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 For many complex traits such as grain yield, genotype by environment (GxE) 

interactions are a prevalent source of phenotypic variation. Exploring the capacity of 

different methodologies to help describe and quantify the GxE interaction landscape for 

grain yield is an important step in informing plant breeders what the most viable 

strategies for management and exploitation of GxE may be. In this endeavor, we 

compared the results from multiple genome wide association studies (GWAS) that used 

either stability estimators as a phenotype to capture GxE variance, or directly mapped 

GxE in a mixed model for yield. Leading into this study, a method was developed to 

enable the cost-effective ascertainment of genotypic information via skim sequencing 

supplemented with imputation, where it was discovered that imputation accuracy could 

be maintained at ~98% down to a 0.3X genome coverage. This imputed genotype 

information was then used in the GWAS analysis that leveraged data from 213 elite local 

breeding lines tested over the course of three years at multiple sites in eastern Nebraska. 

Results from the GWAS showed minimal overlap in quantitative trait loci (QTL) 

discovered between the modeling methods, and that the majority of QTL discovered 



   

displayed a crossover effect. These results prompted our final investigation, where high 

depth sequencing data was obtained for our study population and used to investigate the 

effect of artificial selection on genomic windows contributing to GxE interactions. As 

part of this exploration, several improvements were introduced in the modeling procedure 

to avoid the inherent biases associated with comparing variance estimates to selection 

statistics. It was determined through this combination of novel methods that GxE 

experiences less directional selection pressure than main genetic effects. Interestingly, in 

contrast to the GWAS results, this also revealed a rich landscape of small, conditionally 

neutral loci drove the majority of GxE interactions and appeared to be under more 

directional selection that other GxE effect types.  
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CHAPTER ONE: LITERATURE REVIEW 

GxE Interactions: Challenges and Strategies in Crop Breeding 

Improvements to crop productivity through plant breeding revolve around a 

general framework of identifying genotypes within a population that exhibit desirable 

phenotypic traits, and then recombining them to improve the genetic potential of the next 

generation of varieties. Differential performance among a group of genotypes tested in 

different environments complicates this endeavor, in a phenomenon that is commonly 

referred to as genotype by environment (GxE) interactions. For many important traits, 

such as grain yield, this component is reported to be highly influential. Consequently, it 

has long been recognized as a crucial factor that affects many levels of decision making 

within a crop breeding program (Bernardo, 2010).  

Understanding the Genetic Architecture  

As plant breeders are tasked with managing genetic variation in the pursuit of 

crop improvement, so they are accordingly challenged with decisions on implementing a 

variety of tools and analytical techniques that might aid in this endeavor. An important 

step in deciding what types of genomics assisted methods can help drive progress in a 

trait is determining the number, magnitude, and nature of the genetic loci affecting it – 

also broadly referred to as the genetic architecture. For example, traits under the control 

of a few loci with large effects would be well suited to improvement via a marker assisted 

selection approach. Conversely, traits with a more complex architecture involving many 

loci of small effects may be more suited to an application like genomic selection . 
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Furthermore, one can also combine the approaches by incorporating loci of larger effects 

into a selection model as fixed effects while still capturing smaller contributions through 

the random effects portion of the model (Kim et al., 2022; Liu et al., 2019; Spindel et al., 

2015). Including an assessment of GxE interactions into the examination of a trait’s 

genetic architecture can also help inform a breeder’s choice of a genomics assisted 

selection methodology. Recent work suggests that in cases of high levels of GxE 

interactions, special adaptations to the prediction and modeling process that can be made 

to maximize effectiveness (Costa-Neto et al., 2021; Crossa et al., 2022; Gillberg et al., 

2019; Jarquín et al., 2014).  

Within the GxE interaction component of a trait’s architecture lies another 

dimension of complexity in relation to a locus’ effect in each individual environment. 

Thus, researchers often further categorize GxE loci according to the directions of the 

observed effects. If both significant positive and negative effects are observed depending 

on the environment, a locus is classified as having antagonistic pleiotropy. If the 

significant effects are all in one direction, a locus is said to display differential sensitivity. 

A special case of differential sensitivity is when the effect is observed in only one 

environment, termed  conditional neutrality (Des Marais et al., 2013; El-Soda et al., 

2014). It is important to keep in mind that classifications in this manner are both 

conditional on the environments the loci were measured in, and subject to bias relating to 

a lack of statistical power to detect small effects and stringency of significance 

thresholds. However, it stands to reason that studying GxE effects in this way can provide 

general insights into the predominant forces affecting variation for environmental 

interactions within a specific trait and breeding population.  
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In addition to quantifying the overall number and size of different loci 

contributing to trait variance, the degree to which main genetic effects and genotype by 

environment interactions for a trait may be controlled by the same loci is also of 

particular interest to plant breeders. If loci for both are genetically linked, then selection 

for one would affect the other. Interestingly, results from several studies currently 

indicate limited overlap between main genetic and GxE loci in a variety of traits and 

crops, including grain yield (Alvarez Prado et al., 2014; Diouf et al., 2020; Kusmec et al., 

2017, 2018, Marguerit et al., 2012; Reymond et al., 2003) . This has important 

implications, as the relative independence of these components provides an opportunity 

for breeders to adapt cultivars in accordance with a range of objectives, including the 

development of more broadly stable material as well as those adapted to take advantage 

of highly specific environmental conditions.  

Without variation for GxE responses, a population cannot readily adapt to 

changes in the surrounding environment. Thus, monitoring and preservation of sources of 

variability associated with GxE is an important endeavor. In order to do this, one must 

understand how artificial selection has historically shaped the present genetic architecture 

in a population. Selection leaves signals of its action across the genome in the form of 

allele frequency changes surrounding the loci under pressure. Genomic data collected to 

study the genetic architecture of GxE interactions can therefore also be used to 

investigate selection patterns at significant loci. A 2017 study in maize found that 

selection had significantly reduced variation for GxE between tropical and temperate 

maize varieties (Gage et al., 2017). However similar investigations have not been 

performed at a regional breeding program level for any crop,  which is the method by 
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which most modern commercial varieties are produced, nor have they considered the 

potential for varying levels of selective consequences dependent on the type of GxE 

effect pattern.  

Optimization of Multi Environment Trial Design 

The overall goal of many crop breeding programs is to produce new and 

improved varieties and germplasm that performs well across multiple environments. 

However, when GxE interactions cause different genotypes to be superior in different 

environments, choosing which varieties to advance through the breeding pipeline 

presents a difficult dilemma. One approach to help alleviate this problem is to divide the 

breeding region into smaller groups of more homogeneous sites to be treated as separate 

breeding targets. This introduces more work for plant breeders (and seed producers), but 

can also lead to higher heritability, faster genetic gain, and ultimately better products for 

producers. Even in circumstances where the cost-benefit does not permit for this kind of 

breeding approach, identifying so called “mega environments” can be a useful for 

efficiently placing trial sites that capture the range of environmental conditions within a 

breeding region (Gauch Jr. & Zobel, 1997). In addition to more general information about 

potential sites (soil test results, historical weather patterns, management practices, etc.), 

identification of mega environments most often accomplished through clustering methods 

that take advantage of data from multi-year, multi-environment trials. Methodology in 

this realm is under consistent refinement, including recommendations on the indications 

and thresholds at which the breeder should consider separate selection at a new subset of 

sites (Gauch Jr. & Zobel, 1997; Yan et al., 2000, 2007; Yan, 2015; Yan et al., 2023).  
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Dividing a breeding region into subsets can help ease some of the challenge GxE 

interactions pose to breeding when they occur as the result of a wide range of large, but 

consistently different, environmental factors. However, those GxE interactions stemming 

from smaller and/or more variable sources, such as micro environmental variation and 

yearly fluctuating weather patterns, must still be accounted for and managed.  Accurate 

and comprehensive capture of GxE variation through different considerations in the  

experimental design of multi environment trials is of critical importance to a plant 

breeder, as their selections are only as precise as the information upon which it is based. 

This may include the number of sites to test at, the degree of replication at which to test 

an experimental genotype both within and among environments, and the best strategy for 

incorporating highly replicated genotypes to be used as checks. When deciding these 

details, one must also consider the various resource limitations present within a breeding 

program. This is especially true in the early stages of the breeding process, where the 

number of experimental varieties is large but the seed availability for each is low. Current 

research suggests that deploying an unbalanced experimental design where more testing 

locations are used, but entries are not tested at every site, may increase the selection 

accuracy for yield. Utilizing common checks between sites in this scenario provides 

connectivity and boosts statistical power, allowing the breeder to further maximize the 

information obtained to make their selection decisions (Endelman et al., 2014; Lado et 

al., 2016; Ward et al., 2019). This alongside  the somewhat recent introduction of 

efficient mixed modeling methodology and software has made it computationally feasibly 

to analyze large, unbalanced multi environment data quickly and more accurately than 

ever before (Isik et al., 2017).  
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Measurement  

Many statistical methodologies have been proposed to help plant breeders 

quantify GxE interactions. One of the primary difficulties in evaluating data from multi 

environment trials is the summary and interpretation of all individual GxE interactions. 

Thus, reduction of the problem into a single, generalized ‘stability’ value is an appealing 

solution and provides an opportunity to easily use the result as a phenotype in a variety of 

common genomics-based analyses, in addition to direct use in selection decisions. Within 

the wide body of research dedicated to this endeavor, phenotypic stability is generally 

categorized as either “static” or “dynamic” in nature (Gage et al., 2017). A statically 

stable genotype maintains a constant phenotype across environments, while a 

dynamically stable genotype will have a constant difference from the mean phenotype 

from all tested genotypes in each environment. The latter is often considered more 

applicable to the demands of modern agriculture, where a positive response to agronomic 

inputs and other environmental conditions is desirable.  

However, with the reduction in dimension of measuring GxE interactions, comes 

the potential for loss of important information. The presence of GxE interactions in multi 

environmental trials gives rise to a few statistical concerns which may be difficult to 

account for in more simplified analyses. This includes the likelihood of correlation 

between environments (Falconer, 1952), differences in error variance between 

environments (Hu et al., 2013, 2014), and the overall spatial variation within individual 

sites (Schabenberger & Gotway, 2017). Such aspects can be controlled within the 

framework of a mixed modeling approach when applied to directly capturing both a 

trait’s main genetic and GxE components (Malosetti et al., 2013; Piepho, 2005; 
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Schabenberger & Gotway, 2017; van Eeuwijk et al., 2010). Context of the analysis being 

performed is likely to weigh heavily on the decision to compute more general stability 

measures versus application of a direct modeling approach to studying GxE. While the 

former may be better for creating rankings of genotypes to be selected upon, directly 

modeling GxE may be a more appropriate choice for precise mapping and prediction of 

the contributions GxE makes to the total architecture for a complex trait. 

Exploitation 

GxE interactions have often been considered a negative occurrence, due to the 

reductions in efficiency they generate in the plant breeding selection process. However, 

simply seeking to reduce GxE can come at the cost of throttling future breeding progress, 

a scenario that is especially concerning in the context of rapid population expansion and 

changing climatic conditions (Kusmec et al., 2018). While example of crossover 

(antagonistic) interactions are often used to illustrate the undesirable effects of GxE 

interactions when they result in rank changes, literature suggests that the predominant 

architecture underling GxE interactions is mostly differential sensitivity (Schabenberger 

& Gotway, 2017).  

This has important implications in the context of exploitation for plant breeders, 

where alleles with no observed detriment in alternate environments could be recombined 

into superior genotypes that may be more readily adaptable to a range of environmental 

challenges. One noteworthy example of this in practice was the wide introgression of the 

Sub1A gene into rice varieties in Southeast Asia (Bailey-Serres et al., 2010). 

Interestingly, this gene confers both high flooding and drought tolerance, as well as 
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carrying no performance decrease in non-stress conditions (Fukao et al., 2011; Xu et al., 

2006). While this strategy is feasible for loci of moderately large effect sizes, exploration 

of genomic prediction models that emphasizes stacks of GxE loci with small yet desirable 

contributions, is still lacking.  

Current research also suggest that high levels of GxE variability can be related to 

higher phenotypic mean values and/or better stability. A recent paper investigating the 

phenotypic plasticity of seed yield among Argentinian soybean varieties discovered that 

increased GxE interactions were strongly correlated with both an increase in average 

yield, and a decrease in yield variability in highly productive environments. It was then 

concluded that this was a function of an extended seed filling period, which allowed the 

plant a longer time period over which to express plastic responses that captured positive 

growing conditions in highly productive environments (de Felipe & Alvarez Prado, 

2021). Following a similar theme, other studies have also uncovered the contribution of 

GxE interactions in root and leaf architecture can make to yield (Pires et al., 2020; Xie et 

al., 2021). However the application of these findings in crop breeding for high input 

systems has been questioned, highlighting the critical nature of characterizing conditions 

in which GxE interactions will constitute a net benefit (Schneider & Lynch, 2020). 
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CHAPTER TWO: GENERATING HIGH DENSITY, LOW COST GENOTYPE 

DATA IN SOYBEAN [GLYCINE MAX (L.) MERR.] 

 

Abstract 

Obtaining genome-wide genotype information for millions of SNPs in soybean 

[Glycine max (L.) Merr.] often involves completely resequencing a line at 5X or greater 

coverage. Currently, hundreds of soybean lines have been resequenced at high depth 

levels with their data deposited in the NCBI Short Read Archive. This publicly available 

dataset may be leveraged as an imputation reference panel in combination with skim (low 

coverage) sequencing of new soybean genotypes to economically obtain high-density 

SNP information. Ninety-nine soybean lines resequenced at an average of 17.1X were 

used to generate a reference panel, with over 10 million SNPs called using GATK’s 

Haplotype Caller tool. Whole genome resequencing at approximately 1X depth was 

performed on 114 previously ungenotyped experimental soybean lines. Coverages down 

to 0.1X were analyzed by randomly subsetting raw reads from the original 1X sequence 

data. SNPs discovered in the reference panel were genotyped in the experimental lines 

after aligning to the soybean reference genome, and missing markers imputed using 

Beagle 4.1. Sequencing depth of the experimental lines could be reduced to 0.3X while 

still retaining an accuracy of 97.8%. Accuracy was inversely related to minor allele 

frequency, and highly correlated with marker linkage disequilibrium. The high accuracy 

of skim sequencing combined with imputation provides a low cost method for obtaining 
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dense genotypic information that can be used for various genomics applications in 

soybean. 

Introduction 

Genomics research has yielded a variety of tools which allow for more efficient 

and precise translation of genetic variation into crop improvements. Panels of single 

nucleotide polymorphisms (SNPs) obtained through SNP arrays or genotyping-by-

sequencing (GBS) are the most common tool used to explore and make associations 

between genetic and phenotypic variation. Genomics-assisted crop breeding continues to 

demand increasing densities of genotype information to successfully dissect and predict 

genetically complex traits (Hamblin et al. 2011; Lorenz et al. 2011). Current approaches 

of directly ascertaining a high density of SNP genotype data on large populations are cost 

prohibitive or fall short of being able capture the maximum amount of genetic space. 

Fixed SNP arrays and GBS are popular options for SNP genotyping in crops. 

Panels ranging in densities of up to ∼600,000 variants are now common in several crop 

species (Rasheed et al. 2017). However, recent genomics studies are utilizing datasets 

consisting of one million or more markers to answer complex, quantitative genetic 

questions. The need for this high density of markers is rendering current arrays and GBS 

approaches inadequate to generate the magnitude of data modern genomic studies require 

(Tian et al. 2011; Patil et al. 2016; Li et al. 2018). High-depth whole genome sequencing 

can achieve these marker densities. One study utilizing high-depth whole genome 

sequencing in soybean found 9,107,000 high quality SNPs (Valliyodan et al. 2016). 

Despite advances and the plummeting cost of next generation sequencing (NGS) data, 
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this approach still presents a heavy financial burden, as several reads are required at each 

variant site to ensure data quality and completeness. 

Decreasing genome coverage in the interest of cost savings introduces missing 

data, which decreases power and can produce biased results. Imputation of missing data 

has the potential to allow the researcher to recover nearly all of the missing data points 

resulting from skim sequencing, drastically reducing genotyping expenses associated 

generating complete, high quality, high resolution SNP datasets. By predicting the 

unobserved genotypes based on the surrounding variants and their correlation to a 

complete reference panel, missing data can be amended to the correct allele genotype. 

This technique has been developed and extensively used in human genomic research, and 

is now commonly extended to other organisms (Pei et al. 2008; Howie et al. 2009; Howie 

et al. 2011). Seen frequently in plants is the use of imputation to fill missing data points 

in GBS data (Chan et al. 2016; Chung et al. 2017). Specially designed populations such 

as bi-parental, nested, and multi-parent where the founders are genotyped to a high depth 

and used for the reference haplotypes has been shown to boost accuracy (Tian et al. 2011; 

Swarts et al. 2014; Huang et al. 2014; Bayer et al. 2015; Cericola et al. 2018). 

Crop breeding programs working with inbred species and/or inbred lines are 

uniquely positioned to leverage imputation algorithms in an extremely accurate manner. 

Near complete homozygosity through inbreeding or double haploids allows calling of 

genotypes despite having sampled one allele at the site. Large haplotype blocks in 

historically inbred crops theoretically permit imputation accuracy to extend across large 

physical regions, where genotyped markers are sparse but in high correlation with each 

other. Success with such a combinatorial approach has been reported in rice, using ∼1X 
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coverage sequence data of 517 individuals. Imputation of the missing genotypes in these 

individuals without a reference panel to produce a SNP panel of ∼3.6 million markers 

with >98% accuracy (Huang et al. 2010). This was confirmed in a later study that also 

included simulations performed down to 0.1X depth. Falling below a depth of 0.5X 

resulted in steep accuracy consequences, with concordance falling to 76% at the 0.1X 

level. (Wang et al. 2016). 

Incorporation of a reference panel has been shown to result in large accuracy 

improvements at sequencing coverage less than <1X in humans, where imputation at the 

0.1X level was improved from less than 5% accuracy to ∼70% (Pasaniuc et al. 2012). 

