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Light detection and ranging (LiDAR) technology has the potential to radically alter theway researchers andman-
agers collect data onwildlife–habitat relationships. To date, the technology has fostered several novel approaches
to characterizing avian habitat, but has been limited by the lack of detailed LiDAR-habitat attributes relevant to
species across a continuum of spatial grain sizes and habitat requirements. We demonstrate a novel three-step
approach for using LiDAR data to evaluate habitat based on multiple habitat attributes and accounting for their
influence at multiple grain sizes using federally endangered red-cockaded woodpecker (RCW; Picoides borealis)
foraging habitat data from the Savannah River Site (SRS) in South Carolina, USA. First,we used high density LiDAR
data (10 returns/m2) to predict detailed forest attributes at 20-m resolution across the entire SRS using a comple-
mentary application of nonlinear seemingly unrelated regression andmultiple linear regressionmodels. Next, we
expanded on previous applications of LiDAR by constructing 95% joint prediction confidence intervals to quantify
prediction error at various spatial aggregations and habitat thresholds to determine a biologically and statistically
meaningful grain size. Finally, we used aggregations of 20-m cells and associated confidence interval boundaries
to demonstrate a new approach to producemaps of RCW foraging habitat conditions based on the guidelines de-
scribed in the species' recovery plan. Predictive power (R2) of regression models developed to populate raster
layers ranged from 0.34 to 0.81, and prediction error decreased as aggregate size increased, but minimal reduc-
tions in prediction error were observed beyond 0.64-ha (4 × 4 20-m cells) aggregates. Mapping habitat quality
while accounting for prediction error provided a robust method to determine the potential range of habitat con-
ditions and specific attributes that were limiting in terms of the amount of suitable habitat. The sequential steps
of our analytical approach provide a useful framework to extract detailed and reliable habitat attributes for a
forest-dwelling habitat specialist, broadening the potential to apply LiDAR in conservation and management of
wildlife populations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Advances in airborne light detection and ranging (LiDAR) technolo-
gy have created new potential for ecological research. Over the past de-
cade, technology and analysis methods involving discrete-return,
scanning, airborne LiDAR have been applied to quantify various forest
attributes (Hyyppä et al., 2008; Næsset, 2004; Zimble et al., 2003).

Airborne LiDAR data acquired for forest structure applications typically
are collected using a high density of laser pulses (4–10 pulsesm2). Met-
rics computed from the LiDAR sensor data are used as explanatory var-
iables in predictive models that estimate forest attributes such as basal
area (BA), stand height, biomass, and stem volume (Means et al.,
2000; Wulder et al., 2012). Characterization of forest structure for
areas ranging from a few hundred square meters down to individual
trees is possible. The technology has been applied to large areas in sev-
eral European countries and Canada to conduct forest inventories
(Gobakken et al., 2012; Hyyppä et al., 2008; Næsset, 2004), but the
potential for the use of LiDAR in ecological studies has yet to be fully
realized (García-Feced, Tempel, & Kelly, 2011; Lefsky, Cohen, Parker, &
Harding, 2002; Vierling, Vierling, Gould, Martinuzzi, & Clawges, 2008).
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The accuracy of LiDAR-derived habitat data demonstrated in early for-
est inventory applications (e.g., Andersen, McGaughey, & Reutebuch,
2005; Leeuwen & Nieuwenhuis, 2010; Lim, Treitz, Wulder, St-Onge, &
Flood, 2003) established the foundation for the integration of LiDAR
datasets in ecological research. The high-resolution, three-dimensional
data generated using LiDAR combined with field observations of wildlife
populations provide the opportunity to examine animal–habitat relation-
ships while accounting for the collective effects of fine-grained habitat
characteristics, landscape composition, and landscape configuration
(Bradbury et al., 2005; Graf, Mathys, & Bollman, 2009; Vierling et al.,
2008). LiDAR has been applied in studies of several taxa, including
corals (Brock, Wright, Clayton, & Nayegandhi, 2004; Brock, Wright,
Kuffner, Hernandez, & Thompson, 2006), fish (Jones, 2006), inverte-
brates (Müller & Brandl, 2009; Vierling et al., 2011), and small mam-
mals (Nelson, Keller, & Ratnaswamy, 2005). The majority of published
studies, however, assess bird–habitat relationships in forests (Vierling
et al., 2008). LiDAR data have been applied in these latter studies to in-
vestigate reproductive success (Hinsley, Hill, Bellamy, & Balzter, 2006;
Hinsley et al., 2008), habitat associations (Clawges, Vierling, Vierling,
& Rowell, 2008; Müller, Moning, Bässler, Heurich and Brandl, 2009;
Seavy, Viers, & Wood, 2009), species richness (Goetz, Steinberg,
Dubayah, & Blair, 2007; Lesak et al., 2011), and community composition
(Müller, Stadler and Brandl, 2010).

The predictive power of LiDAR-derived habitat data has fostered novel
opportunities to characterize and map avian habitat. In northern Idaho,
inclusion of LiDAR-derived data in habitat suitability models produced
habitat suitability maps with overall accuracy from 79% to 92%
(Martinuzzi et al., 2009). Tattoni, Rizzolli, and Pedrini (2012) reported
that LiDAR-derived habitat variables were statistically significant indica-
tors of habitat suitability for three farmland bird species in northeastern
Italy, improving predictive power of habitat suitability models and refin-
ing the spatial distribution of suitable habitat. Similarly, LiDAR-based
habitat suitability models developed for capercaillie (Tetrao urogallus)
were able to further differentiate and map suitable habitat in a generally
suitable forest reserve in the Swiss Pre-Alps (Graf et al., 2009). In New
Hampshire, LiDAR-derived habitat variables describing canopy variability
were important predictors of black-throated blue warbler (Dendroica
caerulescens) habitat quality and, in conjunction with LANDSAT vari-
ables, could predict site occupancy with up to 90% accuracy (Goetz
et al., 2010).

The early successes in studies of avian ecology using LiDAR demon-
strate the technology is a viable tool to map habitat quality, but its full
potential cannot be reached without new approaches that work for
species with narrow niches (Graf et al., 2009; Martinuzzi et al.,
2009; Müller et al., 2010). Conventional LiDAR-derived habitat vari-
ables (e.g., mean canopy height, canopy cover, foliage height diversi-
ty, total vegetation volume) typically used in previous studies may
not adequately represent important vegetation characteristics for
species with narrow niches. Researchers have noted LiDAR-derived
habitat variables may not effectively capture some key habitat char-
acteristics (e.g., differentiate tree species Müller et al., 2009, identify
potential RCW cavity trees and hardwood encroachment Smart,
Swenson, Christensen, & Sexton, 2012), or meaningful vegetation
thresholds (Clawges et al., 2008), thus limiting their predictive power
and relevance across different species and ecosystems. Martinuzzi et al.
(2009) demonstrated LiDAR can be used to map presence/absence
of snags and understory shrubs accurately, but noted the capability of
LiDAR to derive continuous estimates of these attributes warrants
further study.

Further research is needed to demonstrate the capability to extract
accurate and more detailed habitat attributes at various grain sizes rel-
evant to conservation andmanagement (Müller & Brandl, 2009). Deter-
mining relationships between scalability and accuracy will also be an
important consideration in habitat assessment as these datasets become
morewidely available, increasing opportunities to apply the technology
in ecological studies. Such efforts will facilitate new opportunities to

assess habitat quality for multiple species and lead to a broader under-
standing of local and regional patterns of species occurrence.

