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Abstract

Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)3
2�

and Ca2UO2(CO3)3
0(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater.

However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases.
The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm
CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)3

0(aq) species predominates
U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42%
and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence
of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous
Ca2UO2(CO3)3

0(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic
uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of
U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers.
� 2006 Elsevier Inc. All rights reserved.

1. Introduction

Uranium contamination of soils and groundwaters oc-
curs at mining and mill sites throughout the USA. It is
an important contaminant at many US Department of
Energy sites resulting from the storage, disposal, and pro-
cessing of nuclear materials (Riley et al., 1992; Crowley
and Ahearne, 2002). Under oxidizing conditions uranium,
present as U(VI), can be quite mobile in aquifers (Davis
and Curtis, 2003; Curtis et al., 2004; Kohler et al., 2004).
The mobility of uranium (U) in water-rock systems is con-
trolled both by precipitation reactions and by sorption
reactions with mineral surfaces. A fundamental under-
standing of the sorption behavior of U in water-mineral
systems is necessary for accurate risk assessments to be
performed at uranium-contaminated sites.

It has been concluded in many U(VI) sorption studies
that the mobility of U(VI) in aquifers with circumneutral
to alkaline pH values is due to the formation of the ura-
nyl-carbonato complexes, UO2(CO3)2

2� and UO2(CO3)3
4�

(Hsi and Langmuir, 1985; Waite et al., 1994; Pabalan
et al., 1998; Barnett et al., 2000). However, recent evi-
dence indicates that calcium uranyl carbonate complexes
[Ca2UO2(CO3)3

0(aq); CaUO2(CO3)3
2�] may play an

important role in the aqueous chemistry of U(VI) at alka-
line pH values because of their large formation constants
(Bernhard et al., 1996, 2001; Kalmykov and Choppin,
2000). These complexes have recently been identified by
extended X-ray absorption fine structure (EXAFS) spec-
troscopy in calcium-rich waters (2–5 mM Ca), directly ob-
served in contaminated vadose zone porewaters at the US
DOE Hanford site by laser-induced fluorescence spectros-
copy, and have been shown to inhibit microbial reduction
of U(VI) under certain conditions (Bernhard et al., 2001;
Brooks et al., 2003; Wang et al., 2004). In addition,
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thermodynamic calculations suggest that the calcium ura-
nyl carbonate complexes may be the predominant forms
of dissolved U(VI) in many U(VI)-contaminated ground-
waters (Brooks et al., 2003; Davis and Curtis, 2003; Davis
et al., 2004).

Numerous investigations of U(VI) sorption are de-
scribed in the literature, including experiments on natural
soils and sediments (Duff and Amrhein, 1996; Turner
et al., 1996; Barnett et al., 2000, 2002; Zheng et al., 2003;
Davis et al., 2004) and on pure mineral phases such as
amorphous iron oxides, carbonates, and hematite (Hsi
and Langmuir, 1985; Waite et al., 1994; Duff and Amrhein,
1996; Pabalan et al., 1998; Payne, 1999). Investigators have
examined the effects of ionic strength, partial pressure of
carbon dioxide, and pH. Most of these studies of U(VI)
sorption on pure mineral phases were performed in simple
electrolyte solutions (e.g., NaNO3 and NaCl) (Hsi and
Langmuir, 1985; Waite et al., 1994; Kohler et al., 1996).
However, natural systems are much more complex, con-
taining a variety of organic and inorganic ions in solution.
Bivalent cations, such as Ca, may affect the adsorption of
U(VI) in several ways, including competing with uranyl
cations for sorption sites, changing the surface charge or
potential of minerals, and affecting the aqueous speciation
of U(VI), via the formation of the calcium uranyl carbon-
ate complexes.

There is very little information in the literature on the
effect of Ca on U(VI) sorption. Zheng et al. (2003) found
that the presence of calcium carbonate in soils decreased
U(VI) sorption and attributed this effect to the presence
of calcium uranyl carbonate complexes. Hsi and Langmuir
(1985) saw no effect of 1 mM Ca or Mg on U(VI) sorption
by iron oxides in carbonate-free systems, while Duff and
Amrhein (1996) observed lower U(VI) sorption to goethite
in synthetic drainage waters containing elevated levels of
Ca (11–19 mM) and Mg (4–6 mM). They attributed this ef-
fect to competition between Ca and Mg ions and positively
charged U(VI) species for surface sites. In light of the re-
cent identification of Ca2UO2(CO3)3

0(aq) as an important
U(VI) species, however, observations of decreased U(VI)
adsorption could also be attributed to the presence of
non-adsorbing, aqueous calcium uranyl carbonate com-
plexes. Thus, a better understanding of the effect of Ca
on U(VI) sorption, particularly in pure mineral systems
where a number of variables can be easily constrained, is
needed to create more accurate models of U(VI) mobility
in contaminated groundwater. In this study, we determined
the effect of calcium on the adsorption of U(VI) by ferrihy-
drite and quartz, two important mineral phases in natural
systems.