With the growing amount of sequence data present in public databases for many common 

crops, it is possible to generate an extensive reference panel that might improve accuracy 

at ultra-low sequence coverage and further cut per sample genotyping cost. In this study, 

we report on a low coverage whole genome sequencing with imputation approach in a 

naturally inbred crop, soybean, for producing a low cost, high quality, high density SNP 

dataset. A reference panel was generated using publicly available high-depth sequencing 

data for 106 lines, and employed for imputing the missing genotypes of 114 lines 

sequenced at ultra-low depth. Coverages from 0.1X – 1X depth at intervals of 0.1X were 

evaluated. The factors influencing error rates and extensibility within/outside soybean 

were investigated, and the consequences of error rates and types of error on a typical 

genome-wide association study (GWAS) were explored. 
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Materials and Methods 

Reference Panel 

The reference panel for genotype imputation was generated using publicly 

available sequence data deposited in the NCBI Short Read Archive from study number 

SRP062245 (Valliyodan et al. 2016). This unfiltered, raw dataset consisted of 106 

Glycine max lines sequenced at an average of 17.1X coverage (Supplementary Table 

2.1). The raw reads were filtered for adapter sequence contamination, base quality, and 

truncated reads using Trimmomatic (Bolger et al. 2014). Bowtie2 was used to map reads 

to the Glycine max Wm82.a2.v1 reference genome with the “very sensitive” option 

(Langmead and Salzberg 2012). Reads with a mapping quality score of less than 20 were 

discarded. SNPs were called using the GATK3.7 HaplotypeCaller tool for an initial panel 

of 13,052,759 SNPs across all lines (Poplin et al. 2017). SNP calls with five or less reads 

supporting the call were filtered out, as well as calls with a confidence score of less than 

20. To control for potential sample contamination/mixing, the inbreeding coefficient, also 

called the F statistic (Jain and Workman 1967), was calculated using the software 

Plink1.9 (Purcell et al. 2007). As soybean is historically an inbred crop, one can expect F 

statistics close to one in Glycine max. Seven samples fell below a cutoff of 0.9 and were 

discarded from the final reference panel. All heterozygous calls in the remaining 99 lines 

were filtered, leaving only biallelic SNPs for consideration. The final reference panel 

spanned 10,803,148 biallelic homozygous SNPs in 99 lines compared to 10,417,285 

SNPs found by Valliyodan et al. using the same data set. 
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Imputation Panel 

To generate a low sequence coverage panel for imputation, 114 experimental lines 

selected from the University of Nebraska soybean breeding program (Supplementary 

Table 2.1) were sequenced to a depth of 1X or greater on an Illumina NextSeq 500 

(Illumina Hayward, Hayward, CA) using the manufacturer’s protocol and 150 base pair 

paired end reads. DNA was isolated from lyophilized leaf tissue collected from twenty 

plants per genotype using a CTAB based extraction method (Keim 1988) scaled down for 

a 96 well plate by dividing all reagent volumes by 40. Extracted genomic DNA was 

fragmented using a Covaris S220 with the manufacturer’s recommended settings for 

generating ∼350 base pair length fragments (Covaris, Inc., Woburn, MA 01801). Double 

sided size selection was performed using KAPA Pure Beads to retain only fragments 

within the 250-450 base pair range using the manufacturer’s protocol and eluted in 40 μl 

of TE buffer (Roche Sequencing Solutions, Santa Clara, CA 95050). After testing DNA 

concentration, samples were standardized to 62.5 ng /μl. Libraries were prepared using a 

custom protocol adapted from literature to perform A-tailing and end-repair in one 

reaction, and avoid PCR after adapter ligation by extending the incubation time 

(Kozarewa and Turner 2011; Knapp et al. 2012) . To perform end repair and A-tailing, 16 

μl of fragmented genomic DNA for each sample was combined with 1 μl of T4 

polynucleotide kinase (PNK) (10U/μl), 1 μl of T4 DNA polymerase (5U/μl), 1 μl of 

DreamTaq DNA Polymerase (5U/ μl), 2.7 μl of Cut Smart Buffer (10x), 2.2 μl of dATP 

(10mM), 0.8 μl of dNTP (10 mM), and 0.3 μl of ATP (10mM). Samples were incubated 

in a thermocycler for 30 min at 20°, and then immediately ramped to 65° and held at this 

temperature for 30 min. Samples then proceeded immediately to adapter ligation. To the 
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25 μl of end repaired and A-tailed product the following was added: 10 μl of T4 DNA 

Ligase Buffer, 3 μl of T4 DNA Ligase (2000U/μl), 3 μl of PEG 6000, 2 μl of PCR grade 

water, and 2 μl of uniquely barcoded adapters (30mM). Samples were incubated on a 

thermocycler for 45 min at 20°. After this time, samples were immediately cleaned using 

KAPA Pure Beads to retain fragments within the 350-550 base pair range and eluted in 

20 μl of TE buffer. Multiplexing was performed by combining 5 μl of each individual 

library. Libraries were quantified using the KAPA Library Quantification Kit for Illumina 

platforms. 

To create subsets simulating depths from 0.1X to 1X at intervals of 0.1X, reads 

were randomly selected from the raw datasets based upon the total number of reads 

obtained for each genotype. Each dataset was trimmed for adapter contamination, base 

quality and truncated reads using Trimmomatic, and then mapped to the Glycine max 

Wm82.a2.v1 reference genome with Bowtie2 using the “very sensitive” option. Mapped 

reads below a quality score of 20 were filtered. The genotypes at all 10,803,148 SNP 

positions in the reference panel were called in the low coverage imputation panel using 

GATK3.7 Haplotype Caller. Genotyping SNPs from a single read has been found 

accurate in rice whole genome sequencing and maize GBS applications (Swarts et al. 

2014; Wang et al. 2016) . Any heterozygous calls were discarded, as well as calls not 

matching the two allele options at that position. For each subset, a random 5% of calls 

were masked and considered “true” genotypes for evaluating imputation accuracy. 

To characterize how genetically distinct the experimental lines were from one 

another, a genomic relatedness matrix was constructed according to the van Raden metric 

using the R package “synbreed”. Prior to calculation, the imputed dataset was filtered to 
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retain variants with a Beagle posterior genotype probability (GP) score above 0.9, 

pairwise r2 LD metric below 0.4, and variant site missing rate below 5% using Plink1.9 

(Purcell et al. 2007). 

Imputation Concordance Evaluation 

For the sake of computational efficiency, imputation was performed on a per 

chromosome basis using Beagle 4.1 (Browning and Browning 2016) with the low 

memory option. To assess accuracy, the imputed genotype calls were compared to the 

masked calls, and the percent of those in agreement constituted overall concordance 

using GATK 3.7’s Genotype Concordance tool (McKenna et al. 2010). This accuracy 

assessment was performed across sequencing depths and minor allele frequencies. Three 

post imputation datasets were considered to quantify any accuracy improvement obtained 

by filtering poorly imputed sites. This included the raw imputed dataset, and two datasets 

filtered on GP. Values with GP scores under 0.45 and 0.9 were filtered for the latter two 

evaluation panels, respectively. VCFtools0.01.12a was used to bin by minor allele 

frequency, and Plink1.9 (Purcell et al. 2007; Danecek et al. 2011) was used to filter on 

GP score. GP score filtering thresholds were determined after examining their 

relationship to error rate (Supplementary Table 2.2) 

Error and Linkage Disequilibrium 

Error in relationship to linkage disequilibrium (LD) was examined as a potential 

metric of extensibility to other soybean population and crop species. D' and r2 statistics 

were calculated for all pairwise reference panel SNPs using Plink1.9 (Gaunt et al. 2007; 

Purcell et al. 2007). Proportion of errors made at each SNP site across was calculated by 
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comparing the imputed values to the masked values across all subsets of depths. To 

reduce noise, data were smoothed through the application of a rolling average window 

with a width of 1500 SNPs after ordering by the respective pairwise LD metric. A second 

order polynomial was fit to describe the D' and error relationship, and a simple linear 

regression was fit to describe the relationship between r2 and error. 

Relationship Between Samples & Reference Panel 

Close relatedness between the sample and reference genotypes has been 

previously reported to increase imputation precision. Relatedness matrices were 

generated based on five different coefficients and averaged the top five scores from each 

sample genotype as a metric for gauging degree of relatedness to the reference panel. 

These measures were plotted against concordance scores from the imputed data filtered 

for GP scores above 0.9 and averaged across all depth levels. A simple linear regression 

model was fit to assess potential correlation. Relatedness matrices were calculated using 

the R package “synbreed”, using options corresponding to measures described by 

vanRaden, Astle and Balding, Reif, Hayes and Goddard, and Euclidean distances 

(Wimmer et al. 2012). 

Genome Representation 

Genomic studies improve as the linkage between the genotyped polymorphism 

and underlying causative gene increases. The extent of LD between two markers 

therefore constitutes proxy for the correlation of the marker and underlying gene(s) of 

interest. To assess how well the panel represented variation across the genome, the 

distribution of LD in the imputed experimental dataset was compared to the SoySNP50k 
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Array positions extracted from the imputed experimental dataset (Song et al. 2015). SNPs 

with MAF below 0.05 were filtered out, a quality control step implemented in most 

genomic studies. Both D' and r2 were calculated using Plink1.9, and distributions plotted 

in R3.4 (Team 2017). 

Error and Beagle Posterior Genotype Probability 

To explore the possibility of using GP values as a post imputation filtering metric, 

proportion of error across depth subsets was plotted against GP. A rolling average 

window with a width of 500 SNPs was applied to the proportion error after ordering by 

GP, and a second-degree polynomial was fit to describe the relationship in R3.4. 

Error Type 

Allele frequencies exhibit some degree of influence on the results of many 

genomics studies. Therefore, how imputation error skews this metric is of significant 

interest. Masked and imputed datasets were coded according to the major allele in the 

reference dataset. Errors were binned into four categories, homozygous major to minor, 

homozygous minor to homozygous major, homozygous major to heterozygous, and 

homozygous minor to heterozygous, based on which allele was incorrectly imputed and 

which allele was true. Because all heterozygous calls were filtered in the initial data 

generation, no heterozygous to major, or heterozygous to minor category exists. 

Power Analysis 

In the interest of determining the potential cost of imputation error, a basic power 

calculation for minor to major and major to minor errors in a GWAS was performed. 
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Using an R implementation of Purcell’s “Genetic Power Calculator” (Purcell et al. 2003), 

power was calculated to detect a moderate effect QTL across minor allele frequency bins 

from <0.025 to 0.5. Simulations assumed an additive genetic model, 300 genotypes, LD 

between the QTL and marker of 0.8 D', a significance threshold that mirrored the 

Bonferroni correction for 1,716,234 SNPs (the final size of the SNP dataset after quality 

control filtering), and a QTL effect size of 1 standard deviation. Error rates from 1–10% 

were tested at intervals of 1%, with 100 iterations of the simulation performed at each 

error level. To investigate the possibility of including more genotypes to overcome power 

losses associated with imputation error, simulations were also performed for 150, 500, 

and 1000 genotypes for a 5% error rate at the same conditions as specified above. 

Cost Analysis 

Decreasing cost per sample allows a researcher to expand a study to overcome 

power loss introduced through the imputation error. To illustrate the impact of this, per 

sample sequencing costs were calculated using current Illumina NextSeq500 high 

throughput 300 cycle sequencing kit prices, cost analysis of a custom library prep 

protocol, and CTAB DNA extraction method (Supplementary Table 2.3). The retained 

cost per sample and average raw concordance were plotted as depth decreased. 

Data Availability 

Raw sequencing data directly generated by this project for use in creating the 

study panel has been deposited in the NCBI Short Read Archive under accession number 

PRJNA512147. The reference panel used for genotype imputation was generated using 

previously publicly available sequence data deposited in the NCBI Short Read Archive 
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from study number SRP062245 (Valliyodan et al. 2016). Supplementary figures and 

tables can be found in “Supplementary Figures and Tables” section of the appendix. The 

genomic relatedness matrix computed between the reference and imputation genotypes 

can be found in supplementary data file 2.1.  

 

Results 

SNP Genotyping & Imputation 

The reference panel for imputation was constructed using 106 Glycine max lines 

sequenced at an average of 17.1X coverage using publicly available sequencing data 

deposited in the NCBI Short Read Archive (Valliyodan et al. 2016) (Supplementary 

Table 2.1). After quality control measures were applied to the raw and mapped sequence 

data (see Materials & Methods), a final reference panel of 10,803,148 biallelic 

homozygous SNPs across 99 lines was generated. SNPs discovered in the reference panel 

were used to genotype experimental lines in the study panel. This consisted of 114 lines 

that were sequenced to a depth of at least 1X. Coverages from 0.1X to 1X were analyzed 

by randomly subsetting reads from the raw sequence data. Of the 10,803,148 million 

markers discovered in the reference panel, the number of SNPs genotyped by this low 

coverage study panel subsets ranged from 133,747 to 1,288,463 markers. These subsets  

also ranged in missing data rates from 95.26 to 67.56% for those markers (Table 2.1). 

Using the reference panel, genotype values for all missing positions were 

imputed. Close relatedness between the lines in the experimental panel may bias the 

overall accuracy of the imputation results. To evaluate this, vanRaden relatedness scores 
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were calculated using real and imputed genotypes. The resulting values ranged from        

-0.44858 to 0.91112, with a median value of -0.02851, mean of -0.00286, and standard 

deviation of 0.17650. Strong relationships are generally indicated by values over 0.4. Our 

experimental panel exhibits few strongly related lines, with only 2.7% of all possible 

pairwise combinations showing a relationship above this threshold. Therefore, we would 

conclude the majority of our experimental genotypes to be distally/non-related. 

An alternative to this whole genome sequencing approach are fixed SNP arrays. 

However, this method provides less total SNPs for genomic studies and may not capture 

as much of the genome. High LD between SNPs can be extended to assume a strong 

Table 2.1: The number of markers and genotyping rate in each low coverage subset from 0.1X 
to 1X sequencing depth. As coverage decreases, the total number of markers captured and 
completeness of the SNP panel decreases. 
 

Mean	
Depth	

Genotyping	
Rate	

Number	of	
SNPs	 Reads	 Base	Pairs	

1		 32.44%		 1,288,463		 6,327,889		 949,183,385		

0.9		 30.41%		 1,240,823		 5,695,100		 854,265,047		

0.8		 27.77%		 1,174,619		 5,062,311		 759,346,708		

0.7		 24.91%		 1,097,843		 4,429,522		 664,428,370		

0.6		 21.80%		 1,005,880		 3,796,734		 569,510,031		

0.5		 18.47%		 895,596		 3,163,945		 474,591,693		

0.4		 14.98%		 760,167		 2,531,156		 379,673,354		

0.3		 11.40%		 590,786		 1,898,367		 284,755,016		

0.2		 7.85%		 375,343		 1,265,578		 189,836,677		

0.1		 4.74%		 133,747		 632,789		 94,918,339		
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correlation to other genomic variation between them. Plotting the density distributions of 

r2 and D' LD measures for the Soy50KSNP Array and imputed dataset demonstrated that 

whole genome sequencing with imputation had a greater concentration of values toward 

higher linkage values. Generally, a D' or r2 of over 0.8 between is considered “strong  

linkage”. The imputed dataset provided 1,716,234 SNPs after common quality control 

filters, with 36.00% and 85.66% of r2 and D' values above 0.8, respectively. This is in 

comparison to the 42,133 SNPs in the fixed array, where 24.20% and 80.00% of r2 and D' 

values are above 0.8 (Figure 2.1). If high LD indicates a better tagging of underlying 

variation, the imputed dataset captures the genome’s SNP variation better than the 

Soy50KSNP Array.  

 

Figure 2.1: Comparing density plots for LD measures D' (A) and r2 (B) demonstrates that using 
whole genome sequencing with imputation results in a dataset that has a higher proportion of SNPs 
is strong pairwise linkage with each other, represented in the heavier t ails in red near D' and 
r2 values of 1. 
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Imputation Accuracy 

 Prior to imputation, 5% of genotype calls from the skim sequencing data were 

withheld to assess accuracy. Overall imputation accuracy was consistent for raw and 

filtered datasets as sequencing depth decreased from 1X until 0.3X, where accuracy drops 

off by an average of 3.5% from 0.3X to 0.1X (Figure 2.2A, Supplementary Table 2.2). 

Assessing the error type of this study showed that 53.13% of the errors made were 

incorrect imputation of the minor allele when the major allele was true. Of the remaining 

errors, 35.10% were incorrect imputation of the major allele when the minor allele was 

true, and 11.77% were incorrect imputation of heterozygous calls. No heterozygous to 

major/minor errors exist as at heterozygous calls were filtered in the initial panels (Figure 

2.3).  

Filtering on Beagle’s posterior genotype probability (GP) to improve dataset 

quality was successful. When imputed positions with a GP score of less than 0.45 were 

discarded, accuracy improved by an average of 2.50% across sequencing depths. A more 

Figure 2.2: A) Overall accuracy of filtered and raw imputed datasets were plotted across the 
evaluated depths. For all study panels, concordance rapidly erodes below a sequencing depth of 
∼0.3X. B) Examining accuracy in the context of minor allele frequency (MAF) reveals that error 
occurs at higher rates as MAF approaches a maximum of 0.5. 
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stringent filter that only kept positions with a GP score over 0.9 resulted in a 4.26% 

increase in accuracy (Supplementary Table 2.2). This practice did reintroduce some 

missing data, which varied across depth and filtering level. Data loss as a result of post 

imputation filtering was below 5% for all depths at a filtering level of GP > 0.45, but 

quickly inflates when filtering for imputation quality of GP > 0.9 to a missing data rate of 

20.82% at 0.1X (Supplementary Figure 2.1). While filtering on Beagle’s posterior 

genotype probability may reduce falsely imputed genotypes, it must be balance with the 

reintroduction of missing data it causes.  

The error rate at individual marker loci may not be well captured by the overall 

concordance across all SNPs. Examining concordance in the context of minor allele 

frequency (MAF) reveals as MAF values approach a maximum of 0.5, concordance 

decreases. Application of post imputation filters of GP values increases overall accuracy 

through improved concordance at these increased MAFs (Figure 2.2B). This trend is 

Figure 2.3: Proportion of errors made as categorized by whether the 
minor/major/heterozygous alleles was misimputed. In over half of all 
the errors made, Beagle overimputes the minor allele when the 
major allele is the true genotype. Incorrect heterozygous 
imputations make up a minor proportion of the total error and 
would likely be filtered out in inbred panels. 
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uniform across all sequencing depths (Supplementary Figure 2.2). Through examining 

imputation accuracy in this manner, it is apparent that higher error rates are occurring at 

SNP positions at MAFs nearest 0.5 than is described by the average concordance 

measure. 

Error rates in imputation may be influenced by characteristics specific to the 

population and crop species to which it is applied. The correlation between variants is a 

cornerstone to the success of imputation. If the correlation between alleles is high then 

imputation accuracy should also be high and as the correlation between alleles decrease 

then the accuracy of imputation should also decrease. This correlation between alleles 

can be measured with LD. Soybean is a historically inbred crop with long ranging LD 

(Zhou et al. 2015). As D' and r2 approach 1, where neighboring SNPs are in perfect 

linkage with each other, error rates are at their lowest. Both relationships demonstrate a 

very strong correlation with R2 values of 0.98 and 0.89 for r2 and D' respectively (Figure 

2.4), indicating LD is an important factor to consider when applying this technique to 

other soybean populations or other crop species.  