We developed a novel approach for using LiDAR data in ecological
studies by quantifying habitat conditions across multiple grain sizes
and using multiple habitat variables as required to evaluate habitat for
species with narrow niches. We used red-cockaded woodpecker
(RCW; Picoides borealis) foraging habitat quality at the Savannah River
Site (SRS) as a model. Red-cockaded woodpecker foraging habitat pro-
vides an appropriatemodel system for evaluating the newmethodology
because federally endangered RCWs have a narrow niche constrained
by multiple variables operating at multiple extents (U.S. Fish &
Wildlife Service, 1970; U.S. Fish &Wildlife Service, 2003). The provision
of quality foraging habitat is an essential component of RCW recovery.
The RCW recovery plan presents two sets of foraging habitat guidelines,
one to facilitate population expansion and a second tomaintain existing
population size. Under the first set, named the recovery standard,
foraging habitat quality is evaluated based on the acreage of habitat
satisfying specific threshold levels of key structural components
including: 1) ≥40% herbaceous groundcover; 2) sparse hardwood
midstory that is b2.1 m in height; 3) BA and density of pines
≥35.6 cm dbh are ≥4.6 m2/ha and ≥45 stems/ha, respectively;
4) BA of pines 25.4–35.6 cm dbh is ≤9.2 m2/ha; 5) BA of pines
≥25.4 cm dbh is ≥2.3 m2/ha; 6) BA and density of pines b25.4 cm dbh
are ≤2.3 m2/ha and ≤50 stems/ha, respectively; 7) b30% hardwood
overstory; and 8) foraging habitat that satisfies all recommendations of
these guidelines (hereafter, foraging habitat guidelines) is not sepa-
rated by more than 61 m (U.S. Fish & Wildlife Service, 2003). The
second set, named the standard for managed stability, recommends
each RCW group has access to ≥30.4 ha of foraging habitat where
BA of pines≥25.4 cm dbh is≥689 m2 and identifies stands of quality
foraging habitat with the following characteristics: 1) ≥30 years
old; 2) BA of pines ≥25.4 cm dbh is between 9.2 and 16.1 m2/ha;
3) BA of pines b25.4 cmdbh is b4.6m2/ha; 4) sparse hardwoodmidstory
that is b2.1 m in height; 5) total BA, including overstory hardwoods, is
b18.4 m2/ha; and 6) stands satisfying these recommendations are not
separated by more than 61 m (U.S. Fish & Wildlife Service, 2003).
Further, the ability to map detailed foraging habitat attributes over
large extents accurately using LiDAR is of substantial importance in the
conservation and recovery of the endangered species.

Limited research exists regarding the application of LiDAR to assess
RCW foraging habitat. Tweddale et al. (2008) reported canopy pine
and hardwoods were classified with 54% and 13% accuracy, respective-
ly. They reported moderate agreement between field- and LiDAR-
derived dbh and BA estimates (R2 of 0.54 and 0.46, respectively).
Smart et al. (2012) used low-density discrete-return LiDAR (approxi-
mately 0.11 returns/m2) to compare RCW nesting and foraging habitat
and model the species' distribution on the coastal plain of North
Carolina. They reported LiDAR-derived maximum tree height, variation
of tree heights, and variation in canopy cover could statistically differen-
tiate nesting and foraging habitat. Inclusion of LiDAR-derived habitat
variables in RCW distribution models with additional elevation,
landcover, and hydrography geospatial variables contributed approxi-
mately 28% to model accuracy, but improved predictive success only by
8%. They suggested future analyses of RCW habitat using LiDAR would
benefit from extracting additional key structural requirements.

Our objective was to develop and implement a novel approach for
using LiDAR to quantify habitat conditions for a forest-dwelling
species with a narrow ecological niche. Specifically, we developed
an analytical approach to: 1) use LiDAR to model detailed and inter-
related forest structural attributes related to RCW foraging habitat
quality; 2) analyze the error associated with model predictions at
specific threshold values of habitat features and various aggregate
sizes to select an appropriate grain size for landscape-scale evalua-
tion of foraging habitat conditions; and 3) apply model predictions
at the selected grain size to evaluate RCW foraging habitat conditions
at the landscape-scale.
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2. Methods

2.1. Study area

The SRS, an 80,267-haNational Environmental Research Park owned
and operated by the U.S. Department of Energy (DOE), is located on the
Upper Coastal Plain and Sandhills physiographic provinces in South
Carolina, USA. The SRS is characterized by sandy soils and gently sloping
hills dominated by pines, with hardwoods occurring in riparian areas.
Prior to acquisition by DOE in 1951, the majority of SRS uplands were
maintained in agricultural fields or had recently been harvested for tim-
ber. The U.S. Department of Agriculture (USDA) Forest Service hasman-
aged the natural resources of the SRS since 1952 and reforested the
majority of the uplands in loblolly (Pinus taeda), longleaf (P. palustris),
and slash (P. elliottii var. elliottii) pines (Imm & McLeod, 2005). Under
intensive management since 1985, the RCW population has grown
from 3 groups of 4 birds (Johnston, 2005) to 65 active groups of 246
birds in 2012 (T. Grazia, pers. comm.).

2.2. LiDAR data acquisition and processing

We acquired airborne LiDAR across the SRS in February and March
2009. Data were acquired using two Leica ALS50-II laser scanners
mounted in separate fixed-wing aircraft operated during the same
time period. Each aircraft collected data for different portions of the
SRS (Table 1). The total area covered by the acquisition was approxi-
mately 119,000 ha, including approximately 20,000 ha of lands adjacent
to SRS. The flight plan consisted of parallel main flights across the site
and two cross flights flown perpendicular to the main flight lines. Data
were acquired with an average of 10 returns/m2. At the time of the ac-
quisition, deciduous trees werewithout foliage. However, several of the
broad-leaved species are evergreen or retain dead foliage into the early
spring so hardwood species, as a group, are represented by a mix of
trees with and without foliage. When computing metrics from LiDAR
sensor data (hereafter, LiDAR metrics), we excluded all returns with
heights b1 m (relative to the LiDAR-derived ground surface model) to
eliminate returns from low-lying grasses and shrubs and to reduce
noise due to imperfections in LiDAR ground point filtering. Sensor
data were processed using FUSION (McGaughey, 2009). We used a
canopy threshold height of 1.5 m when computing total canopy cover.
Additional details of the point data reduction and quality assurance
analysis are provided by Reutebuch and McGaughey (2012).

2.3. Field measurements

We collected tree measurements on 194 ground calibration plots in
the spring of 2009. We used a matrix representing the range of stand
height, density, composition, and canopy structure developed with in-
formation from the most recent SRS ground inventory conducted in
2000 to select ground calibration plot locations that represented the
range of conditions on the SRS. We selected 120 plots in pine forest
types, 60 with and 60 without mid-canopy vegetation, 40 plots in

mixed pine and hardwood types, and 34 in bottomland hardwoods
and baldcypress–tupelo (Taxodium distichum–Nyssa aquatica). We re-
corded plot locations using a dual-frequency, survey-grade GPS receiver
(JAVAD Maxor) after tree measurements were completed. At least 600
positions were recorded for each plot center (minimum 10 minute oc-
cupation with 1-second epochs). We post-processed position data
using a continuously operating reference station (CORS) located close
to the study site. We expected plot locations to be accurate to within
1.5 m based on previous experience (Clarkin, 2007; Valbuena, Mauro,
Rodriguez-Solano, & Manzanera, 2010).