2. Materials and methods

2.1. Solids

Two-line ferrihydrite was synthesized by titrating a solu-
tion of Fe(NO3)3 with 1 M NaOH to pH 6 while stirring

rapidly (Waite et al., 1994). The slurry was aged for 65 h
at 25 �C in a water bath. The ferrihydrite slurry, which
had a final iron concentration of 0.1 M and a nitrate con-
centration of 0.3 M was diluted to 10�3 or 10�4 M Fe for
U(VI) sorption experiments.

The quartz used in this experiment was Min-U-Sil 30
(Pennsylvania Glass & Sand Company), a crushed quartz
powder. Quartz was treated to remove contaminants as de-
scribed by Kohler et al. (1996). Grain sizes were 8–30 lm
and the specific surface area as measured by BET krypton
gas adsorption was 0.32 m2/g.

2.2. Batch experiments

Five sets of aqueous chemical conditions were used in
the quartz and ferrihydrite sorption experiments: (1) 5,
10.9, or 32 mM NaNO3 solution with no added Ca2+;
equilibrated with air (to study ionic strength dependence),
(2) 5 mM NaNO3 solution with 1.8 mM added Ca(NO3)2;
equilibrated with air, (3) 5 mM NaNO3 solution with
8.9 mM added Ca(NO3)2; equilibrated with air, (4) 5 mM
NaNO3 solution equilibrated with a 2%/98% CO2/N2 gas
mixture, and (5) 5 mM NaNO3 solution with 1.8 mM add-
ed Ca(NO3)2; equilibrated with a 2%/98% CO2/N2 gas mix-
ture. The pH range studied was limited on the alkaline side
by calcite precipitation, which is predicted to occur at pH
7.99, 7.69, and 7.18, for solutions 2, 3, and 5, respectively.
Experiments were conducted at elevated ionic strength
using 32 and 10.9 mM NaNO3 (in the absence of Ca2+)
for quartz and ferrihydrite, respectively, to verify that the
increased ionic strength in the Ca2+-bearing solutions had
no effect on U(VI) sorption in this pH range. For quartz,
experiments were also conducted with the addition of dis-
solved silicate to check for any influence of silicate on
U(VI) sorption. The ferrihydrite experiments were per-
formed in 250 mL HDPE centrifuge bottles that were
equipped with inlet and outlet tubes to allow for bubbling
of the air mixture, either ambient laboratory air [430 ppm
CO2 (v/v)] or 2% CO2. The 2% CO2 mixture was a com-
mercially prepared gas mixture consisting of 2% CO2 with
the balance air (actual CO2 concentration was 2.007–
2.047%, depending on the tank). All gas mixtures were fil-
tered (0.45 lm nylon) and humidified before bubbling into
the samples to prevent contamination and evaporative loss.
The bubbling also served to mix the samples throughout
the experiment. The experiments were performed at 25 �C
in a water bath. Quartz experiments were performed in
35 mL polycarbonate centrifuge tubes in laboratory air
only. Samples were mixed by an end-over-end rotator.
No temperature control was used for the quartz experi-
ments, and the temperature in the laboratory was
21 ± 2 �C.

Aliquots of the stirred ferrihydrite slurry were trans-
ferred to the reaction vessels using an autopipet to achieve
a final concentration of 10�3 or 10�4 M Fe. Quartz was
weighed directly into the centrifuge tubes to achieve 25 g/L.
Enough NaNO3 was added to each reaction vessel to reach

