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Abstract

Malate transport shuttles atmospheric carbon into the Calvin–Benson cycle during NADP-ME C4 photosynthesis. Previous character-

izations of several plant dicarboxylate transporters (DCT) showed that they efficiently exchange malate across membranes. Here, we

identify and characterize a previously unknown member of the DCT family, DCT4, in Sorghum bicolor. We show that SbDCT4

exchangesmalateacrossmembranesand itsexpressionpattern is consistentwitharole inmalate transportduringC4photosynthesis.

SbDCT4 is not syntenic to the characterized photosynthetic gene ZmDCT2, and an ortholog is not detectable in the maize reference

genome. We found that the expression patterns of DCT family genes in the leaves of Zea mays, and S. bicolor varied by cell type. Our

results suggest that subfunctionalization, of members of the DCT family, for the transport of malate into the bundle sheath plastids,

occurredduring theprocessof independent recurrentevolutionofC4 photosynthesis ingrassesof thePACMADclade.Wealso show

that this subfunctionalization is lineage independent. Our results challenge thedogmathat keyC4 genesmustbeorthologuesofone

another among C4 species, and shed new light on the evolution of C4 photosynthesis.

Key words: DCT4, new transporter gene, grass evolution, C4 photosynthesis. .

Introduction

Three subtypes of C4 photosynthesis are generally recognized

as defined by the primary decarboxylase in the bundle sheath

(BS) cells: Chloroplastic NADP-dependent malic enzyme

(NADP-ME); mitochondrial NAD-dependent malic enzyme

(NAD-ME); and cytosolic phosphoenolpyruvate carboxykinase

(PEPCK) (Hatch and Slack 1966; Hatch 1971; Rathnam and

Edwards 1977). Different plant species may contain various

Significance

Dicarboxylate-transporter-2 (DCT2) plays a key role during C4 photosynthesis in Zea mays. Its orthologs are assumed to

function the same in related species, as Z. mays is the main C4 reference species. We introduce a new gene, DCT4, that

assumed the role of DCT2 in Sorghum bicolor and other C4 grass species. By surveying related C4 species, we propose

that different members of the DCT family subfunctionalized for photosynthetic malate transport in the BS cells of C4

grasses of the PACMAD clade. We suggest that rather than being static, biochemical adaptations continued after the

divergence of the PACMAD lineages.
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combinations of these three subtypes (Hatch 1971; Chapman

and Hatch 1979; Furbank 2011; Pick et al. 2011; Wang,

Brautigam, et al. 2014). The movement and exchange of ma-

late across membranes, by dicarboxylate transporters (DCTs/

DiTs), plays a significant role during photosynthesis in NADP-

ME and NAD-ME C4 species (Ding et al. 2015). In C3 plants,

DCTs are crucial to nitrate assimilation, such as the GS/

GOGAT cycle and photorespiration (Linka and Weber 2010;

Kinoshita et al. 2011). Taniguchi et al. characterized several

plant DCTs that efficiently exchange malate across mem-

branes (Taniguchi et al. 2002; 2004). The differential expres-

sion of C4 photosynthesis genes in mesophyll (M) and BS cells

(John et al. 2014; Tausta et al. 2014; Wang, Czedik-

Eysenberg, et al. 2014) suggests that different malate trans-

porters may be needed to move malate out of the chloro-

plasts of M cells and into the chloroplasts of BS cells. In Zea

mays, an NADP-ME C4 grass, dicarboxylate transporter-2

(ZmDCT2, GRMZM2G086258) moves malate into the chloro-

plast of BS cells during C4 photosynthesis (Weissmann et al.

2016). ZmDCT2 plays a critical role during C4 photosynthesis

in Z. mays, and its absence severely impairs plant growth and

development (Weissmann et al. 2016). The role of DCTs in C4

photosynthesis in other species, however, remains unknown.

Zea mays is the best characterized and functionally anno-

tated C4 grass species. As such, it is a useful reference for

identification of photosynthesis-related genes in poorly char-

acterized C4 grasses and for resolving orthology (John et al.