We used circular, fixed area plots to collect ground calibration vege-
tation data. The basic plots were 0.04 ha unless fewer than eight domi-
nant or co-dominant trees were present on the plot. For these sparse
plots (37% of the plots), we increased plot size to 0.08 ha. On basic
plots, measurements for live and dead trees N7.6 cm dbh included spe-
cies, dbh, height, crown base height, and crown class (i.e., the position of
the tree crown relative to the competing vegetation surrounding the
tree). We collected the same measurements for trees 2.5–7.6 cm dbh
on a 0.004-ha plot nested within the basic plot. Smaller trees on the
basic plot but outside the 0.004-ha plot were simply tallied by species
and size class (2.5–5.1 cm and 5.1–7.6 cm).

We calculated live, dead, and total BA, tree density (DEN; trees ha−1),
mean andmedian crown length, quadraticmean dbh (QMD), and Lorey's
height (BA weighted mean height) for pine, hardwood, and all trees on
ground calibration plots (Appendix A).Weused BAof pine andhardwood
N1.5 m in height and 7.6 cm dbh to estimate canopy composition.
For each plot, we computed RCW-specific foraging habitat metrics,
including the live BA and DEN of pine trees that were ≥35.6, 25.4–35.6,
and 7.6–25.4 cm dbh. We also calculated BA for live hardwoods
7.6–22.9 cm dbh (Table 2; U.S. Fish &Wildlife Service, 2003).

3. Analytical approach to model forest structure using LiDAR

Our analytical approach involved four sequential steps. First, we
quantified the proportion of vegetation without foliage to differentiate
between conifer and hardwood vegetation. Next, we used regression
methods to relate metrics computed from LiDAR sensor data to forest
inventory attributes measured on ground calibration plots. We used
the resultingmodels to predict detailed and interrelated forest structur-
al attributes and subsequently populate raster layers at 20-m resolution
with these attributes for all of the SRS. We then quantified the error in
model predictions at several a priori threshold values, and the change
in error as predictions were averaged over several square aggregate
sizes (i.e., grain size). Finally, after determining an appropriate aggre-
gate size based on the results of the prediction error analyses, we used
the raster layers to assess foraging habitat quality within all non-
overlapping foraging partitions (i.e., polygons that equally allocate
foraging habitat among individual clusters) of RCW active clusters and
recruitment clusters (i.e., clusters of artificial RCW cavities that are not
occupied, but maintained to facilitate population expansion) in the
entire RCW management area (RCW MA). Accordingly, we present
our analysis methods in four parts, corresponding to each of these
steps: 1) computing the proportion of vegetation with and without fo-
liage; 2) modeling and mapping forest structure; 3) analyzing the
error associated with aggregations of model predictions; and 4) apply-
ing model predictions to evaluate RCW foraging habitat.

3.1. Computing the proportion of vegetation without foliage

Because of the importance of hardwood species in the RCW habitat
criteria, wewanted to differentiate between conifer and hardwood veg-
etation using only information derived from the LiDAR data. However,
we found that a modeling approach did not provide the desired accura-
cy. We, therefore, implemented a classification approach to identify the
condition of vegetation within 2-m cells. We used a principal compo-
nent analysis (PCA) to select LiDAR metrics for use in developing

Table 1
Flight parameters and LiDAR sensor settings used to acquire airborne LiDAR on the
Savannah River Site between February and March of 2009.

Flying height above ground (planned) 1430 m
Scan angle (flown) ±10°
Scan angle (delivered)a ±8°
Average scanning swath width (flown) 505 m
Swath overlap (flown) 62.5%
Maximum returns per pulse 4
Scan frequency 58 Hz
Pulse rate 150 kHz
Beam divergence 0.22 mRad

a Returns from the outer 2° of each scan were deleted prior to delivery, which re-
duced the scan angle, swath width, and overlap.
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classification rules. For the PCA, we computed four types of LiDAR met-
rics for the 2-mby2-mcells: 1)metrics computed using the adjusted in-
tensity values for first returns; 2) a pulse penetration metric that
quantified the depth to which laser pulses penetrated through the
canopy; 3) descriptive statistics computed using the height above
ground for LiDAR returns above 2 m; and 4) proportions of first and all
returns above height thresholds. For the intensity metrics, we used only
the first returns within 2 m of a high-resolution (0.5-m by 0.5-m grid)
canopy surface and more than 2 m above the ground. We computed the
pulse penetrationmetric as the difference between thefirst return surface
and a surface created using returns that were the last return of pulses
where more than one return was recorded (last of many; Breidenbach,
McGaughey, Andersen, Kändler, & Reutebuch, 2007). For the proportions
of first and all returns, several height thresholds were used. A basic
threshold of 2 m was used to compute a surrogate for canopy cover. We
also computed the proportion of first and all returns above the mean
height andmode of the height values. The resulting 58metrics (29 inten-
sity, 19 height, 9 proportions, and penetration) were used in the PCA.

We evaluated the PCA results to select the number of significant
components that explained a specified portion of the variability in the
data. We then examined variable loadings for each component to select
metrics to develop the classification rules. We used the random forest
(Breiman, 2001; Liaw & Wiener, 2002) package in R (accessed via the
Rattle interface; Williams, 2009) with the LiDAR metrics selected from
the PCA to develop the classification rules. We developed classification
rules using 70% of the plot data and used the remaining 30% to evaluate
the classification error (the default partitioning in Rattle). We summa-
rized the high-resolution classification results for areas corresponding
to each ground calibration plot to develop a continuous fractionwithout
foliage (FWF) metric ranging from 0.0 to 1.0 for use as an explanatory
variable in predictive models of forest structure. We also summarized
the high-resolution classification data over the entire SRS using 20 m
cells for use in assessing RCW habitat using the yaImpute package in R
(Crookston & Finley, 2008).

3.2. Modeling and mapping forest structure

We used the best subsets approach in the contributed packaged
“leaps” (Lumley, 2009) in the R statistical environment (R Development
Core Team, 2012) to select a set of LiDAR explanatory variables based
onmodelfit and residual standard error for each forest structure response

variable. We used the variance inflation factor (VIF) statistic to eliminate
highly collinear predictor variables (Fox&Monette, 1992). If VIF exceeded
5.0 for a candidate predictor variable, we dropped it from the regression
model. We used the MASS package (Venables & Ripley, 2002) in R to
select Box-Cox transformations of BA and DEN to reduce non-constant
variance and satisfy the assumption of constant variance implicit in linear
regression techniques.We used plot-level field data andmetrics comput-
ed from the LiDAR data in conjunctionwith the resultingmodels to create
spatially explicit inventory layers for SRS.

We used three modeling steps to generate LiDAR estimates of
foraging habitat variables (Table 3). In the first step we used nonlinear
seemingly unrelated regression (NSUR) to develop models for live BA
and DEN of hardwood (HW), softwood (SW), and all plot trees (HS)
≥7.6 cm dbh. This additive regression approach ensured that for each
ground calibration plot the HW and SW regression model estimates
summed to the regression model estimate for the total plot (Parresol,
2001).We then applied theNSUR approach to the explanatory variables
and their coefficients from these regression models as initial values in a
system of three equations (one for HW, one for SW, and HS). We then
used the Systemfit package (Henningsen & Hamann, 2007) to simulta-
neously fit models for the HW, SW, and HS equations.