Figure 2.4: Comparing the smoothed frequency of errors made at individual SNP sites 
with LD measures D' (A) and r2 (B) demonstrates the strong influence of linkage 
disequilibrium on imputation accuracy. 
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Relationship of the study genotypes to the reference panel genotypes has been 

suggested as a strong influencer of imputation accuracy. Plotting calculated values for 

five unique kinship metrics against concordance for each genotype did not demonstrate 

any strong linear relationships. The maximum correlation for any of the measures was for 

Reif’s method, at an R2 of 0.26. Examination of the standard error shows that the study 

population varies narrowly in terms of relatedness to the reference panel. Additionally, 

assessing the raw values suggests that the study population is weakly related to reference 

genotypes. This is best illustrated with the vanRaden and Astle & Balding measurements, 

where a “strong” relationship is usually indicated by values approximately >= 0.4. In 

both these cases, the largest measure does not exceed 0.18 and 0.16 (VanRaden 2008; 

Astle and Balding 2009). The combination of diminished values and narrow standard 

error indicates a weak relationship of the study panel to the reference panel 

(Supplementary Figure 2.3). The evidence of a weak relationship suggests that 

relationship was not a strong influencer of the high imputation accuracies obtained. 

GWAS Power 

Understanding the effect error rate has on genomic studies is important when 

selecting an appropriate genotyping technique. To determine the effect of the error rate of 

skim sequencing and imputation has on GWAS we performed power simulations of 

detecting a moderate effect QTL in a panel of 300 individuals. This power study showed 

significantly decreased power to detect QTL with increasing errors at MAF from 0.1-0.3. 

This was most pronounced when the minor allele was incorrectly imputed as the major 
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allele. Above 0.3 MAF, power for QTL detection was minimally affected by error 

(Figure 2.5A). Studying the effect of three additional sample sizes, while assuming a 5% 

error rate demonstrates the potential for experimenters to recover power losses through 

inclusion of more genotypes. Including 500 individuals at this fixed error rate recovers 

and even slightly improves power at mid-range MAFs over studying 300 genotypes with 

no genotyping error (Figure 2.5B). 

 

Discussion 

This study illustrates the potential of low coverage sequencing with imputation as 

an economical approach to obtaining high density SNP genotype information in soybean. 

Accelerating improvement of complex phenotypes through genomics necessitates high 

Figure 2.5: A) The power to detect a moderate effect QTL becomes increasingly sensitive to error for 
both major to minor and vice versa errors at intermediary MAFs. B) Comparing the power to detect 
the same QTL with 300 samples at a 0% genotyping error vs. 500 samples with a 5% error rate 
demonstrates that cost savings can be used to increase study sizes in order to recover power losses 
introduced by the imputation error of both major and minor alleles. 
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quality, high resolution marker data. However, studies are often limited by the cost 

required to obtain this information through high coverage sequencing. The combination 

of low coverage sequencing with imputation presents an option that drastically cuts costs 

while retaining a high level of accuracy. Implementing a similar method in rice allowed 

researchers to generate a high quality, dense SNP dataset using 1X depth whole genome 

sequence (Huang et al. 2010; Wang et al. 2016). This analysis in soybean, which differs 

in the inclusion of a reference panel for imputation, determined sequencing depth could 

be reduced to 0.3X with no significant accuracy losses. Analogous results have been 

demonstrated in humans, where it was concluded that a reasonably accurate and dense 

dataset could be obtained from 0.2X coverage supplemented with imputation using a 

reference panel (Pasaniuc et al. 2012). To our knowledge, this is the first work to 

examine using imputation with real sequence data at less than 1X coverage in the 

construction of a high quality, highly affordable SNP dataset in plants. The effect of 

imputation method and structure of the reference panel have not been specifically 

examined in the context of application to skim sequencing, providing future avenues for 

research and improvement. 

While SNP arrays and GBS are popular options for obtaining genotype 

information, high precision genomics demands markers to be in close linkage to the 

contributing genes. Regions of the genome with sparsely correlated markers may 

therefore contain overlooked causal variation (Hirschhorn and Daly 2005; Witte 2010). 

Skim sequencing with imputation, as investigated here, tags a significantly larger portion 

of the genome in tighter LD than the current soybean 50k array. This effect may be 

presumed to extend to GBS datasets of a similar size. Such a boost in resolution may 
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therefore reveal QTL in regions of the genome that would not have been captured 

through smaller datasets. 

The accuracy and extensibility of this approach in other soybean populations, as 

well as other crops is based on several factors. To explore potential limitations in this 

method, population LD and the relatedness of reference panel to study lines were 

examined. Both of these factors have been implicated as strong influencers of imputation 

accuracy due to the innate reliance of the technique on the presence of sample haplotypes 

within the reference panel, as well as the extent of correlation between observed markers 

(Hickey et al. 2012; He et al. 2015). The strong inverse relationship observed between the 

proportion of SNPs incorrectly imputed at a given position and LD measurements 

suggests that for soybean populations and other crops with shorter range LD, imputation 

accuracy will likely decrease. There was no significant relationship detected between 

kinship measures and accuracy. However, the study genotypes exhibited little variation 

for any of the calculated metrics, which can be seen in the low standard deviations. 

Without a wide range of values to examine, identifying a clear trend is unlikely. The 

positive effect of relatedness on imputation accuracy is documented in other literature 

(Hickey et al. 2012; Ma et al. 2013; Boison et al. 2015), and should therefore be a 

consideration in expanding this method to other soybean populations and crop species. 

The overall weak kinship between study and reference panels in this data may also be 

viewed as a positive, since high levels of imputation accuracy were achieved despite this 

populations being interpreted as distally related. 

The power to detect a QTL is partially dependent on the allele frequency at that 

loci (Ardlie et al. 2002; Tabangin et al. 2009). Therefore, the relationship between 
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imputation accuracy, minor allele frequency (MAF), and statistical power may be 

considered particularly important. In agreement with an analysis performed with maize, 

the data showed steadily decreasing imputation accuracy as MAF increased with the 

exception of very rare alleles (MAF < 0.05) (Hickey et al. 2012). An opposite tendency 

was observed with respect to statistical power losses across MAF, so it can be interpreted 

that at the loci a SNP dataset would display the highest imputation error rates, the GWAS 

is least affected by them. This trend has also been supported in human imputation 

analyses looking at sample size inflation factors under different imputation error types 

(Huang et al. 2009). In both cases, power consequences were greater for incorrect 

imputation of the minor allele. It is unclear how a combination of error types at a SNP 

locus would influence genomic studies. Decisions on the level of decreased coverage that 

can be tolerated should consequently be made not on the overall average concordance, 

but by examining the concordance across minor allele frequencies in relation to the 

maximum allowable error to retain power. 

The cost savings associated with this method can be used to include more sample 

genotypes, not only recovering power losses at low minor allele frequencies, but 

potentially increasing total power. Similar results in humans have indicated sampling 

more genotypes with small error is more beneficial over fewer genotypes with perfect 

accuracy (Pasaniuc et al. 2012). Comparing the raw accuracy along sequencing depths 

along with per sample costs, shows that at the previously identified critical threshold of 

0.3X coverage, there is only a 0.85% loss of accuracy relative to using a 1X sequence, 

while costs decreased 57% (Supplementary Figure 2.4). Moreover, the use of public 

sequence data to construct a broad reference panel eliminates the cost and limitations of 
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assembling special populations and sequencing the founders to a high coverage to serve 

as the reference haplotypes. 

 

Conclusion 

Here it is demonstrated that low coverage sequencing accompanied with 

imputation from a reference panel can be extended below 1X depth in soybean to capture 

high density, reasonably accurate SNP genotype information economically. The 

tremendous drop in per sample sequencing cost over high depth methods may allow 

researchers to expand the number of study genotypes in their investigations, while 

representing a larger portion of the genome than fixed SNP arrays and GBS data. The 

potential for success of this genotyping method within and outside of soybean is highly 

reliant on population LD. Furthermore, researchers should examine accuracy and power 

within the context of minor allele frequency to make informed decisions about 

sequencing depth tolerances. As genomics demands increasing SNP panel densities 

across a wide range of genotypes, skim sequencing with imputation constitutes a 

financially feasible and highly accurate way to meet these requirements. 
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CHAPTER THREE: COMPARING A MIXED MODEL APPROACH TO 

TRADITIONAL STABILITY ESTIMATORS FOR MAPPING GENOTYPE BY 

ENVIRONMENT INTERACTIONS AND YIELD STABILITY IN SOYBEAN 

[GLYCINE MAX (L.) MERR.] 

 

Abstract  

Identifying genetic loci associated with yield stability has helped plant breeders 

and geneticists begin to understand the role and influence of genotype by environment 

(GxE) interactions in soybean [Glycine max (L.) Merr.] productivity, as well as other 

crops. Quantifying a genotype’s range of performance across testing locations has been 

developed over decades with dozens of methodologies available. This includes directly 

modeling GxE interactions as part of an overall model for yield, as well as methods 

which generate overall yield “stability” values from multi-environment trial data. 

Correspondence between these methods as it pertains to the outcomes of genome wide 

association studies (GWAS) has not been well defined. In this study, the GWAS results 

for yield and yield stability were compared in 213 soybean lines across 11 environments 

to determine their utility and potential intersection. Both univariate and multivariate 

conventional stability estimates were considered alongside a mixed model for yield that 

fit marker by environment interactions as a random effect. One-hundred and six total 

QTL were discovered across all mapping results, however, genetic loci that were 

significant in the mixed model for grain yield that fit marker by environment interactions 

were completely distinct from those that were significant when mapping using traditional 
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stability measures as a phenotype. Furthermore, 73.21% of QTL discovered in the mixed 

model were determined to cause a crossover interaction effect which cause genotype rank 

changes between environments. Overall, the QTL discovered via explicitly mapping GxE 

interactions also explained more yield variance that those QTL associated with 

differences in traditional stability estimates making their theoretical impact on selection 

greater. A lack of intersecting results between mapping approaches highlights the 

importance of examining stability in multiple contexts when attempting to manipulate 

GxE interactions in soybean. 

Introduction 

Establishing a better understanding of the genetic mechanisms which underlie a 

trait’s variability can lead to greater progress for that phenotype. Grain yield is an 

example of a trait that displays a complex pattern of quantitative inheritance, dependent 

on the cumulative action of multiple genes (Falconer, 1996). It has long been recognized 

that the size and direction of these effects can be influenced differentially by the 

environmental conditions present over the growing season. These interactions between an 

individual’s genetics with a wide range of environmental factors are commonly referred 

to as genotype by environment (GxE) interactions (Comstock and Moll, 1963; Crossa, 

1990). This is a crucial consideration as a cultivar will be exposed to a variety of 

conditions in production settings that cannot be predicted in advance. 

With regards to quantitative trait loci (QTL) modeling, plant breeders are often 

most interested in QTL that result in a consistent effect across environments. GxE 

interactions present a deviation from this simple additive model, but their contribution to 

overall phenotype makes them important none the less (Kang, 1997). The evaluation of 
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genotypes across several environments is therefore critical to understanding the 

contribution of GxE interactions to complex traits such as yield. Due to the contextual 

nature of GxE interactions, they are often considered a nuisance which obscures the 

ability to evaluate additive main genetic effects. However, categorizing QTL associated 

with GxE interactions based on their per environment effects can allow us to highlight 

those which may be useful for exploitation. Some QTL may have a positive effect on 

phenotype, but that effect is significantly stronger in some environments. Others are 

considered “conditionally neutral,” only affecting trait values in some environments but 

having no effect in others. Both of these sources of GxE variation can have a positive 

impact on phenotype. Also critical, but less directly useful, are QTL contributing to GxE 

interactions that have opposing effects in different environments (El-Soda et al., 2014). 

The structure of multi-environment trial (MET) data presents several statistical 

challenges which necessitate a more complex approach to analysis, including those for 

QTL detection. In a 1952 study, Falconer observed when measuring a trait in different 

environments that the correlation between those environments was a function of GxE 

(Falconer, 1952). That is, a high positive correlation is indicative of little to no GxE 

contribution, while values lower than one revealed GxE as a contributor to the measured 

trait. Another important consideration of MET data is the influence of GxE interactions 

on the error variance assumptions. Inherently, GxE interactions often cause the 

magnitude of genetic variance to differ between individual environments. Explicitly, this 

means the residual error variance in these analyses often break homogeneity assumptions 

and failure to account for this has the potential to inflate Type I error rates, especially 

when those include random GxE interaction terms (Hu et al., 2013, 2014). Assuming 
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genotype [i.e. marker] effects as random in a mixed model approach provides the 

flexibility to accommodate both differing correlation structures (Piepho, 2005; van 

Eeuwijk et al., 2010), as well as model a variety of residual error variance structures 

(Malosetti et al., 2013) and even spatial variation within the error term (Schabenberger 

and Gotway, 2017). A direct advantage of this analysis structure is the ability to test 

environment specific QTL effects alongside constitutive main genetic effects, allowing 

the categorization of QTL into those described above. Additionally, a direct mixed model 

approach has the advantage of accommodating incomplete and unbalanced datasets that 

are often common in agronomic field trials (Isik et al., 2017). However, with an 

increasing number of environments and incorporation of complicated model structures, 

the number of parameters to be estimated can inflate model size to such an extent that the 

time and resources to solve it may become impractical (Chen et al., 2010). 

Plant breeders aim to select varieties which maintain their high performance 

across a target region. This trait is commonly referred to as phenotypic “stability,” or 

sometimes “plasticity.” Differences in stability among genotypes are the natural result of 

differing GxE interactions (Becker and Léon, 1988). Selecting varieties with superior 

stability can become difficult when a breeder has to consider all individual GxE 

interactions and multiple traits for many testing environments. In this case, transforming 

a multivariate problem such as GxE interactions into a univariate setup is attractive in 

that it lends itself to more classical analyses styles. Consequently, there has been a long 

term emphasis on developing methods that can quantify stability into single values that 

can then be used to rank and compare test genotypes (Lin et al., 1986; Becker and Léon, 

1988; Crossa, 1990). Becker and Léon (1988) categorize stability as either static or 
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dynamic. Static phenotypic stability refers to the ability of genotype to produce a 

consistent phenotype independent from changes in environmental conditions. Dynamic 

stability describes the genotype’s response to improved agronomic conditions. This is 

often considered more relevant in production settings where a variety’s ability to respond 

positively to agronomic inputs such as irrigation and fertilizer is beneficial. However, 

static stability is often more repeatable and useful for traits such as seed composition 

which may be expected to meet a certain window of specifications. From the perspective 

of increasing grain yield, static stability is more relatively advantageous in unfavorable 

environmental conditions, which is particularly valuable in subsistence agriculture 

applications (Becker and Léon, 1988). 

An increased knowledge of the genetic basis of GxE interactions opens avenues 

for breeders to manipulate stability through exploiting or minimizing the response to 

environmental aspects. Several stability measures have recently been used as phenotypes 

in genome wide association studies (GWAS) to identify novel genomic loci associated 

with GxE interactions (Bouchet et al., 2016; Xavier et al., 2018; Lozada and Carter, 

2020). Explicit mapping of GxE as a marker by environment effect has also been 

explored, but less considered in stability analyses due to the logistical and computational 

demands needed to apply the methodology appropriately (Piepho and Pillen, 2004; van 

Eeuwijk et al., 2010; Malosetti et al., 2013). As yield stability estimates are used to 

quantify and explain the differences in GxE interactions between genotypes (Becker and 

Léon, 1988), conducting QTL mapping studies against these values as a phenotype would 

theoretically reveal some of the same significant loci as directly mapping GxE 

interactions. A study in barley using both real and simulated data found both static and 
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dynamic stability QTL for several phenotypes that co-located with loci significant in GxE 

interactions (Lacaze et al., 2009). Similar analyses in tomato reported a lesser degree of 

intersection, identifying that 24% of the plasticity QTL they discovered were also 

identified in a mixed model for GxE interactions (Diouf et al., 2020). To our knowledge, 

this hypothesis has not been tested in soybean population utilizing an unbalanced design 

for yield trials. Furthermore, past studies have been limited in the number of stability 

parameters tested in their comparisons. For this study, we report the results of fitting GxE 

into a mixed model for yield and compare them to using 29 traditional yield stability 

estimates to map genetic regions responsible for yield stability in a locally adapted 

soybean population. Yield estimates were obtained for 213 lines grown at five eastern 

Nebraska sites over three growing seasons. Mapping of yield stability genes was 

performed both through explicit modeling of marker by environment interactions, and a 

traditional GWAS approach for conventional stability measures. The potential overlap 

between identified QTL was investigated with an emphasis on exploring the ability of 

traditional stability measures to capture the GxE variation present in multi environment 

yield trials. 

 

Materials and Methods 

Field Sites and Experimental Design 

The University of Nebraska-Lincoln soybean breeding program includes several 

testing sites across Nebraska but is mostly concentrated in the eastern half of the state 

where most soybean production occurs. Five testing sites from the breeding program 
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were selected for yield testing that took place over 3 years. Lines belonging to maturity 

groups I and II were evaluated at the Nebraska locations of Phillips, Cotesfield, and 

Mead. Lines belonging to group III were evaluated at the Nebraska locations of Phillips, 

Lincoln, and Wymore (Supplementary Table 3.1). Yield trials were grown in an 

augmented incomplete randomized block design at each site, with three replicates per 

site. Each block consisted of 21-24 entries, with checks assigned according to maturity 

group. Plots consisted of two rows in 2017, and four rows in 2018 and 2019 to minimize 

border effects. Rows were 6 meters in length with 0.76 meter spacing between rows. 

Seeds were sourced from a single location grown in the year prior to that growing season. 

Prior to planting, seeds were treated with CruiserMaxx at a rate of 1 ml per 200 g, to 

protect from early season insect and fungal diseases (Syngenta Crop Protection AG, CH-

4002, Basel, Switzerland). Grain weight and moisture content were recorded at harvest, 

and adjusted to 13% moisture to calculate grain yield. 

GWAS Panel Selection and Genotyping 

The University of Nebraska-Lincoln soybean breeding program focuses on the 

improvement of soybean cultivars for producers in eastern Nebraska. Decades of 

intensive artificial selection through this program has resulted in a collection of 

genotypes that are highly refined for local conditions. Two-hundred and thirteen 

experimental lines from the University of Nebraska-Lincoln soybean breeding program 

were selected to explore and compare mapping methodologies related to GxE interactions 

across the lines’ target growing region in eastern Nebraska. All lines are F4 derived lines 

created through bi-parental crosses and single seed descent. Lines selected represented a 
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range of both average yield and yield stability from a pool of genotypes that had existing 

yield data from 2013, 2014, and 2015 multi-environment yield trials. Yield stability was 

calculated using Wricke’s ecovalence measure, which defines stability as the interaction 

of the genotype with its environment summed and squared across environments. 

Therefore, smaller values are considered more stable as they deviate less from the 

environmental means (Wricke, 1962). 

