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Triticale (Triticosecale) is a multifunctional hybrid cereal crop that adopted the hardiness 

of rye and wheat's high-yielding and nutritional qualities. Plant breeding programs work 

to improve the quality and number of varieties available to producers through multiple 

rounds of evaluation and selection. However, traditional phenotyping methods are labor-

intensive, time-consuming, and destructive, creating a phenotyping bottleneck. Remote 

sensing using unmanned aerial systems has the potential to alleviate this issue and change 

the evaluation of phenotypes in a breeding. Demand for educational resources to advance 

public awareness and prepare the workforce has increased with the utilization of more 

technology in agriculture. Limited research focuses on using UAV-derived vegetation 

indices to measure biomass in triticale. In addition, agriculture professionals need more 

education and understanding about the potential benefits and practical implementation of 

remote sensing technologies in plant breeding contexts. This research aims to (1) 

Evaluate the potential of UAV-derived vegetation indices to estimate above-ground 

biomass in triticale and (2) Assess the impact of open educational resources on the 

change in self-reported and objectively assessed knowledge of phenotype evaluation 

using high throughput phenotyping. The results of study one show high correlations 

between biomass and several vegetation indices, indicating that UAV-derived vegetation 



 

indices have the potential to be used as an alternative to destructive biomass sampling for 

phenotyping biomass in triticale. The results of study two show the open educational 

resource High Throughput Phenotyping in Plant Breeding increases learner overall self-

reported knowledge, UAV self-reported knowledge and cross-listed self-reported 

knowledge. In addition, the lesson increases overall objectively assessed knowledge and 

cross-listed objectively assessed knowledge. 
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CHAPTER 1 | LITERATURE REVIEW 

 

The world population is projected to reach 9.7 billion by 2050 (United Nations, 

2022). To feed the growing population, food production needs to increase by 

approximately 49 percent (Food and Agriculture Organization of the United Nations, 

2017). Crop production increases when science discovery transitions to technology that 

can be applied to farming practices. The improvement of farming practices and the 

creation of new crop genotypes through plant breeding have advanced through science 

and technology to increase on-farm yields.  

 Plant breeding is the process used to improve crops to meet the growing demand 

for food, fiber, and plant-based products. All plant breeding programs use selection and 

breeding methods to develop plant varieties with desirable traits (NAPB, n.d.). The 

primary objective of plant breeding programs is to develop varieties with increased 

production and adaptability to biotic and abiotic stresses. The specific objectives vary 

depending on the crop produced, end-use purpose, and target environment.  

Plant breeding is done by implementing several practices based on research and 

theory. Conventional breeding methods rely heavily on selection and hybridization. 

Selection is the process of choosing varieties that possess desirable traits. This is done by 

evaluating plants’ observable characteristics and ability to perform under adverse 

conditions. This process of assessing a plant’s genotype under environmental influence is 

known as phenotyping. Hybridization is the process of crossing two different varieties to 

produce offspring with desirable combinations of traits. Plant breeding programs will 

combine these methods and perform multiple rounds of selection and hybridization to 
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develop a suitable variety. To meet the demand for global food production, we need to 

invest in various crops. One up-and-coming small grains crop is triticale. 

Triticale (Triticosecale) is a hybrid grain cereal crop developed in the late 19th 

century by crossing wheat (Triticum aestivum) and rye (Secale cereale) (Franke & 

Meinel, 1990; Wilson, 1873). Triticale adopted the hardiness of rye and the high-yielding 

and nutritional qualities of wheat. It is a multifunctional cereal crop that can be used as a 

feed grain, food grain, forage, and cover crop (Mergoum et al., 2009). Triticale has an 

increased resistance to biotic factors and a higher tolerance to environmental conditions. 

Research has shown the potential of triticale to produce higher grain yields and increased 

biomass under adverse conditions compared to other cereal crops (Estrada-Campuzano et 

al., 2022; Ford et al., 1984; Mergoum & Gómez Macpherson, 2004). In addition, the high 

biomass quality of triticale lends itself to higher weed suppression when used as a cover 

crop (Petrosino et al., 2015). Despite triticale’s documented success in comparison to 

other small cereal crops, there is still room to improve the quality and number of varieties 

available to producers. Breeding programs are in a position to continue making progress, 

developing additional varieties.  

Modern breeding techniques have capitalized on advanced technologies to enhance 

the speed and accuracy of plant breeding. Marker-assisted selection (MAS) was first 

introduced in 1923 by Karl Sax. MAS takes advantage of linkage disequilibrium to make 

indirect selections of desirable traits. This allows the characterization of parental 

genotypes, improving the effectiveness of parental selection for specific traits. The issue 

with MAS is that recombination can interrupt linkage disequilibrium, eliminating the 
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effectiveness of identified markers. Furthermore, quantitative traits are controlled by 

multiple genes limiting the usefulness of MAS.  

Genomic selection (GS) was first introduced by Lande and Thompson (1990) 

before being popularized by Meuwissen and others (2001). GS model creation combines 

genetic information and phenotypic performance to identify desirable alleles at specific 

loci for selection and genetic gain. GS builds on MAS by utilizing genetic markers 

covering the whole genome to calculate genomic estimated breeding values. This method 

has the potential to improve selection for complex quantitative traits.  

Triticale breeding can benefit from genomic selection methods. However, marker 

development in triticale lags behind other cereal crops. In addition, most markers 

developed for use in triticale came from wheat or rye, and the transferability of these 

markers is low (Badea et al., 2011; Kuleung et al., 2003).  

The ability to rapidly sequence crop whole-genomes has the potential to move 

triticale plant breeding in the direction of a high-throughput era. Genomic data sets can 

measure genetic differences along the crops’ chromosomes at thousands of locations. 

Automating these procedures allows plant breeders to gather genetic data from hundreds 

or thousands of plants. Coupling the analysis of genomic data with phenotypic data has 

the potential to reveal the connection between genotype and phenotype, providing 

valuable information for how a genotype will perform when exposed to different 

environments. This will elevate the plant breeders’ ability to evaluate more genotypes 

and make selections to accelerate plant breeding progress. However, the acquisition of 

large-scale phenotype data to support marker development has lagged, creating a 

phenomenon known as the “phenotyping bottleneck” (W. Yang et al., 2020). 
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Traditional phenotyping methods are labor-intensive, time-consuming, and 

destructive. This motivates plant breeders to explore methods that can be scaled to 

evaluate more significant numbers of plant genotypes and capture meaningful phenotype 

data. Technology is advancing the ability to collect phenotype data. Sensor-based 

phenotype data is collected digitally, creating massive data sets for evaluation and 

ranking. This area of work is called high throughput phenotyping (HTP). 

High throughput phenotyping is a rapid, non-destructive, and non-invasive 

method of phenotyping traits. High throughput phenotyping capitalizes on concepts of 

remote sensing to extract information about plant structures and increase the amount of 

phenotypic data captured in one growing season. The influx of phenotypic information 

improves genomic selection. The potential of this technology to improve plant breeding 

lies in its ability to increase the repeatability of evaluations and accelerate the pace of 

selections, thereby facilitating faster genetic gain.  

High throughput phenotyping utilizes sensors deployed on various platforms to 

assess plant characteristics. The variation in morphological, physiological, and 

biochemical attributes creates unique spectral properties detectable with non-invasive 

sensors. The goal is to relate sensor measurements accurately to plant health and growth.  

High throughput phenotyping sensors are deployed on several phenotyping 

platforms. Ground-based platforms have been effective at gathering proximal phenotypic 

data in agriculture using mobile (Bai et al., 2016; Deery et al., 2014; Jimenez-Berni et al., 

2018; Mueller-Sim et al., 2017), gantry-based (Virlet et al., 2017), and cable-suspended 

systems (Bai et al., 2019a; Kirchgessner et al., 2017). However, these systems are limited 

by their inability to conduct large-scale phenotyping and inflexible maneuverability. 
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Aerial platforms such as satellites and unmanned aircraft systems (UAS) are more 

suitable for capturing large-scale data in less time. Unmanned aerial systems are 

becoming a more enticing option for phenotypic data collection due to their high spatial 

and temporal resolution and flexibility in spectral resolution and maneuverability.  

An unmanned aircraft system is the combination of an unmanned aircraft vehicle 

(UAV) and all additional components used to safely operate the aircraft, where an 

unmanned aircraft is “…an aircraft that is operated without the possibility of human 

intervention from within or on the aircraft,” (FAA Modernization and Reform Act of 

2012, 2012). 

Unmanned aerial vehicles are classified as fixed-wing or rotary-wing systems. While 

fixed-wing systems have longer flight times and faster flight speeds, the slower flight 

speeds of rotary-wing UAV provide increased spatial resolution and data precision (Boon 

et al., 2017). Rotary-wing UAV also have an increased payload capacity allowing 

different sensors to be combined for data collection. Due to their advantages over fixed-

wing systems, research and development of rotary-wing systems has increased. 

Unmanned aerial system-derived red-greed-blue (RGB) imagery has been shown to 

measure various morphological characteristics in cereal crops accurately. Studies have 

demonstrated the efficacy of using UAV-derived crop surface models (CSM) to estimate 

plant height and biomass in maize (Li et al., 2016), wheat (Herzig et al., 2021; Holman et 

al., 2016; Lu et al., 2019; Madec et al., 2017), triticale (Peña et al., 2019), barley (Bendig 

et al., 2015), oats (Acorsi et al., 2019), and sorghum (Pugh et al., 2018). 

Physiological and biochemical characteristics imperceptible to the human eye can be 

detected using reflectance in the near-infrared (NIR) region. These characteristics can be 
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detected using vegetation indices (VI) calculated from UAV-derived multispectral 

imagery. UAV-derived VI have been effective in monitoring nitrogen status in wheat 

(Kefauver et al., 2017; Liu et al., 2022; Walsh et al., 2018; M. Yang et al., 2020), and 

barley (Kefauver et al., 2017). Several UAV-derived vegetation indices have positive 

correlations with grain yield in wheat (Kyratzis et al., 2017) and have been used to 

predict yield using regression models in wheat (Fu et al., 2020a; Han et al., 2021; Herzig 

et al., 2021; Liu et al., 2022) and barley (Herzig et al., 2021; Kefauver et al., 2017). Other 

phenotypic traits measured using VI were vegetation cover in barley (Herzig et al., 2021), 

leaf area index (LAI) and leaf dry matter in wheat (Fu et al., 2020), and LAI and SPAD 

in wheat (Han et al., 2021).  

Various methods have also been researched to estimate the above-ground biomass 

(AGB) in wheat (Atkinson Amorim et al., 2022; Cristian et al., 2018a; Geipel et al., 

2016; Hunt et al., 2011; Ostos-Garrido et al., 2019), rye (Roth et al., 2023; Yuan et al., 

2019), barley (Cristian et al., 2018), and rice (Devia et al., 2019).  

Although there is extensive UAV research on other cereal crops, relatively few 

studies have been conducted on triticale, and even fewer on using UAV-derived 

multispectral imagery to measure above-ground biomass in triticale. One study used a 

UAV-derived digital surface model to measure plant height (Peña et al., 2019). Two 

studies utilized VI derived from ground-based platforms (Busemeyer et al., 2013; 

Prabhakara et al., 2015). Mihaylov et al. (2021) measured UAV-derived VI but did not 

relate the measured vegetation indices to any crop characteristics. One study found 

positive but low correlations between UAV-derived normalized difference vegetation 

index (NDVI) and triticale biomass (Noack, 2016). Another found high correlations 
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between vetch and pea-based triticale associations and the NDVI, normalized difference 

red edge (NDRE), green-red vegetation index (GRVI), and greenness (Gr) (Plaza et al., 

2021). Cristian et al., (2018) found triticale biomass to have an average correlation to the 

dark green chlorophyll index (DGCI). Similarly, another study also found NIR-based VI 

were more appropriate to measure biomass, specifically NDVI and GNDVI (Ostos-

Garrido et al., 2019). Only one study used UAV-derived VI to build prediction models 

for estimating biomass (Yuan et al., 2019). Research to test the effectiveness and support 

the implementation of UAV technology would advance triticale breeding programs 

toward providing farmers with improved annual forage options.  

Remote sensing using UAV has become increasingly popular for plant 

phenotyping due to its ability to provide high-resolution, non-destructive data in a cost-

effective and timely manner. Plant breeding programs recognize the advantages of UAV 

technologies, and those with the resources adapt the technology to assist with evaluation 

and selection. However, the adoption of UAV technology relies on an engaged workforce 

that understands both plant breeding and UAV technology to use the technology 

effectively. This has created a need to develop learning resources for academic 

coursework and workforce training. The potential benefits and effective utilization of 

UAV imagery requires expertise in drone operation and data analysis and interpretation. 

Drone mapping mission planning takes precise planning and setting selection, affecting 

the quality of data generated. Unmanned aerial systems capture a large amount of data 

that needs to be processed and analyzed correctly to extract meaningful information. It 

requires the use of specialized software and image processing skills. A limited 
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understanding of these components creates resistance to change. Resistance to change 

and lack of awareness can limit the adoption of UAV in agriculture. 

 The high cost of traditional textbooks (Bliss et al., 2013; Buczynski, 2007; 

Hanson, 2022) can be a financial burden for students, limiting their educational 

opportunities. In addition, textbook updating is slow, which adds to this expense. 

Advancements in UAV technology are rapidly emerging creating a gap between 

information discovery and dissemination. We need to rapidly publish relevant work that 

is effective and efficient and out there in a way that everyone can access it. 

One way to accomplish this is to integrate components of an open scholarship 

framework into research methods. There is little consensus on one definition of open 

scholarship, but a universal agreement is that open scholarship is the movement toward 

democratizing education and knowledge through various techniques (Kim & Lee, 2022; 

Martin, 2022). The impact of research findings is valuable when new knowledge is 

discovered but is maximized when that knowledge is shared with others. 

One component of open scholarship that increases the accessibility of information 

is Open Educational Resources (OER) (Geith & Vignare, 2007). The United Nations 

Education, Scientific, and Cultural Organization (UNESCO, 2023) defined OER as 

“...learning, teaching, and research materials in any format and medium that reside in the 

public domain or are under copyright that have been released under an open license, that 

permit no-cost access, re-use, re-purpose, adaptation and redistribution by others.” 

Similarly, in a report conducted to understand the future of pedagogical development 

better, the Organization for Economic Co-operation and Development (OECD, 2007) 

states, “the definition of OER currently most often used is digitized materials offered 
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freely and openly for educators, students and self-learners to use and reuse for teaching, 

learning and research.” Open educational resources can reduce economic and geographic 

barriers to education while maintaining rigorous education standards.  

The technological nature of OER gives them an adaptability and accessibility 

edge compared to traditional learning materials. OER take on many formats: learning 

modules, online texts, videos, audio. These elements can be organized into a learning 

environment that creates an enhanced learning experience for users.  

Open educational resources also have a customizable nature, allowing them to be 

changed and updated as new research findings emerge. In STEM fields, technology is 

advancing at a rapid pace. Writing, printing, and distributing a physical book can take 

years. By this time, the technology and research in the publications need to be updated. 

Online materials can be consistently updated with new information for users as soon as 

new research and findings surface, keeping them up-to-date and relevant. This makes 

learning collaborative, engaging, and adaptable to meet learner needs.  

In addition, the accessibility of OER can mitigate geographic barriers to 

education. Open educational resources are an internet-based method for the global 

distribution of learning resources. Online availability allows anyone with an internet 

connection to access them anywhere. This makes educational resources available to 

individuals who may need access to traditional educational materials or individuals 

outside of the university setting.  

The effective use of OER has been demonstrated. When compared to textbook 

use in a traditional learning environment, using OER provides improved or similar 

student performance across a variety of disciplines, such as agriculture (Pounds & 
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Bostock, 2019), chemistry (Allen et al., 2015; Fischer et al., 2015), physics (Hendricks et 

al., 2017), math (Fischer et al., 2015; J. L. Hilton III et al., 2013), psychology (Hardin et 

al., 2019; J. Hilton III & Laman, 2012; Jhangiani et al., 2018), and many more (Colvard 

et al., 2018; Fischer et al., 2015; Winitzky-Stephens & Pickavance, 2017). OERS have 

also been adequate resources for the professional development of educators (Kim & Lee, 

2022), in food safety training (Geith et al., 2010), as well as corporate training (Merkel & 

Cohen, 2015). These studies demonstrate that OER are practical materials for increasing 

learner knowledge. 

Many broad content OER repositories exist, like YouTube 

(https://www.youtube.com/), Wikipedia (https://www.wikipedia.org/), and TEDEd 

(https://ed.ted.com/). More niche OER repositories have been created for themes like 

workforce training materials (SkillsCommons, https://www.skillscommons.org/), STEM 

education (PhET, https://phet.colorado.edu/), and vocational training (TESDA, https://e-

tesda.gov.ph/). Knowledge acquisition of agricultural advancements in an informal 

setting occurs through extension efforts (USDA, n.d.). Multiple niche repositories exist to 

house agriculture related OER that can help facilitate extension efforts (Geith & Vignare, 

2013; Jain & Veeranjaneyulu, 2013). We need to understand what the impact is they have 

on learners. 