We developed multiple linear regressions to estimate RCW habitat
variables. We used the same model selection and evaluation methods
as described in the NSUR approach for these models (i.e., model fit,
residual standard error, and VIF). To estimate variables bounded by a
lower dbh limit (e.g., BA of pines≥25.4 cmdbh), we developed an inde-
pendentmultiple regressionmodel for each variable above the specified
dbh limit; we did not include trees smaller than the dbh limit in ground
calibration plot summaries used as response variables. We estimated
variables bounded by an upper and lower dbh limit (e.g., BA of pines
7.6–25.4 cm dbh) by subtracting estimates of two regressions. First,
we developed a model using only trees greater than the lower dbh
limit. Then, we developed a second model using only trees greater
than the upper dbh limit. We computed the predictions for both the
upper and lower dbh limit regressions across the entire LiDAR acquisi-
tion area at 20 m resolution (cell size corresponds to the 0.04-ha field
plot size) using ArcGIS Spatial Analyst Raster Calculator (ESRI, 2011).
We subtracted the raster layer containing predictions of the second re-
gression model (upper dbh limit) from the predictions of the first
(lower dbh limit) to produce an estimate of the habitat variable value
for the trees with dbh bounded by the upper and lower dbh limit.

Table 2
Vegetation structural criteria of good quality foraging habitat included in the U.S. Fish and Wildlife Service (2003) recovery standard and managed stability standard along with
corresponding criteria codes used in this study.

Criteria
code

Foraging habitat recommendation Sourcea Calculation of LiDAR-derived habitat variables Comments

A Hardwood canopy cover ≤30% p. 189, #2 (g) Computed using direct classification of foliage absent/
present condition for 2- by 2-m cells and summarized
for 20- by 20-m cells

Fraction without foliage includes snags, if present

B Basal area of pine trees ≥25.4 cm dbh
is ≥9.2 and ≤16.1 m2/ha

p. 293, #3 (b) Predicted from regression of LiDAR metrics versus BA
of pine trees ≥25.4 cm dbh

Upper BA condition ignored, but captured under
criteria “G”

C No hardwood midstory, or if present,
sparse and b2.1 m tall.

p. 189, #2 (f) Calculated a surrogate by subtracting predicted BA of
hardwoods ≥22.9 cm dbh from predicted BA of
hardwoods ≥7.6 cm dbh

Hardwood mid-canopy vegetation threshold set
at ≤1.2 m2/ha; the majority of hardwoods
represented include trees between 7.6 and
15 cm dbh

D Basal area of pine trees ≥35.6 cm dbh is
≥4.6 m2/ha and the pines are ≥60 years
of age

p. 188, #2 (a) Predicted from regression of LiDAR metrics versus plot
pine BA of trees ≥35.6 cm dbh

Age condition is ignored because most pine
stands at SRS are b60 years

E Density of pine trees ≥35.6 cm dbh is ≥45
trees/ha and the pines are ≥60 years of age

p. 188, #2 (a) Predicted from regression of LiDAR metrics versus plot
pine density of trees ≥35.6 cm dbh

Age condition is ignored because most pine
stands at SRS are b60 years

F Basal area of pine trees b25.4 cm dbh
is b2.3 m2/ha and below 50 stems/ha

p. 188, #2 (c) Predicted from subtraction of predicted values in cells
under criteria “D” from total pine BA regression of
LiDAR metrics

Stems/ha condition ignored to simplify analysis
and interpretation of method

G Total stand basal area, including overstory
hardwoods, is ≤18.4 m2/hab

p. 293, #3 (e) Predicted from regression of LiDAR metrics versus plot
BA of trees ≥7.6 cm dbh

a U.S. Fish and Wildlife Service (2003).
b The published guidelines (U.S. Fish & Wildlife Service, 2003) incorrectly state 80 ft2/ac is 23.0 m2/ha.
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Estimates for variables bounded byupper and lower dbh limitswere not
compared to ground calibration plot data.

We used BA of hardwoods ≥7.6 and ≥22.9 cm dbh in lieu of hard-
wood midstory height because the latter could not be quantified using
LiDAR.Midstory and understory conditions are components of RCWfor-
aging habitat quality, but are not necessarily well represented in point-
cloud data used to develop predictive models (Maltamo et al., 2005).
Vegetation that is present in the upper canopy is well sampled by
LiDAR pulses, but fewer samples (returns) are measured for vegetation
present at lower levels in the canopy. Many of the hardwood species in
southern pine forests are shade tolerant and develop under a pine over-
story. In such stands, the majority of crowns associated with hardwood
specieswould not bewithin 2m of the upper canopy surface andwould
not be well represented in point-cloud data. Consequently, midstory
and understory requirements described in the revised foraging habitat
guidelines could not be modeled or used as criteria. For example, be-
cause we were unable to explicitly quantify the hardwood midstory as
“sparse and less than 2.1 m in height” (U.S. Fish & Wildlife Service,
2003), a surrogate for hardwood midstory conditions based on BA of
hardwoods 7.6–22.9 cm dbh was used. Additionally, we only included
the BA and density requirements for pines≥35.6 cmdbh in our criteria;
we ignored age requirements because most pine stands at the SRS are
b60 years old.

3.3. Analyzing the error associated with model predictions

We constructed joint prediction confidence intervals for each habitat
metric that was directly predicted (i.e., not using subtraction) using mul-
tiple linear regression to quantify the precision of model predictions.
Construction of joint prediction confidence intervals required two values:
1) the standard errors of the predictions (se); and 2) aWorking-Hotelling
value (W). The confidence interval boundary points are obtained from

Ŷ � se t or Wð Þ

where

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pF 1−α;p;n−pð Þ

p

is the Working-Hotelling value for confidence bands and se is the
standard error. A scalar value, known as leverage, must be computed to
calculate the standard error and is obtained from

li ¼ xi X′X
� �−1

x′i

where xi is the ith row of the regression design matrix X. We used two
types of standard errors: 1) for the predicted mean of yi (i.e., predicted
mean of the population); and 2) for the predicted mean ofm individuals
drawn from the distribution of yi (i.e., predictedmean ofm 20-mby 20-m
cells), which are calculated as

s Ŷ i

� �
¼

ffiffiffiffiffiffiffi
lis

2
q

and

s bYi newð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lis

2 þ s2

m

s

respectively (Parresol, 1992). We used the standard error for the predict-
edmeanof yi to construct 95% joint prediction confidence intervals for the
predicted mean of criteria B, D, and E at the recommended thresholds
designated in the RCW recovery plan (Table 2; U.S. Fish & Wildlife
Service, 2003).

Datawith high spatial resolution (20m)presented two problems for
our analysis. First, the prediction error for individual cells was high,
making it difficult to interpret the raster data layers. Second, individual
20-m by 20-m cells were too small to interpret habitat data for the RCW
because assessment andmanagement of foraging habitat occur at larger
grain sizes (U.S. Fish & Wildlife Service, 2003). To address these prob-
lems, we constructed 95% joint confidence intervals using the standard
error for the predicted mean ofm individuals drawn from the distribu-
tion of yi. We adopted this approach to quantify the prediction error as-
sociated with the number of predictions (m) included in several sizes of
square aggregates (2 by 2 cell aggregates, 3 by 3 cell aggregates, etc.) for
specified values (yi). Our goal was to determine the aggregate size that
reduced prediction error while still maintaining ameaningful biological
grain size. The number of individuals (m, or number of 20-m by 20-m

Table 3
RCW habitat criteria regression model summaries, multiple R2, and root mean square error (RMSE) for basal area (BA; ft2 ac−1) and tree density (DEN; trees ac−1).