2014; Ding et al. 2015; Huang et al. 2017). Microsynteny, the

comparison of collinearity among related species, is a reliable

approach to determine orthology and predict the function of

a gene (Bennetzen and Freeling 1997; Chen et al. 1997;

Tikhonov et al. 1999; Bennetzen 2000; Kumar et al. 2009;

Jin et al. 2016). Davidson et al. (2012) showed that syntenic

orthologs are likely to have conserved functions and expres-

sion patterns across lineages. Here, we identify a new mem-

ber of the DCT family, DCT4, which is not syntenic to the

photosynthetic gene ZmDCT2 and is not detected in the

maize reference genome. We demonstrate that S. bicolor

DCT4 (SbDCT4) efficiently exchanges malate across mem-

branes, consistent with a malate transport role in C4 photo-

synthesis. We characterize the diverse expression patterns of

DCT genes in leaves of multiple grass species. We also propose

that subfunctionalization of DCTs in grasses of the PACMAD

clade (Sanchez-Ken and Clark 2010) occurred during inde-

pendent recurrent evolution of C4 photosynthesis.

Results

Identification of DCT4 in S. bicolor

To learn more about C4-related DCT in species evolutionarily

related to maize, we identified the syntenic ortholog of

ZmDCT2 in S. bicolor. Two genes, Sobic.007G226700 and

Sobic.007G226800, are present at the predicted syntenic

orthologous position on chromosome 7. We refer to them

as SbDCT2.1 and SbDCT2.2, respectively (fig. 1). ZmDCT2 is

abundantly expressed (table 1), and its expression is enriched

in BS cells of maize leaves (fig. 2) (Li et al. 2010; Tausta et al.

2014; Ding et al. 2015). In contrast, the expression profiles of

SbDCT2.1 and SbDCT2.2 in S. bicolor leaves are low (table 1).

SbDCT2.1 expression is slightly enriched in the M cells

FIG. 1.—CoGe (https://genomevolution.org/coge/) genome viewer screenshots depicting the conservation and genomic contexts of DCT genes in Zea

mays and Sorghum bicolor. Colored lines between panels show conserved genes. SbDCT4 shows high sequence conservation with other DCT genes, but is

not a syntenic ortholog of ZmDCT2, as shown by the lack of conservation in neighboring genes.
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whereas SbDCT2.2 is enriched in BS cells (fig. 2). We also

analyzed the transcript levels of two other S. bicolor DCT,

SbDCT1 (Sobic.002G233700) and SbOMT1

(Sobic.008G112300). These genes are the orthologs of the

Z. mays genes ZmDCT1 (GRMZM2G040933) and Zm-oxoglu-

tarate/malate transporter 1 (ZmOMT1; GRMZM2G383088),

respectively. We found that SbDCT1 expression, similar to that

of ZmDCT1, is relatively low (table 1), and only slightly differ-

entially expressed in M cells relative to BS cells (fig. 2). The

expression of both ZmOMT1 and SbOMT1 is relatively high

(table 1), and both are slightly enriched in M cells (fig. 2).

In C4 species, the expression of many photosynthetic genes

is enriched in either BS and M cells (Li et al. 2010; John et al.

2014; Tausta et al. 2014; Weissmann et al. 2016; Rao et al.

2016). In NADP-ME species, two transporters, one within the

BS cells and another in M cells, move malate in and out of the

chloroplast during C4 photosynthesis (Brautigam et al. 2008;

Weissmann and Brutnell 2012; John et al. 2014; Tausta et al.

2014; Wang, Czedik-Eysenberg, et al. 2014). However, in

sorghum leaves, we found only one highly expressed DCT,

SbOMT1, that showed slightly enriched expression in M cells.

Therefore, we screened the sorghum genome for additional

homologs of known maize DCTs. We identified the gene

Sobic.004G035500 that showed homology to ZmDCT1 and

ZmDCT2 but was not syntenic to either gene (fig. 1). DCT3 is

the name of the second transcript of ZmDCT2 (Taniguchi et al.

2004), so we named this new gene SbDCT4. No syntenic

ortholog of SbDCT4 is present in the reference genomes of

Z. mays or Oryza sativa. The absence of syntenic conservation

between S. bicolor and Z. mays and the lack of direct ortho-

logs in Z. mays or C3 species prevented identification of DCT4

in a previous bioinformatic screen for C4 photosynthesis genes

(Huang et al. 2017). The expression of SbDCT4 is moderately

abundant (table 1) and strongly enriched in the BS cells of

S. bicolor leaves (fig. 2).

SbDCT4 is an Efficient Malate Transporter

To verify the ability of SbDCT4 to transport malate, we cloned

coding sequences from the three sorghum DCT genes,

SbDCT1, SbDCT2, and SbDCT4. We measured the malate

transport activities of the recombinant proteins expressed in

yeast. SbDCT4 was an efficient malate transporter (table 2).