Only one study was found assessing the size of impact OER have on new 

agriculture advancements. Muniafu et al. (2013) sought to create a collaborative 

environment between universities and farmers. They reported that farmers gained 

knowledge when interacting with OER but needed clarification on how the knowledge 

was assessed. 
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Unmanned aerial systems are increasingly used in agricultural contexts. Remote 

sensing using UAV is expected to advance as a technology with reliable and cost-

effective applications in plant breeding and the seed industry. Effectively using these 

systems to make meaningful contributions relies on remote sensing and agriculture 

industry knowledge and skill. Agriculture is moving in the direction of interdisciplinarity. 

Individuals require the depth and understanding needed for effective communication and 

implementation of new technologies in agricultural contexts. This creates a need for 

resources that provide accurate information on multidisciplinary applications that anyone 

can access. Unfortunately, relatively few quality materials exist that focus on UAV in 

agriculture. The literature shows that OER can provide quality education at little or no 

cost, making them a good option. Open educational resources can be used, adapted, and 

shared by anyone, which makes them a powerful tool for democratizing education and 

promoting access to learning opportunities. 

Despite the breadth of research surrounding the use of UAV-derived imagery to 

phenotype traits in various crop species, the efficacy of UAV-derived imagery cannot be 

assumed to be accurate for all crops and characteristics. There is limited research 

focusing on using UAV-derived vegetation indices to measure biomass in triticale, so this 

research was conducted to test the effectiveness of this method. In addition, agriculture 

professionals need more education and understanding about the potential benefits and 

practical implementation of remote sensing technologies in plant breeding contexts. The 

purpose of this research is to:  

1. Evaluate the potential of UAV-derived vegetation indices to estimate above-

ground biomass in triticale.  
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2. Assess the impact of an open educational resource on the change in self-reported 

and objectively assessed knowledge of phenotype evaluation using high 

throughput phenotyping.  
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CHAPTER 2 | ABOVE GROUND BIOMASS ESTIMATION IN TRITICALE 

THROUGH FIELD BASED UAV MULTISPECTRAL IMAGERY 

 

ABSTRACT 

Triticale (Triticosecale) plant breeding programs work to improve the quality and number 

of varieties available to producers through multiple rounds of evaluation and selection. 

However, traditional phenotyping methods are labor-intensive, time-consuming, and 

destructive, creating a phenotyping bottleneck. Remote sensing using unmanned aerial 

systems has the potential to alleviate this issue and revolutionize the amount of breeding 

we can do. To understand this potential of UAV technology this research aims to (1) 

Understand the association between destructive biomass sampling and eight vegetation 

indices and (2) Assess the ability of vegetation indices to classify genotypes as high, 

medium, or low-yielding lines. The results show high correlations between triticale 

biomass and several vegetation indices indicating the potential of UAV-derived 

vegetation indices the be used as an alternative to destructive biomass sampling. The 

results do not show conclusive evidence supporting the use of vegetation indices to 

classify triticale genotypes as high, medium, or low yielding lines. Further research is 

needed to understand the ability of vegetation indices to classify genotypes.  
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INTRODUCTION 

Triticale (Triticosecale) is a hybrid grain cereal crop developed in the late 19th 

century by crossing wheat (Triticum aestivum) and rye (Secale cereale) (Franke & 

Meinel, 1990; Wilson, 1873). The hybrid nature of triticale gives it the hardiness of rye 

and wheat's high-yield and nutritional traits. Research has shown the potential of triticale 

to produce higher grain yields and increased biomass under adverse conditions compared 

to other cereal crops (Estrada-Campuzano et al., 2022; Ford et al., 1984; Mergoum & 

Gómez Macpherson, 2004). An interest in triticale has developed because of its use as a 

feed grain, food grain, and forage crop (Mergoum et al., 2009).  

Advancements in triticale characteristics can be made through plant breeding 

efforts that rely heavily on hybridization to create families or populations with genetic 

variation, followed by evaluation and selection. Triticale breeding programs focus on 

improving traits of economic and agronomic importance to improve triticale's nutritional 

value, productivity, and adaptability. One trait of high economic importance for 

producers that grow triticale as an annual forage or cover crop is above-ground biomass 

(AGB) yield. Triticale breeding programs that focus on this end use work towards 

increasing AGB yields.  

Modern breeding techniques have capitalized on technologies to advance the rate 

of progress and evaluation accuracy in the plant breeding program through marker-

assisted selection (MAS) and genomic selection (GS) (Lande & Thompson, 1990; Sax, 

1923). However, these methods are underdeveloped for triticale breeding (Badea et al., 

2011; Kuleung et al., 2003). The ability to rapidly sequence crop whole-genomes can 

move triticale plant breeding toward a high-throughput era. However, the acquisition of 
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large-scale phenotype data to support marker development lags, creating a phenomenon 

known as the “phenotyping bottleneck” (W. Yang et al., 2020). The development of 

improved phenotypic evaluation methods will mitigate this issue. 

Traditionally, AGB has been characterized using destructive and proximal 

sampling methods. Destructive sampling, or direct sampling, is a method in which plant 

material is collected by destroying or removing a portion of the plant or plot. Destructive 

sampling compromises the plant's normal growth and productivity and can impact seed 

production which could prevent the advance of genetic diversity within a program. 

Furthermore, this removes the possibility of repeat measurements of the same portion of 

the crop.  

Research has led to the development of proximal phenotyping technologies to 

measure above-ground biomass (AGB) without destructive sampling. Two widely 

accepted indirect sampling technologies are ceptometers and plant canopy analyzers 

(Casa et al., 2019).  

A ceptometer is a handheld sensor that determines how much light the canopy 

intercepts by measuring the amount of photosynthetically active radiation (PAR) above 

and below the canopy. PAR is the portion of the electromagnetic spectrum (400-700 nm) 

plants use to conduct photosynthesis. This ratio is used to calculate the leaf area index 

(LAI) of a crop. LAI quantifies the one-sided leaf material in a given area, which is 

directly correlated with above-ground biomass (Levy & Jarvis, 1999; Watson, 1947).   

Plant canopy analyzers are very similar devices. A plant canopy analyzer is a 

handheld sensor that calculates the interception of blue light (320-490 nm). This device 
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provides information about the amount of foliage in a canopy and the orientation of the 

vegetation (LI-COR, Lincoln, NE, USA).  

Collecting phenotyping data by hand has been an effective method to assess and 

measure how a small population performs. However, the rapid acquisition of large-scale 

phenotypic data to supplement GS and MAS continues to lag. This motivates plant 

breeders to explore methods that can be scaled to evaluate larger numbers of plant 

genotypes and capture meaningful phenotype data. This area of work is called high 

throughput phenotyping (HTP). 

High throughput phenotyping (HTP) is a rapid and non-destructive technique used 

to measure phenotypic data related to plant growth, structure, and function. The 

implementation of HTP methods in the field can be done using ground-based platforms 

(Bai et al., 2016, 2019b; Deery et al., 2014; Jimenez-Berni et al., 2018; Kirchgessner et 

al., 2017; Mueller-Sim et al., 2017; Virlet et al., 2017) but these systems are limited by 

their inflexible maneuverability and inability to phenotype enough genotypes.  

A solution that mitigates these issues is utilizing unmanned aircraft systems 

(UAV) equipped with sensors. UAV platforms provide data with higher spatial and 

temporal resolution than ground-based platforms. This allows the collection of higher-

quality data at more frequent intervals. UAV platforms are adaptable and can be equipped 

with one or more sensors (RGB, multispectral, hyperspectral, LiDAR) depending on the 

trait and crop of interest. Aerial imagery provides the data necessary to calculate 

vegetation indices (VI). Vegetation indices are derived from the measure of spectral 

reflectance of wavelengths of light striking the plant canopy (see Image 2.1). 
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Image 2.1 

Spectral Reflectance 

 
 

Note. In the visible spectrum, healthy vegetation reflects higher amounts of green light 

than red or blue. Healthy vegetation also reflects more near-infrared and red edge light 

than visible light. In the visible spectrum, unhealthy vegetation reflects more red and blue 

light than healthy vegetation. Unhealthy vegetation also reflects less near-infrared and 

red-edge light than healthy vegetation.  

 

 

Measuring the reflectance of specific wavelengths can create an index that 

correlates with the quantity of biomass and plant vigor of crops. One of the most used 

indices is the normalized difference vegetation index (NDVI), which quantifies 

vegetation biomass by measuring reflectance in the near-infrared (NIR) and red regions 

(Rouse et al., 1974). The use of red wavelengths of light causes NDVI to saturate at 

relatively low amounts of biomass. Saturation occurs when spectral reflectance values are 

no longer sensitive to changes in biomass. Saturation in wheat occurs when leaf area 

index equals 2.5 and above ground biomass measures 1 kg/m2 (Wang et al., 2016). 

Reflectance in the green and red edge regions is more sensitive to increased chlorophyll 

concentrations when compared to reflectance in the red band (Gitelson et al., 2003). This 

results in the improvement of this VI sensitivity to plant chlorophyll at higher 
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concentrations, avoiding saturation. These indices are the normalized difference red edge 

(NDRE) and green normalized difference vegetation index (GNDVI). 

The NDRE quantifies the chlorophyll content in leaves by measuring reflectance 

in the red edge band (Gitelson & Merzlyak, 1994). The GNDVI quantifies vegetation 

photosynthetic activity by measuring the difference in reflectance between the NIR and 

green band (Gitelson et al., 1996). The higher sensitivity to increased chlorophyll 

concentrations means NDRE and GNDVI can measure plant characteristics late in the 

growing season when crops reach maturity, and NDVI saturates. These are three indices 

commonly used in agriculture; however, many different VI can be used to investigate 

various biotic and abiotic factors. 

The ability of UAV-derived VI to effectively measure several crop parameters has 

been demonstrated in small cereal crops such as wheat (Fu et al., 2020b; Kyratzis et al., 

2017; Liu et al., 2022; Walsh et al., 2018), barley (Herzig et al., 2021; Kefauver et al., 

2017), rye (Corti et al., 2022; Roth et al., 2023), oats (Corti et al., 2022), and forage 

associations (Plaza et al., 2021). Due to the high forage production of triticale, the 

effectiveness of UAV-derived VI in other small grains cannot be assumed to be accurate 

for triticale. 

Limited research has been done on high throughput phenotyping in triticale and 

on UAV biomass estimation. One study used a UAV-derived digital surface model 

(DSM) to measure plant height in triticale, wheat, and barley (Peña et al., 2019). Two 

studies utilized ground based derived VI to measure biomass in triticale (Busemeyer et 

al., 2013) and triticale, wheat, barley, rye, and ryegrass (Prabhakara et al., 2015). 

Mihaylov and colleagues (2021) charted the change in UAV-derived VI for wheat and 
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triticale over the growing season but did not investigate their relationship with any crop 

traits. Noack (2016) used UAV-derived NDVI to estimate dry matter yield in triticale and 

found significant but loose correlations. One study found significant high correlations 

between biomass and VI in vetch and pea-based triticale associations (Plaza et al., 2021). 

Two papers studied VI use in wheat, barley, and triticale to measure biomass. One study 

found significant but average correlations between triticale biomass and the dark green 

color index (DGCI) (Cristian et al., 2018). The other found NDVI and GNDVI to have 

the highest significant correlations with triticale biomass (Ostos-Garrido et al., 2019). 

The final study used UAV imagery to build prediction models to estimate biomass in rye 

and triticale (Yuan et al., 2019). Of these, the studies conducted by Ostos-Garrido et al. 

(2019) and Peña et al. (2019) used the UAV-derived VI to rank accessions for plant 

breeding purposes.  

The relatively few studies that use UAV-derived VI to estimate triticale biomass in a 

plant breeding context leave a gap for further research. This study aims to assess the 

effectiveness of UAV-derived vegetation indices to estimate triticale biomass. The 

specific objectives of this study are to:  

1. Determine the association between VI measures and destructive biomass 

sampling at different crop development stages. 

2. Assess the ability of VI to classify genotypes as high, medium, or low-yielding 

lines.  
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MATERIALS AND METHODS 

Field Layout and Genotype Selection 

Thirty advanced breeding triticale lines (F3:F7+) were grown in University of 

Nebraska-Lincoln (UNL) research fields located in Lincoln, NE (40.85828 N, 96.61182 

W) and Mead, NE (41.16250 N, 96.41253 W) in 2022 and 2023. The experimental 

design utilized in both fields was a randomized complete block design. The study was 

replicated three times for a total of 90 plots. Each plot contained five rows and measured 

1.524 m in width and 3.048 m in length for a total area of 0.405 m2. In year one, the 

Mead location was planted on September 28, 2021, and the Lincoln location was planted 

on October 1, 2021. In year two, the Mead location was planted on September 29, 2022, 

and the Lincoln location was planted on October 11, 2022. Agronomic practices were 

typical for small grains production in the region. 

Ten of the thirty genotypes planted in the research plots were selected for data 

collection based on biomass type. To ensure sample variability, selected biomass types 

ranged from high to low (Table 2.1) determined by analyzing destructive biomass data 

from previous years. In year two, selected genotypes varied from year one due to 

accessions being removed from the breeding program. Seven genotypes were the same 

for year one and year two. One genotype was a reselection of a line used in year one. 

Two genotypes were new selections unrelated to year one. A sampling error resulted in 

different genotypes sampled in 2022 at the Mead location on date one (see Table A1).  
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Table 2.1 

 

Genotypes Sampled Each Year 

2022  2023 

Name Biomass Type  Name Biomass Type 

NE03T416-1 Low  NE03T416-1 Low 

NE03T416-3 Low  NE03T416-3 Low 

NT12404-1 Low  NT12404-1 Low 

NT14407 Medium/Low  NT14407 Medium/Low  

NT441 Medium/Low  NT441 Medium/Low  

NT14433 High/Medium  NT14433 High/Medium 

NT19443 High  NT19443 High 

NT20417 High  NT20427 High 

NT20432 High  NT21436 High 

NT17441 High  NT19441 High 

 

 

Ground Measurement Data Collection 

Year 1 - Ground measurement data collection occurred on May 18, 2022 

(booting), June 2, 2022 (flowering), and June 27, 2022 (senescence). Three replicates for 

each genotype were collected.  

Year 2 – Ground measurement data collection occurred on May 10, 2023 

(jointing), May 22, 2023 (booting), and June 5, 2023 (flowering/grain fill). Three 

replicates for each genotype were collected.  

Destructive Biomass Samples 

One foot of the row was harvested using a rice knife to cut the plants at the soil 

level. Samples were harvested from a center row of each plot in an area representative of 

the whole plot to avoid edge effects. The fresh weight of each sample was collected in the 

lab on the same day as harvesting. Samples were stored in a drying chamber until a 
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constant weight was reached. At this point, the dry weight was recorded. Each plot's fresh 

weight and dry weight measurements were converted into biomass per plot using a 

conversion equation (see Tables A2-A13).  

Leaf Area Index 

The leaf area index was recorded using an AccuPar LP-80 Ceptometer (Pullman, 

WA, USA). LAI is calculated as the ratio of incoming radiation to intercepted light. 

Three readings were taken per plot and distributed between the North and South edges of 

the plot to get a representative measure. Readings were taken between the second and 

third, and third and fourth rows to avoid edge effects. The average plot LAI was 

calculated from these three measurements (see Tables A2-A13). 

Plant Height Measurements 

Measurements were taken using a measuring stick with markings every ½ 

centimeter. The height was measured to the nearest centimeter at three random locations 

distributed between the three center rows. Plant height was calculated as the average of 

three measurements per plot (see Tables A2-A13). 

UAV Data Collection 

Year 1 - UAV flights occurred on May 18, 2022, June 2, 2022, and June 27, 2022. 

The UAV was a DJI Matrice 300 RTK (DJI, Shenzen, China) equipped with a MicaSense 

Altum Multispectral sensor (MicaSense, Seattle, WA, USA). The multispectral sensor 

has five bands: red, green, blue, red edge, and near-infrared (see Table A14). An 

automated flight path was created using DJI Pilot software (DJI, Shenzen, China) with 

90% front and side overlap and a flight altitude of 25 meters with a ground sampling 

distance of less than 1.2 centimeters. Images of a MicaSense calibrated reflectance panel 
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were captured prior to flying to be used for radiometric calibration during image 

processing. Seven ground control points (GCP) were placed around the edge and middle 

of each field prior to flying for geolocation calibration during image processing. The 

coordinates of each GCP were measured using a Topcon Hiper V RTK positioning 

system (Topcon, Tokyo, Japan). The GCP coordinates had an accuracy within 1.6 cm 

(except at Mead on 06/02/22 due to shadow effects during post-processing, which 

resulted in an accuracy of 5.8 cm).  