1380 P.M. Fox et al. 70 (2006) 1379–1387



the desired concentration, taking into account the NaNO3

already present in the diluted ferrihydrite slurry. An appro-
priate amount of NaHCO3 was added to achieve equilibri-
um with the partial pressure of CO2 at the desired pH.
Experiments with calcium were spiked with a 0.1 M
Ca(NO3)2 stock solution to achieve a final Ca concentra-
tion of 1.8 or 8.9 mM. For experiments with dissolved sil-
icate, samples were spiked with a 1 mM Na2SiO3 solution
to achieve final dissolved Si concentrations of 0.030–
0.147 mM. The exact Si concentrations were designed to
simulate the dissolved Si measured in batch experiments
with 8.9 mM Ca, which increased with increasing pH.
The samples were immediately bubbled with the appropri-
ate gas mixture for 1 h before the pH was adjusted using
0.1 M HNO3 and NaOH, if necessary. When pH adjust-
ment was necessary, only microliter quantities of acid or
base were added, corresponding to a change in ionic
strength of no more than 3.0 · 10�5 M. For all pH mea-
surements and adjustments in the elevated CO2 experi-
ments, the exposure to air was minimized (no more than
5 min) to prevent the solution from equilibrating with air
rather than 2% carbon dioxide. The samples were then al-
lowed to equilibrate for 24 h before U(VI) was added. Fer-
rihydrite samples were continuously bubbled with the gas
mixture throughout the experiment in a 25 �C water bath,
while quartz samples were capped and mixed after an addi-
tional 2 h of bubbling.

After the 24 h equilibration, each sample was spiked
with a UO2(NO3)2 stock solution to achieve a U(VI) con-
centration of 10�6 M. When necessary, the pH was then
readjusted with 0.1 M NaOH or HNO3 to the value mea-
sured just before spiking with U(VI). After 48 h, pH was
measured and samples were centrifuged at 26,890g for
10 min to separate the solid and liquid phases. The 48-h
reaction time was based on the kinetic data of Waite
et al. (1994) and M. Kohler (quartz, unpublished results)
in the absence of calcium, as well as kinetic data presented
here for U(VI) sorption in the presence of calcium. For
selected samples, a 5-mL solution aliquot was removed
for alkalinity measurements (by Gran titration). After
removing the aliquot for alkalinity, the remaining solution
sample was acidified to 0.15 M HNO3 for uranium and ma-
jor ion (Ca, Na, Fe, and Si) analysis by the kinetic phos-
phorescence analyzer (KPA) and inductively coupled
plasma atomic emission spectrometry (ICP-AES), respec-
tively. Alkalinity measurements were checked against
expected alkalinity calculated for each sample by FITEQL
4.0 (Herbelin and Westall, 1999), based on the measured
pH and known pCO2 value, to verify that the system was
near equilibrium with respect to the partial pressure of
CO2 in the gas phase. The results are shown in Tables 1
and 2 along with pH and ionic strength.

2.3. Modeling

FITEQL 4.0 (Herbelin and Westall, 1999) was used for
aqueous speciation and surface complexation modeling.

The Davies equation was used for activity correction of
aqueous species only. Thermodynamic data used in the
modeling are consistent with the most recent NEA data-
base for uranium (Guillaumont et al., 2003), except the
aqueous species, CaUO2(CO3)3

2� and Ca2UO2(CO3)3
0(aq)

(Kalmykov and Choppin, 2000; Bernhard et al., 2001) were
also included. Corrected to zero ionic strength, Bernhard
et al. (2001) estimated values of 25.4 ± 0.3 and 30.6 ± 0.3
for the log of the formation constants for reactions (1)

Table 1
pH, ionic strength, and alkalinity for quartz samples equilibrated with air
(430 ppm CO2)

pH Ionic strength
(M)

Measured alkalinity
(eq/L)

Calculated alkalinity
(eq/L)