DNA was isolated from lyophilized leaf tissue collected from twenty plants per 

genotype using a CTAB based extraction method scaled down for a 96 well plate by 

dividing all reagent volumes by 40 (Keim, 1988). To generate a high density marker 

panel that enabled a fine mapping resolution while remaining cost effective, whole 

genome skim sequencing with genotype imputation was used (Happ et al., 2019). The 

reference panel for imputation was generated from 99 soybean genotypes with publicly 

available whole genome sequence data, and consisted of 10,803,148 biallelic 

homozygous single nucleotide polymorphisms (SNPs). Study genotypes were sequenced 

at a target of < 1X coverage and imputation performed using Beagle 4.1 (Browning and 

Browning, 2016). All sequence data was deposited in the NCBI Short Read Archive 

database accession no: PRJNA699266. Pre imputation processing and quality control was 

performed according to the previously published protocol (Happ et al., 2019). Plink1.9 

(Purcell et al., 2007) was used to eliminate individual low quality imputations with a 

genotype probability (GP) score of less than 0.9. To eliminate redundancy within the 

SNP panel, 1,129,769 SNPs in close linkage with a pairwise r2 value of greater than 0.8 

were removed using Plink1.9. Finally, 9,052,059 positions that were non-polymorphic or 

had a minor allele frequency (MAF) of less 0.05 were filtered out using Plink 1.9. The 
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final genotyping data for the study panel after these steps consisted of 621,320 high 

quality, homozygous, biallelic SNP markers. 

Accounting for Kinship Between Study Genotypes 

Controlling for population structure is an important procedure in association 

mapping to prevent false positives (Hayes, 2013; Korte and Farlow, 2013). In both 

scenarios, population structure was controlled through using the first eight principal 

components in a principal component analysis (PCA) performed in Plink1.9 with a 

reduced marker dataset. Plink 1.9 first constructs the variance-standardized genetic 

relationship matrix from marker data before extracting the top 20 principal components 

(Yang et al., 2011). Markers were first filtered to exclude those with pairwise r2 linkage 

values over 0.4, to prevent the results from capturing linkage disequilibrium patterns. The 

generated eigenvalues were then visualized as a scree plot to determine the number of 

principal components to be included in the association mapping analysis (Supplementary 

Figure 3.1). As the plot levels off at approximately the eighth component, it was selected 

for the cutoff. Use of a genomic relatedness matrix to control for confounding 

relationships was also tested by computing the Balding-Nichols matrix in EMMAX, 

which estimates the pairwise relationship between individuals using genome wide SNP 

data (Kang et al., 2010). This was incorporated as a random effect into the described 

models. Inclusion of this matrix results in a 1.37 and 2.59 point increase in Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) values, and 

therefore was dropped from the association analysis as it decreased modeling efficiency 

with no improvement.  
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Association Mapping 

Association mapping of both GxE and stability measures required a flexible software that 

could allow us to fit both linear and mixed models. To this end, we used ASREML-R 4 

(Butler et al., 2017) since it provides a wide range of options for modeling both fixed and 

random effects, as well as the option to include user defined residual error variances 

structures. Equation 3.1 describes the association analyses performed for explicitly 

mapping GxE by modeling raw yield averaged across replicates with genotype by 

environmental levels as a per marker random effects: 

 

(3.1)					𝑦 = 𝑋𝛽 + 𝑍𝛼 + 𝑒 
 
 
where y is the vector of raw yield estimates assumed to be normally distributed, X is the 

design matrix of fixed effects including the intercept, the top eight principal components 

to control for population structure, environment, and maturity grouping, β is the vector of 

fixed effect coefficients, Z is the incidence matrix of random effects including either 

marker, marker by year, marker by location, or marker by year by location effects, α the 

vector of random effect coefficients, and e is the vector of residuals. Allowing for an 

overall heterogeneous error variance structure resulted in model singularities. Residuals 

were instead specified as a direct sum of separate variance matrices for each 

environmental level. Each environmental “level” for the residual is defined as the unique 

year and location combination. Statistical significance of single markers fit in the linear 

mixed model was determined using the likelihood ratio test (LRT). This compares the 

log-likelihood of the model including the marker effect with the log-likelihood of the 
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model without the marker effect. A multiple testing correction was applied via a 

Bonferroni threshold (α = 0.05) to define significant associations. Results were plotted in 

a Manhattan plot of –log10 p-values using R3.6 (R Core Team, 2019) with package 

“ggplot2” (Villanueva et al., 2016). 

A wide variety of approaches for calculating yield stability pervades across 

scientific literature. Recently, Pour-Aboughadareh et al. (2019) reported the development 

of an R script to calculate a range of phenotypic stability estimates, providing a 

manageable way to calculate sixteen popular stability estimates using a single R function. 

This included Plaisted and Peterson’s mean variance component, Plaisted’s GE variance 

component, Wricke’s ecovalence stability index, regression coefficient, deviation from 

regression, Shukla’s stability variance, environmental coefficient of variance, Nassar and 

Huhn’s statistics (S1 and S2), Huhn’s equation (S3 and S6), Thennarasu’s non-parametric 

statistics (NP1-4), and Kang’s rank-sum (Happ et al., 2019). While this covered many of 

the prevalent univariate stability analysis methods, it did not include the multivariate 

additive main effect and multiplicative interaction (AMMI) analyses methods and 

subsequent stability values (Sabaghnia et al., 2008). AMMI modeling has been widely 

used in plant breeding programs to investigate GxE interactions and provide stability 

estimates through first isolating GxE interactions using a linear model that accounts for 

some of the main experimental design effects (Abera et al., 2004; Ezatollah et al., 2011; 

de Oliveira et al., 2014). An AMMI analysis was subsequently performed with the raw 

yield data and thirteen stability estimates calculated in R3.6 using package 

“ammistability” (Ajay et al., 2018), including the sum across environments of genotype 

by environment interactions (GEI) modeled by AMMI (AMGE), AMMI stability index 
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(ASI), AMMI stability value (ASV), AMMI based stability parameter (ASTAB), sum 

across environments of absolute value of GEI modeled by AMMI (AVAMGE), 

Annicchiarico’s D parameter (DA), Zhang’s D parameter (DZ), averages of the squared 

eigenvector values (EV), stability measure based on fitted AMMI model (FA), modified 

AMMI stability index (MASI), modified AMMI stability value (MASV), sums of the 

absolute value of the IPC scores (SIPC), absolute value of the relative contribution of 

IPCs to the interaction (Za). Equation 3.2 describes the typical linear model used for 

association mapping with each of stability measurement, which was also performed in 

ASREML-R 4 per SNP: 

 

(3.2)					𝑦 = 𝑋𝛽 + 𝑒 

 

where y is the vector of one of the yield stability estimates assumed to be normally 

distributed, X is the design matrix of fixed effects including the intercept, the top eight 

principal components to control for population structure, and the individual marker being 

tested, β is the vector of fixed effect coefficients, and e is the vector of residuals. The 

model assumes that e∼N(0,Iσ2e). Fitting this model using Nassar and Huhn’s S2 statistic, 

statistical significance of single markers fit in the linear mixed model was determined 

using the Wald test procedure that is part of the ASREML-R 4 package. A multiple 

testing correction was applied via a Bonferroni threshold (α = 0.05) to define significant 

associations. Results were plotted in a Manhattan plot of –log10 p-values using R3.6 and 

package “ggplot2.” 
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Overlap and GxE Variance Explained by QTL 

If QTL, via association mapping with yield stability as a phenotype, captures 

genomic regions involved in GxE interactions, we would expect to see some degree of 

overlap with QTL identified in the explicit GxE association mapping. To visualize this, 

the bounds of significant QTL from each association model broadly classified as either 

GxE, multivariate conventional (AMMI), or univariate conventional were plotted using 

R3.6 and package “karyoploteR” from Bioconductor (Bernat and Serra, 2017). These 

were color coded according to model classification. Overlaps between QTL from each 

model classification were also plotted as a Venn Diagram using R3.6 with package 

“VennDiagram” (Chen and Boutros, 2011). 

Contribution and impact of QTL can be characterized by computing their 

contribution to overall trait variance. If QTL discovered via association mapping with 

yield stability as a phenotype captures genomic regions involved in GxE interactions, it 

could be assumed that these regions would explain significant portions of GxE variance 

for yield. For each of the methods described, we computed the proportion of yield 

variance explained by GxE for the most significant SNP, that is, the SNP with the lowest 

p-value, in each individual QTL region. Equation 3.3 was used to calculate the proportion 

of yield variance explained by GxE after fitting equation 3.1 in ASREML-R 4 and 

extracting variance component estimates from the random effects’ solutions for each 

marker: 

 

(3.3)												
			𝑚𝑎𝑟𝑘𝑒𝑟 × 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒

𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡	 + (𝑚𝑎𝑟𝑘𝑒𝑟 ∗ 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
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For each model, the average and standard deviation of these values from all QTL 

was calculated. The results were plotted in R3.6 using ggplot2 and color coded according 

to model classification. 

GxE Interaction Type 

GxE interactions create noise in multi environment trials that make it difficult to 

identify which genotypes are superior. The two potential outcomes are changes in 

genotype ranking or a change in distance between rankings. To categorize the effect of 

each of the QTL discovered via direct GxE modeling, we extracted the effect size of each 

allelic state at individual environmental combinations for comparison. Effects larger than 

6.8 kg/ha (0.25 bu/a) were significant at an alpha value of 0.05 and thus were the only 

effects considered for this analysis. If all effects were in one sign (all positive or all 

negative), the QTL was classified as a magnitude interaction. If one of more effects were 

of an opposite sign than the others, the QTL was considered a crossover interaction. This 

was performed for all 56 GxE QTL. At each QTL we also examined the overall and per 

environment adjusted yield distributions. Results of each were plotted in R3.6 using 

ggplot2. 

Principal Component Analysis of Rankings 

Plant breeders are often interested in ranking genotypes to make advancement 

selections. We compared the rankings from yield stability measurements to those 

ascertained from the Best Linear Unbiased Predictor (BLUP) of the various GxE 

interactions levels. BLUPs were calculated in ASREML-R 4 according to equation (1), 

where the incidence matrix Z instead included the random effects of genotype, genotype 
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by year, genotype by location, and genotype by year by location effects. To rank 

genotypes via these BLUPs, the absolute value of the BLUP values were taken and then 

ordered from smallest to largest. Therefore, the smallest GxE BLUP value denoted the 

most “stable” genotype. Rankings for the conventional yield stability measures were 

assigned according to their definition. In all cases, a ranking of “1” denoted the most 

stable genotype. A principal component analysis of these rankings was conducted in R3.6 

using the “prcomp” function which is a part of basic R functionality. Results from the 

principal component analysis were plotted using the “ggplot2” package and color coded 

according to model classification. 

Data Availability 

The datasets presented in this study can be found in online repositories. The 

names of the repository/repositories and accession number(s) can be found below: NCBI 

BioProject, PRJNA699266; European Variation Archive, Project: PRJEB43548 and 

Analyses: ERZ1756748. Supplementary figures and tables can be found in 

“Supplementary Figures and Tables” section of the appendix. All significantly associated 

markers for the association models can be found in supplementary data file 3.1.  

 

Results 

Phenotype and Genotype Data 

The 213 soybean experimental lines were yield tested in an augmented 

incomplete randomized block design at five eastern Nebraska locations over 3 years to 

assess grain yield stability. Grain yield over the course of these trials ranged from 
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2162.74 to 7080.70 kg/ha, with an average of 4976.41 kg/ha and standard deviation of 

810.34 kg/ha. The highest yielding year was 2017 with an average grain yield of 5204.80 

kg/ha and highest yielding location was Phillips, which averaged 5570.40 kg/ha 

(Supplementary Table 3.2). Distribution of yield values were approximately normal when 

examined visually per environment (Supplementary Figure 3.2). Likewise, the 

association panel captured a wide range of stability values both in the univariate and 

multivariate measures (Supplementary Tables 3.3, 3,4). Additionally, correlations 

between univariate stability parameters were much lower than the multivariate stability 

parameters computed for this study. This suggests capture of different aspects of stability 

and GxE interactions with the exception of perfect correlations between Wricke’s 

ecovalence, Shukla’s stability variance, the GE variance component, and the mean 

variance component (Supplementary Figure 3.3). 

Construction of genotype information was performed using low coverage whole 

genome sequence data with imputation using a reference panel of deep sequenced 

soybean genotypes. DNA extracted from leaf tissue collected in 2016 from the study 

genotypes was used to perform whole genome sequencing at a minimum coverage of 

0.3X. After post imputation quality control, the final genotyping panel consisted of 

621,320 high quality, homozygous, biallelic SNPs with 1.79% of marker genotypes 

missing. Per marker missing data rates ranging from 0.34 to 7.74% with a standard 

deviation of 0.86%. 
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Association Mapping 

Using multiple approaches to map genetic loci associated with grain yield 

stability in the 213 genotypes revealed 106 significant QTL via the Bonferroni threshold. 

86 of these were determined to be independent between all mapping approaches when 

considering overlaps between QTL bounds (Supplementary Figures 3.4A–3.32A and 

Figure 3.1). The majority of QTL associated with GxE interactions were found in the 

marker∗location and marker∗year∗location terms, with some degree of overlap between 

all interactive terms (Figures 3.1B–D). The number of QTL for overall yield was affected 

by inclusion of environmental interaction terms, resulting in one additional QTL 

Figure 3.1: Manhattan plots of marker (A) and marker by environment (B–D) levels modeled explicitly as 
random explanatory variables of raw grain yield. Several associations are significant at every level via both 
the Bonferroni correction (solid black line) and a 5% FDR (dashed line) with some overlap between QTL 
discovered for varying levels of GxE interactions (B–D). 
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significant via the Bonferroni threshold and shifting which QTL were significant at a 

FDR of 5% (Figure 3.1A and Supplementary Figure 3.4A). Models fitting the coefficient 

of variation, Finlay Wilkinson, Sum Across Environments of Absolute Value of GEI 

Modeled by AMMI, and Zhang’s D Parameter as phenotypes did not return any 

associations that were significant by either the Bonferroni correction or a FDR of 5%. 

The AMMI stability value and AMMI stability index only returned associations that were 

significant using a 5% FDR threshold. Model inflation was assessed by examining the 

quantile-quantile plots of p-values produced by each model fit (Supplementary Figures 

3.4B–3.32B, 3.33). Deviation from the diagonal suggested considerable inflation in 

models fitting the GE variance component, mean variance component, Shukla’s stability 

variance, Thennarasu NP2 statistic, and Wricke’s ecovalence, and were therefore dropped 

from consideration in further analyses.  Conventional yield stability measures are 

assumed to explain genotype differences in GxE interactions of multi-environment trials 

and distill them into a singular value. Overlap between QTL discovered using 

conventional measures as a phenotype and explicitly modeling GxE interactions may 

indicate the extent of their interchangeability. Considering the boundaries of the 86 

independent QTL discovered in the association mapping, we found only one QTL shared 

among all three modeling approaches. Univariate and multivariate approaches shared 

eight intersecting QTL with each other, but only two and one QTL with explicit GxE 

modeling, respectively (Figure 3.2).  
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Comparing the average yield variance explained by GxE at each of the QTL 

among approaches revealed that significant loci as reported by the explicit GxE model 

accounted for more GxE yield variance than either conventional approach. The largest 

number of QTL were discovered for the marker by year by location, and marker by 

location interaction effects, however the average effect size was lower than those QTL 

associated with additive main genetic effects and genotype by year interactions (Figure 

3.3). These results suggest that using conventional yield stability estimates as a 

phenotype for GWAS is not a substitute for directly modeling GxE interactions. 

Classification of GxE Interactions 

If a locus is involved in creating changes in yield stability, it can often be seen as 

a difference in dispersion between the phenotypic distributions between alleles 

Figure 3.2: Independent QTL discovered using conventional measures as a GWAS phenotype 
share very little overlap with loci significant in the explicit GxE model. 
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(Rönnegård and Valdar, 2012). The distributions of adjusted phenotypes according to 

allele states at the QTL discovered by explicitly modeling GxE interactions for yield did 

not appear to follow this trend, with many of the distributions appearing to be nearly 

identical (Supplementary Figure 3.34). For example, the QTL at chromosome 3 physical 

position 9732856 shows a more characteristic difference in adjusted phenotype 

distributions that the QTL at chromosome 14 physical position 5032332 (Figure 3.4). 

Genotypes with allele “A” at the former QTL are less stable, as indicated by the flatter 

and wider distribution of adjusted phenotypes. When looking at all the adjusted 

phenotypes pooled across environments for QTL 14:5032332, we do not see an initial  

Figure 3.3: The number and variance explained by the QTL discovered in the explicit GxE model 
is greater than that discovered by GWAS models using either type of conventional measurement as 
a phenotype. Numbers within the bars represent the number of QTL discovered for that 
model/model level. The thin dark line from the top of the bar represents the standard deviation for 
yield variation explained among the QTL for that level. 
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Figure 3.4: The contrast in distribution of adjusted yield between allelic states at the QTL 
on chromosome 3 indicates a difference yield stability as compared to the QTL on 
chromosome 14 which initially appears to be falsely associated. However, when examining 
the adjusted yield from a per environment basis, differences in mean and spread 
according to specific site combinations become more apparent. 



   63 

difference in distributions despite it being reported as a GxE QTL by the model. Upon 

examining the same data on a per environment basis, we see contrasts in mean and 

dispersion that are not consistent across year and location combinations (Figure 3.4). This 

is an indication of a crossover interaction occurring at this locus which has a canceling 

effect when assessing data combined across environments. 

GxE interactions complicate the breeding process the most when they result in a 

crossover interaction that changes genotype rankings between growing environments. 

When examining the effect size and direction of QTL discovered by explicitly modeling 

GxE interactions for yield, 41 of the 56 loci were considered to produce crossover 

interactions. Further, it was noted that all QTL discovered through modeling marker by 

year by location were determined to be crossover interactions (Figure 3.5).  

Figure 3.5: QTL of the crossover effect type are more prevalent in this study than magnitude 
changes (A), and are especially common in the marker by year by location interaction (B) 
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Selection Rankings 

Both multivariate and univariate conventional yield stability measures are used to 

create rankings that help breeders make selection decisions. Conducting a principal 

component analysis of these rankings in comparison to the rankings given by the BLUPs 

of the direct GxE model showed that multivariate conventional measures generated from 

AMMI modeling grouped very tightly together, and the closest with GxE BLUP 

rankings. Univariate yield stability measures also generally grouped together, intersecting 

far less with the GxE groupings than multivariate statistics (Figure 3.6). Together the first 

two principal components explained 56.4% of variability in the rankings indicating that 

these groupings still do not capture nearly half of the data variance. 

 

 

 

 

Figure 3.6: Multivariate conventional yield stability rankings group much tighter and closer to 
rankings generated from the BLUPs from fitting GxE interaction effects as random in the mixed 
model for yield. 
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Discussion 

This analysis revealed that using conventional stability estimates to capture variation in 

GxE interactions for a genetic mapping study gave considerably different results from 

directly modeling GxE interactions when evaluating grain yield in a local soybean 

population. GxE interactions often heavily influence the per environment rankings of 

quantitative phenotypes such as grain yield, complicating the breeders’ task of 

developing a stable variety. As a result, the modeling of phenotypic stability and 

identification of the involved genes has been the focus of many recent scientific studies  

 (Bouchet et al., 2016; Xavier et al., 2018; Lozada and Carter, 2020). QTL 

affecting stability have been discovered using either a direct approach to modeling GxE 

interactions, or first calculating a yield stability “value” from the phenotypic data to then 

be used a phenotype in the GWAS. This study evaluates both of these approaches using 

the same association panel and demonstrated that the results were not interchangeable. To 

our knowledge this is the first study to directly compare QTL discovered using multiple 

methods of evaluating GxE interactions and yield stability in soybean. 