Year 2 – UAV flights occurred on May 10, 2023, May 22, 2023, and June 5, 

2023. The UAV was a DJI Mavic 3M (DJI, Shenzen, China) with built-in multispectral 

and RGB sensors. The multispectral sensor has four bands: green, red, red edge, and 

near-infrared (see Table A15). An automated flight path was created using DJI Pilot 

software (DJI, Shenzen, China) with 85% front and side overlap and a flight altitude of 

25 meters with a ground sampling distance of less than 1.23 cm. Images of a Sentera 

calibrated reflectance panel (Sentera, Saint Paul, MI, USA) were captured prior to flying 

for radiometric calibration. Six ground control points were placed around the edge of 

each field prior to flying for geolocation calibration during image processing. The 

coordinates of each ground control point were measured using a Topcon Hiper V RTK 

positioning system (Topcon, Tokyo, Japan). The GCP coordinates had an accuracy of 1.8 

cm.  

Data Processing and Extraction 

Multispectral imagery was processed using Pix4D software (Pix4D, Prilly, 

Switzerland, version 4.8.4). The three steps of image processing are: 1. Initial processing 

2. Point cloud and mesh, and 3. DSM, orthomosaic, and index. Radiometric and 
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geolocation calibrations were done as part of image processing. The results of processing 

year one data yielded five single-layer reflectance maps. The results of processing year 

two data yielded four single-layer reflectance maps and one three-layer reflectance map.  

Plot boundaries were defined using shapefiles created in ArcMap software (see 

Image 2.2) (ESRI, Redlands, CA, USA, version 10.8.2). Shapefiles and reflectance maps 

were read into Python (Wilmington, DE, USA, version 3.9.7) to extract plot-level 

vegetation indices. The vegetation index for each plot was calculated as an average of all 

the pixel values within the plot boundary. A list of vegetation indices and their respective 

formulas used for this research is outlined in Table 2.2. 
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Image 2.2  

 

Example Plot Boundary Shapefiles 

 

 

Note. Yellow polygons delineate plot boundaries. Lincoln 05/18/22 (left) average 

biomass is 6292.351kg/hec compared to Lincoln 05/22/23 (right) average biomass is 

2299.328 kg/hec. 
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Table 2.2 

Vegetation Index Formulas 

Vegetation Index Formula Reference 

Normalized Difference 

Vegetation Index (NDVI) 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 (Rouse et al., 1974) 

Green Normalized 

Vegetation Index (GNDVI) 

(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 (Gitelson et al., 1996) 

Normalized Difference Red 

Edge (NDRE) 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 

(Gitelson & Merzlyak, 

1994) 

Green-Red Vegetation 

Index (GRVI) 

(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑)
 (Tucker, 1979) 

Green-Red Vegetation 

Index RedEdge (GRVIRE) 

(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 (Plaza et al., 2021) 

Chlorophyll Index Green 

(GCI) 

(𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛)
− 1 (Gitelson et al., 2003) 

Chlorophyll Index Red 

Edge (RCI) 

(𝑁𝐼𝑅)

(𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
− 1 (Gitelson et al., 2003) 

Excess Green Index (ExG) (2 ∗ 𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒) (Woebbecke et al., 1995) 

 

The Excess Green Index was used for segmentation. A threshold was determined 

for each date to classify pixels as vegetation or soil (see Table A16 for threshold values). 

The threshold was determined by plotting a histogram of ExG pixel values and using the 

pixel identification tool in ArcMap to determine values of vegetation coverage versus soil 

areas. ExG was used to calculate percent of vegetative pixels per plot. All plot-level 

extracted VI are in Appendix A (see Tables A17-A28). 
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Statistical Analysis 

A Pearson correlation coefficient was calculated to determine the relationship 

between UAV-derived VI and ground sampling measurements using R Studio statistical 

software (Boston, MA, USA, version 2023.06.0). Correlations were evaluated based on 

the scale presented in Mukaka (2012) (Table 2.3). 

Classifications based on destructive sampling methods were calculated using dry 

weight data because dry weight is a more direct biomass measurement than fresh weight. 

These were taken to be the ‘true’ or correct classification. A least significant difference 

test did not identify significant differences between genotype means and therefore could 

not be used for classification. Instead, the dry weight mean and standard deviation were 

calculated for each genotype, location, date, and year to be used for classification. The 

upper and lower bounds were delineated by multiplying the upper and lower standard 

deviations by .43 to create three equal categories for classification.  

Table 2.3 

 

Correlation Strength Scale  

 

Size of Correlation Interpretation 

.90 to 1.00 (−.90 to −1.00) Very high positive (negative) correlation 

.70 to .90 (−.70 to −.90) High positive (negative) correlation 

.50 to .70 (−.50 to −.70) Moderate positive (negative) correlation 

.30 to .50 (−.30 to −.50) Low positive (negative) correlation 

.00 to .30 (.00 to −.30) Negligible correlation 

 

Note. The shaded box colors are used in Table 2.6 and 2.7 to indicate the strength of 

correlations found in this study. 
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The same process was repeated for each of the eight vegetation indices. These 

were taken to be the predicted classification. Genotypes were classified as low, medium, 

or high yielding lines using these upper and lower bounds.  

The typical approach in plant breeding is to remove the worst genotypes from a 

program rather than selecting the best genotypes to advance. Therefore, this study looked 

at the balanced accuracy (average between the sensitivity and specificity) to understand 

how well VI classifications are at correctly including genotypes belonging to a class and 

correctly excluding genotypes not belonging to said class. The balanced accuracy is 

evaluated using a scale aligned with the general rule of thumb (see Table 2.4). 

 This was supplemented with the weighted Cohen’s kappa. The weighted Cohen’s 

kappa measures the level of agreement between the true classifications and the predicted 

classifications overall. The weighted Cohen’s kappa values are evaluated using the scale 

suggested by Cohen (see Table 2.5). A high balanced accuracy and weighted Cohen’s 

kappa would mean plant breeders can trust VI can accurately classify genotypes, 

avoiding the unfavorable removal of high-yielding biomass lines. Due to the sampling 

error, data collected in Mead on date 2 was filtered to remove genotypes with only one 

sample contributing to the mean.  

Table 2.4 

 

Balanced Accuracy Interpretation Categories 

 

 

  
Balanced Accuracy Range Interpretation 

0.9-1.00 Very good 

0.7-0.9 Good 

0.6-0.7 OK 

0-0.6 Poor 
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Table 2.5 

 

Weighted Cohen’s Kappa Value Interpretation Categories 

 

Weighted Cohen’s Kappa Value Interpretation 

0.81-1.00 Almost perfect agreement 

0.61-0.80 Substantial 

0.41-0.60 Moderate 

0.21-0.40 Fair 

0.01-0.20 None to slight 

<= 0 No agreement 

 

Note. Weighted Cohen’s kappa value interpretations as suggested by Cohen. The shaded 

box colors are used in Table 2.8-2.11 to indicate the amount of agreement between VI 

classifications and dry weight classifications. 

 

RESULTS  

Correlations 

A Pearson correlation coefficient was calculated to determine the relationship 

between fresh and dry biomass and the seven vegetation indices. Significant correlations 

were found in the Lincoln and Mead locations for 2022 and 2023.  
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Across all dates, locations, and years, more significant correlations were found at 

the Mead location than at the Lincoln location. In addition, data collected earlier in the 

season produced more substantial correlations.  

In 2022, during booting (date 1), moderate to high correlations were found 

between fresh weight and all the VI tested at the Mead location (see Table 2.6). NDRE 

and RCI were the best-performing indices on this date, having high correlations with 

fresh weight. Similar but lower correlations were found between dry weight and all VI. 

Conversely, during booting (date 1) at the Lincoln location, there were only two 

significant, low correlations.  

During senescence (date 3), low to moderate correlations were found with fresh 

weight at the Mead location. Though the correlations were not as strong as those found 

during booting, these results indicate these VI perform as well as, if not better than, VI in 

similar studies.  

No significant correlations exist between fresh or dry weight and any VI during 

flowering (date 2). Additionally, there were no significant correlations with dry weight at 

the Mead location or fresh or dry weight at the Lincoln location during senescence (date 

3).  

2023 was very dry compared to 2022, resulting in significantly less biomass 

overall (see Image 2.2). Therefore, indices did not saturate as quickly, resulting in more 

significant correlations in 2023. At the Mead location, indices significantly correlate to 

fresh and dry weight across all dates and at or above correlations found in previously 

published literature (Cristian et al., 2018). Correlations were highest during jointing (date 

1) and decreased through flowering/grain fill (date 3) (see Table 2.7). Moderate to high 
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correlations exist for all indices during jointing. Similarly, during booting (date 2), all 

indices except pixel percent had moderate to high correlations. NDRE, RCI, and GCI 

have the highest correlations with dry weight, with NDRE and RCI showing similar 

correlations with fresh weight. Correlations at the Lincoln location were moderate to low 

during jointing (date 1) and booting (date 2). These correlations are lower than those 

found at Mead. Low to negligible correlations were found during flowering/grain fill 

(date 3).  

The best performing VI in this study differs for each growth stage sampled. 

However, some VI perform more consistently across time and environments. In 2022, the 

most consistently performing VI were GRVI and NDVI, which had moderate correlations 

during booting and senescence but only in the Mead environment (see Table 2.6). In 

2023, NDVI, GRVI, and GCI had consistent correlations during jointing, booting, and 

flowering/grain fill in both environments (see Table 2.7). Furthermore, a trend was 

revealed for correlations with NDRE and RCI during booting across both years. In 2022 

and 2023, NDRE and RCI had the strongest correlations with fresh and dry weight, 

indicating their potential to measure biomass in high and low-yielding environments 

during booting adequately.  

Confusion Matrices  

Confusion matrices were constructed to define the yield classification 

performance based on the VI (see Tables A29-A34). Classifications based on destructive 

sampling methods were calculated using dry weight data because dry weight is a more 

direct biomass measurement than fresh weight. The weighted Cohen’s Kappa and 

balanced accuracy were calculated to assess the level of agreement between predicted 
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vegetation class (based on VI) and actual vegetation class (based on destructive samples). 

The balanced accuracy indicates if the genotypes are classified in the correct class, 

factoring in the sensitivity and specificity. The weighted Cohen’s kappa indicates the 

degree of wrongness across all classes.  Of the 30 plots sampled at the Mead location 

during booting (date 1) in 2022, ten data points were removed from the data set to 

remove genotypes that calculated genotype mean based on one sample (see Table A35). 

Tables 2.8 – 2.11 display the results of these analyses. 
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Table 2.8 

 

Balanced Accuracy and Weighted Kappa Results for Lincoln 2022 

 
  Balanced Accuracy   

  Class   

Date/Vegetation 

Index 
  Low   Mid   High   

Weighted 

Kappa  

LN 05/18/22         

GCI  0.89***  0.29  0.36  0.26 

GNDVI  0.39  0.17  0.36  0.00 

GRVI  0.94***  0.50  0.52  0.42 

NDRE  0.39  0.38  0.60  0.25 

NDVI  0.94***  0.38  0.36  0.25 

RCI  0.39  0.38  0.60  0.25 

GRVIRE  0.39  0.50  0.52  -0.05 

Pixel Percent  0.39  0.50  0.52  -0.05          

LN 06/02/22         

GCI  0.52  0.38  0.29  -0.17 

GNDVI  0.52  0.50  0.36  -0.18 

GRVI  0.52  0.38  0.52  0.17 

GRVIRE  0.29  0.38  0.52  -0.17 

NDRE  0.45  0.38  0.36  -0.17 

NDVI  0.60  0.29  0.29  0.00 

Pixel Percent  0.43  0.21  0.52  0.20 

RCI  0.45  0.38  0.36  -0.17          

LN 06/27/22         

GCI  0.25  0.38  0.63*  -0.17 

GNDVI  0.25  0.38  0.63*  -0.17 

GRVI  0.46  0.38  0.63*  0.17 

GRVIRE  0.67*  0.71**  0.69*  0.34 

NDRE  0.25  0.38  0.63*  -0.17 

NDVI  0.25  0.38  0.63*  -0.17 

Pixel Percent  0.38  0.54  0.56  -0.14 

RCI  0.25  0.38  0.63*  -0.17 

 

Note. A balanced accuracy with three asterisks (***), two asterisks (**), one asterisk (*), 

and no asterisk indicate very good, good, ok, and poor accuracy respectively. The shaded 

weighted Cohen’s kappa values indicate the level of agreement. A 5-color scale is used 

where the box shade gets darker as weighted kappa values are stronger (see Table 2.5). 
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Table 2.9 

Balanced Accuracy and Weighted Kappa Results for Mead 2022 

 
  Balanced Accuracy   

  Class   

Date/Vegetation 

Index 
  Low   Mid   High   

Weighted 

Kappa  

MD 05/18/22         

GCI  0.68*  0.58  0.42  0.03 

GNDVI  0.43  0.35  0.33  -0.29 

GRVI  0.68*  0.45  0.33  0.00 

GRVIRE  0.68*  0.45  0.33  0.00 

NDRE  0.68*  0.45  0.33  0.00 

NDVI  0.43  0.35  0.33  -0.29 

RCI  0.75***  0.7*  0.42  0.00 

Pixel Percent   0.43  0.23  0.50  0.18          

MD 06/02/22         

GCI  0.38  0.88**  0.44  -0.86 

GNDVI  0.38  0.88**  0.44  -0.86 

GRVI  0.44  0.67*  0.38  -0.57 

GRVIRE  0.75**  0.88**  1***  0.86 

NDRE  0.38  0.88**  0.44  -0.86 

NDVI  0.38  0.79**  0.38  -0.75 

Pixel Percent  0.38  0.29  0.31  -0.22 

RCI  0.38  0.88**  0.44  -0.86          

MD 06/27/22         

GCI  0.88***  0.62*  0.44  0.46 

GNDVI  0.81***  0.55  0.44  0.39 

GRVI  0.88***  0.79***  0.94***  0.65 

GRVIRE  0.44  0.52  0.39  -0.29 

NDRE  0.81***  0.71***  0.94***  0.57 

NDVI  0.88***  0.79***  0.94***  0.65 

Pixel Percent  0.69*  0.55  0.83***  0.47 

RCI  0.81***  0.71***  0.94***  0.57 

 

Note. A balanced accuracy with three asterisks (***), two asterisks (**), one asterisk (*), 

and no asterisk indicate very good, good, ok, and poor accuracy respectively. The shaded 

weighted Cohen’s kappa values indicate the level of agreement. A 5-color scale is used 

where the box shade gets darker as weighted kappa values are stronger (see Table 2.5).  
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Table 2.10 

 

Balanced Accuracy and Weighted Kappa Results for Lincoln 2023 

 
  Balanced Accuracy     
  Class     

Date/Vegetation 

Index 
  Low   Mid   High   

Weighted 

Kappa  

LN 05/10/23 
        

GCI 
 

0.75** 
 

0.75** 
 

0.75** 
 

0.67 

GNDVI 
 

1*** 
 

0.92*** 
 

0.94*** 
 

0.89 

GRVI 
 

1*** 
 

0.79 
 

0.69* 
 

0.75 

GRVIRE 
 

0.38 
 

0.67* 
 

0.44 
 

-0.57 

NDRE 
 

1*** 
 

0.92*** 
 

0.94*** 
 

0.89 

NDVI 
 

1*** 
 

0.88** 
 

0.75** 
 

0.86 

Pixel Percent 
 

0.75** 
 

0.67* 
 

0.69* 
 

0.57 

RCI 
 

1*** 
 

0.92*** 
 

0.94*** 
 

0.89          

LN 05/22/23 
        

GCI 
 

1*** 
 

0.58 
 

0.38 
 

0.50 

GNDVI 
 

0.75** 
 

0.58 
 

0.63* 
 

0.50 

GRVI 
 

0.69* 
 

0.58 
 

0.38 
 

0.00 

GRVIRE 
 

0.44 
 

0.54 
 

0.44 
 

-0.33 

NDRE 
 

0.75** 
 

0.67* 
 

0.69* 
 

0.57 

NDVI 
 

0.75** 
 

0.58 
 

0.63* 
 

0.50 

Pixel Percent 
 

0.75** 
 

0.38 
 

0.31 
 

0.25 

RCI 
 

0.75** 
 

0.67* 
 

0.69* 
 

0.57          

LN 06/05/23 
        

GCI 
 

0.76** 
 

0.45 
 

0.46 
 

0.31 

GNDVI 
 

0.83** 
 

0.38 
 

0.25 
 

0.15 

GRVI 
 

0.67* 
 

0.24 
 

0.33 
 

0.18 

GRVIRE 
 

0.36 
 

0.38 
 

0.46 
 

-0.19 

NDRE 
 

0.60 
 

0.21 
 

0.38 
 

0.13 

NDVI 
 

0.83** 
 

0.31 
 

0.33 
 

0.36 

Pixel Percent 
 

0.76** 
 

0.38 
 

0.33 
 

0.18 

RCI 
 

0.60 
 

0.21 
 

0.38 
 

0.13 

 

Note. A balanced accuracy with three asterisks (***), two asterisks (**), one asterisk (*), 

and no asterisk indicate very good, good, ok, and poor accuracy respectively. The shaded 

weighted Cohen’s kappa values indicate the level of agreement. A 5-color scale is used 

where the box shade gets darker as weighted kappa values are stronger (see Table 2.5). 
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Table 2.11 

 