The Km of SbDCT4 was similar to that of SbDCT1, and the

affinity for malate was highest in SbDCT2 among the three

SbDCTs (table 2), consistent with the relative malate transport

activities reported for maize DCT1 and DCT2 (Taniguchi et al.

2004).

Phylogenetic Distribution of DCT Genes in Grasses

To understand the relationship of SbDCT4 to other grass DCT

genes, we searched the genomes of the grass species Setaria

italica, Urochloa fusca, Brachypodium distachyon, and

Dichanthelium oligosanthes. In S. italica, an NADP-ME C4 spe-

cies, we identified a DCT, Seita.9G375100, that showed no

syntenic orthologous relationship with DCT genes in other

available grass genomes. Phylogenetic analysis showed that

this gene clustered with SbDCT4 but not with SbDCT1 and

Table 1

Genomic Presence or Absence and Whole Leaf TPM Values for Dicarboxylate Transporter Genes in Grass Leavesa

Species Presence in Genomic DNA RNA-seq TPM Values Photosynthesis

DCT1 DCT2 DCT4 DCT1 DCT2 DCT4 OMT1

Brachypodium distachyon þ þ – 33 119 N/A 18 C3

Oryza sativa þ þ – 16 11 N/A 101 C3

Aristida congesta þ þ þ 393 18 0 871 C4 NADP-ME

Eriachne aristidea þ þ þ 1348 89 0 874 C4 NADP-ME

Chasmanthium laxum þ þ – 8 11 N/A 18 C3

Danthoniopsis dinteri þ þ þ 0 123 1555 305 C4 NADP-ME

Anthephora pubensis þ þ þ 1611 0 0 514 C4 NADP-ME

Echinochloa esculenta þ þ þ 1588 0 0 683 C4 NADP-ME

Urochloa fusca þ þ – 50 86 N/A 344 C4 PEPCK

Setaria italica þ þ þ 29 41 658 328 C4 NADP-ME

Dichanthelium oligosanthes þ þ – 11 13 N/A 13 C3

Paspalum vaginatum þ þ þ 591 0 666 354 C4 NADP-ME

Arundinella hirta þ þ þ 0 23 481 398 C4 NADP-ME

Sorghum bicolor þ þ
þ

þ 126 0b

9c

229 483 C4 NADP-ME

C4 NADP-MEd

Zea mays þ þ – 5 166 N/A 153 C4 NADP-ME & PEPCK

aNote that interspecies comparison is not possible, because expression levels were normalized within each species.
bSbDCT2.1.
cSbDCT2.2.
dDespite no PEPCK activity detected in Sorghum, carbon moves into the BS through aspartate (Chapman and Hatch 1979).

Dicarboxylate Transporter Family in C4 Grasses GBE
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SbDCT2 (fig. 3). We designated this gene SiDCT4. We did not

detect orthologs, syntenic or otherwise, in U. fusca, a PEPCK

C4 species, or in the two C3 species. To expand the search for

DCT4 in other grasses currently lacking genome assemblies,

we examined leaf-derived transcript assemblies for Aristida

congesta, Eriachne aristidea, Chasmanthium laxum,

Danthoniopsis dinteri, Anthephora pubensis, Echinochloa

esculenta, Paspalum vaginatum, and Arundinella hirta

(Huang P, Mayfield-Jones D, Schnable J, Brutnell T, manu-

script in preparation). We then used the predicted coding

sequences of the DCT genes from available genomes and

from the de novo leaf transcriptome assemblies to generate

a phylogenetic tree of the DCT family. The resulting phylogeny

shows that DCT4 transcripts form a distinct subclade from the

DCT1 clade (fig. 3). The absence of DCT4 transcript expression

does not rule out the existence of the gene in the genome.