Conventional yield stability estimates are a popular way to assess the influence 

GxE interactions without the burden of interpreting values for every testing environment. 

Such approaches are both appealing from a computational standpoint due to their 

simplicity, as well as pragmatic when discussing plasticity and stability within the 

scientific community. The historical implementations of traditional stability methods 

presented here are built upon variations on standard linear regressions – that is, a 

statistical model that only has fixed effects. When considering datasets from multi-
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environment trials with missing observations, the results may be to varying extents, 

erroneous (Piepho, 1997). This is one potential rationale for the large difference in QTL 

results presented by this study compared to present research. However, unbalanced 

experimental designs are common in plant breeding programs both due to random loss 

within trials (pest/disease/weather damage/etc.) or by explicit design, and their 

accommodation should be prioritized. Mixed model analyses have been an effective tool 

in this regard. Recent studies have shown they can also be used to adapt traditional 

stability analyses, suggesting that conventional yield stability estimates can still provide 

useful insights from more complex field designs (Piepho, 1997, 1998; Meyer, 2009). 

Explicitly testing the consequences of using conventional yield stability statistics on 

unbalanced datasets may help refine the understanding of these results and future 

applications. 

QTL confirmation testing would be an important step to validating the modeling 

approach used in their discovery. Due to unpredictable fluctuations in environment, the 

results of GxE interaction research are often difficult to replicate. With regards to QTL 

studies, this adds difficulty to the confirmation process. If effective, the results might not 

only be used to support the existence of a QTL affecting GxE interactions, but also serve 

to refine the understanding of what general effect it causes. This may be especially 

important when considering antagonistic crossover effects, which have the largest 

confounding effect on making selections in the plant breeding process. The results 

presented here indicate that the greater majority of GxE interactions in grain yield for 

soybean generate a crossover effect, with neither observed allele advantageous in all 

testing environments. In fact, in some cases opposite effects were nearly equal and 
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appeared to cancel each other out when observing the pooled data. Extensive testing of 

GxE QTL in new genetic backgrounds and new environments may reveal a shift in these 

QTL classifications and ultimately their utility to breeders. Detecting and accounting for 

crossover effects may be important to breeding decisions for local adaptations as well as 

separating out these noisy interactions from those that are more straightforward to 

incorporate. 

Plant breeders often use a ranking approach to eliminate or progress genotypes in 

their breeding program (Sjoberg et al., 2020). Similarly, to the GWAS results, comparing 

the genotype rankings from each of the methods demonstrated the dissimilarity between 

conventional and explicit GxE modeling approaches. A multivariate approach (AMMI) 

which first starts with a model that retains some of the experimental design components 

best match the rankings from the GxE BLUPs themselves, further illustrating the 

importance of accounting for this additional variation in this experiment. The rigidity of 

software created for the purpose of computing traditional stability estimates limits the 

inclusion of non-genetic design components, such as replicate, location, blocking, and/or 

other spatial factors that may have been valuable in partitioning genetic variance from the 

phenotypic variance. Without prior adjustment, these artifacts have the potential to bias 

results and decrease selection accuracy for phenotypic stability. 

 

 

Conclusion 

This analysis determined that performing association mapping for grain yield GxE 

interactions in soybean using conventional yield stability measurement as a phenotype 
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provided nearly independent results from explicitly modeling marker by environment 

interactions in a mixed model for grain yield. While several QTL were discovered using 

both approaches, only one region overlapped between models and QTL discovered via 

conventional stability estimates explained far less GxE variance for grain yield. The 

results presented may have been influenced by the incomplete and unbalanced data 

structure utilized in the multi-environment trials, however this is a common occurrence in 

field trials and is often intentional to sample more genotypes and environments. 

Researchers and breeders interested in manipulating adaptation via GxE interactions need 

to consider the potential influences their modeling approach will have on their desired 

outcome. 
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CHAPTER FOUR: VARIABLE SELECTION PATTERNS ASSOCIATED WITH 

CONSTITUITIVE GENETIC AND GXE EFFECTS FOR GRAIN YIELD IN A 

LOCALLY ADAPTED SOYBEAN POPULATION 

 

Abstract 

     It is widely accepted that artificial selection has reduced the overall amount of genetic 

variation present for most modern crops, including soybean [Glycine max (L.) Merr.] 

How traits with a complex genetic architecture, such as yield, may experience selection 

pressure differently in accordance with the diverse combination of main genetic and 

environmentally interactive components, is still unclear. For this study, we first identified 

the contribution of genomic windows to either main or genotype by environment (GxE) 

effects for soybean grain yield using 203 elite soybean genotypes tested in eleven 

environments. Tajima’s D and pairwise weighted Fst values from wild, landrace, and three 

other elite populations were used in conjunction with these windowed estimates of 

phenotypic variance to compare the effect of selection among varying combinations of 

effect direction and prevalence among environments. Genomic regions with higher 

genetic diversity and lower divergence were significantly associated with higher GxE 

variance but not constitutive variance, indicating selection is relaxed at these interactive 

loci. Among GxE effect types we found prominent evidence for both negative and 

positive selection, and a markedly higher level of selection signatures at conditionally 

neutral loci. By obtaining whole genome resequencing data for our lines, modeling all 

marker effects simultaneously, and leveraging results from permutation datasets, we were 
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able to avoid some of the common pitfalls in analysis of this type and more accurately 

report on the complicated nature of response to selection for soybean yield. 

 

Introduction 

By recombining favorable genetic variation to produce new phenotypes, intensive 

artificial selection has led to remarkable gains in productivity within several crop species. 

A common concern is that this may lead to a reduction in total genetic diversity, since 

selective breeding only allows for a subset of the population to reproduce (Gepts, 2006). 

Preserving genetic variation is extremely important for future crop resilience and 

adaptation, especially considering rapidly changing climate conditions (Khoury et al., 

2022). Loss of genetic diversity stemming from the domestication process and initial 

improvement of landraces into modern cultivars has been well documented in many crop 

species. Examinations at the individual breeding program level, however, have contested 

the assumption that modern selection always further erodes genetic variation (Bruce et 

al., 2019; Fu, 2015; van de Wouw et al., 2010; Wouw et al., 2010). Since producers 

mainly grow cultivars developed in regional breeding programs, studying how artificial 

selection influences a population’s corresponding genetic variation for valuable traits on 

this scale is critical. 

As selection changes an allele’s prevalence within a population, the allele 

frequencies of the surrounding variation are similarly influenced due to linkage with the 

selected mutation (Barton, 1998; Smith & Haigh, 1974). Many of the standard statistics 

used to quantify genetic variation are based on summaries of the allele frequency 

spectrum, therefore providing a means of studying selection pressures among loci when 
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applied to genomic windows (Nielsen et al., 2005). Outliers in this context signal 

dramatic allele frequency shifts and/or genetic diversity loss, indicative of a directional 

selection causing a ”sweep” (Hermisson & Pennings, 2005). This footprint occurs when a 

beneficial mutation is fixed rapidly under strong selection, likely due to a large and 

sustained advantage it confers.  

The overall genetic architecture of a trait has a direct influence on shaping genetic 

variation in response to selection pressures. Grain yield is a classic example of valuable 

quantitative trait controlled by many small effect loci. Under this scenario, there are 

many potential allelic combinations that can give rise to equally optimal phenotypes 

(Kremer & Le Corre, 2012). As a result, selection pressure at an individual locus may be 

relatively weak and the overall response occurs via subtle shift in allele frequencies at 

many loci, also referred to as polygenic adaptation (Barton & Keightley, 2022). In 

contrast to the selective sweep scenario, alleles contributing to polygenic adaptation are 

likely to never reach fixation. Or if they do, it occurs over such a long time period that 

recombination erodes the signature within linked variation (Chevin & Hospital, 2008; 

Lande, 1983).  

Phenotypic variation can also be the result of contributions from loci whose effect 

varies between environments (Falconer, 1996). GxE interactions in the context of 

agriculture and plant breeding have often been thought of as a nuisance factor due to their 

transient nature. While low GxE may help improve the predictability of a genotype’s 

performance across a range of environments, it can also have negative consequences 

when it constrains cultivars from taking advantage of their environmental conditions. The 

genetic potential for a population to adapt to novel environments is becoming an 
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increasingly important attribute of plant breeding programs in the context of rapid climate 

change and a growing human population. For these reasons, it is important that we also 

consider the behavior of loci reflecting GxE interactions in response to selection pressure. 

In the presence of GxE interactions, the optimal genetic combinations fluctuate with 

space and time. Accordingly, selection pressure at individual GxE loci will also be 

variable, and therefore we hypothesize less intense.  

The direction of an allele’s effect, in combination with the proportion of selection 

environments it has an effect in, can be used to further categorize GxE interactions. It is 

logical to suggest then, that selection pressure at the GxE loci is dependent on the type of 

effect it has. When the environment determines whether the trait value is increased or 

decreased for an allele, this is termed antagonistic pleiotropy. Alternatively, the outcome 

may simply be a change in magnitude of the effect between environments, referred to as 

differential sensitivity. Conditional neutrality is the most extreme case of differential 

sensitivity and occurs when an allele only has an effect in one environment but not in the 

others (Des Marais et al., 2013; El-Soda et al., 2014). If two alleles with opposite 

conditional effects in different environments are in tight linkage with each other, they 

may appear as one quantitative trail loci (QTL) with an antagonistic pleiotropic effect. 

But the effect on surrounding variation would theoretically be the same as it elicits the 

same selection pressure (Anderson et al., 2013). While all types of GxE interactions are 

understood to play an important role in local polygenic adaptation, antagonistic 

pleiotropy is associated with the direct maintenance of genetic variation (Anderson et al., 

2011, 2013). This is owed to the fact that no allele at the locus is ‘optimal’, and thus not 

selected for. 
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While weakened selection pressures allow for the continued survival of valuable 

genetic variation within a population, it also makes it harder to differentiate evidence of it 

from the background variation utilizing selection scan data alone (Kemper et al., 2014; 

Pritchard & Di Rienzo, 2010). By examining measures of genetic variation and 

divergence around genetic markers that explain high levels of phenotypic variance, subtle 

selection signatures may be realized (Berg & Coop, 2014). This approach is not without 

its challenges. Allele frequency is a confounding variable in this context, as loci with 

more intermediate allele frequencies will be calculated to contribute more to phenotypic 

variance while also being categorized as having higher genetic diversity and less 

evidence of selection (Josephs et al., 2017). Researchers can avoid false conclusions due 

to this feature by leveraging permutations of their association models to establish a null 

expectation of results (Josephs et al., 2015; Stanton-Geddes et al., 2013). Another 

important consideration is ascertainment bias in the marker dataset. QTL mapping studies 

often employ genotyping with panels of common variation. This misses a large 

proportion of rare and unique variation which may be critical to calculations of any 

number of selection scan metrics. If an investigator plans to examine selection metrics 

alongside results from a mapping population, it may be appropriate to perform moderate 

to deep whole genome sequencing of their lines in order to fully capture all the variation 

contained within it.  

The primary goal of this study was to assess how selection has influenced 

constitutive and GxE variance for soybean grain yield in a locally adapted, elite breeding 

population, and how this may vary among effect complexities. We first identified 

genomic regions that contribute to grain yield using a previously published phenotypic 



   78 
dataset after making several important improvements, including obtaining ~9.27x whole 

genome sequencing coverage for 203 genotypes and deploying a variance modeling 

approach that allowed us to simultaneously solve for all SNP effects. Using this 

resequencing data, we then calculated Tajima’s D (Tajima 1989) and weighted pairwise 

Fst (Weir and Cockerham 1984) from a wild, landrace, and three other elite populations 

for evaluation in combination with the variance estimates, and the effect classifications 

we designated based upon them. Deploying a permutation testing approach, we were able 

to determine several important conclusions about variable selection pressures among GxE 

loci free from the major bias of allele frequency. Despite recent progress in statistical 

models allowing us to map marker by environment interactions, to our knowledge no 

investigations have included an examination of selection patterns at such loci in a modern 

breeding population (Malosetti et al., 2013; Piepho & Pillen, 2004; van Eeuwijk et al., 

2010). 

 

Materials and Methods 

Panel Selection & Phenotype Collection  

This study utilized 203 experimental lines from the University of Nebraska-

Lincoln soybean breeding program that were previously selected to explore and compare 

mapping methodologies related to GxE interactions across the lines’ target growing 

region in eastern Nebraska. Lines selected represented a range of both average yield and 

yield stability according to Wricke’s ecovalence, selected from a pool of genotypes that 

had existing yield data from 2013, 2014, and 2015 multi-environment yield trials. Five 
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highly productive testing sites in eastern Nebraska were selected for multi environment 

yield trials which took place over three years (2017, 2018, 2019). Yield trials were grown 

in an augmented incomplete randomized block design at each site and included three 

replicates per site. More details about the study population and yield trials can be found 

in Happ et. al (2021).  

DNA Extraction and Whole Genome Sequencing 

DNA was isolated from lyophilized leaf tissue collected from twenty plants per 

genotype using a CTAB base extraction method scaled down for a ninety-six well plate 

by dividing all reagent volumes by forty (KEIM & P., 1988). Extracted DNA was 

normalized to a concentration of twenty ng/µL and sequencing libraries were constructed 

using the iGenomx RIPTIDE High Throughput Rapid Library Prep Kit (Twist 

Bioscience, South San Francisco, CA 94080). Libraries were quantified using the KAPA 

Library Quantification Kit for Illumina platforms (Roche Sequencing Solutions, Santa 

Clara, CA 95050) and then sequenced on an Illumina NovaSeq 6000 instrument (Illumina 

Hayward, Hayward, CA 94545) by the genome sequencing facility at the University of 

Kansas Medical Center.  

Sequence Mapping and Variant Discovery 

To assess historical divergence patterns, we obtained raw sequence data from 

1,318 lines used in previous studies that included wild, landrace, and elite soybean 

genotypes across many geographies for comparison to our local breeding population 

(Fang et al., 2017; Torkamaneh et al. 2018.; Valliyodan et al., 2016; Zhou et al., 2015). 

Raw reads were filtered for adapter sequencing contamination, base quality, and 
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truncated reads using Trimmomatic v0.39 (Bolger et al., 2014). Bowtie v2.4 (Langmead 

& Salzberg, 2012) was used to map reads to the Glycine max Wm.82.a4.v1 reference 

genome (Valliyodan et al., 2019) using the “very sensitive” setting. Picard v2.9 was used 

to add sample names to the read groups in the resulting .bam file. To avoid the 

computational cost of holding over 1,000 .bam files open in memory at once, individual 

.bam files were combined into one large .bam file using Sambamba v0.8.1 (Tarasov et al., 

2015). Then, the combined .bam file was split by chromosome using Sambamba so that 

variant discovery could proceed in parallel per chromosome without loading all the 

mapped reads associated with the other nineteen chromosomes into memory. Finally, to 

increase accuracy, duplicate reads were marked in the mapped .bam files with 

Sambamba. In summary, the input for our variant caller was one of twenty .bam files that 

contained all the reads for a single chromosome across all sample genotypes. Variants 

discovery was then performed per chromosome, and within each chromosome in parallel 

chunks, using Freebayes version 1.3 (Garrison & Marth, 2012). To minimize the 

variation in computational time, chunk sizes were determined with respect to sequencing 

coverage as recommended in the Freebayes manual. To achieve this, coverage estimates 

were generated from the combined .bam file using Samtools v1.6, and then the 

“coverage_to_regions.py” script provided with the Freebayes software was used to 

determine the physical bounds of chunks with an even amount of sequencing coverage. 

To avoid missing variation on the edges of each chunk, chunks were then adjusted to 

have 200 bp of overlap with the both the preceding and/or following chunk. Freebayes 

was ran with the standard filters, as well as a requiring a minimum site coverage of three. 

As suggested for increased computational performance, only the four best alleles were 
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evaluated at each SNP variant site. The initial results of the variant calling contained 

14,769,136 sites (both InDels and SNPs) with a phred-scaled quality score greater than 

forty. Further quality filtering was performed with the vcffilter utility of vcflib, by 

employing the following recommended hard filters:  DP > 5, QUAL/AO > 10, QUAL/DP 

> 2, SAF > 0 & SAR > 0, RPR > 1 & RPL > 1, MQM / MQMR > 0.9 & MQM / MQMR 

< 1.05 PAIRED > 0.05 & PAIREDR > 0.05 & PAIREDR / PAIRED < 1.75 & PAIREDR 

/ PAIRED > 0.25 | PAIRED < 0.05 & PAIREDR < 0.05. This left a remaining 

10,829,817 variants. Samples and variants with over fifty percent missing data were 

filtered next, which removed eleven genotypes and left 10,645,412 variants over 1,276 

samples. To assess any possibly cross contamination of samples, we computed the 

inbreeding coefficient (F) using plink 1.9. Thirty-seven samples with an F statistic of 

under 0.9 were removed, as soybean is an inbred crop and near complete homozygosity 

from these lines was expected. At this stage, indels were also removed resulting in a final 

SNP dataset of 7,137,085 variants across 1,237 genotypes. 

Calculation of Genetic Diversity and Divergence 

Signatures of artificial selection can be recognized in genetic variation by using 

measures of genetic diversity and divergence from other populations. To assess the 

former, ANGSD version 0.934/0.935 was used to calculate Tajima’s D per chromosome 

using the mapped .bam files from bowtie2 (Korneliussen et al., 2014). Filtering was 

performed by enabling BAQ computation (Li, 2011), setting the coefficient for 

downgrading reads with excessive mismatches to fifty, setting a minimum mapping 

quality of thirty, and a minimum base quality of twenty. Respectively, these filters were 
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implemented from within the ANGSD command with the flags “-baq 1 -C 50 -minMapQ 

30 -minQ 20”. Sliding window estimates were performed with a window size of 20,000 

bp and step size of 5,000 bp using the thetaStat utility of the ANGSD package. To assess 

divergence, we calculated pairwise weighted Fst using vcftools version 0.1 from one wild, 

one landrace, and three elite soybean populations using biallelic SNP data discovered in 

whole genome sequence data (Danecek et al., 2011). 

Variance Contribution of Main Genetic and GxE Effects 

  Models which fit one marker at a time are subject to inflation biases, but fitting all 

markers directly in a single model was not computationally feasible. To handle these 

challenges, we implemented a two-stage approach, where BLUPs for the genotype and 

GxE effects were extracted first, and then fit as the phenotype in a GBLUP model. 