Forest structure variablea Modelb Multiple R2 RMSE

Bounded by lower dbh limit Non-linear seemingly unrelated regression

BAsw7.6 (0.5 ∗ (−3.1284 + 0.3834(ElevMean) + 0.2192(COV1) − 0.2596(FWF × COV1) + 1)2 0.78 25.5
BAhw7.6 (0.3 ∗ (−2.9405 + 11.9156(FWF0.5) + 0.00097(ElevP95 × COV2) + 1)3.33 0.77 19.6
BAhs7.6 BAhs7.6 = BAsw7.6 + BAhw7.6 0.81 27.4
DENsw7.6 (0.3 ∗ (9.9069 − 0.3073(ElevP95) + 0.1519(COV1) − 0.2109(FWF × COV1) + 1)3.33 0.71 109.9
DENhw7.6 (0.3 ∗ (−4.7332 + 15.7659(FWF0.5) + 0.1079(COV2) + 1)3.33 0.34 102.6
DENhs7.6 DENhs7.6 = DENsw7.6 + DENhw7.6 0.66 138.2

Multiple linear regression
BAsw25.4 (4.8673 − 3.9039(FWF) − 0.0717(COV1) + 0.0051(COV1 × ElevP90))2 0.74 22.5
BAsw35.6 (−0.7525 + 0.1322(ElevP90) − 0.8517(FWF) + 0.0164(COV1))3 0.80 16.9
BAhw22.9 (4.2163 − 3.0823(R1A) + 0.1087(FWF × ElevP90))3 0.61 25.8
DENsw35.6 (−0.0406 + 0.0897(ElevP90) − 1.0559(FWF) + 0.0144(COV1))3 0.70 11.7

Bounded by lower and upper dbh limit Differencing of regression models

BAsw7.6–25.4 BAsw7.6–25.4 = BAsw7.6 − BAsw25.4 – –

BAhw7.6–22.9 BAhw7.6–22.9 = BAhw7.6 − BAhw22.9 – –

a SW signifies a model to estimate the softwood component; HW signifies a model to estimate the hardwood component; HS signifies a model to estimate the total (hardwood
and softwood); dbh limits for each variable are listed as either a single lower limit (e.g., BAsw7.6 signifies basal area of all softwood trees ≥7.6 cm dbh), or as lower and upper limits
(e.g., BAsw7.6–25.4 signifies basal area of all softwoods 7.6–25.4 cm dbh).

b ElevMean = mean height above ground of all returns N the 1 m ground cutoff height (m); ElevP90= 90th percentile heights above ground of all LiDAR returns N the 1 m ground
cutoff height (m); ElevP95= 95th percentile heights above ground of all LiDAR returns N the 1m ground cutoff height (m); FWF= fraction of plot without foliage determined from 2m
by 2 m classifications of LiDAR data (0–1); COV1 = percent canopy cover computed as first returns N 1.5 m canopy threshold height divided by total number of first returns in plot
(0–100); COV2= percent canopy cover computed as all returns N 1.5m canopy threshold height divided by total number of 1st returns in plot (0–100); R1A= ratio of first to all returns
when only returns N 1 m ground cutoff height are counted (0–1).
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cells in an aggregate) was based on square samples containing 1 to 100
predictions (i.e., squares containing 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100
cells). The distributions from which individuals were drawn (yi) were
specific values including low, median, and high predicted values and
the recommended threshold levels of criteria B, D, and E (Table 2).

3.4. Applying model predictions to evaluate RCW foraging habitat

We performed landscape analysis in ArcGIS (ESRI, 2011) using the
predicted forest vegetation habitat metrics. We masked raster layers for
the SRS to exclude roads, power line corridors, facilities, streams, and
ponds. Because pine stands less than 30 years of age are rarely used by
foraging RCWs, we also excluded all these stands using the existing SRS
forest stands polygon layer. Although the RCW recovery plan designates
separate thresholds for hardwood over-story in loblolly/slash pine stands
and longleaf pine stands,we chose touse the loblolly/slashpine threshold
due to the species' dominance in RCW foraging habitat.

Starting with cluster locations, we used Thiessen polygons and a
buffer operation to create mutually exclusive (i.e., non-overlapping)
foraging partitions for situations where circular partitions of adjacent
clusters would otherwise overlap (Lipscomb & Williams, 1996; U.S.
Fish & Wildlife Service, 2003). Although the preferred method for
assessing RCW foraging habitat is to identify the areawithin the interior
(0.4 km) and exterior (0.8 km) radius of the cluster center separately,
we combined both partition distances to simplify the presentation of re-
sults. We did not attempt to analyze spatial separation of foraging and
non-foraging habitat, which is nominally constrained by the RCW forag-
ing habitat guidelines to be no greater than 61 m between adjacent
foraging parcels (U.S. Fish & Wildlife Service, 2003).

To determine the amount of foraging habitat available to active and
recruitment RCW clusters that satisfied the requirements of our forag-
ing habitat criteria, we enumerated the aggregated cells at the recom-
mended threshold value and then re-calculated the area available
using the 95% joint confidence interval boundary points of the recom-
mended threshold. For a given habitat attribute, this method provided
upper and lower bounds on the amount of foraging habitat based on
the confidence interval boundary points for each attribute, reflecting
the uncertainty in predicted habitat data. Finally, we examined the ef-
fect of multiple habitat criteria on the resulting amount of suitable hab-
itat by enumerating the cells that met two or more criteria. For this
analysis, we did not compute joint statistical limits, but assumed the
distributions were independent (i.e., the probability of a predicted
value for one attribute was independent of all others). Because the
order of the criteria will affect the outcome, we attempted to apply
them in a logical sequence starting with more general and less restric-
tive criteria and progressing to more specific and more restrictive
criteria. To remove the effect of criteria order, we also enumerated
the number of criteria met within each cell regardless of the criteria
sequence.

4. Results

4.1. Applying the analytical approach to model RCW foraging habitat
structure

The sequential steps of our analytical approach are capable of
extracting an array of detailed and interrelated habitat attributes
required to evaluate habitat quality for the RCW. The classification ap-
proach used to compute the proportion of vegetation without foliage
provided an estimate of the proportion of hardwood vegetation useful
for assessing RCW habitat and for modeling other inventory attributes.
The regression methods used to model forest structure with LiDAR de-
compose broadly defined habitat attributes, including BA and density
of all trees ≥7.6 cm dbh, into specific hardwood and softwood compo-
nents that are determinants of RCW foraging habitat quality. Construc-
tion of joint prediction confidence intervals facilitates selection of an

appropriate aggregate size (i.e., grain size) by considering the relation-
ship between prediction error and scalability at specific habitat thresh-
olds described in the RCW foraging habitat guidelines. Mapping RCW
foraging habitat criteria with consideration of prediction confidence
interval boundary points facilitates assessment of habitat quality
based on the potential range of conditions. Suitable and unsuitable
areas (i.e., areas that satisfy criteria requirements vs. those that fail to
do so) can be mapped to examine the spatial arrangement of suitable
foraging habitat. These results are easily interpreted and can be directly
applied to identify areas in need of restoration (based on one or several
criteria) or that are suitable for recruitment clusters.

4.2. Computing the proportion of vegetation without foliage

Evaluation of the PCA results showed that four components ex-
plained 72% of the variation in the set of LiDAR metrics. Comparison
of the variable loadings for the first four components led us to select
the variable with the highest loading as a surrogate for the actual com-
ponent. The following four variables were used in the foliage present/
absent classification: mean return intensity (Int.Mean), 40th percentile
height divided by the 95th percentile height (Elev.RP40), proportion of
first returns above the mean (First.Above.Mean), and coefficient of L-
variation (Int.L.CV). Random Forest proved to be a robust classifier
using these four variables. For the foliage absent/present classification,
overall error was 5.5% for individual 2-m by 2-m cells. The classification
was applied across all of the SRS to produce a 2-m resolution raster that
classified each cell as FOLIAGE or NO-FOLIAGE. The 2-m raster was then
summarized to a 20-m raster to produce the proportion of each 20-m
cell that contained vegetation without foliage (fraction without foliage
or FWF ranging from 0.0 to 1.0).