Balanced Accuracy and Weighted Kappa Results for Mead 2023 

 
  Balanced Accuracy   

  Class   

Date/Vegetation 

Index 
  Low   Mid   High   

Weighted 

Kappa  

MD 05/10/23 
        

GCI 
 

0.69* 
 

0.69* 
 

0.94*** 
 

0.57 

GNDVI 
 

0.69* 
 

0.69* 
 

0.94*** 
 

0.57 

GRVI 
 

0.69* 
 

0.69* 
 

0.94*** 
 

0.57 

GRVIRE 
 

0.38 
 

0.62* 
 

0.33 
 

-0.46 

NDRE 
 

0.69* 
 

0.62* 
 

0.89** 
 

0.51 

NDVI 
 

0.69* 
 

0.69* 
 

0.94*** 
 

0.57 

Pixel Percent 
 

0.69* 
 

0.69* 
 

0.94*** 
 

0.57 

RCI 
 

0.69* 
 

0.62* 
 

0.89** 
 

0.51          

MD 05/22/23 
        

GCI 
 

0.63* 
 

0.50 
 

0.69* 
 

0.44 

GNDVI 
 

0.63* 
 

0.50 
 

0.69* 
 

0.44 

GRVI 
 

0.56 
 

0.42 
 

0.69* 
 

0.40 

GRVIRE 
 

0.38 
 

0.58 
 

0.38 
 

-0.50 

NDRE 
 

0.63* 
 

0.50 
 

0.69* 
 

0.44 

NDVI 
 

0.63* 
 

0.50 
 

0.69* 
 

0.44 

Pixel Percent 
 

0.75** 
 

0.67* 
 

0.69* 
 

0.57 

RCI 
 

0.63* 
 

0.50 
 

0.69* 
 

0.44          

MD 06/05/23 
        

GCI 
 

0.56 
 

0.63* 
 

1*** 
 

0.60 

GNDVI 
 

0.63* 
 

0.71** 
 

1*** 
 

0.67 

GRVI 
 

0.69* 
 

0.58 
 

0.69* 
 

0.50 

GRVIRE 
 

0.25 
 

0.46 
 

0.25 
 

-0.50 

NDRE 
 

0.63* 
 

0.63* 
 

0.94*** 
 

0.60 

NDVI 
 

0.69* 
 

0.71** 
 

0.94*** 
 

0.67 

Pixel Percent 
 

0.88** 
 

0.67* 
 

0.88** 
 

0.67 

RCI 
 

0.63* 
 

0.63* 
 

0.94*** 
 

0.60 

 

Note. A balanced accuracy with three asterisks (***), two asterisks (**), one asterisk (*), 

and no asterisk indicate very good, good, ok, and poor accuracy respectively. The shaded 

weighted Cohen’s kappa values indicate the level of agreement. A 5-color scale is used 

where the box shade gets darker as weighted kappa values are stronger (see Table 2.5).  
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Overall, the highest agreement between VI and dry weight for classifying 

genotypes as high, medium, or low-yielding lines was in 2023 during jointing (date 1) at 

the Lincoln location. On this date and location, all VI except GRVIRE had moderate to 

almost perfect agreement (see Table 2.10). Of the indices, GNDVI, NDRE, and RCI 

performed the best. Each VI had very good balanced accuracy at both locations for high, 

medium, and low classes. 

Conversely, for the Mead location in 2023, the highest agreement between VI and 

dry weight for classifying genotypes as high, medium, or low-yielding lines was during 

flowering/grain fill (date 3) (see Table 2.11). All VI, excluding GRVIRE, had moderate 

to substantial agreement on this date. The indices with the highest agreement were 

GNDVI, NDVI, and pixel percent. None of the indices on this date had consistent 

balanced accuracy across high, medium, and low classes. However, GNDVI, NDVI, and 

pixel percent performed very good in at least two classes. Most other VI performed best 

at classifying high-yielding genotypes. 

In 2023, the Mead location had more consistent agreement across all three dates 

(fair to substantial). In contrast, the Lincoln location performed best during jointing 

(moderate to almost perfect agreement) but tapered off to have none to slight agreement 

by flowering/grain fill (date 3) (see Table 2.10). The balanced accuracy for both locations 

showed similar trends. The balanced accuracy at the Mead location was OK to very good 

for many classes on all three dates. In contrast, the Lincoln location had very good 

balanced accuracy during jointing but revealed poor accuracy through booting and 

flowering/grain fill. An interesting trend to note is that the VI at the Lincoln location 

maintained very good balanced accuracy for the low classifications through all three 
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dates. Despite not always being the highest-performing VI, GCI and NDVI performed 

consistently well across all three dates and locations in 2023.  

Compared to 2023, 2022 did not show as high agreement or performance at 

classifying genotypes as high, medium, or low-yielding lines. The balanced accuracy was 

not very good across all VI, dates, and locations in 2022 (see Tables 2.8 and 2.9). 69% of 

the balanced accuracy measurements calculated on 2022 data fell in the poor class. The 

highest agreement in 2022 was during senescence (date 3) at the Mead location, ranging 

from fair to moderate agreement (see Table 2.9). The best-performing indices on this date 

were GRVI, NDVI, NDRE, and RCI. These indices showed very good balanced accuracy 

across high, medium, and low classes on this date.  

Much like in 2023, the highest agreement at the Lincoln location in 2022 was 

found at the earliest sampling date during booting. GRVI, GCI, NDVI, RCI, and NDRE 

showed fair to moderate agreement, with GRVI agreeing the best (see Table 2.8). 

However, when we look at the balanced accuracy on this date, all VI except GCI, GRVI, 

and NDVI showed poor balanced accuracy. These three showed poor balanced accuracy 

for the medium and high classes but had very good balanced accuracy for the low class. 

GRVI consistently performed reasonably well classifying genotypes as high, 

medium, or low-yielding lines across multiple dates and locations in 2022. GCI and pixel 

percent were two other VI that performed consistently across dates and locations. This 

result is interesting because GCI also performed with reasonable consistency in 2023.  

Some trends appear across 2022 and 2023. During booting in both years, VI had 

fair to moderate agreement with dry weight for classifying genotypes as high, medium, or 

low-yielding lines. GRVI and GCI were the two most consistently performing VI across 
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dates, locations, and years; however, GCI performed better in 2023, whereas GRVI in 

2022.  

One unexpected result found in 2022 is the performance of GRVIRE in Mead 

during flowering (date 2) and Lincoln during senescence (date 3). During flowering, 

GRVIRE classifications had an almost perfect agreement with dry weight classifications 

(see Table 2.9) and fair agreement during senescence (see Table 2.8). These are the only 

two instances where GRVIRE showed significant agreement. On all other dates across 

both years, GRVIRE showed no agreement.  

DISCUSSION 

Correlations  

The high correlations between biomass and vegetation indices indicate that UAV-

derived VI have the potential to be used as an alternative to destructive biomass sampling 

for phenotyping biomass in triticale. However, the results do not suggest one best index 

to be used for phenotyping triticale biomass, though we can suggest some better suited 

for specific phenotyping applications.  

Due to the offset of sampling dates between the two years, the first sampling date 

in 2023 was the earliest growth stage sampled (jointing) and is not comparable to any 

sampling dates in 2022. GCI and RCI have the highest correlations with dry weight at 

this growth stage, but NDVI, GNDVI, NDRE, GRVI, and GRVIRE all also have high 

correlations with destructive biomass sampling in the Mead environment (see Table 2.7). 

These results suggest that any one of these VI could be used to phenotype biomass during 

jointing. However, neither of the highest-performing VI in Mead is the highest-

performing VI in Lincoln. In Lincoln, NDVI, GNDVI, GRVI, GRVIRE, GCI, and pixel 



 43 

percent have moderate correlations, and NDRE and RCI have low correlations. These 

results still indicate a high potential for many, if not all, of these VI to phenotype triticale 

biomass during jointing. However, additional research across multiple locations is needed 

to determine the most effective VI for biomass phenotyping during jointing.  

The offset of sampling dates between the two years resulted in the first sampling 

date in 2022 being more comparable to the second sampling date in 2023, as both 

occurred during the booting growth stage. During booting in 2022, the best-performing 

indices were NDRE, RCI, and GNDVI (see Table 2.6). During the same growth stage in 

2023, NDRE, GCI, and RCI were the best performing VI (see Table 2.7). The similar 

performance of NDRE and RCI in 2022 and 2023 indicates that these indices have a high 

potential for phenotyping biomass around booting under high and low biomass 

conditions.  

Similarly, sampling on dates 2 in 2022 and 3 in 2023 are comparable as they were 

performed around flowering/grain fill. At this growth stage in 2023, the highest-

performing VI were NDVI, GRVIRE, and GCI (see Table 2.7). The performance results 

of NDVI are consistent with those found by Ostos-Garrido et al. (2019), and the GRVIRE 

and GCI correlations perform as high as different VI investigated Ostos-Garrido et al. 

However, in this study, no significant correlations were found in 2022 during 

flowering/grain fill (see Table 2.6), and those that performed well in 2023 were not 

consistent across multiple environments. Further research is needed to confirm the 

potential of these indices to be used around flowering/grain fill.  

The final sampling date in 2022 was not until senescence. The delay in sampling 

was due to environmental factors that delayed sampling. At this stage, GRVI and NDVI 
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had moderate correlations with fresh weight only in one location (see Table 2.6). These 

results are explained by the phenomenon known as saturation (Huete et al., 1997). It was 

suggested by C. Wang (2016) that to avoid saturation, VI should include red-edge 

wavelengths. Our results disagree with this suggestion as none of the VI that incorporate 

the red-edge wavelength tested in this study have significant correlations after the crop 

had reached saturation and the two that did have significant correlations do not use the 

red-edge wavelength. More information is needed to draw meaningful conclusions about 

using VI to phenotype biomass during senescence. A considerable amount of research 

needs to be done to investigate further.  

Overall, the VI performed better in lower biomass conditions. This is 

demonstrated by the more significant amount of moderate to high-performing VI in 2023 

compared to 2022 when the biomass was significantly lower due to the severe drought 

experienced during the growing season (see Image 2.1). In addition, the indices 

performed better at earlier sampling dates during jointing and booting when biomass was 

the lowest. 78% of the significant correlations found in this study were moderate to high 

in strength. Few studies have conducted similar research in triticale, but those that have 

found similar strength correlations (Ostos-Garrido et al., 2019; Plaza et al., 2021). The 

correlations in this study were higher than those found by Ostos-Garrido et al., but 

slightly underperformed compared to those found by Plaza et al.  

Although the highest correlations in this study were found during jointing, they 

are similar in strength to those found during booting by Plaza et al. (2021). This 

disagreement in when the highest correlations are found can be explained by the crop in 

this study reaching saturation. Plaza et al. (2021) studied vetch and pea associations that 
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did not produce enough biomass to reach saturation, where this study had triticale 

biomass far above 1 kg m-2, a saturation threshold for wheat found by C. Wang et al. 

(2016) (see Tables A2-A13). Sampling earlier in the season can reveal if there are any 

saturation effects during jointing and if there is an earlier growth stage that will produce 

stronger correlations. 

The best-performing VI in this study are different for each growth stage sampled. 

However, some VI perform more consistently across time and environments. In 2022, the 

most consistently performing VI were GRVI and NDVI, which had moderate correlations 

during booting and senescence but only in the Mead environment (see Table 2.6). In 

2023, NDVI, GRVI and GCI had consistent correlations during jointing, booting, and 

flowering/grain fill in both environments (see Table 2.7). Plaza et al. (2021) reported 

similar results where they found NDVI, GRVI, and GR to have the best correlations over 

time. It is important to note that NDVI and GRVI performed consistently well across 

2022 and 2023. These results demonstrate their effective use in both high and low-

yielding biomass environments.  

Classifications 

The variation seen in the confusion matrix and weighted Cohen’s kappa results 

indicate that further research is needed to understand the ability to classify genotypes as 

high, medium, or low-yielding lines.  

The VI in 2022 did not show as high agreement or performance as in 2023 when 

classifying genotypes as high, medium, or low-yielding lines (see Tables 2.8-2.11). The 

main difference between 2022 and 2023 is the severe drought experienced that resulted in 

significantly less biomass in 2023 (see Image 2.1). The average dry weight of genotypes 
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in 2022 is 4.4 times higher than in 2023. These results suggest that the VI classification 

performs better in low biomass conditions. This also provides evidence that saturation 

may affect VI classification. 

We see some contrasting conclusions if we limit the scope to within single years. 

The results show that some VI have an almost perfect agreement with dry weight 

classifications in Mead in 2022 (see Table 2.9) and Lincoln in 2023 (see Table 2.10). 

However, these findings are inconsistent across dates and locations. In both years, the 

highest agreement in Lincoln was during booting, whereas the highest agreement in 

Mead was found during grain fill/senescence. These results are antithetical, suggesting 

there are factors other than biomass amount that affect performance. Additional research 

is needed to understand better the patterns seen.  

Future Studies 

The sampling population in this research project is relatively small, having only 

three samples per genotype for each sampling date. Additional biomass data was made 

available after this study concluded. Analyzing a more robust dataset will support the 

strength of the correlations found and help distinguish VI with high correlations to 

biomass from VI with moderate and low correlations. Additional data also provides the 

opportunity to create a training and testing set. A natural next step would be to investigate 

the accuracy of VI-based biomass prediction models. In addition, future research should 

look at making selections based on the forage stage at which producers are cutting. This 

makes the research directly applicable to real-world production.  

The classification method used in this study is elementary. Classification groups 

were delineated, and genotypes were classified using simple descriptive statistics. In 
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addition to biomass, this study also collected morphological data on height and LAI that 

were unused in the analysis. These and other morphological traits could be included with 

VI in a stepwise regression model to understand their significance for estimating and 

classifying biomass. Future studies can test more advanced classification models using 

regression tactics based on stepwise regression results.  

CONCLUSION 

The high correlations between biomass and vegetation indices indicate that UAV-

derived VI have the potential to be used as an alternative to destructive biomass sampling 

to phenotype biomass in triticale. Additional research is needed to understand the 

potential of utilizing VI for classification. These findings add to the knowledge 

surrounding HTP applications in plant breeding, specifically, the non-destructive 

alternatives for evaluation and selection. Progress in this area will revolutionize plant 

breeding, benefiting plant breeders, producers, and global food production.  
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CHAPTER 3 | OPEN EDUCATIONAL RESOURCE IMPACT ON KNOWLEDGE 

AND CONFIDENCE OF PLANT BREEDING AND HIGH THROUGHPUT 

PHENOTYPING 

ABSTRACT 

Recent innovations in sensor technologies (UAV) have developed a remote high 

throughput phenotyping (HTP) approach to acquire large-scale phenotype data. The 

effective use and practical implementation of remote sensing technology in agriculture 

relies on an engaged workforce that understands plant breeding and UAV technology. 

This creates a need to develop relevant learning resources that provide an accessible and 

cost-effective solution for sharing new advancements. To alleviate this issue, this 

research aims to (1) Assess the impact of the open educational resource High Throughput 

Phenotyping in Plant Breeding on self-reported knowledge and (2) Assess the impact of 

the open educational resource High Throughput Phenotyping in Plant Breeding on 

objectively assessed knowledge. The results of this study indicate the open education 

resource High Throughput Phenotyping in Plant Breeding increases learner overall self-

reported knowledge, UAV self-reported knowledge and cross-listed self-reported 

knowledge. In addition, the lesson increases overall objectively assessed knowledge and 

cross-listed objectively assessed knowledge
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INTRODUCTION 

Crop yields have been rising since the 1940s (USDA, 2019). This is due to 

improved agronomic practices and plant breeding efforts. Plant breeders have contributed 

by evaluating different varieties and selecting those that exhibit the most desirable 

characteristics that address abiotic and biotic stresses in a changing climate.  

Plant breeding is the science of improving crops for human benefit. According to 

the National Association of Plant Breeders (NAPB, n.d.), plant breeding: 

 

“Involves the creation of multi-generation genetically diverse populations on 

which human selection is practiced to create adapted plants with new 

combinations of specific desirable traits. The selection process is driven by 

biological assessment in relevant target environments and knowledge of genes 

and genomes. Progress is assessed based on gain under selection, a function of 

genetic variation, selection intensity, and time.”  

 

Plant breeding progresses when the plant breeder sets the goal, creates new 

genetic variation by crossing parents that can contribute to the goal, evaluates plants 

across generations and locations, and culminates with selection. This process of 

crossbreeding and selection is repeated until the desired lines are achieved.  

Plant breeders’ success is based on their ability to evaluate large numbers of 

genotypes with reliable methods. New advances in DNA analysis provide the opportunity 

to evaluate based on genotype (Lande & Thompson, 1990b; Sax, 1923). DNA methods 

are getting faster and cheaper. The ability to predict phenotype from genotype varies 
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depending on the population and the trait under selection. Coupling the analysis of 

genomic data with phenotypic data has the potential to reveal the connection between 

genotype and phenotype. This will elevate the plant breeders' ability to evaluate more 

significant numbers of genotypes and make selections to accelerate plant breeding 

progress. The ability to rapidly sequence crop whole-genomes has moved plant breeding 

toward a high-throughput era. However, acquiring large-scale phenotype data has lagged, 

creating a phenomenon known as the "phenotyping bottleneck" (W. Yang et al., 2020). 