5 mM NaNO3, zero Ca
7.08 5.08 · 10�3 7.84 · 10�5 8.32 · 10�5

7.38 5.17 · 10�3 1.62 · 10�4 1.67 · 10�4

7.68 5.33 · 10�3 3.30 · 10�4 3.35 · 10�4

7.86 5.53 · 10�3 4.81 · 10�4 5.13 · 10�4

7.94 5.61 · 10�3 6.01 · 10�4 6.13 · 10�4

8.50 7.46 · 10�3 2.16 · 10�3 2.34 · 10�3

8.69 8.85 · 10�3 3.61 · 10�3 3.65 · 10�3

5 mM NaNO3, 1.8 mM Ca(NO3)2

7.01 1.04 · 10�2 7.05 · 10�5 7.39 · 10�5

7.35 1.05 · 10�2 1.67 · 10�4 1.62 · 10�4

7.50 1.06 · 10�2 2.20 · 10�4 2.27 · 10�4

7.72 1.07 · 10�2 3.77 · 10�4 3.81 · 10�4

7.95 1.10 · 10�2 6.60 · 10�4 6.52 · 10�4

5 mM NaNO3, 8.9 mM Ca(NO3)2

6.97 3.18 · 10�2 7.90 · 10�5 7.17 · 10�5

7.21 3.18 · 10�2 1.25 · 10�4 1.25 · 10�4

7.41 3.19 · 10�2 2.22 · 10�4 1.98 · 10�4

7.68 3.21 · 10�2 3.48 · 10�4 3.67 · 10�4

7.95 3.23 · 10�2 6.78 · 10�4 6.94 · 10�4

Table 2
pH, ionic strength, and alkalinity for ferrihydrite samples

pH Ionic strength
(M)

Measured alkalinity
(eq/L)

Calculated alkalinity
(eq/L)

10�4 M Fe, 430 ppm CO2, 10.9 mM NaNO3, zero Ca
7.40 1.11 · 10�2 1.81 · 10�4 1.80 · 10�4

7.55 1.12 · 10�2 2.64 · 10�4 2.54 · 10�4

7.85 1.14 · 10�2 5.43 · 10�4 5.19 · 10�4

8.33 1.28 · 10�2 1.71 · 10�3 1.58 · 10�3

8.44 1.31 · 10�2 2.22 · 10�3 2.04 · 10�3

10�3 M Fe, 2.0% CO2, 5 mM NaNO3, zero Ca
6.59 6.31 · 10�3 1.17 · 10�3 1.31 · 10�3

6.82 7.22 · 10�3 1.94 · 10�3 2.22 · 10�3

7.06 8.98 · 10�3 3.44 · 10�3 3.89 · 10�3

7.34 1.36 · 10�2 6.14 · 10�3 7.50 · 10�3

10�3 M Fe, 2.0% CO2, 5 mM NaNO3, 1.8 mM Ca
6.11 1.08 · 10�2 4.32 · 10�4 4.27 · 10�4

6.42 1.12 · 10�2 8.95 · 10�4 8.78 · 10�4

6.63 1.18 · 10�2 1.51 · 10�3 1.43 · 10�3

6.87 1.29 · 10�2 2.30 · 10�3 2.50 · 10�3

7.08 1.45 · 10�2 3.64 · 10�3 4.08 · 10�3
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and (2), respectively, and Kalmykov and Choppin (2000)
estimated a value of 29.8 ± 0.7 for reaction (2):

Ca2þ þUO2þ þ 3CO3
2� ¼ CaUO2ðCO3Þ3 2� ð1Þ

2Ca2þ þUO2þ þ 3CO3
2� ¼ Ca2UO2ðCO3Þ3 0ðaqÞ ð2Þ

To be consistent with the new NEA database (Guil-
laumont et al., 2003), the log K values for reactions (1)
and (2) were corrected upwards by 0.24 log unit (V.
Brendler, personal communication). For reaction (2),
the value of Kalmykov and Choppin (2000) was chosen
for modeling calculations because it gave a better predic-
tion of the experimental data for U(VI) sorption on
quartz in the presence of Ca. The surface complexation
modeling parameters used are presented in Table 3. Be-
cause the measured alkalinity generally agreed with the
calculated alkalinity (Tables 1 and 2), the model calcula-
tions assumed that the aqueous phase was in equilibrium
with respect to the known partial pressure of CO2 in the
gas phase.

The surface complexation model calculations presented
here are predictions only of the effects of Ca (no data
fitting), based on models calibrated in the absence of Ca
(Table 3). The quartz and ferrihydrite solids used in the
experiments in the absence of Ca (Waite et al., 1994; M.
Kohler, unpublished results) were prepared using the same
methods as in the experiments reported here.

3. Results and discussion

3.1. Aqueous speciation

Fig. 1 shows the equilibrium aqueous speciation as a
function of pH for 1 lM U(VI) under the three experimen-
tal conditions that contain added Ca2+. In each case, the
Ca2UO2(CO3)3

0(aq) species accounts for more than 50%
of the U(VI) aqueous species in the alkaline pH range.
The pH at which this species becomes predominant de-
pends on the Ca2+ concentration, the partial pressure of
carbon dioxide gas, and the ionic strength. The
CaUO2(CO3)3

2� species is also present, but at much lower
concentrations (Fig. 1).