4.3. Modeling and mapping forest structure

All but one of the models selected for estimating RCW foraging
habitat criteria included three types of explanatory variables: 1) one
variable describing dominant canopy height (ElevMean, ElevP90, or
ElevP95); 2) one variable describing canopy cover (COV1, COV2, or
R1A); and 3) the LiDAR classification variable that estimates the fraction
without foliage of the plot's overstory canopy (FWF; Table 3). The use of
a dominant canopy height, a canopy cover, and the fraction without fo-
liage explanatory variables provided robust, parsimonious multivariate
models. Although inclusion of more LiDAR metrics produced models
with marginally higher R2 statistics, such models tended to over fit the
observed data (often resulting in high VIF values between similar
LiDAR explanatorymetrics, e.g., 80th percentile height and 90th percen-
tile height). Model R2 values ranged from 0.70 to 0.80 for softwood
models and 0.34 to 0.77 for hardwood models (Table 3). The model
for density of hardwood trees ≥7.6 cm dbh (DENhw7.6) did not include
a dominant canopy height LiDAR variable and had the poorest fit of all
models (R2 = 0.34). Data used to develop multiple linear regressions
for estimating RCW foraging habitat criteria B, D, and E reflect a wide
range of forest types on the SRS; recommended threshold values of
each criteria were on the lower spread of the data (Fig. 1).

4.4. Analyzing the error associated with model predictions

A clear relationship existed between aggregate size and prediction
error at the recommended threshold values of RCW foraging habitat
criteria B, D, and E. Prediction error at the recommended threshold
values was largest with one prediction and decreased as the number
of predictions, or square aggregate size, increased (Table 4). Beyond
16 predictions, or 0.64-ha square aggregates, reductions in prediction
error of m individual predictions were minimal; prediction error of
square aggregates larger than 0.64 ha began to converge on the predic-
tion error of the predicted mean of the population (X; Table 4). Similar
relationships between aggregate size and prediction error occurred
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at low, median, and high predicted values for criteria B, D, and E
(e.g., Fig. 2). As a consequence of sampling error, prediction error at
the low and high predicted values of criteria B, D, and Ewas higher com-
pared to that of the median predicted values (e.g., Fig. 2).

The uncertainty in X at RCW foraging habitat criteria threshold values
(i.e., mean of yi) of criteria B and Dwas approximately ±2m2/ha; uncer-
tainty in X at the threshold value of criterion E was approximately ±14
trees/ha (Table 4). The power transformations used todevelop the regres-
sion models that generated predictions for each criterion resulted in
asymmetrical interval boundary points.

4.5. Applying model predictions to evaluate RCW foraging habitat

Based on the error associated with model predictions, we selected
0.64-ha as the grain size for habitat analyses. There is no previous em-
pirical data to support our selected level of aggregation; however, we
believed 0.64-ha was a reasonable size for evaluating habitat attributes
by providingmore reliable estimates of foraging habitat structure while
maintaining a high level of spatial detail in raster layers. We summa-
rized model predictions by the mean of the 16 20-m by 20-m cells
that made up each 0.64-ha square aggregate. The amount of foraging

habitat satisfying each criterion using the recommended threshold
values was similar among all criteria. The total area within RCW
foraging partitions that satisfied each criterion ranged from 4431 ha
(criterion A) to 3126 ha (criterion E; Table 5). When coupled to the
95% joint prediction confidence interval lower and upper boundary
points of model predictions at recommended threshold levels, the
amount of potentially suitable foraging habitat for specific criteria
(e.g., criteria B or D) varied considerably among non-overlapping
RCW foraging partitions (Fig. 3). Due to the range of foraging habitat
conditions and sizes of mutually exclusive foraging partitions, certain
clusters were allocated less suitable foraging habitat than recommend-
ed (e.g., 30.4 ha under the “Managed Stability Standard” or 49 ha under
the “Recovery Standard”; U.S. Fish & Wildlife Service, 2003).

In contrast to applying an individual criterion, applyingmultiple for-
aging habitat criteria resulted in greater variation in the amount of suit-
able area among criteria combinations and often decreased area that
satisfied the recommended threshold values. The total area within
RCW foraging partitions that satisfied the recommended threshold
values of multiple criteria applied in sequence ranged from 2926 ha
(criteria A and B) to 452 ha (criteria A, B, C, D, F, and G; Table 5).
When criteria A, B, andGwere applied in sequence as a generalized sur-
rogate for theManaged Stability Standard (i.e., the recommended forag-
ing habitat structure designed to maintain existing population sizes),
the total area within RCW foraging partitions that met all three criteria
was 1085 ha (Table 5). There were 1782 ha within RCW foraging parti-
tions that did not satisfy the recommended threshold value of any single
RCW foraging habitat criterion (Table 6). Regardless of the order criteria
were applied, the area within RCW foraging partitions in which the
threshold values of multiple criteria were simultaneously satisfied
ranged from 1163 ha (area that satisfied any two of the criteria) to
2563 ha (area that satisfied any four of the criteria; Table 6). Approxi-
mately 5821 ha of habitat within RCW foraging partitions simulta-
neously satisfied the requirements of any two to five of the foraging
habitat criteria (Table 6).

The spatial arrangement of foraging habitat that satisfied the recom-
mended threshold values of criterion D suggests foraging habitat avail-
able to most RCW clusters is fragmented (Fig. 4). When we applied
multiple foraging habitat criteria in sequence (e.g., criteria A, B, then
G), only a small area of foraging habitat simultaneously satisfied the rec-
ommended threshold levels of all three criteria and foraging habitat
fragmentation appeared more pronounced (Fig. 5). When we applied
multiple foraging habitat criteria in any sequence, the result was a

Fig. 1. Scatterplots of field data (Observed) and LiDAR-derived estimates (Predicted) associated with field calibration plots showing fitted lines and 95% confidence bands for the mean
predictions of: BA (m2/ha) of pines ≥25.4 cm dbh (Panel A; criterion B); BA of pines ≥35.6 cm dbh (B; criterion D); and density (trees/ha) of pines ≥35.6 cm dbh (C; criterion E).

Table 4
Upper and lower prediction error boundary points at various numbers of aggregated 0.04-ha
cells (m) at threshold levels for criteria B (BA [m2/ha] of pines ≥25.4 cm dbh; predicted
threshold = 9.17 m2/ha), D (BA of pines ≥35.6 cm dbh; predicted threshold =
4.56 m2/ha), and E (density [trees/ha] of pines ≥35.6 cm dbh; predicted threshold =
45 trees/ha) recommended in the U.S. Fish and Wildlife Service (2003).

Criterion B
(m2/ha)

Criterion D
(m2/ha)

Criterion E
(trees/ha)

m Lower Upper Lower Upper Lower Upper

1 0.57 28.09 0.41 17.01 4.44 160.40
4 3.49 17.53 1.62 9.83 16.51 93.02
9 4.97 14.63 2.24 8.11 22.66 76.63
16 5.78 13.33 2.57 7.40 25.97 69.74
25 6.27 12.61 2.76 7.03 27.91 66.13
36 6.59 12.16 2.87 6.81 29.14 64.00
49 6.81 11.87 2.95 6.67 29.96 62.64
64 6.97 11.66 3.01 6.58 30.54 61.71
81 7.09 11.51 3.04 6.51 30.95 61.06
100 7.18 11.41 3.07 6.47 31.26 60.58
X a 7.63 10.84 3.21 6.26 32.69 58.40

a Uncertainty in the predicted mean of the population.
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mosaic of foraginghabitatwhere patchesmeeting between two and five
of the individual foraging habitat criteria appeared to dominate the
landscape (Fig. 6).