Recent innovations in sensor technologies and unmanned aerial systems (UAV) 

have developed a remote high throughput phenotyping (HTP) approach to alleviate the 

phenotyping bottleneck. High throughput phenotyping methods can potentially replace 

the human energy and cost investment in the field to make phenotyping more efficient 

and objective and reduce destructive plot loss, improving selection during plant breeding. 

These technological advances positively impact agriculture in many ways. However, 

these advances and research will only continue if individuals are equipped with the 

knowledge and skills necessary to use the technology to make meaningful contributions.  

Traditionally, knowledge acquisition of agricultural advancements occurs in the 

classroom setting. Outside the formal education system, extension education efforts play 

a significant role (USDA, n.d.). The dissemination of agriculture information in formal 

and informal settings can be achieved by integrating components of an open scholarship 

framework into existing methods using open educational resources (OER). Open 

scholarship makes information accessible to everyone with an internet connection. Open 

educational resources increase the accessibility of information.  
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The United Nations Education, Scientific, and Cultural Organization (UNESCO) 

defines open educational resources as “...learning, teaching, and research materials in any 

format and medium that reside in the public domain or are under copyright that have been 

released under an open license, that permit no-cost access, re-use, re-purpose, adaptation 

and redistribution by others" (2023). Similarly, in a report conducted to understand the 

future of pedagogical development better, the Organization for Economic Co-operation 

and Development (OECD, 2007) states, “the definition of OER currently most often used 

is digitized materials offered freely and openly for educators, students, and self-learners 

to use and reuse for teaching, learning, and research." Open educational resources are 

adaptable and accessible, reducing economic and geographic barriers to education while 

maintaining rigorous education standards. 

The technological nature of OER allows them to be organized into a learning 

environment that creates an enhanced learning experience for users. This makes learning 

collaborative, engaging, and adaptable to meet learner needs. In addition, online 

availability allows OER to provide immediate and continued access globally, mitigating 

geographic barriers to education.  

The efficacy of OER has been demonstrated where they provide improved or 

similar student performance when compared to traditional textbooks across a variety of 

disciplines (Allen et al., 2015; Colvard et al., 2018; Fischer et al., 2015; Hendricks et al., 

2017; J. L. Hilton III et al., 2013; J. Hilton III & Laman, 2012; Jhangiani et al., 2018; 

Muniafu, 2013; Pounds & Bostock, 2019; Winitzky-Stephens & Pickavance, 2017). Open 

educational resources have also been effective resources for professional development 

and corporate training (Geith et al., 2010; Kim & Lee, 2022; Merkel & Cohen, 2015). 
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Multiple agriculture-related repositories exist that contain OER, which can help facilitate 

extension efforts (Geith & Vignare, 2013; Jain & Veeranjaneyulu, 2013; PASSeL, 

https://passel2.unl.edu/). The infrastructure exists to house OER and there is documented 

success of these resources, however, there is relatively few OER focused on UAV use in 

agriculture. 

Advancements in UAV technology are emerging at a rapid pace, creating a gap 

between discovery and information dissemination. Agriculture has transformed into a 

multidisciplinary field where professionals must understand how new technology and 

plant breeding work to make meaningful contributions. Access to relevant resources on 

applying UAV technology to agriculture, specifically plant breeding, will support the 

learning students and professionals require. Online searches yielded incomplete learning 

materials to address the application of UAV technology in plant breeding. 

To mitigate the issue of limited learning materials, an open educational resource 

called High Throughput Phenotyping in Plant Breeding was created to communicate 

technological advancements to a broad audience. This open educational resource focuses 

on plant breeding and high throughput phenotyping in a broad context before narrowing 

it to a specific example of technologies used for measuring above-ground biomass. The 

lesson focuses on ways technology is implemented into plant breeding programs, how 

plant breeding programs work, why the technology can create valuable images, and how 

those images are processed and used to make decisions. This study aims to assess the 

effectiveness of an open educational resource to improve self-reported and objectively 

assessed knowledge of HTP in plant breeding. The specific objectives of this study are 

to:  

https://passel2.unl.edu/
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1. Assess the impact of the lesson High Throughput Phenotyping in Plant Breeding 

on self-reported knowledge. 

2. Assess the impact of the lesson High Throughput Phenotyping in Plant Breeding 

on objectively assessed knowledge.  

MATERIALS AND METHODS 

Lesson Development 

An open education resource, High Throughput Phenotyping in Plant Breeding, 

was developed to test the impact of online resources on student self-reported and 

objectively assessed knowledge. The online lesson is intended for a broad audience to 

introduce the application of high throughput phenotyping to provide the data needed by 

plant breeders for the evaluation of potential new varieties. The lesson is accessible at the 

following web address: https://passel2.unl.edu/view/lesson/6241e9314ecf. 

Lesson development occurred from May 2021 through June 2022. Information 

was gathered through research and reading peer-reviewed journal papers on topics 

surrounding high throughput phenotyping technologies and plant breeding. Information 

was supplemented by individuals at the University of Nebraska-Lincoln in the 

Department of Biological Systems Engineering with expertise in high throughput 

phenotyping technologies and individuals in the Department of Agronomy and 

Horticulture with expertise in small grains plant breeding. First-hand experience 

conducting in-field research for data collection and processing using unmanned aerial 

systems also contributed to the lesson development.  

After the lesson was written, it was reviewed by four experts at the University of 

Nebraska-Lincoln and revised using their critiques. The final lesson was uploaded to the 

https://passel2.unl.edu/view/lesson/6241e9314ecf
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University of Nebraska-Lincoln’s Plant and Soil Sciences e-Library (PASSeL). PASSeL 

is an online library comprised of OER developed through the collaborative efforts of 

experts to provide free, reliable learning materials to improve science literacy (2023). 

Placing the lesson on the PASSeL website allows the lesson to be available to anyone at 

no cost. 

The lesson contains eight sections and delivers information primarily through 

text, supplemented with images and videos to enhance the narrative (see Appendix B 

Tables B1 for outline and B2 for objectives). It was created as an introductory lesson for 

individuals with any level of background knowledge. The lesson first introduces plant 

breeding, by describing the goals, basic steps and progression toward creating new 

varieties for farmers. The lesson then covers high throughput phenotyping basics on 

sensors and how they work. It then brings the two ideas together and provides a step-by-

step example of how high throughput phenotyping can enhance plant breeding.  

Survey Creation 

A pre-survey and post-survey were created in Qualtrics to test student’s self-

reported and objectively assessed knowledge before and after reading the lesson. 

Qualtrics is a web-based software that allows the creation and distribution of surveys 

(Qualtrics, Seattle, WA, USA). The pre-survey and post-survey were identical and 

consisted of four sections (Appendix B Table B3). 

Section one contained the informed consent to inform individuals that their 

participation is voluntary and details on the research project.  

Section two contained one multiple-choice fundamental demographic question. 

This question was used to categorize data for further analysis and comparison. The 
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options were undergraduate student, graduate student, agriculture industry professional, 

producer, and other.  

Section three contained three questions using a 5-point Likert scale. These 

questions aimed to measure self-reported knowledge of high throughput phenotyping 

technology and plant breeding topics.  

Section four contained eighteen questions: 17 multiple-choice and one drag-to-

order. The purpose of this section was to objectively assess knowledge. This section 

contained content-heavy questions that measured plant breeding specific topics and cross-

listed topics (high throughput phenotyping application in plant breeding).  

Data Collection 

 Approval for conducting the survey was obtained from the University of 

Nebraska Lincoln Institutional Review Board (IRB; Approval #: 20221022192EX). The 

only identifiable information collected was IP addresses. This was done to try to connect 

pre and post data from the same learner to have a paired test for statistical analysis; 

however, in the end we did not use the IP addresses.  

A pilot study took place in the Summer of 2022 with a group of students 

participating in a summer research experience for undergraduates at the University of 

Nebraska-Lincoln. This program included five students from varying backgrounds. The 

purpose of the pilot study was to get students’ reactions and feedback to improve the 

lesson and survey before collecting actual data. 

The treatment in this research study was the High Throughput Phenotyping in 

Plant Breeding lesson. Individuals were given a link to the pre-survey and expected to 

complete it. At the end of the pre-survey, a link was embedded, and instructions to direct 
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users to the lesson published on the PASSeL website. Individuals were expected to read 

the entire lesson and on the final page of the lesson, there was a link to complete the post-

survey. This was done in an attempt to collect higher-quality data by encouraging 

individuals to read the lesson completely before accessing the post-survey to measure the 

effect of the treatment.  

Sampling Population/Survey Deployment 

The target populations included individuals from the following categories: 

undergraduate students, graduate students, agriculture industry professionals, producers, 

and other agriculture-related individuals.  

The surveys and lesson were distributed in two ways: as an extra credit option in 

UNL courses and via email to colleagues of the High Intensity Phenotyping Sites: 

Transitioning to a Nationwide Plant Phenotyping Network project team. Courses were 

chosen based on the relevance of high throughput phenotyping and plant breeding to the 

course content. Students were given a link to complete the pre-survey and expected to 

complete the lesson reading, followed by the post-survey. 

In the Fall semester of 2022, the lesson was used as an extra credit opportunity in 

a UNL Site-Specific Crop Management course offered at the undergraduate and graduate 

level. Students in this course were given three weeks to complete all parts of the research. 

In the Spring semester of 2023, the research opportunity was offered as an extra credit 

opportunity for three courses at the University of Nebraska Lincoln: Introduction to Plant 

Breeding, Breeding for Disease Resistance, and Genetics. The research opportunity was 

also emailed to selected agriculture professionals with connections to the University of 

Nebraska-Lincoln.  
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Statistical Analysis 

All data collected was downloaded from Qualtrics and uploaded into R, a 

programming language used for statistical analysis (Boston, MA, USA). Recruitment 

efforts resulted in 132 pre-survey and 83 post-survey responses, with no unique 

identifying information collected to match pre-surveys to post-surveys. A subset of data 

was obtained by filtering data to ensure quality. It was decided that the question asking 

students to place the answers in the correct order was not a good indicator of knowledge 

and was removed from the final score (see Appendix B Table B3 for question). Survey 

responses were filtered based on a 95% completion threshold. The response was removed 

from the dataset if students completed less than 95% of the survey. Data was also filtered 

based on survey duration. Three test individuals (whose results were not used for 

analysis) were timed during survey completion. The average duration was calculated 

from these three responses, and a threshold of five minutes was determined. Any survey 

completed under five minutes was removed from the final data set. Data filtering 

removed 63 pre-surveys and 34 post-surveys, resulting in a final data set of 69 pre-

surveys and 49 post-surveys.  

The survey questions were divided into seven data subsets based on the subject 

matter to be further analyzed (see Appendix B Table B4). The 'UAV' and 'Plant Breeding' 

categories tested students' self-reported or objectively assessed knowledge on UAV or 

plant breeding, respectively. ‘Cross-Listed’ categories tested students' self-reported or 

objectively assessed knowledge in applying UAV in a plant breeding scenario. Categories 

labeled ‘Overall’ combine all self-reported or objectively assessed knowledge questions, 

respectively.  
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Table 3.1 

Effect Size and Relative Magnitude of Difference 

 

Effect Size Magnitude of Difference 

r < 0.05 Tiny 

0.05 <= r < 0.1 Very small 

0.1 <= r < 0.2 Small 

0.2 <= r < 0.3 Medium 

0.3 <= r < 0.4 Large 

r >= 0.4 Very large 

 

Note. The relative magnitude of difference as suggested by Funder and Ozer (2019). The 

shaded box colors are used in Table 3.2 to indicate the magnitude of difference between 

pre-survey and post-survey scores. 

 

A Shapiro-Wilk normality test was used to check for normal distribution. It was 

determined that each subset residuals are non-parametric, necessitating the use of the 

Wilcoxon Rank-Sum test for statistical analysis. Categorizations are delineated as seen in 

Funder & Ozer (2019) (see Table 3.1). 

RESULTS 

The effect size for each subset was interpreted to determine the magnitude of the 

difference between pre-survey and post-survey results.  The results of the Wilcoxon-Rank 

Sum Test and interpretations for each subcategory are summarized in Table 3.2. 

Graphical differences in the means of pre- and post-survey score subsets can be seen in 

Graphs B1-B7. 
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Self-Reported Knowledge  

To assess the impact of High Throughput Phenotyping in Plant Breeding on self-

reported knowledge, a Wilcoxon Rank-Sum Test was performed on the self-reported 

knowledge pre-survey and post-survey scores. Post-survey scores were significantly 

higher for overall UAV self-reported knowledge, cross-listed self-reported knowledge, 

and overall self-reported knowledge. However, self-reporting plant breeding knowledge 

did not significantly increase (see Table 3.2). The increase in self-reported knowledge for 

statistically significant groups had a very large difference between pre-survey and post-

survey means. These findings indicate that the lesson High Throughput Phenotyping in 

Plant Breeding positively impacts learner self-reported knowledge in UAV applications 

in plant breeding, but not plant breeding itself.  

Objectively Assessed Knowledge 

To assess the impact of High Throughput Phenotyping in Plant Breeding on 

knowledge, a Wilcoxon Rank-Sum Test was performed on the objectively assessed 

knowledge pre-survey and post-survey scores. There was a significant increase in cross-

listed and overall content knowledge with small and medium differences, respectively. 

However, there was no significant increase in plant breeding knowledge (see Table 3.2). 

These results indicate that the lesson High Throughput Phenotyping in Plant Breeding is 

effective at increasing knowledge about the application of UAV in plant breeding, but not 

plant breeding knowledge alone.  

 



 61 

DISCUSSION 

Traditional assessments to understand the efficacy of OER follow the ‘COUP’ 

framework measuring cost, outcomes, use, and perceptions (Bliss et al., 2013). 

Consequently, the majority of OER studies compare the use of OER in comparison to 

traditional texts. This study is unique because the OER was not designed to replace any 

textbook or other learning materials, so we cannot compare the results from using the 

OER to using traditional text. It does instead show the effectiveness of using an OER as a 

primary method to share information related to new advances in the agriculture industry.  

This research aimed to assess the impact of the open educational resource High 

Throughput Phenotyping in Plant Breeding on self-reported and objectively assessed 

knowledge. The results from the Wilcoxon Rank-Sum Test indicate that reading the 

lesson increases overall self-reported knowledge and objectively assessed knowledge of 

phenotype evaluation using high throughput phenotyping (Table 3.2). These results are 

consistent with similar research findings (Allen et al., 2015; J. Hilton III & Laman, 2012; 

Muniafu, 2013). Reading the lesson impacted self-reported knowledge significantly more 

than objectively assessed knowledge. 

Overall, UAV and cross-listed self-reported knowledge scores increased by a very 

large magnitude of difference between pre- and post-surveys (Table 3.2). Similarly, there 

was a significant increase in overall and cross-listed objectively assessed knowledge 

scores, though with a small to medium magnitude of difference. Conversely, neither plant 

breeding self-reported knowledge nor plant breeding objectively assessed knowledge had 

a significant increase in scores. 
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These results indicate that the lesson was more effective in increasing UAV self-

reported and objectively assessed knowledge. Increased self-reported knowledge can 

indicate individuals with knowledge surrounding these topics. Confident individuals are 

more likely to trust their abilities, perform better, and make meaningful contributions to a 

team.  

Though there was no significant increase in plant breeding self-reported or 

objectively assessed knowledge, this does not mean there were no benefits related to 

plant breeding that the lesson produced. The cross-listed self-reported and objectively 

assessed knowledge questions measured the ability of learners to apply UAV knowledge 

to plant breeding situations. The increase in both categories provides evidence that the 

lesson helped learners to apply basic knowledge they already have in novel situations.  

Considering the sampling population provides reasons for the lack of a significant 

increase in basic plant breeding self-reported and objectively assessed knowledge. The 

population targeted in this study included individuals enrolled in agronomy courses and 

professionals in the agriculture industry. It is reasonable to believe the agriculture and 

plant breeding base knowledge these students and professionals possess is at or above the 

amount of knowledge the lesson would have imparted. This lesson was designed to 

introduce the application of UAV in plant breeding. Consequently, the survey questions 

were created to measure an introductory level of knowledge. Sufficient background 

knowledge increases pre-survey scores, which leaves less room for improvement in post-

survey scores. We can see this in the inflated pre-survey scores for plant breeding 

categories compared to UAV and cross-listed categories (Table 3.2). This explains why 
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we did not see a significant increase in post-survey scores for categories about plant 

breeding topics.  

Due to this, these findings may be less informative for different populations of 

learners. If, instead, the sample population included students enrolled in engineering 

courses, the results may have been the opposite, where there would have been a 

significant increase in plant breeding scores and not UAV scores. Furthermore, less than 

1% of pre- and post-survey responses collected in this study were from agriculture 

professionals. Therefore, the survey results cannot provide any evidence for the increase 

in knowledge for individuals already in the workforce but rather for individuals preparing 

to enter the workforce.  