Prediction values obtained via GBLUP modeling have been proven equivalent to those 

from SNP-BLUP, indicating one can then back-solve for individual marker values from 

these solutions. (Goddard, 2009; Strandén & Garrick, 2009). To achieve this, we utilized 

ASREML-R 4 since it provides a wide range of options for modeling both fixed and 

random effects, as well as the option to include user defined variance structures. Equation 

4.1 describes the model used to extract the best linear unbiased predictors (BLUPs) for 

main and GxE effects for grain yield in our Nebraska population: 

 

(4.1)					𝑦 = 𝑋𝛽 + 𝑍𝛼 + 𝑒 
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where y is the vector of raw yield estimates assumed to be normally distributed, X is the 

design matrix of fixed effects including the intercept and maturity grouping, β is the 

vector of fixed effect coefficients, Z is the incidence matrix of random effects including 

genotype and GxE effects, α is the vector of random effect coefficients, and e is the 

vector of residuals. Residuals were specified as a direct sum of separate variance matrices 

for each environmental level. Each environmental “level” for the residual is defined as 

the unique year and location combination. . Each environmental “level” for the residual is 

defined as the unique year and location combination. BLUPs were extracted from these 

model results, and were then used to fit a GLBUP model described in equation 4.2: 

 

(4.2)					𝑦 = Xβ + Zα + e, var(α) = 𝐺𝜎!!
"  

 

where y is a vector of BLUPs for either the main genetic effects or GxE effects for a 

single environment, X is the design matrix of fixed effects including the intercept, β is the 

vector of fixed effect coefficients, Z is the incidence matrix of random effects including 

the genotype, α is the vector of random effect coefficients, e is the vector of residual, and 

G is the scaled genomic relationship. . To compute G, we used genome-wide SNP 

information and constructed it according to equation 4.3: 

(4.3)				𝐺 =
𝑀𝑀#

𝑁$%&
	 

where M is the n x NSNP centered and scaled marker matrix (n being 203 genotyped 

individuals and NSNP being the 7,137,085 SNP markers). After fitting the GBLUP model, 

we backsolved for individual SNP effects and variances, a method first outlined by 
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VanRaden (2008), which has since been further augmented and widely used in animal 

applications. Equations 4.4 and 4.5 below describe this approach: (Gualdrón Duarte et al., 

2014; Legarra et al., 2018; VanRaden, 2008).  

 

(	4.4)				𝑢O = 	𝑀𝑀'(αP 

(4.5)			var(𝑢O) = M#G'(	(G𝜎)" − 𝐶**)G'(M 

 

where 𝑢O  is the vector of SNP effects to be solved, αP is the vector of solutions from the 

GBLUP evaluation in equation 2, and 𝐶** is a matrix calculated according to equation 

4.6: 

(4.6)					𝐶** = 𝜎+"(𝐼 +	𝐺'(𝜆), 𝜆 =
𝜎+"

𝜎)"
		 

 

Using these results, the variance explained per marker was solved using equation 4.7: 

 

(4.7)						𝑉𝐸, =	
2𝑢O	,

"(𝑀𝐴𝐹,)(1 − 𝑀𝐴𝐹,)
2𝑢O	,

"(𝑀𝐴𝐹,)(1 − 𝑀𝐴𝐹,) + (var(𝑎O,)")2𝑛(𝑀𝐴𝐹,)(1 − 𝑀𝐴𝐹,)
	 

 

where for the ith marker, VE represents the total variance explained, û represents the 

predicted marker effect, MAF represents the marker’s minor allele frequency, and n 

represents the total number of genotyped individuals. After performing these individual 

SNP calculations, measures were computed along sliding windows of 20,000 bp with a 

step size of 5,000 bp summing the results for all SNPs within each window. Permutation 

testing was performed by shuffling the grain yield phenotypes with respect to the 
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genotypes and then fitting the modeling approach outlined in equations 4.1-4.7. One 

hundred permutations were used for establishing a null distribution of the grain yield 

variance explained by GxE and main genetic effects.  

Significance and Classification of Effect Types 

 Since the purpose of this study was not to identify traditional QTLs but perform a 

comparison of selection statistics to phenotypic variance explained by the underlying 

genetics, we designated windows as statistically significant for further comparison if the 

variance explained was more than three standard deviations higher than the mean. From 

this point, we classified significant GxE windows as either conditionally neutral, 

antagonistic, or differentially sensitive using the number of environments it reached 

significance in, as well as sign of the significantly estimated effects in each environment. 

Calculations of the overall contribution of effect types to the genetic variance were 

performed in such a way that for significant overlapping windows, the same SNPs were 

not included in the calculation multiple times. 

Visualizations  

All visualizations were performed in R/4.1 using the “ggplot2” package in 

conjunction with “ggpubr”, “RColorBrewer”, and “ggtext” (Alboukadel Kassambara, 

2022; Claus O. Wilke & Brenton M. Wiernik, 2022; Erich Neuwirth, 2022; R Core 

Team, 2021).  The package “data.table” was used for reading in datasets. For basic data 

manipulations, “matrixStats”, ““tidyr”, and “dplyr” were leveraged (Hadley Wickam et 

al., 2022; Hadley Wickam & Maximilian Girlich, 2022; Henrik Bengtsson, 2021). 
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Data Availability 

Raw sequencing data directly generated by this project for use in creating the 

study panel has been submitted to the NCBI Short Read Archive under submission 

numbers SUB13622898 & SUB13716130. Supplementary figures and tables can be 

found in “Supplementary Figures and Tables” section of the appendix. Sample metadata 

and sequencing depth of the lines used in the study can be found in the supplementary 

data file 4.1. 

 

Results 

DNA Sequencing and SNP Discovery 

  Variant discovery was performed in order to carry out analyses that would allow 

us to determine how genomic regions within our local Nebraska population contributed to 

grain yield, as well as the extent of divergence from other populations. In addition to 

sequencing the improved Nebraska cultivars, we obtained raw sequence data from several 

wild, landrace, and other improved cultivar populations via the NCBI short read archive 

with the intent to calculate Fst between the populations using biallelic SNP data. 

Improved cultivars were further divided based upon their origin into East Asian, 

Canadian, and United States (excluding our local Nebraska genotypes) populations. The 

average sequencing coverage for all genotypes was 13.33, with a standard deviation of 

8.27. Per population, the improved United States cultivars had the highest average 

sequencing coverage of 22.71, and the improved Nebraska cultivars had the lowest 

average sequencing depth of 9.27. After all quality control steps, the final marker panel 
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for Fst calculations consisted of 7,137,085 high quality, homozygous, biallelic SNPs 

across 1,237 individual genotypes with 6.32% of marker genotype calls missing. Per 

marker missing data rates ranged from 0 to 50%, with a standard deviation of 7.81%. Per 

individual missing data rates ranged from 0.26 to 46.68% with a standard deviation of 

6.38%. 2,640,097 of these SNPs were polymorphic within our Nebraska improved 

cultivar population and were subset for use in calculating the contribution of windowed 

genomic regions to grain yield variance (Supplementary Table 4.1). This variation is 

unique to our population and therefore free from ascertainment biases associated with 

using a common genotyping panel.   

Partitioning Main and GxE Variance and Effects on Grain Yield 

Spanning five sites and eleven unique environments, 213 soybean experimental 

lines that were initially tested from the University of Nebraska – Lincoln breeding 

program were evaluated for multi environment yield trials in an augmented incomplete 

randomized block design. Grain yield over the course of these trials ranged from 2,162.74 

to 7,080.70 kg/ha, with an average of 4,976.41 kg/ha and standard deviation of 810.34 

kg/ha, and were distributed approximately normally per location (Happ et al., 2021). We 

assessed contributors to grain yield variance using a multi-section mixed effects model 

and found that environmental effects explained the most variance of any component, 

contributing 51.61 to 63.30% to the total variance of the raw yield esimates. Genotype 

effect explained another 8.32 to 10.21%. GxE interactions contributed between 10.99 to 

13.48%, a result which highlights the overall importance of their contribution to grain 

yield variance for this population (Supplementary Table 4.2).  
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To gain perspective on the contributions of specific DNA regions to soybean 

grain yield, the proportion of variance explained and per environment effects were 

calculated on sliding genomic windows of 20,000 bp with 203 lines that passed 

genotyping filters. The average proportion of variance explained per window was 

approximately the same for main and GxE effects at 1.00e-5 and 1.01e-5, respectively. 

However, the median value for GxE effects and the overall distribution was skewed 

distinctly higher than the main genetic effects, suggesting greater contribution to overall 

yield variance. Interactions at the Phillips sites constituted the three highest values for 

proportion of variance explained of any environments, as well as broadest distributions 

for proportion of variance explained (Supplementary Table 4.3, Supplementary Figure 

4.1A). This did not match the top three widest ranges of effects per environment, which 

were observed at the 2019 Cotesfield, 2018 Phillips, and 2018 Wymore sites 

(Supplementary Table 4.4, Supplementary Figure 4.1B).  

GxE interactions can be further classified by the frequency it is observed among 

the selection environments, and the direction of those effects. We selected regions that 

explained more than three standard deviations above the average for yield variance as 

significant.  Between main and GxE effects, this amounted to 15,528 windows or 15.86% 

of the total number of windows analyzed. Of these, we found that 11,299 were 

categorized as conditionally neutral. (Figure 4.1A). Conditionally neutral effects 

constituted approximately a third of the total measurable genetic variance (Figure 4.2A),  
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Figure 4.1: Comparisons of the number of significant windows among various levels of 
effect type (A), direction (B), and prevalence among environments (C). Black points 
represent the average number of windows sigificant for that effect classification based 
on the permutations, and the lines extending from those points the standard deviation. 
Red triangles represent the number of windows significant for that effect classification 
in the observed data, and a solid fill of the triangle reprsents that value fell outside the 
error bar for the permutation. 
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however had the lowest average proportion of variance explained per genomic window 

(Figure 4.2D). Interestingly, the majority of these loci were detected as having an effect  

in the Phillips location, specifically an overwhelming amount in 2019 (Supplementary 

Figure 4.2). This was also our highest average yielding location, but also our most 

variable, suggesting GxE effects play a role in increasing overall yield by allowing a 

genotype to take advantage of positive conditions. Main genetic effects were the next 

most prevalent effect type (Figure 4.1A) and explained the second highest amount of total 

genetic variance. (Figure 4.2A). When also considering they displayed the highest 

average proportion of variance explained per individual window, constitutive effects still 

clearly play a very important role in the determination of soybean grain yield and cannot 

be discounted (Figure 4.2D). Differentially sensitive effect patterns were observed almost 

as frequently as main genetic effects and antagonistic effects were the rarest (Figure 

4.1A), though effect sizes were similar between the two (Figure 4.2D). When 

categorizing these windows by the number of environments they had an effect in, we 

observed fewer windows and a sharp decrease in the total genetic variance explained as 

the number of environments increased (Figure 4.1C & Figure 4.2C). However, the 

average proportion of genetic variance explained per window increased as the number of 

significant environments increased (Figure 4.2F). These data suggest that soybean grain 

yield is mostly determined by the accumulation of many small effect loci, that are often 

only detectable in a few or single environments. 

Comparison of these counts to those from the permutations can shed light on the 

mechanisms of selection present for soybean grain yield. The number of significant 
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windows for all GxE effect types diverged significantly from the null expectation set by 

the permutations, albeit in different directions, indicating a mix of positive and negative 

selection dependent on effect type. Further examination also finds that loci with positive 

effects are more common than negative (Figure 4.1B) and explain more variance (Figure 

4.2B). This supports the conclusion that artificial selection has significantly enriched the 

GxE landscape for grain yield with beneficial alleles. Additionally, average variance 

explained between positive and negative windows did not appreciably differ (Figure 

4.2E). Reinforcing the narrative of negative selection at antagonistic loci, we observed 

effects in up to six environments in a single window in our real data, while the upper  

Figure 4.2: When summed together conditionally neutral loci constitute the greatest proportion of 
genetic variance explained (A), but per window explain the least (D). Positive effects explained a 
greater proportion of the total genetic variance in both differential sensitivity, and conditional 
neutrality (B), although the average per window variance explained was only slighlty higher for 
positive differential sensitvity effects (E). Windows affecting increasing numbers of environments 
make up very small proportion of the total genetic variance for grain yield, but explain more 
variance per window on average (C,F). Main genetic effects explain the second most amount of 
genetic variance for grain yield as a whole, and have the largest effect size per window (A,D).For the 
boxplots, the diamond shape and text represent the mean.  
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  limit of the permutations suggests we should expect up to nine (Figure 4.1C). As the 

overall number and contribution of antagonistic effects is small in comparison to others, 

we interpret these data to mean that GxE for soybean grain yield in our population is 

generally under positive selection. 

 

Grain Yield Variance Explained at Regions of Low/High Tajima’s D and Fst  

  Quantifying changes in the genetic variation both within a population, and 

between populations, can help determine how selection has shaped a population’s overall 

genomic landscape. To examine this, we calculated Tajima’s D, as well as pairwise 

weighted Fst values with five other populations, on sliding 20,000 bp windows across the 

entire genome. Tajima’s D values ranged from -2.90 to 4.04, with an average of -1.52 and 

were skewed towards more negative values indicating a strong general presence of 

directional selection. (Supplementary Figure 4.3A). Weighted pairwise Fst estimates for 

the entire genome followed the expected trend, with the highest value found in comparing 

our improved Nebraska cultivars to the wild population, and the lowest in comparison to 

the other United States improved cultivars. This trend was consistent with examinations 

of weighted Fst values on sliding windows (Supplementary Table 4.5). Distributions of 

windowed weighted Fst values were approximately normal for comparisons to the wild 

cultivars and skewed towards 0 for all other comparisons (Supplementary Figure 4.3B).  

Measurements of genetic diversity and divergence on windows along the genomic 

space also provides a means by which to compare the level of artificial selection 

experienced between different parts of the genome. To explore the effect of artificial 

selection on loci with either main or GxE effects, we compared the amount of grain yield 
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variance attributable to each between the lowest and highest 5% of the sliding windows 

for Tajima’s D and weighted pairwise Fst values. However, comparisons of variance 

explained between these subsets alone were likely to be biased by differences in allele 

frequencies between subsets. That is, the same allele found at a higher frequency would 

be calculated to contribute more to variance than if it was found at a lower frequency. 

Indeed, for low and high subsets of both Tajima’s D and pairwise weighted Fst in this 

study, differences in minor allele frequency distributions were apparent (Supplementary 

Figure 4.3B).  

Figure 4.3: GxE effects, but not main genetic effects, explain significantly 
more grain yield variance on average in windows that make up the top 5% 
of Tajima’s D  values. Diamonds in the boxplots in (A) represent the subset 
mean.  Grey distributions in (B) represent the mean differences between 
Tajima’s D subsets in the permutations, and the dashed line represents the 
true mean difference between Tajima’s D subsets in the real data. 



   94 
To account for this bias, we utilized a permutation testing approach that would 

allow us to separate true differences in contribution to grain yield from those that appear 

solely to unequal allele frequency distributions between subsets (see Materials and 

Methods). Results of the permutation testing showed that the grain yield variance 

explained by GxE effects was significantly larger than expected (p < 0.01) at regions of 

high Tajima’s D values, but this was not true for main genetic effects (Figure 4.3A-B). 

The same analysis performed for the weighted Fst calculations revealed that for GxE 

effects there was a significantly increased amount of grain yield variance explained by 

regions of high divergence from the wild population. However, there was a significant 

decrease in amount of grain yield variance explained by regions of high divergence from 

Landrace and East Asia populations (Figure 4.4A-B). When examining the main genetic 

effects, only a significant decrease in grain yield variance was found in regions of 

divergence from the East Asia population. (Figure 4.4C-D). The pervasive increased level 

of grain yield variance explained by GxE, but not main genetic effects, at regions of high 

genetic diversity and low divergence was consistent with a pattern of relaxed selection in 

regions associated with environment interactions.  

Tajima’s D and Fst in Relation to Effect Type, Direction, and Number of Significant 

Environments 

The effect pattern displayed by a locus can influence the selection it experiences. 

To assess this, we contrasted the Tajima’s D and weighted pairwise Fst values in regions 

significantly contributing to grain yield variance by effect type classification, as well as 

by effect direction and number of significant environments for the relevant 

classifications. Compared to the permutation data, all GxE effect types displayed a higher  
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Figure 4.4:(A-B) Significantly less GxE variance than expected is observed for regions of 
high divergence from Landrace and East Asian populations, as opposed to  comparison to 
the wild population. (C-D) For main genetic effects, less variance was observed at high 
divergence from the East Asian population. Diamonds in the boxplots in (A & C) 
represent the subset mean. Grey distributions in (B & D) represent the mean differences 
between Fst subsets in the permutations, and the dashed line represents the true mean 
difference between Fst subsets in the real data.  
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average Tajima’s D and lower Fst value than expected, while main genetic effects only 

displayed a lower Fst value. This was generally consistent with the comparison of 

variance explained by each effect type at regions of contrasting diversity and divergence 

in the previous section. Among GxE effects, conditionally neutral effects consistently had 

the lowest Tajima’s D and lowest Fst, a pattern that was not expected based on the 

permutation data. (Figure 4.5A and 4.6A). In fact, weighted Fst at conditionally neutral  

loci was higher than the genome average for four out of five of the comparisons. These 

results suggest that conditionally neutral loci have been under greater selection pressure 

than other types of GxE loci. Further parsing the data by effect direction revealed that   

Figure 4.5: (A) While the average Tajima’s D per effect type is higher than the genome wide median for 
all effect type classifications, conditionally neutral loci has a markedly lower average value than other 
effects, a difference not predicted by the permutations. (B) Tajima’s D was also noticeably lower for 
negative differentially sensitive effects. (C) and roughly increases with an increasing number of 
environments a window effects. For (A-C), black points represent the average number of windows 
sigificant for that effect classification based on the permutations, and the lines extending from those 
points the standard deviation. Red triangles represent the number of windows significant for that effect 
classification in the observed data, and a solid fill of the triangle reprsents that value fell outside the 
error bar of the permutations. The dashed line in (A) represents the genome wide average Tajima’s D. 
:  
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Figure 4.6: (A) Per effect type, the average weighted Fst value was lower than the permutation 
data and varied about the genome wide mean in all comparisons but consistently higher in 
conditionally neutral loci compared to other effect types. (B) No clear difference in divergence 
was detected between conditionally neutral and differentially sensitive effects for positive vs 
negative effects (C) Weighted Fst roughly decreased with an increasing number of environments 
with effects. For (A-C), black points represent the average number of windows sigificant for that 
effect classification based on the permutations, and the lines extending from those points the 
standard deviation. Red triangles represent the number of windows significant for that effect 
classification in the observed data, and a solid fill of the triangle reprsents that value fell outside 
the error bar of the permutations. The dashed line in (A) represents the genome wide average 
pairwise weighted Fst for that population.  
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diversity at negative differentially sensitive effects was lower than positive, suggesting 

stronger selection to remove these undesirable alleles (Figure 4.5B). A significant trend 

in weighted Fst between positive and negative effects was not appreciably clear (Figure 

4.6B).  When examining significant windows categorized by the number of environments 

they affect, Tajima’s D generally increased and weighted Fst generally decreased with the 

number of environments. This pattern is loosely the opposite of what was predicted by 

the permutations and is most apparent for the antagonistic effects which reached a greater  

number of affected environments than the differentially sensitive loci, indicating negative 

selection on loci with effects in more environments (Figure 4.5C & 4.6C). Divergence 

from this trend for windows with a greater number of affected environments may be a 

result of the decreased number of windows observed to have such wide-spread effects 

(Figure 4.1C).  