We also used polymerase chain reaction (PCR) to survey for

DCT genes in the genomes of grass species for which whole-

genome assemblies were not available. We designed con-

served primers (nondegenerate or minimally degenerate) to

small regions unique to each of the three DCT genes using

PrimaClade (Gadberry et al. 2005). We detected DCT1 and

DCT2 in the genomes of all species tested (table 1, supple-

mental fig. 1, Supplementary Material online). DCT4, how-

ever, was detected only in the genomes of NADP-ME C4

species of the PACMAD clade, excluding Z. mays (table 1,

supplemental fig. 2, Supplementary Material online).

Expression of Malate Transporter Genes in NADP-ME C4

Grasses

C3 species and U. fusca, a PEPCK C4 species, express both

DCT1 and DCT2 at low levels in leaves (table 1). C4 NADP-ME

species of the PACMAD clade generally express one DCT gene

in leaves at a high level and also express one or two other DCT

genes at low levels (table 1). We did not find an apparent

lineage-specific pattern for the expression of the predominant

DCT gene in the NADP-ME species we analyzed. This finding is

consistent with random evolutionary processes underlying the

subfunctionalization of members of the DCT family.

Interestingly, Z. mays is the only species we examined in which

DCT2 is the predominantly expressed DCT gene (table 1). We

also examined the expression of the non-DCT malate trans-

porter OMT1 gene in the leaves of grasses (table 1).

Interestingly, we found that although OMT1 expression was

generally abundant, there was no consistent pattern of rela-

tive expression between the DCT and OMT genes within the

NADP-ME C4 species (table 1).

Discussion

Evolution of the DCT Gene Family in Grasses

We identified DCT4 as a new member of the DCT gene family

in the grasses (fig. 1). Our analysis suggests that DCT4 is pre-

sent in some C4 NADP-ME PACMAD grasses. DCT1 and DCT2

appear to have originated from a duplication of a single DCT

gene after the monocot–eudicot split (Taniguchi et al. 2004)

and DCT4 arose from a duplication of DCT1 at the root of the

PACMAD grasses (fig. 3). The expression of DCT genes in the

grasses that we analyzed exhibited no clear lineage-specific

patterns (table 1). Therefore, we propose that different mem-

bers of the DCT family subfunctionalized for photosynthetic

malate transport in the BS cells of C4 grasses of the PACMAD

clade.

FIG. 2.—Differential expression of malate transporters in Zea mays,

and Sorghum bicolor leaves between the BS and M cells. The genome of

Z. mays has one copy of DCT2 and does not contain DCT4, and ZmDCT2 is

highly enriched in BS cells. Sorghum bicolor has two copies of DCT2

(DCT2.1, and DCT2.2) in the syntenic genomic location that are the result

of gene duplication. Sorghum bicolor also expresses DCT4, which is highly

enriched in BS cells. Both species express OMT1 and DCT1, which are only

slightly enriched in the M cells. Red bars represent enrichment in the BS

cells. Blue bars represent enrichment in the M cells. The white numbers

inside the bars represent the significance (P-value) of the

log2(FoldChange).

Table 2

Km of Malate for Recombinant DCT Proteinsa Demonstrates the Ability of
SbDCT4 to Transport Malate Efficiently

Km (mM)

DCT1 DCT2 DCT4

Sorghum bicolor 1.246 0.14 0.716 0.10 1.136 0.10

Zea maysb 1.16 0.1 0.856 0.44 N/A

aThe values are the means of three independent experiments 6 SE.
bKinetic values from a previous report (Taniguchi et al. 2004).
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This work also challenges the dogma that key C4 genes

must be orthologues of one another, among species, and

show that they can be paralogs. This confirms the importance

of including syntenic and expression data in assigning orthol-

ogy across species, and of developing multiple models for C4

photosynthesis in the grasses. For example, SiDCT4 was pre-

viously misannotated as the ortholog of ZmDCT2 (John et al.

2014), likely because of the lower expression level of SiDCT2

(Seita.9G375100) in leaf tissue. The use of different malate

transporters, for example, DCT4 in S. bicolor and S. italica, or

DCT2 in Z. mays, suggests that multiple evolutionary paths

resulted in the development of an active C4 NADP-ME pho-

tosynthetic cycle. It is interesting to note that common origins

of C4 photosynthesis are often defined based on the

predominant decarboxylase utilized, thus maize and sorghum

are considered to have evolved from a common C4 ancestor.

This analysis suggests that rather than being static, biochem-

ical adaptations continued after the divergence of maize and

sorghum lineages. Thus, optimizations of C4 activities may be

continuous as breeding pressures or climate change alters

ecological niches of individual species.