3.2. Kinetics

The adsorption of U(VI) onto quartz in the presence of
8.9 mM Ca is quite rapid and reaches equilibrium within
8 h (Fig. 2a). The same is true in the absence of Ca
(M. Kohler, unpublished results). Si is released into solu-
tion and dissolved Si seems to be almost linear with respect
to time for the first 168-h before beginning to level off
(Fig. 2b). In the case of ferrihydrite, U(VI) adsorption in-
creased rapidly for the first 24 h, then continued slowly
for up to 168 h (Fig. 2a), as was also observed by Waite
et al. (1994). We chose a 48-h reaction time for both the

Table 3
Surface complexation model parameters

Model Surface species Exponents in mass law defining the surface
speciesA

Log Kf(I = 0)

a b c d e f

Quartz TLMB 0.005–0.1 M NaNO3, U(VI):
10�8–10�5 M, pH: 3.5–9.0, pCO2: air–7.5%

SO� 1 �1 �1 �8.40
SO�Na+ 1 �1 �1 1 �6.51
SOstrongUO2

+ 1 �1 1 1 1.98
SOweakUO2

+ 1 �1 1 1 �2.08
SOstrongUO2OH 1 �2 1 �1.88
SOweakUO2OH 1 �2 1 �5.76
SOweakUO2(OH)(CO3)2� 1 �4 1 1 �2 �14.2

Ferrihydrite TLMC 0.004–0.5 M NaNO3U(VI):
10�8–10�4 M, pH: 3.5–9.0, pCO2: air–2%

SOH2
+ 1 1 1 5.10

SO� 1 �1 �1 �10.7
SOH2

+NO3
� 1 1 1 �1 6.90

SO�Na+ 1 �1 �1 1 �9.00
SOCaD 1 �1 0.4 0.6 �7.1
(SO�)2Ca2+ D 2 �2 �2 2 �10.2
(SOstrong)2UO2 1 �2 1 �2.20
(SOweak)2UO2 1 �2 1 �5.79
(SOstrong)2UO2CO3

2� 1 �4 1 1 �0.6 �1.4 �12.3
(SOweak)2UO2CO3

2� 1 �4 1 1 �0.6 �1.4 �15.6

A Mass law for formation of the surface species is: [Surface species] = Kf[SOH]a(H+)b(H2CO3)c (UO2
2+)dexp{(�F/RT) (eWo+fWb)}. Coefficients for Na+,

Ca2+, and NO3
� not shown.

B TLM = triple layer model, C1 = 1.0 F/m2, C2 = 0.2 F/m2, total sites = 7.647 lmol/m2; strong sites = 0.00306 lmol/m2.
C TLM = triple layer model; C1 = 1.4 F/m2, C2 = 0.2 F/m2, surface area of ferrihydrite = 600 m2/g Fe2O3 Æ H2O; total sites = 0.875 mol sites/mol Fe(III)

as ferrihydrite; strong sites = 0.9625 sites/mmol Fe(III); U(VI) surface species form bidentate bonds that consume two surface sites in mass balance for
sites but have an exponent of one in the mass law.

D Formation constants for Ca sorption calibrated with datasets of Figs. 2a and b in Cowan et al. (1991), to be consistent with the TLM parameters used
in the ferrihydrite model. Best fit of the Ca sorption data was with one inner sphere and one outer sphere species, as also observed by Cowan et al. (1991).
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quartz and ferrihydrite systems, which corresponds to
approximately 100% of the total adsorption for quartz
and 98% for ferrihydrite in the presence of Ca. This reac-
tion time was also chosen by Waite et al. (1994) and makes
direct comparison with that data set straightforward.

3.3. Quartz

In the absence of Ca, U(VI) sorption to quartz de-
creased from about 90% at pH 7 to near zero at pH 8.75
(Fig. 3). Ionic strength (5 mM versus 32 mM) and the addi-
tion of dissolved silicate had negligible effects on U(VI)
sorption. In the presence of 1.8 mM Ca, U(VI) sorption
was significantly lower at pH > 7.0 than in the absence of
Ca. A greater concentration of Ca (8.9 mM) lowered
U(VI) sorption even more. For instance, at pH 7.7,
U(VI) sorption decreased from 77% in the absence of Ca

