understanding the oil accumulation pro-
cess in vegetative tissues and developing the 3P strategy 
are required to optimize unusual fatty acid production in 
high biomass-yielding crops, without losing their environ-
mental resilience and high biomass. Leaf oil accumulation 
by blocking fatty acid breakdown and/or lipid trafficking 
to chloroplast causes the developmental defect of plants 
by altering photosynthetic capacity, phytohormone 
homeostasis, and stress responses (Kunz et al., 2009; Li 
et al., 2012; Yurchenko et al., 2017). Since constitutive ex-
pression of transgenes affects entire developmental stages 
of plants, application of inducible or stage-/tissue-specific 
promoter is one potential strategy for unusual fatty acid 
accumulation in vegetative tissues (Kim, Lee, et al., 2015). 
In addition, TAGs are naturally synthesized in vegetative 
tissues, but this process is transitory (Ischebeck et al., 
2020). One possibility is that TAG synthesis is increased by 
the release of free fatty acids from damaged membranes. 
Sequestration of the released fatty acids in an inert form 
in TAGs possibly mitigates fatty acid-linked lipotoxicity 
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(Listenberger et al., 2003; Zhang et al., 2003). The 3P strat-
egy is directed, in part, to overcome the natural transitory 
occurrence of oil bodies in vegetative tissues. In this re-
gard, major oil body coat proteins in vegetative tissues are 
SRPs/LDAPs, rather than oleosins (Brocard et al., 2017; 
Horn et al., 2013; Zhi et al., 2017). The composition of oil 
body coat proteins determines the molecular and physi-
ological functions of oil bodies (Gidda et al., 2016; Kim, 
Park, et al., 2016; Kim et al., 2010; Shimada et al., 2018). 
Exploring signaling and the metabolic context in non-seed 
tissues through studies from transitory oil bodies and their 
surrounded protein pools will provide insights into the 
complex network of carbon flux in plants and strategies 
for unusual fatty acid production in vegetative tissues that 
avoid adverse effects on primary metabolism and growth.

5   |   EMERGING STRATEGIES 
FOR METABOLIC ENGINEERING 
OF UNUSUAL FATTY ACID 
BIOSYNTHESIS IN OILSEEDS 
AND BIOMASS CROPS

As described above, extensive research has focused on 
the reconstitution of unusual fatty acid biosynthesis and 
increased TAG assembly in oilseed crops and model plants. 
However, with only a few exceptions (e.g., γ-linolenic acid, 
omega-7 monounsaturated fatty acids; Clemente et al., 2003; 
Nguyen et al., 2015; Qin et al., 2012), the accumulation of 
unusual fatty acids in transgenic oilseeds has yet to reach 
levels found in seeds of plants that “naturally” produce unu-
sual fatty acids (Broun & Somerville, 1997; Cahoon et al., 
2006). Non-desirable plant fitness phenotypes, such as poor 
seed germination, impaired seedling establishment, and low 
total seed oil content, have also been reported to accompany 
the introduction of at least several of these pathways into 
plants (Cahoon et al., 2006; van Erp et al., 2011; Jaworski 
& Cahoon, 2003). Optimizing the production of oils rich in 
unusual fatty acids in engineered oilseed crops will likely 
require strategies involving the introduction of multiple 
transgenes that target biosynthetic pathways and down-
stream metabolic pathways to sequester these fatty acids 
in TAGs effectively. The efficacy of this strategy has been 
demonstrated, as described above, for rescuing low seed oil 
content and reduced seed germination for production of 
hydroxyl fatty acid-enriched TAGs in Arabidopsis seeds by 
co-expression of the castor FAH12 with multiple castor spe-
cialized acyltransferases (Lunn et al., 2019). Comparisons of 
hydroxy fatty acid-producing Physaria fendleri seeds with 
those of hydroxy fatty acid-null Camelina sativa seeds also 
pointed to the likelihood that differences in the expression 
of multiple genes for fatty acid metabolic enzymes that lack 
specialized function contributed to the evolution of hydroxy 

fatty acid TAG production capacity in the Brassicaceae fam-
ily (Horn et al., 2016). Collectively, these findings suggest 
that the success of transferring pathways for unusual fatty 
acid biosynthesis and accumulation to existing oilseeds will 
require the introduction of numerous transgenes with more 
rigorous control of the level and developmental timing of 
their expression.