Various C4 Subtype Combinations Have Different

Transport Requirements

The variation of expression levels among the different malate

transporters within each NADP-ME species (table 1) suggests

different transport requirements during C4 photosynthesis.

FIG. 3.—A phylogenetic tree of the DCT family in the grasses showing that DCT4 is a subclade of DCT1. The DCT1, DCT2, and DCT4 gene lineages are

black, blue, and red, respectively. The length of the branches represents the evolutionary distance between ancestor to descendent nodes. The numbers

represent the confidence level of the specific branch.

Dicarboxylate Transporter Family in C4 Grasses GBE
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This supposition is in agreement with the view that the three

subtypes of C4 photosynthesis are mixed rather than exclusive

(Hatch 1971; Chapman and Hatch 1979; Furbank 2011; Pick

et al. 2011; Wang, Brautigam, et al. 2014). For example,

Z. mays utilizes both the NADP-ME (75%) and PEPCK

(25%) pathways to fix carbon (Chapman and Hatch 1979;

Wingler et al. 1999; Weissmann et al. 2016), and has similar

expression levels of DCT2 and OMT1 and low expression of

DCT1. Sorghum bicolor moves carbon through both malate

and aspartate, although no PEPCK activity was detected in its

leaves (Chapman and Hatch 1979). Sorghum bicolor has sim-

ilar expression levels for DCT4 and DCT1 and high expression

of OMT1 (table 1). Other grass species may have DCT expres-

sion ratios that correspond to their unique combination of C4

subsystems. For example, OMT1 is highly expressed in

U. fusca, �3- to 7-fold higher than DCT2 or DCT1, respec-

tively. OMT1 transports dicarboxylates, excluding those con-

taining an amino group (Taniguchi et al. 2002, 2004). Thus, in

PEPCK C4 plants, OMT1 may move oxaloacetate into the me-

sophyll chloroplast, and 2-oxoglutarate out, to support the

high production of aspartate needed to maintain the photo-

synthetic cycle (Rathnam and Edwards 1977). Interestingly,

both ZmOMT1 and SbOMT1 are only slightly differentially

expressed in the M cells (fig. 2). As the loss of DCT2 in

Z. mays prevents movement of malate into the BS chloroplast

(Weissmann et al. 2016), OMT1 cannot be moving malate

into the BS chloroplast alongside DCT2. But OMT1 may also

have a role in organic acid metabolism in both cell types, such

as shuttling reducing equivalents in organelles other than the

chloroplast (Pleite et al. 2005).

Conclusions

Our results show that the newly identified member of the DCT

gene family, SbDCT4, is an efficient malate transporter. Based

on the expression patterns of malate transporters among the

grasses, we suggest that different members of the DCT family

may have evolved multiple roles in C4 photosynthesis. Further

studies will be needed to verify the subcellular localization of

these proteins and to define their specific metabolic functions.

Characterizing the various combinations of C4 photosynthetic

subsystems in grasses will facilitate the exploitation of DCT

genes, through breeding or engineering, to improve the per-

formance of crop plants and increase yield.

Materials and Methods

Identification of DCT4 Genes in Sorghum and Other

Grasses

We used QUOTA-ALIGN (Tang et al. 2011) to identify syntenic

orthologous regions in grass species with sequenced

genomes, following the protocol described in Zhang et al.

(2017). To find homologous genes at nonsyntenic locations,

we used two complementary approaches. For species with

sequenced genomes, we used LASTZ (Harris 2007) to align

the coding sequence of the primary transcript annotated in

Phytozome (https://phytozome-next.jgi.doe.gov, last

accessed January 6, 2021) to the genome assembly. For spe-

cies without assembled genomes, we used LASTZ to align the

coding sequence of the primary transcript from Phytozome to

transcript assemblies generated by Trinity (Grabherr et al.

2011).

Measurements of Malate Transport

We cloned each of the three SbDCT cDNAs between the

promoter and terminator of yeast GAL2 in the pTV3e vector

(Nishizawa et al. 1995). We transformed the plasmids into

yeast LBY416 cells and selected transformants on

tryptophan-deficient agar plates. We prepared a crude mem-

brane fraction from the selected yeast transformants. We

used a freeze-thaw technique to reconstitute liposomes for

the measurement of the uptake of [14C]malate (Taniguchi

et al. 2002).