Future Studies 

Future studies should expand the sample population to include individuals with 

more diverse background knowledge and experience. This can be done by expanding the 

undergraduate pool to students enrolled in engineering courses with more formal UAV 

training. In addition, the lesson can be tested on individuals in the workforce who have a 

background in agriculture or engineering. Significant research studies the effects of 

replacing traditional textbooks with OER in the classroom setting. However, more 

research is needed to focus on OER impact on individuals continuing education outside 

of school. The agriculture industry is an interdisciplinary field, necessitating a workforce 

that understands agriculture's traditional and technological aspects. Balancing the sample 

population will produce more informative results for how practical the lesson is and 

provide insight for implementing the lesson in ways that will maximize the benefit. 
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It would also be interesting to see how different formats of OER impact the 

engagement with and efficacy of the lesson. The current format is majority text with few 

supplemental images and videos as additional support for the information found within 

the text. The lesson could be formatted in alternative ways that promote more interaction. 

One alternative is changing the lesson from text to video format for a more visual 

representation of the information. Another option is adding questions as knowledge 

checkpoints for readers to gauge current understanding before advancing further in the 

lesson.  

CONCLUSION 

As the utilization of technology in agriculture increases, there is a continued 

demand for educational resources to train individuals in the industry. Increasing the 

objective knowledge of individuals entering the agriculture workforce increases their 

confidence in their ability to work with new technologies. This results in individuals 

capable of producing meaningful contributions to the industry. The lesson in this study 

increased learners' self-reported and objectively assessed knowledge of UAV use and 

application in plant breeding, demonstrating the effectiveness of OER as a learning 

resource in agricultural contexts. 
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 APPENDIX A 

Table A1 

 

Mead Genotypes Sampled on Date One 2022 

 

Name 

NT13443 

NE03T416-1* 

NT14433* 

NT17441* 

NT17442 

NT19441 

NT19443* 

NT20401 

NT20409 

NT20417* 

NT20429 

NT20432* 

NT21409 

NT21414 

NT21436 

NT21440 

NT21443 

NT441* 

OVERLAND 

 

Note. An asterisk (*) denotes correct genotypes that were sampled on all other dates and 

locations in 2022.  
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Table A2 

 

Lincoln 05/18/22 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NE03T416-3 1004 26746.38 3710.31 5.94 78.00 

NT14433 1005 47856.63 6956.34 5.93 90.00 

NT441 1006 52745.78 7359.67 6.73 88.00 

NT17441 1009 34915.29 5453.29 6.33 93.33 

NT19443 1011 62411.25 7910.83 9.31 97.33 

NT12404-1 1012 38305.27 5062.93 6.65 98.00 

NT20417 1015 46960.50 5975.92 6.33 102.00 

NT14407 1022 40041.76 5645.22 8.64 92.67 

NE03T416-1 1023 51024.85 6344.23 9.26 87.00 

NT20432 1029 40531.98 4699.81 7.81 87.33 

NT12404-1 1032 38357.15 5401.41 8.44 86.67 

NE03T416-1 1035 53617.27 6973.20 9.27 96.33 

NT441 1038 38892.75 6236.59 9.52 83.33 

NE03T416-3 1040 43861.02 5706.17 8.31 94.00 

NT20417 1046 39915.97 5724.33 7.66 99.00 

NT19443 1051 49559.40 6266.41 10.23 100.33 

NT14407 1055 51432.06 7169.03 9.76 89.00 

NT14433 1056 43722.25 6799.42 8.63 108.00 

NT20432 1059 64698.91 7848.58 8.20 90.00 

NT17441 1060 70777.28 9448.90 8.26 98.00 

NE03T416-3 1062 24616.94 2842.71 8.69 88.67 

NT20432 1063 55247.42 6550.43 7.08 85.33 

NT14407 1065 34366.72 4029.34 7.05 95.00 

NT12404-1 1067 45086.54 6685.30 8.20 96.00 

NE03T416-1 1071 25856.74 3706.42 8.55 103.00 

NT14433 1074 57336.65 8401.04 8.47 104.67 

NT20417 1075 61162.38 8450.32 8.06 107.67 

NT17441 1079 60249.39 8919.78 8.46 88.00 

NT19443 1081 66418.54 8812.15 9.93 94.67 

NT441 1082 31673.14 3680.48 7.84 88.33 
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Table A3 

 

Lincoln 06/02/2022 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NE03T416-3 1004 29111.85 7848.58 5.20 108.33 

NT14433 1005 21413.71 6524.49 5.07 139.33 

NT441 1006 30862.61 7275.37 5.77 129.67 

NT17441 1009 47453.30 12731.25 4.31 127.67 

NT19443 1011 26765.84 6982.28 6.47 120.00 

NT12404-1 1012 39143.04 11097.21 6.05 122.67 

NT20417 1015 37662.03 10916.94 5.09 124.67 

NT14407 1022 29043.12 8459.40 6.01 122.00 

NE03T416-1 1023 47467.57 13414.69 6.00 112.67 

NT20432 1029 38516.66 9673.26 6.21 111.67 

NT12404-1 1032 40439.90 10435.81 4.96 110.00 

NE03T416-1 1035 32733.97 8831.60 6.55 126.33 

NT441 1038 31905.28 7881.00 4.77 114.67 

NE03T416-3 1040 29168.91 8423.09 5.89 112.67 

NT20417 1046 46353.57 12972.46 5.51 122.33 

NT19443 1051 36079.87 8419.20 6.39 133.67 

NT14407 1055 23121.67 6053.73 6.17 119.67 

NT14433 1056 32639.30 9017.05 5.77 149.33 

NT20432 1059 38494.61 9681.04 6.13 128.33 

NT17441 1060 39744.78 10712.04 5.80 122.67 

NE03T416-3 1062 28795.42 7555.49 6.17 114.33 

NT20432 1063 17580.20 4168.10 5.52 115.00 

NT14407 1065 24178.61 6371.46 5.44 121.33 

NT12404-1 1067 29889.97 7630.71 5.64 116.67 

NE03T416-1 1071 48817.60 12683.26 5.58 138.67 

NT14433 1074 39996.37 10459.15 5.15 130.00 

NT20417 1075 26895.52 6890.20 5.66 149.33 

NT17441 1079 42950.62 10516.22 5.60 111.67 

NT19443 1081 38862.92 10306.12 6.28 121.67 

NT441 1082 40519.01 9360.72 5.93 134.00 
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Table A4 

 

Lincoln 06/27/22 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NE03T416-3 1004 23932.20 12884.28 2.69 102.00 

NT14433 1005 19998.84 11117.96 3.33 127.00 

NT441 1006 30994.89 12759.78 2.70 127.67 

NT17441 1009 36350.91 19052.13 3.73 124.67 

NT19443 1011 27253.45 13750.58 3.22 114.00 

NT12404-1 1012 26000.69 14309.52 3.73 111.67 

NT20417 1015 24026.87 14068.31 2.83 113.00 

NT14407 1022 23742.86 13619.59 3.00 113.33 

NE03T416-1 1023 32892.19 18998.96 3.37 108.00 

NT20432 1029 36589.53 17912.19 3.63 112.33 

NT12404-1 1032 23580.76 15939.67 3.63 107.33 

NE03T416-1 1035 29263.58 17386.96 3.66 127.33 

NT441 1038 12407.03 5956.47 2.83 114.33 

NE03T416-3 1040 22403.21 14245.98 3.48 106.33 

NT20417 1046 14924.23 9644.73 4.00 116.00 

NT19443 1051 31176.45 16122.53 3.87 131.00 

NT14407 1055 18883.54 12200.83 3.23 111.67 

NT14433 1056 19104.00 11477.19 3.20 130.00 

NT20432 1059 37492.14 20561.67 3.76 123.33 

NT17441 1060 45432.80 23414.76 4.46 117.67 

NE03T416-3 1062 23322.68 13152.73 3.08 108.00 

NT20432 1063 16396.17 8799.18 3.46 111.33 

NT14407 1065 23955.55 12698.83 3.66 118.33 

NT12404-1 1067 22644.42 17598.35 3.14 112.33 

NE03T416-1 1071 29944.43 16802.08 3.60 132.33 

NT14433 1074 2352.50 12745.51 3.32 118.33 

NT20417 1075 24819.25 13134.57 3.73 129.67 

NT17441 1079 27144.52 12410.92 3.56 105.67 

NT19443 1081 26863.10 13418.58 3.90 114.67 

NT441 1082 36109.69 17910.90 3.62 136.00 
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Table A5 

 

Mead 05/18/22 Manual Sampling Data  

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT21409 1004 15816.47 3103.38 1.23 69.67 

NT13443 1005 6856.48 1145.12 1.39 61.00 

NT441 1006 24508.01 3839.99 1.25 66.67 

NT17441 1009 19646.09 3261.60 2.56 59.33 

NT20417 1011 26218.56 5003.28 2.14 62.00 

NT19443 1012 15241.96 2569.07 2.96 67.00 

NT21443 1015 14284.88 2780.46 2.04 69.67 

NE03T416-1 1022 32315.09 5571.30 2.44 64.00 

NT21414 1023 24915.61 4267.96 1.57 70.33 

NT20401 1029 18363.50 3303.10 2.61 71.33 

NT20409 1032 8176.68 1342.25 3.46 46.00 

NT21409 1035 11848.09 2163.16 1.91 74.33 

NT14433 1038 11509.61 1867.47 3.57 76.33 

OVERLAND 1040 8725.26 1704.07 2.51 74.33 

NE03T416-1 1046 19273.89 3270.67 2.31 61.33 

NT21440 1051 19113.08 3389.98 2.68 79.00 

NT20432 1055 14823.08 2377.14 2.26 76.00 

NT19443 1056 24138.40 4341.88 2.25 68.00 

NT20429 1059 38725.45 6757.92 3.20 63.67 

NT21436 1060 29316.75 5306.74 3.23 73.00 

NT441 1062 43612.01 6820.17 5.02 87.00 

NT19441 1063 20967.59 3671.40 5.03 86.00 

NT20417 1065 20136.30 3493.73 3.52 81.00 

NT21409 1067 38135.38 6953.75 4.27 80.67 

NT20401 1071 34910.10 7312.98 4.26 94.00 

OVERLAND 1074 24631.21 4370.41 4.60 86.33 

NT17442 1075 36375.55 5659.48 4.23 72.67 

NT20409 1079 33932.27 6523.19 4.70 77.67 

NT21440 1081 34906.21 5511.64 6.26 91.00 

NE03T416-1 1082 42651.04 7126.23 6.16 87.33 
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Table A6 

 

Mead 06/02/22 Manual Sampling Data  

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT441 1006 9716.05 2430.31 1.68 100.00 

NT17441 1009 27284.58 6097.82 2.63 109.33 

NT20417 1011 11047.93 2986.66 2.58 105.00 

NT19443 1012 21422.78 5379.36 3.16 105.00 

NT14407 1016 25046.20 7004.33 2.13 103.00 

NT12404-1 1017 22838.95 6281.98 3.47 104.33 

NE03T416-3 1018 26940.91 7322.06 3.27 100.33 

NT14433 1019 16189.97 4219.97 3.58 124.00 

NE03T416-1 1022 30511.16 8576.12 2.94 95.33 

NT20432 1025 24524.87 4746.50 3.73 113.67 

NT441 1031 20089.62 4483.24 5.54 114.00 

NT12404-1 1033 41011.81 11819.56 2.31 106.00 

NT20417 1036 41871.63 13549.56 2.49 104.67 

NT14433 1038 17654.12 4852.84 3.36 119.33 

NT17441 1039 33368.14 7411.54 2.41 110.00 

NE03T416-1 1046 30342.57 8530.73 2.13 99.00 

NT14407 1049 26180.95 6297.54 1.88 100.67 

NE03T416-3 1052 35332.88 7449.15 3.01 99.33 

NT20432 1055 8312.85 425.37 1.95 101.33 

NT19443 1056 27462.25 5738.59 2.81 100.00 

NT441 1062 30520.24 6860.37 4.27 118.67 

NT20417 1065 45017.81 11761.20 3.21 117.00 

NE03T416-3 1066 63294.41 15934.48 3.61 104.67 

NT20432 1072 45659.75 10001.36 4.21 112.33 

NT19443 1073 51587.68 12045.21 4.50 116.00 

NT14407 1080 32746.94 8605.94 4.44 117.67 

NE03T416-1 1082 28012.12 6838.33 5.34 114.67 

NT14433 1085 40821.18 10670.54 3.48 146.00 

NT17441 1088 40796.53 10402.09 3.95 133.67 

NT12404-1 1089 34456.20 8699.32 3.50 113.00 
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Table A7 

 

Mead 06/27/22 Manual Sampling Data  

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT441 1006 37860.45 15764.60 2.10 113.33 

NT17441 1009 43851.93 18743.48 2.21 121.00 

NT20417 1011 22497.88 11363.06 2.43 106.67 

NT19443 1012 27904.48 12955.60 2.26 100.00 

NT14407 1016 14316.01 7001.73 1.86 100.00 

NT12404-1 1017 38291.01 22146.43 2.98 100.00 

NE03T416-3 1018 31922.14 16995.31 2.41 104.00 

NT14433 1019 31609.60 16269.07 2.56 115.33 

NE03T416-1 1022 30681.05 15975.98 2.70 93.33 

NT20432 1025 43558.84 20626.51 2.58 103.33 

NT441 1031 42736.63 18707.17 4.20 120.33 

NT12404-1 1033 18122.28 10035.08 2.37 99.67 

NT20417 1036 28843.40 14594.83 1.55 97.00 

NT14433 1038 41061.09 22522.52 2.72 125.00 

NT17441 1039 63614.74 27287.17 3.01 119.33 

NE03T416-1 1046 44622.26 21658.81 2.46 96.67 

NT14407 1049 40525.49 20793.81 2.01 102.67 

NE03T416-3 1052 49608.68 24122.84 2.27 95.33 

NT20432 1055 27738.48 12504.30 1.90 94.33 

NT19443 1056 36636.22 18424.45 2.38 107.33 

NT441 1062 53025.90 24688.27 3.33 117.33 

NT20417 1065 45930.79 23570.38 2.17 109.33 

NE03T416-3 1066 42341.09 20303.60 2.54 102.00 

NT20432 1072 39884.84 20896.26 3.35 108.00 

NT19443 1073 41316.57 20538.33 2.97 110.67 

NT14407 1080 28722.79 15643.99 3.38 114.33 

NE03T416-1 1082 35243.39 19503.44 3.95 112.00 

NT14433 1085 35070.91 19714.82 4.05 130.67 

NT17441 1088 42914.30 23157.98 3.87 123.33 

NT12404-1 1089 30878.17 20382.71 3.72 113.33 
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Table A8 

 

Lincoln 05/10/23 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT19443 1001 958.38 271.04 0.08 19.33 

NT14433 1002 1669.06 364.42 0.22 20.00 

NT441 1009 1608.10 343.67 0.32 21.00 

NT14407 1018 2117.77 470.76 0.32 22.67 

NT12404-1 1021 1425.25 291.79 0.19 21.67 

NE03T416-3 1024 2094.42 481.13 0.36 23.67 

NT19441 1026 2191.69 470.76 0.28 22.67 

NE03T416-1 1027 1427.84 339.78 0.15 21.00 

NT21436 1030 3082.63 654.91 0.35 21.67 

NT20427 1033 2844.01 634.16 0.24 24.00 

NT21436 1049 1744.27 379.98 0.27 26.00 

NT441 1052 2767.49 560.24 0.08 23.00 

NT14407 1054 1416.17 330.70 0.31 24.67 

NT20427 1057 2902.37 623.79 0.26 26.00 

NT14433 1065 2473.11 507.07 0.25 19.00 

NE03T416-1 1066 5060.34 1130.86 0.45 22.67 

NT19441 1074 2794.73 556.35 0.36 25.00 

NE03T416-3 1075 2124.25 539.49 0.21 25.00 

NT19443 1077 3185.08 661.40 0.37 26.67 

NT12404-1 1078 2618.35 577.10 0.17 28.00 

NT20427 1086 2681.90 591.37 0.22 19.67 

NT19441 1094 2074.97 452.60 0.45 22.33 

NT14433 1095 1593.84 348.85 0.12 21.00 

NE03T416-1 1097 1059.53 252.89 0.29 22.00 

NE03T416-3 1102 3335.52 680.85 0.28 22.67 

NT21436 1104 2997.04 647.13 0.24 21.67 

NT441 1105 1571.79 357.93 0.29 21.33 

NT14407 1110 2763.60 590.07 0.11 23.67 

NT12404-1 1111 880.57 237.32 0.14 20.67 

NT19443 1118 2074.97 442.23 0.05 23.00 
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Table A9 

 

Lincoln 05/22/23 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT19443 1001 6569.88 1359.11 0.77 65.00 