Additionally, it may be necessary to downregulate native 
biosynthetic or metabolic pathways in engineered oilseeds 
and vegetative tissues to mitigate those that compete with 
or otherwise constrain unusual fatty acid production. These 
may include, for example, native acyltransferase that lack 
specificity for a given unusual fatty acid. Implementation 
of these complex metabolic engineering strategies will ne-
cessitate large/multiple DNA assembly methods such as 
Gibson assembly, integrase, and GoldenBraid systems to 
reconstitute enzymatic biosynthetic and metabolic path-
ways through a single transformation of one large vector 
containing multigene cassettes (Casini et al., 2015; Gibson 
et al., 2009). More careful selection of promoters to achieve 
the desired expression strength and timing of transgenes 
will also likely be needed. Moreover, using strategies such 
as artificial miRNAs and gene editing (e.g., clustered regu-
larly interspaced short palindromic repeats) will allow se-
lective suppression or knockout of non-desired pathways 
to tailor the metabolic background in the target oilseed or 
biomass crop for maximal unusual fatty acid production 
(Shockey, 2020).

Protein engineering targeted to functionally diver-
gent enzymes associated with unusual fatty acid bio-
synthesis and accumulation has also contributed to the 
enhanced production of oils with novel fatty acid com-
positions. Historically, the most effective approaches 
have been directed at soluble enzymes such as acyl-ACP 
desaturases with guidance from crystal structure data to 
generate novel reaction outcomes that have been subse-
quently used to generate modified oil compositions in 
oilseed crops (Cahoon et al., 1997; Cahoon & Shanklin, 
2000; Nguyen et al., 2015; Whittle & Shanklin, 2001; Yuan 
et al., 1995). However, beyond those that catalyze reac-
tions using ACP substrates, most fatty acid modification 
and metabolic enzymes are membrane-associated and 
more challenging for structure-based engineering. An 
abundance of primary structural data from related en-
zymes of diverse function has enabled domain swapping 
experiments to identify domains or specific amino acid 
residues that are critical for divergent functional proper-
ties of enzymes such as FAD2- and FAE1-related enzymes 
(e.g., Blacklock & Jaworski, 2002; Broun, Shanklin, et al., 
1998; Rawat et al., 2012). The use of primary sequence 
diversity coupled with directed evolution using a yeast-
based selection system has also been effective for devel-
oping DGATs with enhanced activity (Chen et al., 2017; 
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Hernandez Lozada et al., 2018; Roesler et al., 2016; Siloto 
et al., 2009; Xu et al., 2017). The utility of these designed 
enzymes to increase oil content has been demonstrated in 
transient plant expression systems or oilseeds (Chen et al., 
2017; Roesler et al., 2016). Beyond membrane-associated 
enzymes, directed evolution using error-prone PCR to 
generate sequence diversity and a microbial selection sys-
tem was used to understand amino acid residues that me-
diate acyl-ACP substrate specificities of FatB thioesterases 
and to develop variants with high specificity for 8:0-ACP 
that has potential application in plant metabolic engi-
neering research (Hernandez Lozada et al., 2018). Likely, 
structural design based on emerging sequence data from 
plants and other organisms with divergent fatty acid and 
oil compositions will yield a wealth of new information 
for understanding determinants of enzyme functional 
outcomes and substrate specificities. This knowledge will 
guide the development of modified enzymes for advanced 
metabolic engineering of oil content and compositions in 
crop plants and ultimately lead to desired oil compositions 
that are not currently found in nature.

6   |   SUMMARY

Bio-prospecting in the plant kingdom has led to the iden-
tification and biochemical characterization of specialized 
enzymes involved in the synthesis and metabolism of 
unusual fatty acids. These enzymes provide the structural 
basis for understanding variant substrate specificities, re-
giospecificities, and catalytic outcomes, as well as tools 
for engineering novel and high-value oil compositions. 
This research has also highlighted the need for special-
ized enzymes, including functionally divergent acyltrans-
ferases, in engineered oilseeds. In addition, recent studies 
have to lead to new strategies to limit feedback inhibition 
of fatty acid and TAG biosynthesis caused by unusual fatty 
acid metabolism in engineered oilseed hosts. Additional 
challenges remain for engineering biomass crops for unu-
sual fatty acid-enriched TAG production. While vegetative 
organs have the capacity for TAG production, overcoming 
the natural transitory accumulation of TAGs in these organs 
through an emphasis on the “protect” component of the 
“3P” strategy is an important target. Additional challenges 
for the production of unusual fatty acid-containing TAGs 
in vegetative organs of biomass crops is the assembly of 
specialized metabolic pathways to promote the biosynthe-
sis of these variant TAG molecules and maintain the activ-
ity and stability of unusual fatty acid biosynthetic enzymes 
in a non-seed cellular environment. Overall, identifying 
differences in metabolic context and signaling networks 
between seeds and vegetative organs is paramount to the 

development of a renewable and sustainable oleochemical 
industry built around the use of biomass feedstocks.
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