Phylogenetic Analysis of DCT Homologs

DCT coding sequences for Z. mays, S. bicolor, S. italica,

B. distachyon, O. sativa, D. oligosanthes, and U. fusca were

from Phytozome (https://phytozome-next.jgi.doe.gov, last

accessed January 6, 2021). We used BlastN (Altschul et al.

1990) to search de novo assembled leaf transcriptomes

(Huang P, Mayfield-Jones D, Schnable J, Brutnell T, manu-

script in preparation) from the C4 grass species A. congesta,

E. aristidea, C. laxum, D. dinteri, A. pubensis, E. esculenta,

P. vaginatum, and A. hirta with the DCT sequences from

maize, Setaria, and Sorghum as queries. We used

ProGraphMSA to generate a codon-based sequence align-

ment (Szalkowski 2012). We used MEGA6 (Tamura et al.

2013), with default parameters and the branch support values

based on 1,000 bootstraps, to generate the phylogenetic re-

construction with the maximum likelihood method and based

on the nucleotides in the third position of codons (Simmons

et al. 2006).

Analysis of Gene Expression for Decarboxylase
Transporters in Grasses

For species with published leaf transcriptome profiles (Ouyang

et al. 2007; Li et al. 2010; Zhang et al. 2012; Schnable 2014;

Wang, Czedik-Eysenberg, et al. 2014; Studer et al. 2016),

gene expression levels were calculated and normalized, for

each species, as Transcripts Per Million (TPM). For the other

species, the normalized TPM values were based on de novo

transcriptome assemblies (Huang P, Mayfield-Jones D,

Schnable J, Brutnell T, manuscript in preparation). The values

in table 1 only allow for intraspecies comparisons among the

decarboxylase transporters.
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Identification of DCT4 in Species without Sequenced
Genomes

We aligned the coding sequences from each of the DCT genes

from Z. mays, S. bicolor, S. italica, U. fusca, B. distachyon,

O. sativa, D. oligosanthes, A. congesta, E. aristidea,

C. laxum, D. dinteri, A. pubensis, E. esculenta, P. vaginatum,

and A. hirta using PAL2NAL (Suyama et al. 2006). The result-

ing multiple sequence alignment enabled the design of non-

degenerate or minimally degenerate PCR primers (table 3)

using PrimaClade (Gadberry et al. 2005).

Jacob D. Washburn and J. Chris Pires (University of Missouri,

Columbia) kindly provided genomic DNA from A. congesta,

E. aristidea, D. dinteri, A. pubensis, E. esculenta, and A. hirta

(Washburn et al. 2015). We used a CTAB-based method to

extract genomic DNA from C. laxum, P. vaginatum, Z. mays,

S. bicolor, S. italica, and B. distachyon (Weissmann et al. 2016).

Zea mays and B. distachyon were the negative controls for

DCT4 and the positive controls for DCT1 and DCT2.

Sorghum bicolor and S. italica were the positive controls for

DCT1, DCT2, and DCT4.

We conducted amplification of DCT genes by PCR using a

25-ll reaction mix and an ABI 2720 Thermal cycler. The re-

action mixture included 2.5ll of 10� Buffer, 2.5ll of 10lM

solutions of forward and reverse primers, 2ll of 2.5 mM dNTP

stock, 14ll of nuclease-free water, 0.5ll of Choice Taq en-

zyme, and 1ll of 100 ng/ll DNA. We performed PCR reac-

tions as described in table 3 with 5ll of loading dye added to

each reaction. Aliquots of 13ll were loaded on 3% agarose

gels (Invitrogen UltraPure Agarose 1000, 1� TAE buffer,

Invitrogen SYBR Safe Gel Stain) and electrophoresed for

30 min at 100 volts. We based size estimates on 100 bp and

50 bp DNA markers (GoldBio).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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SUPPLEMENTAL FIGURES LEGEND 

Supplemental Figure 1. Gel image showing that DCT1 (92 bp PCR product) and DCT2 (115 bp PCR 

product) genes are present in all grass species tested. 

Supplemental Figure 2. Gel image showing the presence or absence of DCT4 (132 bp PCR product) genes 

from species lacking genome assemblies. Negative controls were Z. mays and B. distachyon, and positive 

controls were S. bicolor and S. italica. 
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