5. Discussion

The high predictive power of statistical models and reliability of
LiDAR-derived habitat data was fostered by sampling a relatively large
number of field plots (n=194, or 1 plot/413 ha) across the range of for-
est conditions at the SRS and obtaining accurate locations for field plots.
Without a sufficient sample of forest structure conditions, LiDAR-
derived estimates of habitat structure will be less reliable, limiting the
value of these data for assessing habitat conditions (Bässler et al.,
2011; Hyde et al., 2005). Costs associated with ground calibration
plots were low (~10%) relative to the total project cost; thus, we

sampled a relatively large number of ground calibration plots to maxi-
mize model predictive power and, by extension, prediction reliability.
Our models exhibited predictive power comparable to those developed
in other studies that sampled field plots at higher densities, including
approximately 1 plot/7 ha (Næsset, 2002), 1 plot/43 ha (Tweddale
et al., 2008), 1 plot/56 ha (Næsset, 2004). Although we did not conduct
a power analysis to determine the number of field plots needed to
achieve a desired level of prediction reliability, our results suggest that
novel and detailed habitat attributes (e.g., strata-specific estimates of
density and BA for pines and hardwoods) can be predictedwith reliabil-
ity comparable to conventional LiDAR-derived habitat attributes with
ground calibration plot densities as low as 1 plot/413 ha.. Development
of sampling designs that provide coverage of the range of forest condi-
tions or disturbance types (e.g., Helmer et al. 2010)may bemore impor-
tant than the density of ground calibration plots when predicting
detailed, wall-to-wall habitat attributes using LiDAR.

Decomposing broadly defined LiDAR-derived habitat attributes
while ensuring additivity of strata-specific predictions is a key compo-
nent of our analytical approach, allowing researchers to reliably esti-
mate interrelated structural attributes that have direct ecological
significance to target species. Our analytical approach serves as a viable
model to assess habitat quality for other forest-dwellingwildlife species
whose habitat quality is related to a multidimensional framework
of structural characteristics. Cerulean warblers (Dendroica cerulea)
provide an example of such a species becausemales tend to select terri-
tories with dense canopies, high vertical vegetation complexity (i.e., fo-
liage density at specific height strata), and large (e.g., N38 cm dbh),
well-spaced trees (Jones & Robertson, 2001; Weakland & Wood,
2005). Hamel (2000) suggested foliage density at specific height strata
may be a principal characteristic influencing territory selection, and
investigating this relationship using our approach could help clarify
habitat requirements for the species.

The trade-offs between prediction reliability and scalability of
LiDAR-derived habitat data are easily quantified using our analytical
approach, addressing a rarely acknowledged source of uncertainty in
LiDAR-derived habitat data applied in ecological studies. A rigorous
assessment of prediction error using our methods can be applied to

Fig. 2. Relationships between the number of aggregated 0.04 ha cells (m) and prediction error showing the mean predictions and 95% confidence bands for individual estimates at low
(0.35 trees/ha),median (71.79 trees/ha), and high (244.57 trees/ha; panels A, B, and C, respectively) predicted values of the density (trees/ha) of pines≥35.6 cmdbh (criterion E). Vertical
lines represent the aggregate cell size selected for habitat analyses.

Table 5
Total area of RCWmanagement area (RCWMA) and foraging partitions on the SRS meet-
ing single criteria and multiple criteria applied in sequence. Refer to Table 2 for criteria
code definitions.

Criteria RCWMAa RCW foraging partitionsb

Ha Percent of area Ha Percent of area

A 14,536 41 4,431 54
B 14,403 41 3,572 43
C 10,851 31 3,601 44
D 17,122 49 4,158 51
E 13,089 37 3,126 38
F 13,382 38 3,228 39
G 13,262 38 4,054 49
AB 10,646 30 2,926 36
ABC 7,886 22 2,408 29
ABGc 3,273 9 1,085 13
ABCD 7,807 22 2,364 29
ABCDF 1,598 5 472 6
ABCDFG 1,409 4 452 6

a Total area = 35,269 ha.
b Total area of the 72 active and recruitment clusters at the SRS = 8,217 ha.
c A generalized surrogate for the Managed Stability Standard (U.S. Fish & Wildlife

Service, 2003).
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sensibly address a critical, but commonly neglected, source of uncer-
tainty that may introduce bias in species-specific investigations of
habitat quality using LiDAR-derived habitat data. Aggregation of fine-
grained habitat data offers a simple solution to the frequent mismatch
between grain sizes of response and predictor variables (e.g., species
occurrence and habitat data, respectively), but few studies consider
the reliability of newly aggregated habitat data and its influence on pre-
dictivemodels. For instance, northern goshawks (Accipiter gentilis) tend
to select foraging habitat based on prey availability rather than abun-
dance, the former being largely determined by stand structure (Beier
& Drennan, 1997; Greenwald, Crocker-Bedford, Broberg, Suckling, &
Tibbitts, 2005). However, because common mammalian prey, such as
Abert's squirrel (Sciurus aberti), occur at densities of b1 squirrel/ha
(Patton, 1984), grain sizes ≥2.25 ha may have greater statistical
power to detect patterns in goshawk foraging habitat selection related
to stand structure (Beier & Drennan, 1997). Similarly, Graf et al.
(2009) used 25-ha aggregates of LiDAR-derived structural variables to
support site-specific management initiatives for capercaillie, but noted
variables aggregated to grains N25 ha may have improved habitat suit-
ability models because individuals have such large home-range sizes
(average of 550 ha; Storch, 1995). Martinuzzi et al. (2009) aggregated
20-m by 20-m cells of LiDAR-derived habitat data to 1 ha as required
by the habitat suitability models for four forest-dwelling birds. These
studies demonstrate how the appropriate grain size is constrained by
a species' natural history, specific hypotheses under examination, and

relevant management practices, but a common oversight is the effect
of aggregation on habitat data.

Incorporating the relationship between scalability and reliability of
LiDAR-derived habitat data is a practical strategy to embrace a source
of uncertainty commonly unacknowledged in habitat maps. Consider-
ing the relationships between scalability and reliability of LiDAR-
derived habitat data as purely a statistical procedure fails to address
the impacts of prediction uncertainty on final derived map products.
Because LiDAR-based habitat maps have tremendous potential to
serve as tools to justify land-use activities and are subject to error,
their use should not be based on a single, static representation of the
complexities of habitat quality for species with narrow niches. Our re-
sults demonstrate uncertainty in LiDAR-derived habitat data influences
the spatial distribution and amount of suitable habitat at any grain size,
even when models have high predictive power. Visualizing a series of
LiDAR-based habitat suitability maps that reflect uncertainty in habitat
data provides a more realistic context for management decisions; each
map can be interpreted as an alternative, but plausible, environment.
For example, northern goshawks select foraging habitatwith≥40% can-
opy closure (Greenwald et al., 2005), which has been recommended as
aminimum threshold in most forests managed for goshawks (Reynolds
et al., 1992). Others have suggested goshawk foraging habitat quality
can be enhancedwithmanagement prescriptions that promote amosa-
ic of canopy closure conditions that are above theminimum40%, includ-
ingN60% canopy closure in N20%of thehabitat (Beier &Drennan, 1997).