NT14433 1002 11468.11 2496.45 0.76 54.67 

NT441 1009 9024.83 2015.32 0.42 50.67 

NT14407 1018 5820.30 1259.25 0.18 65.33 

NT12404-1 1021 6639.91 1626.26 0.25 54.33 

NE03T416-3 1024 8468.48 1969.93 0.74 57.00 

NT19441 1026 5572.60 1256.65 0.65 62.00 

NE03T416-1 1027 4142.16 941.52 0.42 58.00 

NT21436 1030 10038.97 1959.55 0.51 58.00 

NT20427 1033 6965.42 1735.19 0.64 58.00 

NT21436 1049 13199.41 2736.37 0.39 63.33 

NT441 1052 5579.08 1159.39 0.26 59.67 

NT14407 1054 6713.83 1387.64 0.46 65.33 

NT20427 1057 17696.91 4055.27 0.57 70.00 

NT14433 1065 22066.03 4807.45 0.31 68.67 

NE03T416-1 1066 14463.85 3312.17 1.04 67.33 

NT19441 1074 11543.33 2489.97 0.56 61.33 

NE03T416-3 1075 12763.67 2889.40 0.95 61.33 

NT19443 1077 14376.96 3177.30 0.65 63.33 

NT12404-1 1078 10275.00 2515.90 0.21 60.00 

NT20427 1086 8899.03 2233.19 0.37 56.33 

NT19441 1094 10522.70 2369.36 0.57 64.00 

NT14433 1095 12261.79 2697.46 0.19 66.00 

NE03T416-1 1097 10557.71 2313.59 0.39 57.67 

NE03T416-3 1102 10348.92 2212.44 0.45 55.00 

NT21436 1104 9651.21 2207.25 0.30 54.00 

NT441 1105 13318.72 2923.12 0.60 55.33 

NT14407 1110 7140.50 2170.94 0.23 65.33 

NT12404-1 1111 8660.41 1571.79 0.18 59.33 

NT19443 1118 12933.56 3130.61 0.17 59.33 
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Table A10 

 

Lincoln 06/05/23 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT19443 1001 10736.68 3976.16 0.53 74.00 

NT14433 1002 11190.58 4138.27 1.08 80.33 

NT441 1009 17486.82 5182.24 0.32 72.00 

NT14407 1018 9761.44 3204.53 0.60 76.00 

NT12404-1 1021 10076.58 3736.25 0.46 67.00 

NE03T416-3 1024 9074.11 3265.49 0.77 66.67 

NT19441 1026 12474.47 4143.46 0.77 79.00 

NE03T416-1 1027 6612.68 1999.75 0.55 72.67 

NT21436 1030 13368.00 4347.07 1.02 79.00 

NT20427 1033 8338.79 2963.32 0.67 69.00 

NT21436 1049 11555.00 3898.35 0.34 85.67 

NT441 1052 10892.30 3138.39 0.40 67.33 

NT14407 1054 12694.94 3946.34 0.64 75.00 

NT20427 1057 9529.31 3345.89 0.79 75.67 

NT14433 1065 12134.69 4350.96 0.58 81.67 

NE03T416-1 1066 10337.25 3479.47 0.86 76.33 

NT19441 1074 8367.32 2710.43 1.15 80.67 

NE03T416-3 1075 7568.46 2231.89 0.78 71.00 

NT19443 1077 9761.44 3373.13 0.51 71.67 

NT12404-1 1078 8385.48 2872.54 0.52 67.00 

NT20427 1086 14628.55 5265.24 0.35 71.00 

NT19441 1094 7620.33 2821.96 0.71 73.33 

NT14433 1095 9627.87 3362.75 0.22 83.00 

NE03T416-1 1097 6472.61 2348.61 0.38 70.00 

NE03T416-3 1102 9498.18 3281.05 0.81 64.67 

NT21436 1104 11969.99 3624.72 0.31 74.67 

NT441 1105 10653.68 2885.51 0.93 75.67 

NT14407 1110 13567.72 4813.93 0.23 73.33 

NT12404-1 1111 5289.88 1867.47 0.40 68.00 

NT19443 1118 8465.88 3275.86 0.26 67.33 
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Table A11 

 

Mead 05/10/23 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT12404-1 1003 1198.30 254.18 0.24 17.00 

NT14407 1006 3321.25 676.96 0.47 21.00 

NE03T416-3 1012 1556.23 346.26 0.83 27.00 

NT19443 1014 2678.01 538.20 0.63 25.00 

NT441 1018 3120.24 597.85 0.45 21.33 

NE03T416-1 1022 3679.18 778.11 0.62 24.33 

NT20427 1027 2657.26 551.16 0.49 25.00 

NT21436 1033 4440.44 966.16 0.76 30.33 

NT19441 1035 3607.86 757.36 0.71 33.33 

NT14433 1039 4174.58 868.89 0.76 27.33 

NT14407 1041 2911.44 591.37 0.55 110.67 

NT14433 1046 3041.13 614.71 0.85 26.67 

NT441 1050 3155.25 601.74 0.73 23.33 

NT19443 1053 1742.98 335.89 0.62 28.67 

NT21436 1057 3437.97 695.12 0.58 25.67 

NT20427 1064 2679.31 522.63 0.43 27.33 

NE03T416-3 1071 3616.93 722.35 0.66 28.00 

NT12404-1 1075 3436.67 667.88 0.26 27.00 

NE03T416-1 1077 4028.04 791.08 0.69 26.33 

NT19441 1079 9486.51 2182.61 2.16 40.33 

NT19443 1083 1653.49 334.59 0.59 27.67 

NT441 1086 3960.60 837.77 1.13 24.67 

NT14433 1092 1338.36 263.26 0.66 26.00 

NT19441 1094 6279.38 1369.48 0.68 27.33 

NT14407 1101 3229.17 651.02 0.56 31.33 

NE03T416-1 1102 1827.27 391.65 0.47 27.67 

NT20427 1103 2414.75 509.66 0.57 29.00 

NT12404-1 1105 1403.20 296.98 0.23 21.00 

NE03T416-3 1107 2746.74 588.77 0.47 22.67 

NT21436 1119 3584.51 779.41 0.81 24.33 
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Table A12 

 

Mead 05/22/23 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT12404-1 1003 7480.27 1784.48 0.39 50.33 

NT14407 1006 9601.93 2508.12 0.79 50.33 

NE03T416-3 1012 9739.40 2434.20 1.24 52.00 

NT19443 1014 10915.65 2439.39 0.96 48.33 

NT441 1018 12325.33 2744.15 1.30 50.33 

NE03T416-1 1022 12003.71 3144.88 0.59 52.33 

NT20427 1027 8876.99 2208.55 0.87 50.67 

NT21436 1033 11101.10 2864.76 0.90 54.00 

NT19441 1035 11102.39 2596.31 1.34 57.67 

NT14433 1039 20315.27 4659.61 1.24 56.67 

NT14407 1041 11902.56 3029.46 0.80 55.67 

NT14433 1046 19179.22 4108.44 1.15 51.33 

NT441 1050 12656.03 3072.25 0.92 57.67 

NT19443 1053 8338.79 1982.89 1.13 52.00 

NT21436 1057 16082.33 3626.01 0.89 51.00 

NT20427 1064 12106.16 2727.29 0.94 50.67 

NE03T416-3 1071 12582.11 2736.37 0.77 47.33 

NT12404-1 1075 13115.12 2815.48 0.99 48.00 

NE03T416-1 1077 13951.59 3052.80 1.31 56.67 

NT19441 1079 20306.19 5610.20 2.52 73.67 

NT19443 1083 12050.40 2570.37 1.20 61.00 

NT441 1086 15863.16 3439.27 2.00 56.67 

NT14433 1092 11863.65 2693.57 1.17 56.33 

NT19441 1094 11477.19 2698.76 0.98 61.67 

NT14407 1101 9717.35 2235.78 0.49 62.00 

NE03T416-1 1102 9983.21 2371.95 1.02 57.00 

NT20427 1103 10884.52 2567.78 0.76 54.67 

NT12404-1 1105 6786.45 1583.46 0.23 52.33 

NE03T416-3 1107 11234.67 2563.89 0.82 63.00 

NT21436 1119 9837.96 2497.75 1.14 65.33 
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Table A13 

 

Mead 06/05/23 Manual Sampling Data 

 

Genotype Plot ID 

Fresh 

Weight 

(kg/hec) 

Dry 

Weight 

(kg/hec) 

Leaf Area 

Index 

Height 

(cm) 

NT12404-1 1003 6266.41 1811.71 0.00 68.33 

NT14407 1006 11609.47 4007.29 0.62 75.33 

NE03T416-3 1012 9494.29 2978.88 0.79 79.67 

NT19443 1014 7272.78 2317.48 0.92 84.00 

NT441 1018 16363.74 5567.41 0.82 91.67 

NE03T416-1 1022 10905.27 3754.40 0.54 75.67 

NT20427 1027 8962.58 2995.74 0.57 76.33 

NT21436 1033 15528.57 5175.76 0.53 84.33 

NT19441 1035 11680.79 3876.31 0.54 92.33 

NT14433 1039 11414.94 3799.79 0.47 96.33 

NT14407 1041 11766.39 4151.24 0.03 74.67 

NT14433 1046 11592.61 4063.05 0.08 95.67 

NT441 1050 16199.04 4575.31 0.05 89.00 

NT19443 1053 10950.66 3475.58 0.04 73.00 

NT21436 1057 9784.79 3081.33 0.01 82.33 

NT20427 1064 9857.41 3427.59 0.00 78.67 

NE03T416-3 1071 10778.18 3819.24 0.00 74.00 

NT12404-1 1075 8799.18 2964.62 0.01 78.00 

NE03T416-1 1077 10933.80 3847.78 0.24 77.00 

NT19441 1079 15724.39 5751.56 0.66 91.00 

NT19443 1083 15282.17 4935.84 0.25 76.00 

NT441 1086 15502.63 4885.26 0.99 91.33 

NT14433 1092 12840.18 4524.73 0.47 87.67 

NT19441 1094 15401.48 4821.72 0.61 93.33 

NT14407 1101 12867.42 4623.30 0.50 82.67 

NE03T416-1 1102 11497.94 3996.91 0.54 80.00 

NT20427 1103 8560.55 3003.52 0.40 79.67 

NT12404-1 1105 7853.77 2631.32 0.13 80.00 

NE03T416-3 1107 13065.84 4712.78 0.08 81.67 

NT21436 1119 9498.18 3465.20 0.27 88.67 
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Table A14 

 

MicaSense Altum Multispectral Sensor Specifications 

 

Spectral Band Wavelength Center and Bandwidth (nm) 

Red 668 ± 14 

Green 560 ± 27 

Blue 475 ± 32 

Red Edge 717 ± 12 

Near Infrared 842 ± 57 

 

Note. The wavelength center is the center of the spectral band. Bandwidth is the range of 

frequencies. 

 

 

Table A15 

 

DJI Mavic 3M Multispectral Sensor Specifications 

 

Spectral Band Wavelength Center and Bandwidth (nm) 

Red 650 ± 16 

Green 560 ± 16 

Red Edge 730 ± 16 

Near Infrared 860 ± 26 

 

Note. The wavelength center is the center of the spectral band. Bandwidth is the range of 

frequencies. 
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Table A16 

  

Pixel Threshold Values for ExG Segmentation 

 

Date  Lincoln  Mead 

5/18/22  0.02  0.03 

6/2/22  0.02  0.03 

6/27/22  0.01  0.002 

5/10/23  0.03  0.02 

5/22/23  0.004  0.004 

6/5/23  0.008  0.01 

 

Note. Every pixel within plot boundaries was compared to the threshold value for its 

respective location. Values above the threshold were counted as vegetation and values 

below the threshold were counted as not vegetation. The pixel percent vegetation index is 

a ratio of these vegetation pixels to total pixels within the plot boundary.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Note. Normalized index values range from -1 to +1. A number closer to +1 indicates 

healthy vegetation. The spectral bands used to calculate GRVIRE cause the relationship 

to be inverse. A GRVIRE value closer to -1 indicates healthy vegetation and a number 

closer to +1 indicates unhealthy or no vegetation. GCI and RCI are not normalized 

indices, so they are not bound by the -1 to +1 scale.  
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Table A29 

 

VI vs. Dry Biomass Confusion Matrices 05/18/22 

 

 

 Actual Biomass Classification of Genotypes 

 Vegetation 

Indices 
 Lincoln  Mead 

VI-Based 

Genotype 

Classification 

 Low Mid High   Low Mid High 

GCI 

Low 1 2 0   1 1 0 

Mid 0 2 3   0 3 3 

High 0 2 0   1 0 0 

 
         

GNDVI 

Low 0 2 0   0 1 0 

Mid 1 2 3   1 2 3 

High 0 2 0   1 1 0 

          

GRVI 

Low 1 1 0   1 1 0 

Mid 0 3 2   0 2 3 

High 0 2 1   1 1 0 

          

GRVIRE 

Low 0 2 0   1 1 0 

Mid 0 3 2   0 2 3 

High 1 1 1   1 1 0 

          

NDRE 

Low 0 2 0   1 1 0 

Mid 1 3 2   0 2 3 

High 0 1 1   1 1 0 

 
 

        

NDVI 

Low 1 1 0   0 1 0 

Mid 0 3 3   1 2 3 

High 0 2 0   1 1 0 
 

         

Pixel 

Percent 

Low 0 1 1   0 1 0 

Mid 1 3 1   2 1 2 

High 0 2 1   0 2 1 
 

         

RCI 

Low 0 2 0   1 0 0 

Mid 1 3 2   0 4 3 

High 0 1 1   1 0 0 

 

Note. The numbers on the diagonal from top left to bottom right indicate an agreeance 

between actual biomass classification and VI-Based genotype classification.  
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Table 30 

 

VI vs. Dry Biomass Confusion Matrices 06/02/22 

 

  Actual Biomass Classification of Genotypes 

 Vegetation 

Indices 

 Lincoln  Mead 

  Low Mid High   Low Mid High 

VI-Based 

Genotype 

Classification 

GCI 

Low 1 0 2   0 0 2 

Mid 2 1 1   1 6 0 

High 0 3 0   1 0 0 
          

GNDVI 

Low 1 0 2   0 0 2 

Mid 2 2 1   1 6 0 

High 0 2 0   1 0 0 
          

GRVI 

Low 1 1 1   0 0 1 

Mid 2 1 1   1 5 1 

High 0 2 1   1 1 0 
          

GRVIRE 

Low 0 3 0   1 0 0 

Mid 1 1 2   1 6 0 

High 2 0 1   0 0 2 
          

NDRE 

Low 1 1 2   0 0 2 

Mid 2 1 1   1 6 0 

High 0 2 0   1 0 0 
          

NDVI 

Low 1 0 1   0 0 2 

Mid 2 1 2   1 5 0 

High 0 3 0   1 1 0 
          

Pixel 

Percent 

Low 0 1 0   0 2 0 

Mid 3 1 2   1 2 2 

High 0 2 1   1 2 0 
          

RCI 

Low 1 1 2   0 0 2 

Mid 2 1 1   1 6 0 

High 0 2 0   1 0 0 

 

Note. The numbers on the diagonal from top left to bottom right indicate an agreeance 

between actual biomass classification and VI-Based genotype classification.  
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Table A31 

 

VI vs. Dry Biomass Confusion Matrices 06/27/22 

 

 

 Actual Biomass Classification of Genotypes 

 Vegetation 

Indices 

 Lincoln  
 Mead 

VI-Based 

Genotype 

Classification 

  Low Mid High    Low Mid High 

GCI 

Low 0 2 1   2 2 0 

Mid 3 1 0   0 4 1 

High 1 1 1   0 1 0 
          

GNDVI 

Low 0 2 1   2 3 0 

Mid 3 1 0   0 3 1 

High 1 1 1   0 1 0 
          

GRVI 

Low 1 2 0   2 2 0 

Mid 2 1 1   0 4 0 

High 1 1 1   0 1 1 
          

GRVIRE 

Low 2 0 1   0 1 0 

Mid 2 3 0   1 5 1 

High 0 1 1   1 1 0 
          

NDRE 

Low 0 2 1   2 3 0 

Mid 3 1 0   0 3 0 

High 1 1 1   0 1 1 
          

NDVI 

Low 0 2 1   2 2 0 

Mid 3 1 0   0 4 0 

High 1 1 1   0 1 1 
          

Pixel 

Percent 

Low 1 2 1   1 1 0 

Mid 1 1 0   1 3 0 

High 2 1 1   0 3 1 
          

RCI 

Low 0 2 1   2 3 0 

Mid 3 1 0   0 3 0 

High 1 1 1   0 1 1 

 

Note. The numbers on the diagonal from top left to bottom right indicate an agreeance 

between actual biomass classification and VI-Based genotype classification.  
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Table A32 

 

VI vs. Dry Biomass Confusion Matrices 05/10/23 

 

VI-Based 

Genotype 

Classification 

 Actual Biomass Classification of Genotypes 

Vegetation 

Indices 

Lincoln  Mead 

  Low Mid High  Low Mid High 

GCI 

Low 1 0 0  1 1 0 

Mid 1 6 1  1 5 0 

High 0 0 1  0 1 1          

GNDVI 

Low 2 0 0  1 1 0 

Mid 0 5 0  1 5 0 

High 0 1 2  0 1 1          

GRVI 

Low 2 0 0  1 1 0 

Mid 0 5 1  1 5 0 

High 0 1 1  0 1 1          

GRVIRE 

Low 0 1 1  0 1 1 

Mid 1 5 1  1 4 0 

High 1 0 0  1 2 0          

NDRE 

Low 2 0 0  1 1 0 

Mid 0 5 0  1 4 0 

High 0 1 2  0 2 1          

NDVI 

Low 2 0 0  1 1 0 

Mid 0 6 1  1 5 0 

High 0 0 1  0 1 1          

Pixel 

Percent 

Low 1 0 0  1 1 0 

Mid 1 5 1  1 5 0 

High 0 1 1  0 1 1          

RCI 

Low 2 0 0  1 1 0 

Mid 0 5 0  1 4 0 

High 0 1 2   0 2 1 

 