Discussion 

In this paper we highlight the contribution of GxE to the complexity of the 

genomic landscape for soybean grain yield in an elite breeding population, and present 

evidence for varying levels of directional selection among these regions with respect to 

effect type, direction, and number of environments affected. Understanding the basis of 

GxE interactions for any trait and how the current landscape may have been shaped by 

selection within a crop breeding program is vital when seeking appropriate avenues to 

further drive genetic progress in crop productivity. Here, we first demonstrate that GxE is 

a major contributor to grain yield in an elite soybean population, via a disproportionately 

large number of small, conditionally neutral effects. This is consistent with hypotheses in 

the literature that conditionally neutral effects will be more predominant in selfing 
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species and when gene flow is restricted, as in a high intensity breeding program 

(Wadgymar et al., 2017).  We then followed up with examinations of genetic diversity 

and divergence and show how selection appears to be acting less intensely in regions of 

the genome involved in environmental interactions.  

Because the patterns of GxE interaction are variable and diverse, we hypothesized 

that selection pressure accordingly varies and does affect all GxE loci the same.  

Interestingly, in our study it was apparent that conditionally neutral loci displayed 

markedly increased signatures of selection relative to other effect types. This conflicts 

with the logic that loci with smaller effects in a smaller number of environments would 

experience weaker selection than those with more effects in a greater number of 

environments (Josephs, 2018). One possible explanation for this is that many of these loci 

classified as conditionally neutral truly have an effect in more than one environment, but 

it may be nearly impossible to distinguish this if selection has pushed allele frequencies 

in these regions towards fixation and their contribution to the overall phenotypic variance 

becomes diminished. This would also explain why we observed increased genetic 

diversity and decreased divergence in tandem with the increasing number of 

environments a genomic region affected. It is important to keep in mind the data 

presented in this study essentially provides a snapshot in time of an elite soybean 

breeding program, with loci in multiple stages of being selected upon. An interesting 

future direction for this research might involve studying the allele frequency changes at 

these antagonistic and differentially sensitive loci within the breeding population over 

multiple generations as it is subjected to artificial selection.  
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Additionally, further characterization of the environmental and plant growth 

factors contributing to GxE interactions could allow breeders to leverage positive GxE 

sources. A study of Argentinian soybean varieties recently discovered that increased GxE 

interactions were seen in genotypes with extended seed filling periods, and that this 

seems to translate into a net benefit for average seed yield as well as yield stability (de 

Felipe & Alvarez Prado, 2021). Our study also observed an increased level of GxE 

interactions in our highest yielding environment, possibly warranting the further study of 

conditions at this site that are possible leading to an advantageous GxE response. 

Previously, we reported widespread antagonistic effects in this population using 

heavily imputed genotype data and single-locus genome wide association models (Happ 

et al., 2021). This contrasts with the results from this study, which concludes that the 

GxE landscape for grain yield is dominated by small, conditionally neutral effects. We 

speculate this difference in results is due to improvements in methods deployed in this 

study, namely assaying genetic variation from high depth sequencing data and deploying 

a modeling approach that simultaneously evaluated the contributions made by SNPs to 

grain yield. Performing SNP discovery from whole genome sequence data as opposed to 

imputing from a distantly related reference panel allowed us to capture more rare 

variation unique to this specific breeding population. Having the ability to analyze this 

low frequency variation may have been a key contributor in the discovery of small, 

conditionally neutral effect loci, as evidenced by the decreased Tajima’s D value 

associated with them, indicative of more rare variation relative to other effect types. In 

this study we also considered genomic windows of multiple SNPs to be significant if the 

variance they explained was more than three standard deviations greater than the average 
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of all windows. Previous results were based on by identifying QTLs using a conservative, 

Bonferroni corrected p-value threshold to control for the multiple testing problem while 

modeling one variant at a time. The power to detect small effects at single SNPs, 

especially at low allele frequencies, may have been diminished in the previous approach. 

It is additionally unclear what the effect of simultaneously calculating all the SNP effects 

in a panel has on the power to discover GxE loci of varying effect patterns, which may be 

worth exploring given the gap in results seen between these studies. 

Performing selection scans alone may overlook subtle changes in genetic 

variation that result from polygenic selection on a quantitative trait, and attempting to 

draw conclusions based on examining these values at QTL are likely to be biased by 

allele frequency (Josephs et al., 2017). To combat this, Josephs et al. (2015) compared 

QTL discovered in permutations to real data in order to avoid drawing false conclusions, 

a strategy we similarly implemented. This approach allowed us to elucidate that yield 

variance was higher at regions of diminished signatures of selection for GxE, but not 

main genetic effects - a pattern that would not have been clear without the null 

distributions established by the permutation data. A previous study in corn presented 

similar results where they compared the GxE variance for grain yield explained by 

groups of low and high Fst between temperate and tropical lines, and found it to be 

significantly lower in regions of high Fst (Gage et al., 2017). They concluded this was an 

indicator of selection against GxE. But we would suggest this could also be interpreted as 

reduced efficacy of selection to drive strong changes in allele frequency at these loci, due 

to the transient nature of environmental interactions. Yet another valuable insight made 
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possible by the permutation data, is that genetic variation for soybean grain yield is under 

both positive and negative selection, dependent on effect type and direction. 

 

Conclusions 

 The data analyzed in our study suggest that loci involved with GxE effects are 

under varying levels of relaxed or weakened directional selection compared to the rest of 

the genome, while constitutive effects were not. GxE effects were found to be a massive 

driver of genetic variance for soybean grain yield principally via small effects detectable 

in single environments, which displayed relatively stronger selection signatures than 

other GxE loci. The evidence of even diminished directional selection at such an 

important component of genetic variance highlights the importance of incorporating 

novel material into breeding programs to preserve the future adaptability of a population 

to new environmental changes. Additionally, with this new understanding of the 

complexity surrounding the genetic architecture of soybean grain yield, breeders and 

researchers may find value in developing association and prediction models that 

explicitly take advantage of positive GxE interactions to aid in boosting genetic gain. 

Future studies which identify examine the change in allele frequencies at GxE loci over 

multiple generations could help resolve a more dynamic picture of how selection shapes 

the genetic landscape for soybean grain yield.  
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APPENDIX 

Supplemental Tables 

Supplemental Table 2.1: Sequencing depth of individual genotypes used in the generation of the 
reference and study panels. Samples with text struck through were dropped from final reference 
panel due to suspected contamination. 
 

Genotype Panel Mean Depth 

G100540 Study 1 

G100534 Study 1.01 

G100585 Study 1.02 

G100613 Study 1.02 

G100538 Study 1.04 

G100579 Study 1.04 

G100555 Study 1.05 

G100565 Study 1.05 

G100526 Study 1.06 

G100600 Study 1.07 

G100573 Study 1.08 

G100553 Study 1.09 

G100602 Study 1.09 

G100545 Study 1.11 

G100561 Study 1.12 

G100582 Study 1.13 

G100562 Study 1.14 

G100605 Study 1.15 

G100506 Study 1.17 

G100529 Study 1.17 

G100535 Study 1.17 

G100541 Study 1.17 

G100583 Study 1.19 

G100591 Study 1.19 

G100536 Study 1.2 

G100559 Study 1.21 
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G100574 Study 1.22 

G100576 Study 1.25 

G100504 Study 1.26 

G100554 Study 1.26 

G100601 Study 1.26 

G100508 Study 1.29 

G100515 Study 1.3 

G100532 Study 1.3 

G100569 Study 1.3 

G100596 Study 1.3 

G100516 Study 1.31 

G100595 Study 1.31 

G100537 Study 1.32 

G100548 Study 1.32 

G100531 Study 1.34 

G100566 Study 1.36 

G100599 Study 1.36 

G100597 Study 1.37 

G100606 Study 1.37 

G100575 Study 1.38 

G100503 Study 1.4 

G100517 Study 1.4 

G100547 Study 1.4 

G100523 Study 1.44 

G100519 Study 1.51 

G100552 Study 1.52 

G100507 Study 1.55 

G100581 Study 1.55 

G100513 Study 1.57 

G100578 Study 1.59 

G100592 Study 1.61 

G100510 Study 1.64 

G100607 Study 1.65 

G100590 Study 1.69 

G100593 Study 1.69 

G100550 Study 1.71 

G100563 Study 1.75 

G100521 Study 1.82 

G100560 Study 1.84 

G100522 Study 1.85 
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G100557 Study 1.86 

G100527 Study 1.87 

G100568 Study 1.9 

G100570 Study 1.91 

G100501 Study 1.99 

G100514 Study 1.99 

G100588 Study 2 

G100524 Study 2.04 

G100587 Study 2.04 

G100544 Study 2.05 

G100511 Study 2.1 

G100528 Study 2.15 

G100610 Study 2.16 

G100546 Study 2.17 

G100584 Study 2.17 

G100509 Study 2.21 

G100577 Study 2.27 

G100551 Study 2.28 

G100580 Study 2.3 

G100608 Study 2.32 

G100539 Study 2.36 

G100571 Study 2.36 

G100549 Study 2.38 

G100589 Study 2.44 

G100609 Study 2.44 

G100525 Study 2.52 

G100604 Study 2.59 

G100594 Study 2.64 

G100530 Study 2.74 

G100586 Study 2.87 

G100564 Study 2.91 

G100603 Study 2.91 

G100518 Study 2.93 

G100543 Study 3.06 

G100611 Study 3.11 

G100502 Study 3.3 

G100572 Study 3.66 

G100598 Study 4.2 

G100505 Study 4.25 

G100558 Study 4.47 
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G100556 Study 4.58 

G100512 Study 6.78 

G100614 Study 7.43 

G100542 Study 9.15 

G100612 Study 14.65 

G100533 Study 14.78 

G100567 Study 16.65 

G100520 Study 36.47 

PI_518664 Reference 14.8 

Peking Reference 15.68 

PI_089772 Reference 16.3 

PI_090763 Reference 14.28 

PI_404166 Reference 16.58 

PI_407788A Reference 15.5 

PI_424298 Reference 16.18 

PI_437655 Reference 13.37 

PI_495017C Reference 15.6 

PI_468915 Reference 12.51 

PI_507354 Reference 13.29 

PI_567305 Reference 13.39 

S05-11482 Reference 15.76 

PI_548667 Reference 13.64 

PI_437654 Reference 15.77 

PI_567387 Reference 20.48 

PI_437725 Reference 19.8 

PI_437690 Reference 14.15 

PI_548402 Reference 18.37 

PI_088788 Reference 12 

PI_209332 Reference 15.82 

PI_404198B Reference 14.84 

PI_424608A Reference 12.58 

PI_548316 Reference 17.68 

PI_567516C Reference 13.22 

PI_612611 Reference 14.9 

S10-11227 Reference 17.17 

Holladay Reference 17.6 

IA3023 Reference 16.27 

Maverick Reference 16.34 

PI_079691-4 Reference 15.08 
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PI_086006 Reference 19.54 

PI_087617 Reference 19.64 

PI_087631-1 Reference 16.36 

PI_196175 Reference 18.59 

PI_200508 Reference 14.84 

PI_248515 Reference 12.67 

PI_366121 Reference 16.97 

PI_378702 Reference 14.29 

PI_398593 Reference 18.63 

PI_398595 Reference 19.64 

PI_398610 Reference 19.95 

PI_398614 Reference 16.93 

PI_407162 Reference 19.51 

PI_407184 Reference 18.81 

PI_407729 Reference 17.84 

PI_407965 Reference 20.48 

PI_408105A Reference 17.38 

PI_416937 Reference 19.48 

PI_424078 Reference 18.29 

PI_424079 Reference 18.4 

PI_424088 Reference 17.93 

PI_437169B Reference 19.19 

PI_437679 Reference 17.68 

PI_437863A Reference 19.3 

PI_438258 Reference 17.98 

PI_458515 Reference 14.3 

PI_464920B Reference 20.7 

PI_467312 Reference 17.78 

PI_471938 Reference 16.82 

PI_475783B Reference 15.31 

PI_483463 Reference 14.96 

PI_518751 Reference 14.69 

PI_542044 Reference 22.72 

PI_547862 Reference 20.43 

PI_548317 Reference 18.84 

PI_548349 Reference 20.39 

PI_548415 Reference 16.23 

PI_548511 Reference 16.39 
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PI_548657 Reference 16.94 

PI_549031 Reference 15.95 

PI_552538 Reference 17.52 

PI_561271 Reference 17.65 

PI_567230 Reference 17.4 

PI_567336B Reference 17.94 

PI_567343 Reference 14.6 

PI_567354 Reference 17.61 

PI_567357 Reference 15.85 

PI_567383 Reference 18.44 

PI_567519 Reference 17.33 

PI_567611 Reference 18.14 

PI_567651 Reference 15.03 

PI_567690 Reference 17.16 

PI_567719 Reference 15.11 

PI_567731 Reference 15.6 

PI_591539 Reference 19.09 

PI_593258 Reference 17.8 

PI_594012 Reference 18.38 

PI_594512A Reference 20.49 

PI_594599 Reference 14.87 

PI_597387 Reference 17.35 

PI_603154 Reference 17.62 

PI_603170 Reference 17.44 

PI_603175 Reference 24.6 

PI_603176A Reference 18.92 

PI_603497 Reference 15.56 

PI_605869A Reference 15.96 

PI_639740 Reference 13.69 

PI_647086 Reference 18.2 

PI_658519 Reference 18.71 

S07-5049 Reference 20.88 

V71-370 Reference 20.88 

FC_31721 Reference 20.2 

PI_438471 Reference 24.01 

PI_417091 Reference 22.45 

PI_417015 Reference 16.22 
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Supplementary Table 2.2: Accuracy improvement as a result of filtering on Beagle’s genotype 
posterior probability after imputation. 
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Supplementary Table 2.3: A breakdown of the per item costs involved in the DNA extraction, 
sample library preparation, and sequencing of genotypes from 0.1X – 1X sequencing depths in USD.  

Item 1X 0.9X 0.8X 0.7X 0.6X 0.5X 0.4X 0.3X 0.2X 0.1X
DNA Extraction Reagents $0.10 $0.10 $0.10 $0.10 $0.10 $0.10 $0.10 $0.10 $0.10 $0.10

DNA Extraction Disposables/Overhead $0.30 $0.30 $0.30 $0.30 $0.30 $0.30 $0.30 $0.30 $0.30 $0.30
Library Prep Reagents $8.67 $8.67 $8.67 $8.67 $8.67 $8.67 $8.67 $8.67 $8.67 $8.67

Library Prep Disposables/Overhead $2.00 $2.00 $2.00 $2.00 $2.00 $2.00 $2.00 $2.00 $2.00 $2.00
NextSeq 500/550 High Output Kit v2.5 (300 cycles) $48.75 $43.88 $39.00 $34.13 $29.25 $24.39 $19.50 $14.63 $9.75 $4.88

Total per Sample Cost $59.82 $54.95 $50.07 $45.20 $40.32 $35.46 $30.57 $25.70 $20.82 $15.95
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Location Coordinates Years Maturity 
Groups 

Lines Tested 

MG I early 
MG II 

late 
MG II 

MG 
III 

Total 

Cotesfield 41.3581° N, 
98.6338° W 

2018, 2019 I, early II 23 85 x x 108 

Lincoln 40.8136° N, 
96.7026° W 

2017, 
2018, 2019 

late II, III x x 64 41 105 

Mead 41.2286° N, 
96.4892° W 

2018, 2019 I, early II 23 85 x x 108 

Phillips 40.8980° N, 
98.2132° W 

2017, 
2018, 2019 

I, II, III 23 85 64 41 213 

Wymore 40.1222° N, 
96.6623° W 

2018 late II, III x x 64 41 105 

Supplementary Table 3.1: Five testing sites across eastern Nebraska were used to evaluate the yield 
performance of 213 soybean lines over three years for a combination of eleven unique environments. 
Lines were grouped according to maturity and assigned to field sites accordingly.   



   118 
 
 
 
  

  
O

ve
ra

ll 
Ye

ar
 

Lo
ca

tio
n 

  
20

17
 

20
18

 
20

19
 

Co
te

sf
ie

ld
 

M
ea

d 
Ph

ill
ip

s  
Li

nc
ol

n 
W

ym
or

e 

Av
er

ag
e 

49
76

.4
1 

52
04

.8
0 

49
19

.8
1 

48
59

.9
9 

51
99

.8
7 

39
95

.4
9 

55
70

.4
0 

44
91

.3
5 

46
71

.4
9 

M
in

im
um

 
21

62
.7

4 
32

27
.3

0 
21

76
.1

9 
21

62
.7

4 
29

49
.5

6 
21

76
.1

9 
21

62
.7

4 
33

27
.5

1 
36

19
.3

7 

M
ax

im
um

 
70

80
.7

0 
70

80
.7

0 
68

32
.5

5 
63

53
.0

6 
65

68
.9

3 
54

19
.6

4 
70

80
.7

0 
56

72
.5

0 
58

11
.0

3 

St
an

da
rd

 D
ev

ia
tio

n 
81

0.
34

 
73

3.
96

 
92

0.
07

 
66

3.
02

 
63

6.
17

 
66

0.
77

 
67

3.
28

 
42

3.
59

 
36

2.
30

 

  Su
pp

le
m

en
ta

ry
 T

ab
le

 3
.2

: T
he

 o
ve

ra
ll 

gr
ai

n 
yi

el
d 

ra
ng

ed
 fr

om
 2

16
2.

74
 to

 7
08

0.
70

 k
g/

ha
 w

ith
 a

n 
av

er
ag

e 
of

 4
97

6.
41

 
kg

/h
a 

an
d 

st
an

da
rd

 d
ev

ia
tio

n 
of

 8
10

.3
4 

kg
/h

a.
 2

01
7 

w
as

 th
e 

hi
gh

es
t a

ve
ra

ge
 y

ie
ld

in
g 

ye
ar

 a
nd

 P
hi

lli
ps

 th
e 

hi
gh

es
t 

yi
el

di
ng

 a
ve

ra
ge

 lo
ca

tio
n.