Fig. 3. The amount of foraging habitat at the recommended threshold level for BA (m2/ha) of pines ≥35.6 cm dbh (criterion D) and 95% joint prediction confidence interval boundary
points allocated to non-overlapping RCW active and recruitment clusters (ranked by number of suitable ha) at the Savannah River Site, South Carolina.

Table 6
Area in the RCWmanagement area (RCWMA) and within foraging partitions that simultaneously satisfied the requirements of only 0, 1, 2, 3, 4, 5, or 6 foraging habitat criteria.

Maximum number of any criteria satisfied RCWMA Foraging partitions

Area (ha) % of total area Area (ha) % of total area

0 11,468 32 1782 22
1 636 2 162 2
2 4324 12 1163 14
3 5983 17 1444 18
4 9402 27 2563 31
5 2047 6 651 8
6 1409 4 452 5

35,269 100 8217a 100

a Includes both active and recruitment clusters.
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Applying our methods, researchers can produce maps that better
illustrate the potential range of habitat conditions, such as spatial con-
figuration of specific canopy closure strata and open areas for a species
that prefers large tracts of late-successional forest, across broad extents
before initiating management activities.

A valuable application of our approach is the ability to create new
opportunities to examine long-standing paradigms of habitat quality
for species of conservation concern where consensus on aspects of the
species' preferred habitat structure is lacking. Spatially explicit and
detailed LiDAR-derived habitat attributes provided new insight into

RCW foraging habitat relationships that previously relied on field plot
data (e.g., James et al. 1997; Hardesty et al. 1997; James et al. 2001;
Walters et al. 2002). Differences in the amount of habitat that satisfied
various combinations of criteria allowed us to identify specific habitat
attributes that were most restrictive in terms of habitat quality. The re-
sults of our study indicate that foraging habitat that does not satisfy all
the requirements of the revised foraging habitat guidelines can still sup-
port healthy and growing RCWpopulations; the SRS currently supports
65 active clusters and 246 individuals, a 20% increase from2011 to 2012.
These results suggest our analytical approach using LiDAR can provide
new insights into species–habitat relationships where uncertainty per-
sists in the definition of quality habitat. For example, our approach
using LiDARmayhelp validate assumed relationships betweennorthern
goshawk reproductive success and the species' preferred foraging
habitat structure, which may require habitat data collected over broad
extents (Beier, Rogan, Ingraldi, & Rosenstock, 2007). Similarly, our

Fig. 4. The spatial arrangement of 0.64-ha aggregates in which the values of the recom-
mended threshold value (panel B) and 95% joint prediction confidence interval boundary
points (lower and upper boundary points represented in panels C and A, respectively) for
criterion D (BA of pines ≥35.6 cm dbh) were satisfied.

Fig. 5. The spatial arrangement of 0.64-ha aggregates in which the threshold values of
criteria A (≤30% hardwood canopy cover), B (BA of pines ≥25.4 cm dbh is ≥9.2 and
≤16.1 m2/ha), and G (Total BA, including overstory hardwoods, is≤18.4 m2/ha) were si-
multaneously satisfied.

Fig. 6. The spatial arrangement of 0.64-ha aggregates inwhich the threshold values of only
0, 1, 2, 3, 4, 5, or 6 foraging habitat criteria were simultaneously satisfied.

77J.E. Garabedian et al. / Remote Sensing of Environment 145 (2014) 68–80

image of Fig.�4
image of Fig.�5
image of Fig.�6


approach using LiDARmay help substantiate the assumption that inter-
mediate proportions of old-growth forest maximize habitat quality
throughout the range of the northern spotted owl (Strix occidentalis
caurina) by linking fine-grained habitat data collected over broad
extents to nest sites and activity centers (Carroll & Johnson, 2008; U.S.
Fish & Wildlife Service, 2011). Further, our approach can be applied
to expand on other aspects of forest wildlife–habitat relationships,
such as linking space-use, reproductive success, or hierarchical habitat
selection to vegetation structure (Vierling et al., 2008; Broughton et al.
2012).

In addition to expanding flexibility of LiDAR use in habitatmodeling,
our approach highlights important factors to consider when collecting
LiDAR data. The pine forests of the southeastern USA present several
challenges to using LiDAR to quantify wildlife habitat quality. Specifical-
ly, over-flight schedules should be chosen based on their relative ability
to differentiate canopy cover types in areas where species within the
canopy determine wildlife habitat quality. Differentiating predominant
cover types in forests that include a mixture of deciduous and non-
deciduous hardwoods, pines, and a deciduous conifer (e.g., cypress)
can be problematic if LiDAR over-flights are conducted following new
foliage development. Characterization of mid- and under-story vegeta-
tion is problematic in mixed forests regardless of the time data are col-
lected. Often, there are only a few returns from vegetation in these
lower canopy positions. However, differences in the distribution of re-
turn heights expressed in the LiDAR-derived metrics seem to capture
the presence or absence of this vegetation when height metrics are
used to build models. Direct comparisons of field- and LiDAR-derived
canopy cover data (e.g., FWF) are difficult because field-derived data
do not reflect the spatial arrangement of trees (both horizontal and ver-
tical). Thus, the proportion of canopywithout foliage seen fromanaerial
viewpoint (e.g., LiDAR-derived) may be different from the proportion
measured on the ground. We were able to differentiate dominant
cover types in a mixed forest by conducting the over-flight in late win-
ter, prior to new foliage development. Field measurements to classify
stands or partitions by dominant tree species may still be required,
however, until reliable estimates are consistently made based on
LiDAR data. Additionally, longleaf pine is of particular importance in
terms of RCW habitat quality, and certain foraging habitat guidelines
(e.g., criteria A: hardwood canopy cover) are contingent on predomi-
nant pine species, yet LiDAR is currently unsuitable for differentiating
trees by species. Integrating ancillary remotely sensed habitat data
(e.g., multiseason multispectral data) with LiDAR-derived habitat data
has the potential to increase accuracy of classifying individual tree
species and cover types (Holmgren et al. 2008).

6. Summary

Our analytical approach serves as a promisingmodel inwhich LiDAR
sensor data can be applied in newways to study habitat relationships of
forest-dwelling wildlife that have narrow niches. While our analyses
were developed to extract foraging habitatmetrics based on the current
paradigm of RCW foraging habitat quality, ourmethods are not restrict-
ed to the RCW, the currentmethods to allocate RCW foraging habitat, or
the a priori criteria and associated thresholds. LiDAR sensor data can be
used to capturemore detailed and ecologicallymeaningful habitat attri-
butes using regression methods that can be tailored to many species
with specific or otherwise complex structural habitat requirements.
Our methods to assess relationships between scalability and reliability
of specific LiDAR-derived habitat attributes provide an additional mea-
sure of uncertainty that can be quantified at any grain, promoting
grain size selection based on species' natural histories, management
practices, and prediction error. Finally, integrating reliability metrics in
habitatmaps is a simple, butmeaningful, technique to represent the po-
tential range of habitat conditions at any grain and extent relevant to a
species' natural history and management, allowing land managers to
make more informed decisions.
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Appendix A

A1. Savannah River Site LiDAR ground calibration plot summaries for
basal area (BA; m2 ha−1), tree density (DEN; trees ha−1), and Lorey's
height (HT; m). Only live trees were included in these data

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the
online version, at http://dx.doi.org/10.1016/j.rse.2014.01.022. These
data include Google map of the most important areas described in this
article.
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