Note. The numbers on the diagonal from top left to bottom right indicate an agreeance 

between actual biomass classification and VI-Based genotype classification.  
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Table A33 

 

VI vs. Dry Biomass Confusion Matrices 05/22/23 

 

VI-Based 

Genotype 

Classification 

 Actual Biomass Classification of Genotypes 

Vegetation 

Indices 

Lincoln  Mead 

  Low Mid High  Low Mid High 

GCI 

Low 2 0 0  1 2 0 

Mid 0 4 2  1 3 1 

High 0 2 0  0 1 1          

GNDVI 

Low 1 0 0  1 2 0 

Mid 1 4 1  1 3 1 

High 0 2 1  0 1 1          

GRVI 

Low 1 0 1  1 3 0 

Mid 1 4 1  1 2 1 

High 0 2 0  0 1 1          

GRVIRE 

Low 0 1 0  0 1 1 

Mid 1 5 2  1 4 1 

High 1 0 0  1 1 0          

NDRE 

Low 1 0 0  1 2 0 

Mid 1 5 1  1 3 1 

High 0 1 1  0 1 1          

NDVI 

Low 1 0 0  1 2 0 

Mid 1 4 1  1 3 1 

High 0 2 1  0 1 1          

Pixel 

Percent 

Low 1 0 0  1 0 0 

Mid 1 3 2  1 5 1 

High 0 3 0  0 1 1          

RCI 

Low 1 0 0  1 2 0 

Mid 1 5 1  1 3 1 

High 0 1 1   0 1 1 

 

Note. The numbers on the diagonal from top left to bottom right indicate an agreeance 

between actual biomass classification and VI-Based genotype classification.  
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Table A34 

 

VI vs. Dry Biomass Confusion Matrices 06/05/23 

 

VI-Based 

Genotype 

Classification 

 Actual Biomass Classification of Genotypes 

Vegetation 

Indices 

Lincoln  Mead 

  Low Mid High  Low Mid High 

GCI 

Low 2 0 1  1 3 0 

Mid 1 1 2  1 3 0 

High 0 2 1  0 0 2          

GNDVI 

Low 2 0 0  1 2 0 

Mid 0 1 4  1 4 0 

High 1 2 0  0 0 2          

GRVI 

Low 1 0 0  1 1 0 

Mid 2 1 4  1 4 1 

High 0 2 0  0 1 1          

GRVIRE 

Low 0 2 0  0 2 2 

Mid 1 1 3  1 1 0 

High 2 0 1  1 3 0          

NDRE 

Low 1 1 0  1 2 0 

Mid 1 0 3  1 3 0 

High 1 2 1  0 1 2          

NDVI 

Low 2 0 0  1 1 0 

Mid 1 1 4  1 4 0 

High 0 2 0  0 1 2          

Pixel 

Percent 

Low 2 0 1  2 2 0 

Mid 1 1 3  0 2 0 

High 0 2 0  0 2 2          

RCI 

Low 1 1 0  1 2 0 

Mid 1 0 3  1 3 0 

High 1 2 1   0 1 2 

 

Note. The numbers on the diagonal from top left to bottom right indicate an agreeance 

between actual biomass classification and VI-Based genotype classification.  

  



 126 

Table A30 

 

Removed Genotypes  

 

Name 

NT13443 

NT14433 

NT17441 

NT17442 

NT19441 

NT20429 

NT20432 

NT21414 

NT21436 

NT21443 

 

Note. Incorrect sampling on 05/18/22 at the Mead location resulted in the above 

genotypes being sampled only once. These were removed from the data set prior to 

statistical analysis. 
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APPENDIX B 

 

Table B1 

 

High Throughput Phenotyping in Plant Breeding Outline  

 

1. Farming Success in a Changing World 

a. Plant Breeding History  

b. Plant Breeding Process 

2. Can New Technology Help Plant Breeding Decision Making? 

a. High Throughput Phenotyping Technology  

b. Plant Structure and Light Interactions 

3. High Throughput Phenotyping Sensors 

4. UAV Flight 

5. Ground-Truthing 

6. Data Analysis 

a. Data Processing 

b. Making Decision 

7. Limitations to High Throughput Phenotyping  

8. Use of High Throughput Phenotyping Today 

 

 

Table B2 

 

High Throughput Phenotyping in Plant Breeding Objectives  

 

1. Explain plant breeding and the goals of the plant breeding process. 

2. Compare and contrast different High Throughput Phenotyping (HTP) methods 

and their potential to improve the plant breeding process. 

3. Outline the steps necessary to collect data using Unmanned Aerial Vehicle 

(UAV)-based HTP methods: pre-flight mission planning, pre-flight set up, and 

flight. 

4. Summarize the general process of storing, processing, and extracting information 

from raw UAV data and how it can be used to make reliable plant breeding 

decisions. 

5. Identify the limitations to HTP and the status of HTP in current breeding 

programs. 
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Table B3 

 

Pre- and Post-Survey Questionnaire 

 

Demographic Question 

 

1. What best describes your current position? 

a. Undergraduate student  

b. Graduate student  

c. Agriculture industry professional 

d. Producer 

e. Other 

 

Self-Assessed Knowledge Questions  

  

1. Rate your comfortability with implementing UAV technology in plant breeding or 

agronomic management (1=not comfortable, 2=somewhat comfortable, 

3=comfortable, 4=very comfortable 5= extremely comfortable)  

 

1 2 3 4 5  

  

2. Rate your knowledge about the following topics (1=nothing, 2=a small amount, 

3=average amount, 4=a large amount 5=expert on the topic)  

a. Processing large amounts of data collected by UAV  

1 2 3 4 5  

b. Steps needed to fly a UAV  

1 2 3 4 5  

c. Plant breeding  

1 2 3 4 5  

d. UAV sensors  

1 2 3 4 5  

e. Timeline of plant breeding  

 1 2 3 4 5 

3. How confident are you in selecting the type of sensor to use for data collection 

with the UAV? Rate 1-5   

1 2 3 4 5  

 

 

Content Questions  

1. Select the correct order in which the plant breeder makes the seven decisions 

below.  

_2_ Source/introgression of germplasm from external pools 

_8_ Release Cultivar  

_1_ Determine the target product   

_6_ Select plant phenotypes based on desired traits 
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_4_ Make crosses to create genetic variation from recombination 

_5_ Evaluate plant phenotypes for desired traits   

_3_ Source/introgression of germplasm from internal pools 

_7_ Advance or recycle phenotypes based on selection 

 

2. A cultivar is a plant that has a genotype that....  

a. ... a plant breeder would use as a parent but not a genotype that a farmer 

would grow.  

b. *... a plant breeder would use as a parent, and it could be a genotype that a 

farmer would grow.  

c. ... a farmer would grow but not a genotype that a plant breeder would use 

as parent.  

d. … is not of interest to either a farmer to grow for production or a breeder 

to use as a parent.  

 

3. Which of these statements must be true about the parents selected by the breeder?  

a. *The parents must have gene versions that can recombine to produce a 

new genotype that meets the breeder’s goals for a new cultivar  

b. The parents must already have the gene combination that meets the 

breeder's goals cultivar.  

c. One parent must have the phenotype combination that is better than the 

cultivars already available to farmers.  

d. Neither parent would be a genotype that farmers would grow in their field 

for production.  

 

4. Which statement is true about the role that environment can play on the variation 

in traits that a plant breeder measures when they evaluate genotypes in their 

breeding program?  

a. The breeder can only work with traits that are not influenced by 

environmental variation.  

b. All traits a breeder will work with are influenced by environmental 

variation to the same degree, so the breeder uses a standard method for 

evaluation of all traits during the breeding process.  

c. The role of environmental variation is greater for some traits than for 

others, but the plant breeder cannot modify their evaluation for different 

traits.  

d. *The role of environmental variation is greater for some traits than for 

others so the plant breeder will modify their evaluation for different traits.  

 

5. Which of these roles do plant breeders have in crop production?  

a. They domesticate wild plants by selecting plants that grow more of the 

harvested part of the plant or are easier to grow and harvest.  

b. They increase the seeds available of plants local farmers have 

domesticated so that more farmers have access to this seed.  
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c. *They create new genetic combinations by crossing between parents that 

are already domesticated and grown by farmers so that the new 

combinations are more productive than the parents.  

d. They make numerous genetic changes that create new species that can no 

longer produce sexual offspring if crossed with the older domesticated 

land races.  

 

6. High throughput phenotyping using remote sensing can improve which part of the 

plant breeding process?  

a. Selection of the new cultivars that will be released for seed increase.  

b. Selection of genotypes that the plant breeder will advance for further 

evaluation at more environments.  

c. *Evaluation of genotypes that have been through the first few generations 

of advance and are now grown in replicated field tests.  

d. Evaluation of genotypes at the stage where a row of 100 plant 

representants that genotype.  

 

7. Which of these is an advantage of using remote methods for data collection in 

breeder’s plots?  

a. *It will take less time in the field which could allow for more collection of 

important data in each day.  

b. The number of locations that the breeder uses to obtain the data they need 

for their selection decisions is reduced because of the nature of remote 

data.  

c. Randomization of entries and uniform plot size would not be a planning 

concern for plant breeders who use remote data collection.  

d. UAV readily identify the worst plant in a field so a breeder can discard 

these genotypes. 

 

8. Based on your current understanding what steps of the plant breeding process can 

be improved using UAV technology?   

a. The seeding rate in each plot can be reduced so that the breeder needs less 

seed for replicated yield trials.   

b. *Plots that have experienced environmental effects can be identified 

before harvest.  

c. Replication of genotypes at a specific environment will not be necessary 

reducing the amount of seed needed for analysis of genotypes.  

d. The need to harvest seed from plots is eliminated.  

9. Which of these phenotypes would be the most likely to be better measured by 

remote sensing compared with current field methods to provide more reliable data 

to support the plant breeder’s decision making?  

a. Harvestable grain yield  

b. Seeding rate during planting  

c. *Vegetative growth area that covers the plot  

d. Date where 50% of the plants in the plot have headed.  
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10. Select all the environmental factors which could influence the data measurement 

process with remote sensing but would not influence data collection by current 

field methods?   

a. *Wind speed and direction  

b. Temperature  

c. Humidity  

d. *Cloud cover  

e. *Precipitation  

 

11. The remote sensing experts have developed sensor techniques that can measure 

the time it takes for signals to travel from the sensor to the ground and back to the 

sensor. Which trait would this technology allow the plant breeder to measure?  

a. Leaves per plant  

b. Vegetative coverage of the plot.  

c. *Plant height  

d. Date of flowering.  

 

12. The remote sensing experts have developed sensor techniques that can measure 

the number of green pixels in a plot area.  Which trait would this technology 

allow the plant breeder to measure?  

a. Leaves per plant  

b. *Vegetative coverage of the plot.  

c. Plant height  

d. Date of flowering  

 

13. Which procedures will confirm the accuracy of UAV collected data? (Multiple 

Answers)  

a. *Ground truthing is done on some plots in some parts of the field  

b. Ground truthing is done on all plots in the field  

c. *Sensors are calibrated to a standard  

d. Raw data is processed to remove inconsistencies  

e. Data is always collected from two flights completed at the same time.  

 

14. Which is the best description of the status of the use of remote sensing by plant 

breeders for data collection that guides their selection decisions?  

a. Remote data collection is ready to replace all field data collection 

currently used by plant breeders.  

b. *There are several types of data plant breeders collect in the field that can 

now be completed with remote methods and more are being explored at 

this time.  

c. Remote data is always going to be supplemental observations and will not 

replace any of the data collection that plant breeders currently must do for 

selection decisions.  
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15. As a plant breeder you are tasked with choosing one plant to move forward in the 

breeding process. You have only been provided vegetative indices to make this 

decision. Which of the following genotypes would you choose to move forward in 

the program?   

a. Variety N2938  

b. Variety N7236  

c. Variety N8478  

d. *Variety N5536  

e. Variety N0293  

 

Plot ID Variety NDVI 

094 N2938 0.468008 

278 N7236 0.562577 

290 N8478 0.564904 

837 N5536 0.666813 

987 N0293 0.563353 

 

 

16. You used a UAV to collect high throughput phenotyping data on a crop and then 

graphed the vegetation reflectance of each wavelength. Which line on the graph 

below depicts a spectral reflectance profile for the healthiest crop?  

a. Dotted line   

b. Dashed line   

c. *Solid line  

 
 

17. Which situation would result in the biggest benefit for a breeder from remote data 

collection? Assume that data was collected by drone flight that was a reliable 

measure of plant growth.  

a. *A testing location has a hailstorm just before harvest which prevents 

grain yield data collection at that location.  

b. A foliar disease causes severe chlorosis on some entries in the plots at one 

of the locations and this impacts grain yield in those plots.  
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c. An error in N fertilizer application causes a non-random difference in N 

availability for plots at a location. This difference was detected by remote 

data analysis.  

 

18.  Height is an important trait to measure because the plant breeder will cull plants 

that are too tall.  In some families, there is height variation from plant to plant 

because genes controlling height are still segregating.  Select the true statement.  

a. The meter stick measurement of height will be more accurate than height 

from remote imaging because the field crew will have a reliable routine 

for how they collect height as they walk the plots.  

b. Collecting height data from a meter stick will be more accurate than 

collecting with a plot image from remote data collection because all plants 

in the plot contribute to the measured value.  

c. *Collecting height data from remote images will be a more representative 

measure of the plants in the plot than collecting with a meter stick because 

all plants in the plot contribute to the measured value.  

 

Note. An asterisk (*) denotes correct answers. 
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Table B4 

 

Data Subsets 

 

Category Number of Questions in Subset 

Overall Self-Report Knowledge 7 

Overall Objectively Assessed Knowledge 17 

UAV Self-Report Knowledge 3 

Plant Breeding Self-Report Knowledge 2 

Cross-Listed Self-Report Knowledge 2 

Plant Breeding Objectively Assessed 

Knowledge 
4 

Cross-Listed Objectively Assessed Knowledge 13 

 

Note. Some questions fall under more than one category.  
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Graph B1 

 

Box and Dot Plot of Overall Self-Reported Knowledge  

 

Note. Results for pre-survey scores and post-survey scores. Data includes 69 pre-surveys 

and 49 post-surveys. A p-value <0.05 indicates a significant difference in pre- and post-

survey scores. The W statistic indicates the number of times a pre-survey score is lower 

than a post-survey score.  
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Graph B2 

 

Box and Dot Plot of Overall Objectively Assessed Knowledge 

 

 
 

Note. Results for pre-survey scores and post-survey scores. Data includes 69 pre-surveys 

and 49 post-surveys. A p-value <0.05 indicates a significant difference in pre- and post-

survey scores. The W statistic indicates the number of times a pre-survey score is lower 

than a post-survey score.  
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Graph B3 

 

Box and Dot Plot of Plant Breeding Self-Reported Knowledge 

 

 
 

Note. Results for pre-survey scores and post-survey scores. Data includes 69 pre-surveys 

and 49 post-surveys. A p-value <0.05 indicates a significant difference in pre- and post-

survey scores. The W statistic indicates the number of times a pre-survey score is lower 

than a post-survey score.  
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Graph B4 

 

Box and Dot Plot of UAV Self-Reported Knowledge 

 

 
 

Note. Results for pre-survey scores and post-survey scores. Data includes 69 pre-surveys 

and 49 post-surveys. A p-value <0.05 indicates a significant difference in pre- and post-

survey scores. The W statistic indicates the number of times a pre-survey score is lower 

than a post-survey score.  
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Graph B5 

 

Box and Dot Plot of Cross Listed Self-Reported Knowledge 

 

 
 

Note. Results for pre-survey scores and post-survey scores. Data includes 69 pre-surveys 

and 49 post-surveys. A p-value <0.05 indicates a significant difference in pre- and post-

survey scores. The W statistic indicates the number of times a pre-survey score is lower 

than a post-survey score.  
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Graph B6 

 

Box and Dot Plot of Plant Breeding Objectively Assessed Knowledge 

 

 
 

Note. Results for pre-survey scores and post-survey scores. Data includes 69 pre-surveys 

and 49 post-surveys. A p-value <0.05 indicates a significant difference in pre- and post-

survey scores. The W statistic indicates the number of times a pre-survey score is lower 

than a post-survey score.  
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Graph B7 

 

Box and Dot Plot of Cross Listed Objectively Assessed Knowledge 

 

 
 

Note. Results for pre-survey scores and post-survey scores. Data includes 69 pre-surveys 

and 49 post-surveys. A p-value <0.05 indicates a significant difference in pre- and post-

survey scores. The W statistic indicates the number of times a pre-survey score is lower 

than a post-survey score.  
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