   



   119 
 
 
 
 
 
  

 
Th

en
na

ra
su

’s
 n

on
-

pa
ra

m
et

ric
 st

at
is

tic
s 

Hu
hn

’s
 a

nd
 N

as
sa

r a
nd

 H
uh

n’
s 

no
n-

pa
ra

m
et

ric
 s

ta
tis

tic
s 

W
ric

ke
's 

Ec
ov

al
en

ce
 

Sh
uk

la
's 

St
ab

ili
ty

 
Va

ria
nc

e 

De
vi

at
io

n 
fr

om
 

re
gr

es
si

on
 

Re
gr

es
si

on
 

co
ef

fic
ie

nt
 

Co
ef

fic
ie

nt
 

of
 

va
ria

nc
e 

G
E 

va
ria

nc
e 

co
m

po
ne

nt
 

M
ea

n 
va

ria
nc

e 
co

m
po

ne
nt

 

Ka
ng

s 
Ra

nk
 

Su
m

 

  
N

P1
 

N
P2

 
N

P3
 

N
P4

 
S1

 
S2

 
S3

 
S6

 
W

i2  
σ2 i 

S2 di
 

*b
i 

CV
i 

θ (
i) 

θi
 

KR
 

Av
er

ag
e 

49
.8

9 
0.

59
 

0.
57

 
0.

62
 

62
.0

8 
34

36
.4

9 
34

7.
33

 
5.

10
 

28
7.

32
 

28
.8

6 
72

.5
9 

0.
54

 
12

.1
9 

28
.8

6 
28

.9
3 

na
 

M
in

im
um

 
14

.7
3 

0.
09

 
0.

19
 

0.
13

 
18

.2
9 

28
2.

47
 

20
.5

5 
0.

88
 

15
.3

7 
1.

42
 

0.
00

 
0.

00
 

0.
00

 
27

.9
5 

15
.2

7 
na

 

M
ax

im
um

 
88

.6
4 

6.
56

 
1.

52
 

1.
46

 
11

7.
16

 
11

99
6.

16
 

11
89

.8
8 

13
.2

8 
22

45
.8

8 
22

6.
53

 
30

2.
64

 
1.

23
 

33
.8

7 
28

.9
9 

12
7.

31
 

na
 

St
an

da
rd

 
D

ev
ia

tio
n 

16
.8

2 
0.

81
 

0.
24

 
0.

29
 

21
.1

1 
21

50
.6

3 
25

1.
54

 
2.

60
 

31
5.

48
 

31
.8

4 
43

.9
5 

0.
21

 
4.

04
 

0.
15

 
15

.8
5 

na
 

  Su
pp

le
m

en
ta

ry
 T

ab
le

 3
.3

: U
ni

va
ri

at
e 

st
ab

ili
ty

 m
ea

su
re

s r
ef

le
ct

 a
 w

id
e 

ra
ng

e 
of

 st
ab

ili
ty

 le
ve

ls
 u

si
ng

 m
ul

tip
le

 a
pp

ro
ac

he
s. 

 



   120 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
Su

m
 A

cr
os

s 
En

vi
ro

nm
en

ts
 

of
 G

EI
 

AM
M

I 
St

ab
ili

ty
 

In
de

x 

AM
M

I 
St

ab
ili

ty
 

Va
lu

e 

AM
M

I 
Ba

se
d 

St
ab

ili
ty

 
Pa

ra
m

et
er

 

Su
m

 A
cr

os
s 

En
vi

ro
nm

en
ts

 
of

 A
bs

ol
ut

e 
Va

lu
e 

of
 G

EI
 

An
ni

cc
hi

ar
ic

o'
s 

D 
Pa

ra
m

et
er

 
Zh

an
g'

s 
D 

Pa
ra

m
et

er
 

Av
er

ag
ed

 
of

 th
e 

Sq
ua

re
d 

Ei
ge

nv
ec

to
r 

Va
lu

es
 

St
ab

ili
ty

 
M

ea
su

re
 

Ba
se

d 
on

 
Fi

tt
ed

 
AM

M
I 

M
od

el
 

M
od

ifi
ed

 
AM

M
I 

St
ab

ili
ty

 
In

de
x 

M
od

ifi
ed

 
AM

M
I 

St
ab

ili
ty

 
Va

lu
e 

Su
m

s 
of

 
th

e 
Ab

so
lu

te
 

Va
lu

e 
of

 
th

e 
IP

C 
Sc

or
es

 

Ab
so

lu
te

 
Va

lu
e 

of
 th

e 
Re

la
tiv

e 
Co

nt
rib

ut
io

n 
of

 IP
Cs

 to
 

th
e 

In
te

ra
ct

io
n 

AM
G

E 
AS

I 
AS

V 
AS

TA
B 

AV
AM

G
E 

D
A 

D
Z 

EV
 

FA
 

M
AS

I 
M

AS
V 

SI
PC

 
Za

 

Av
er

ag
e 

4.
14

E-
18

 
3.

13
E-

01
 

1.
94

E+
00

 
1.

74
E+

00
 

3.
01

E+
01

 
1.

36
E+

01
 

1.
06

E-
01

 
4.

61
E-

03
 

2.
32

E+
02

 
3.

30
E-

01
 

2.
11

E+
00

 
1.

81
E+

00
 

3.
85

E-
02

 

M
in

im
um

 
-1

.6
9E

-1
3 

2.
24

E-
02

 
1.

39
E-

01
 

8.
25

E-
02

 
8.

76
E+

00
 

3.
48

E+
00

 
2.

44
E-

02
 

1.
99

E-
04

 
1.

21
E+

01
 

5.
99

E-
02

 
4.

11
E-

01
 

4.
65

E-
01

 
7.

61
E-

03
 

M
ax

im
um

 
1.

63
E-

13
 

1.
18

E+
00

 
7.

35
E+

00
 

9.
81

E+
00

 
8.

48
E+

01
 

3.
96

E+
01

 
2.

51
E-

01
 

2.
11

E-
02

 
1.

57
E+

03
 

1.
19

E+
00

 
7.

44
E+

00
 

4.
56

E+
00

 
1.

11
E-

01
 

St
an

da
rd

 
De

vi
at

io
n 

5.
63

E-
14

 
2.

09
E-

01
 

1.
30

E+
00

 
1.

75
E+

00
 

1.
56

E+
01

 
6.

90
E+

00
 

5.
06

E-
02

 
4.

47
E-

03
 

2.
53

E+
02

 
2.

05
E-

01
 

1.
27

E+
00

 
8.

84
E-

01
 

2.
05

E-
02

 

 Su
pp

le
m

en
ta

ry
 T

ab
le

 3
.4

: M
ul

tiv
ar

ia
te

 st
ab

ili
ty

 m
ea

su
re

s c
al

cu
la

te
d 

fr
om

 a
n 

A
M

M
I m

od
el

 fi
t r

ef
le

ct
 a

 w
id

e 
ra

ng
e 

of
 st

ab
ili

ty
 

le
ve

ls
 u

si
ng

 m
ul

tip
le

 a
pp

ro
ac

he
s. 

 



   121 
  
 

 

Po
pu

la
tio

n 
# 

of
 

Li
ne

s 
# 

of
 

SN
Ps

 

Se
qu

en
ci

ng
 D

ep
th

 
M

is
si

ng
 D

at
a 

M
ea

n 
S.

D.
 

M
in

 
M

ax
 

To
ta

l 
Pe

r M
ar

ke
r 

Pe
r I

nd
iv

id
ua

l 
S.

D.
 

M
in

 
M

ax
 

S.
D.

 
M

in
 

M
ax

 
AL

L 
12

37
 

7,
13

7,
08

5 
13

.3
3 

8.
27

 
0.

05
 

65
.5

4 
6.

32
%

 
7.

81
%

 
0.

00
%

 
50

%
 

6.
38

%
 

0.
26

%
 

46
.6

8%
 

W
ild

 
51

 
5,

97
9,

67
7 

12
.9

6 
4.

72
 

3.
46

 
23

.3
9 

4.
09

%
 

8.
10

%
 

0.
00

%
 

49
.0

2%
 

3.
38

%
 

1.
65

%
 

23
.2

5%
 

La
nd

ra
ce

 
45

5 
4,

49
7,

81
7 

13
.7

6 
9.

25
 

5.
85

 
64

.5
4 

5.
57

%
 

8.
47

%
 

0.
00

%
 

49
.8

9%
 

4.
50

%
 

0.
65

%
 

34
.9

5%
 

Ea
st

 A
si

a 
35

2 
3,

79
0,

48
5 

12
.9

6 
6.

81
 

5.
77

 
37

.6
3 

5.
14

%
 

8.
37

%
 

0.
00

%
 

50
.0

0%
 

3.
43

%
 

0.
40

%
 

27
.5

4%
 

Ca
na

da
 

11
2 

2,
53

3,
44

0 
14

.2
6 

6.
79

 
3.

44
 

39
.5

6 
7.

86
%

 
7.

85
%

 
0.

00
%

 
50

.0
0%

 
8.

20
%

 
0.

46
%

 
39

.4
9%

 

U
ni

te
d 

St
at

es
 (n

on
-

N
eb

ra
sk

a)
 

64
 

1,
72

3,
19

1 
22

.7
1 

9.
85

 
6.

92
 

55
.7

5 
3.

22
%

 
6.

48
%

 
0.

00
%

 
50

.0
0%

 
2.

65
%

 
0.

36
%

 
14

.8
0%

 

N
eb

ra
sk

a 
20

4 
2,

64
0,

09
7 

9.
27

 
5.

83
 

0.
05

 
33

.0
0 

10
.5

3%
 

9.
72

%
 

0.
00

%
 

50
.0

0%
 

9.
78

%
 

0.
18

%
 

45
.7

4%
 

 Su
pp

le
m

en
ta

ry
 T

ab
le

 4
.1

: I
n 

to
ta

l, 
w

ho
le

 g
en

om
e 

se
qu

en
ce

 d
at

a 
fr

om
 1

23
7 

lin
es

 a
cr

os
s s

ix
 p

op
ul

at
io

ns
 o

f s
oy

be
an

 w
er

e 
an

al
yz

ed
 in

 th
is 

st
ud

y.
 S

eq
ue

nc
in

g 
de

pt
h 

ra
ng

ed
 fr

om
 9

.2
7 

to
 2

2.
71

, a
nd

 m
is

si
ng

 d
at

a 
ra

te
s r

an
ge

d 
fr

om
 3

.2
2%

 to
 1

0.
53

%
 b

as
ed

 u
po

n 
th

e 
SN

P 
ca

lls
.  

 



   122 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Site 
Variance Component 

Genotype Environment Genotype x 
Environment Residual 

2017 Phillips 8.39% 52.02% 11.08% 28.52% 
2017 Stevens Creek 8.86% 54.95% 11.70% 24.49% 
2018 Cotesfield 8.75% 54.27% 11.56% 25.42% 
2018 Mead 10.01% 62.09% 13.22% 14.67% 
2018 Phillips 8.32% 51.61% 10.99% 29.07% 
2018 Stevens Creek 9.03% 55.98% 11.92% 23.07% 
2018 Wymore 9.87% 61.18% 13.03% 15.93% 
2019 Cotesfield 9.53% 59.09% 12.58% 18.80% 
2019 Mead 8.56% 53.08% 11.31% 27.05% 
2019 Phillips 8.36% 51.85% 11.04% 28.75% 
2019 Stevens Creek 10.21% 63.30% 13.48% 13.01% 

 
Supplementary Table 4.2: Environmental effects explained the most variance at any location using a 
multi-section mixed effects model, followed by GxE interactions, and finally the constitutive genotype 
effects.   
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Population 
Overall 

Weighted 
Fst Estimate 

Windowed Weighted Fst 

Mean Median S.D. Min Max 

Wild 0.4867 0.4193 0.4132 0.1749 -0.1255 0.9665 

Landrace 0.2079 0.1745 0.1396 0.1373 -0.0066 0.8695 

East Asia 0.1873 0.1521 0.1152 0.1313 -0.0072 0.7589 

Canada 0.1931 0.1484 0.0972 0.1511 -0.1280 0.8547 

United States (non-
Nebraska) 

0.1261 0.1080 0.0722 0.1124 -0.0152 0.6790 

 Supplementary Table 4.5: Trends in overall and windowed Fst were as expected, with the highest 
value found in comparison to the wild lines and the lowest in comparison to a broad population of 
other elite US lines. 
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Supplementary Figure 2.1: The extent of missing data points reintroduced by filtering 
for Beagle posterior genotype probabilities greater than 0.45 and 0.9. A mild filter of GP 
> 0.45 keeps missing data below 5%, while missing data greatly inflates to over 20% at 
0.1X with a filter of GP > 0.9.  
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Supplementary Figure 2.2: Comparing the frequency of error at individual sites 
across sequencing depths with the assigned genotype probability for imputed values 
by Beagle demonstrates a strong correlation, making the posterior genotype 
probability a useful metric for post imputation filtering for data improvement. 
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Supplementary Figure 2.3: The average of the top five scores for five relatedness metrics are 
plotted against the average concordance across depths for that genotype. Correlations and 
standard errors reported in the bottom right hand corner reveal no strong relationship for 
any metric, which may be explained by the low level variation within our study panel in terms 
of degree of kinship to the reference panel and overall weak kinship. 



   129 
 
  

Supplementary Figure 2.4: The proportion of accuracy retained relative to 1X from 
raw imputed values vs the retained cost per sample. Decreasing coverage from 1X 
to 0.3X results in a nearly negligible loss in accuracy of 0.85%, while decreasing per 
sample costs by 57.04%  
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Supplementary Figure 3.1: The trend line drawn between eigenvalues from a 
principal component analysis of the genotypic dataset shows a reduction in slope for 
subsequent points around the eighth principal component. Thus, the first eight 
principal components were used in our GWAS analysis.  
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Supplementary Figure 3.2: Yield distribution is approximately normal per year and 
location combination.  
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Supplementary Figure 3.3: Correlation matrices for traditional stability statistics reveals 
that while many of the multivariate stability parameters are highly correlated with each 
other, many of the univariate measures are fairly distinct. Notably, Wricke’s Ecovalence, 
Shukla’s Stability Variance, the GE variance component and mean variance components 
were all perfectly correlated with values of 1 or -1.  
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Supplementary Figure 3.4: Manhattan plot (A) and q-q plot (B) of the GWAS results for 
yield without fitting genotype by environment interactions 1 QTL is significant via 
Bonferroni correction, and an additional 3 QTL are significant when considering a FDR of 
5%.   
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Supplementary Figure 3.5: Manhattan plot (A) and q-q plot (B) of GWAS 
results using the coefficient of variation as the model phenotype. 
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Supplementary Figure 3.6: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
deviation from regression as the model phenotype. 
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Supplementary Figure 3.7: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
Finlay Wilkinson value as the model phenotype. 
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Supplementary Figure 3.8: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
GE variance component as the model phenotype. 
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Supplementary Figure 3.9: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
mean variance component as the model phenotype. 
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Supplementary Figure 3.10:  Manhattan plot (A) and q-q plot (B) of GWAS results using 
Kangs Rank Sum as the model phenotype. 
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Supplementary Figure 3.11: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
Nassar and Huhn S1 statistic as the model phenotype. 
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Supplementary Figure 3.12: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
Nassar and Huhn S3 statistic as the model phenotype. 
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Supplementary Figure 3.13: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
Nassar and Huhn S6 statistic as the model phenotype. 
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Supplementary Figure 3.14: Manhattan plot (A) and q-q plot (B) of GWAS results using 
Shukla’s Stability Variance as the model phenotype. 
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Supplementary Figure 3.15: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
Thennarasu NP1 statistic as the model phenotype. 
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Supplementary Figure 3.16: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
Thennarasu NP2 statistic as the model phenotype. 
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Supplementary Figure 3.17: Manhattan plot (A) and q-q plot (B) of GWAS results 
using the Thennarasu NP3 statistic as the model phenotype. 
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Supplementary Figure 3.18: Manhattan plot (A) and q-q plot (B) of GWAS results using 
the Thennarasu NP4 statistic as the model phenotype. 
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Supplementary Figure 3.19: Manhattan plot (A) and q-q plot (B) of GWAS results 
using Wricke’s Ecovalence as the model phenotype. 
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Supplementary Figure 3.20: Manhattan plot (A) and q-q plot (B) of GWAS results using 
the sum across environments of GEI modeled by AMMI as the model phenotype. 
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Supplementary Figure 3.21: Manhattan plot (A) and q-q plot (B) of GWAS results using 
the AMMI stability value as the model phenotype. 
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Supplementary Figure 3.22:  Manhattan plot (A) and q-q plot (B) of GWAS results using 
the AMMI based stability parameter as the model phenotype. 



   152 
  

Supplementary Figure 3.23: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
AMMI stability value as the model phenotype. 
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Supplementary Figure 3.24: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
sum across environments of absolute value of GEI modelled by AMMI as the model 
phenotype. 
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Supplementary Figure 3.25: Manhattan plot (A) and q-q plot (B) of GWAS results using 
Annicchiarico’s D parameter as the model phenotype. 
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Supplementary Figure 3.26: Manhattan plot (A) and q-q plot (B) of GWAS results using 
Zhang’s D parameter as the model phenotype. 
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Supplementary Figure 3.27: Manhattan plot (A) and q-q plot (B) of GWAS results using 
the averages of the squared eigenvector values as the model phenotype. 



   157 
  

Supplementary Figure 3.28: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
stability measure based on fitted AMMI model value as the model phenotype. 
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Supplementary Figure 3.29: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
modified AMMI stability index as the model phenotype. 
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Supplementary Figure 3.30: Manhattan plot (A) and q-q plot (B) of GWAS results using 
the modified AMMI stability value as the model phenotype. 
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Supplementary Figure 3.31: Manhattan plot (A) and q-q plot (B) of GWAS results using the sums 
of the absolute value of the IPC scores as the model phenotype. 
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Supplementary Figure 3.32: Manhattan plot (A) and q-q plot (B) of GWAS results using the 
absolute value of the relative contribution of IPCs to the interaction as the model phenotype. 
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Supplementary Figure 3.33: Q-Q plots of each of the various marker interaction levels of 
explicitly modeling GxE interactions show that the results from more complex interactions 
are more inflated. 
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Supplementary Figure 3.34: Comparing the adjusted yield distributions of GxE QTL across 
environments shows that many QTL have no obviously advantageous allele when assessing the 
pooled data. 
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Supplementary Figure 4.1: A) The distribution of proportion of variance explained by GxE effects 
per window is skewed slightly higher than main genetic effects. This is made up of a variety of per 
environment variance distributions B) The distribution of per window effect sizes is varied among 
environments.   
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Supplementary Figure 4.2: The overwhelming majority of GxE 
interactions occur in the 2019 Phillips location.  
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Supplementary Figure 4.3: A) The distribution of per window Tajima’s D values is skewed 
towards the negative. B) The distribution of per window weighted pairwise Fst values is skewed 
continuously lower as the comparison is made to theoretically more related material. 
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Supplementary Figure 4.4: The minor allele frequency distribution of 
markers in windows for the top and bottom 5% of Tajima’s D (A) and 
pairwise weighted Fst values (B) shows clear differences, which is an 
important confounding factor to control for in this type of analysis.  
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