5.5 6.0 6.5 7.0 7.5

pH

10

9

8

7

6

5

4

p
C UO2

2+

UO2(CO3)3
4-

UO2(CO3)2
2-

(UO2)2CO3(OH)3
-

U(VI)tot = 1 x 10-6M; 2% CO2

5 mM NaNO3
Ca2UO2(CO3)3

o

1.78 mM Ca(NO3)2

UO2CO3
o

Calcite
precipitation

CaUO2(CO3)3
2-

5.5 6.0 6.5 7.0 7.5 8.0

pH

10

9

8

7

6

5

4

p
C

UO2
2+

UO2OH+

UO2(CO3)3
4-

UO2(CO3)2
2-

(UO2)2CO3(OH)3
-

U(VI)tot = 1 x 10-6M; 430 ppm CO2

5 mM NaNO3

Ca2UO2(CO3)3
o

8.9 mM Ca(NO3)2

UO2CO3
o

Calcite
precipitation

CaUO2(CO3)3
2-

5.5 6.0 6.5 7.0 7.5 8.0

pH

10

9

8

7

6

5

4

p
C

UO2
2+

UO2OH+

UO2(CO3)3
4-

UO2(CO3)2
2-

(UO2)2CO3(OH)3
-

U(VI)tot = 1 x 10-6M; 430 ppm CO2

5 mM NaNO3
Ca2UO2(CO3)3

o

1.78 mM Ca(NO3)2

UO2CO3
o

CaUO2(CO3)3
2-

a

b

c

Fig. 1. Aqueous speciation of 1 lM U(VI), expressed as the log of species
concentration (pC), as a function of pH in various solutions containing
Ca2+ ion. A log K value of 30.0 for the Ca2UO2(CO3)3

0(aq) species (Eq. 2)
was used for the calculations. (a) Aqueous phase equilibrated with the
partial pressure of carbon dioxide in laboratory air (430 ppm) and
containing 1.8 mM Ca. Solution is undersaturated with calcite for
pH < 7.99. (b) Aqueous phase equilibrated with the partial pressure of
carbon dioxide in air and containing 8.9 mM Ca. Solution is undersat-
urated with calcite for pH < 7.69. (c) Aqueous phase equilibrated with 2%
CO2(g) and containing 1.8 mM Ca. Solution is undersaturated with calcite
for pH < 7.18.
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to 42% and 10% in the presence of 1.8 and 8.9 mM Ca,
respectively. As shown in Figs. 1a and b, thermodynamic
calculations suggest that the addition of Ca changes the
aqueous speciation of U(VI), with the Ca2UO2(CO3)3

0(aq)
species becoming predominant at pH values of about 7.2
(8.9 mM Ca) and 7.4 (1.78 mM Ca). It can be seen in
Fig. 3 that the first decrease in U(VI) sorption (relative
to the system with Ca = 0) is observed near these pH values
for the respective Ca concentrations.

The quartz surface complexation model (Table 3) used
here is based on U(VI) sorption experiments conducted
in the absence of Ca2+. The model prediction of U(VI)
sorption on 25 g/L quartz in the absence of Ca (Fig. 3, sol-
id line) is in good agreement with the data in the pH range
7–8.75. The long dash curves in Fig. 3 show the model pre-
dictions of U(VI) sorption using the formation constant of
30.0, corrected from Kalmykov and Choppin (2000) for
Eq. (2). The calculations at 1.8 and 8.9 mM Ca predict
the observed decrease in U(VI) sorption very well. The cal-
culations are quite sensitive to the value of the formation
constant for the Ca2UO2(CO3)3

0(aq) aqueous species;
using the log value of 30.8 for the constant (Bernhard
et al., 2001) results in a much larger decrease in U(VI)
sorption than was observed. However, given the
uncertainty in the value of the formation constant for the
Ca2UO2(CO3)3

0(aq) species, the effect of Ca on U(VI)

sorption by quartz is well predicted by considering only
the changes caused in U(VI) aqueous speciation (and thus,
assuming that CaxUO2(CO3)3 aqueous species are not
sorbed by the quartz surface). This is a reasonable assump-
tion, since the Ca2UO2(CO3)3

0(aq) aqueous species is un-
charged and unlikely to bond with the surface via the Ca
atoms, because they are already bonded to oxygen atoms
of the carbonate anions (Bernhard et al., 2001). The
CaUO2(CO3)3

2� species is also unlikely to adsorb for the
same reason and is present at much lower concentrations
(Fig. 1).

Ca sorption in the pH range 6–8 was negligible on the
quartz, and thus, the decrease in U(VI) sorption observed
in the presence of Ca is not due to surface site competition.
Si was dissolved/released during the sorption experiments,
and in experiments with Ca, greater concentrations of Si
were measured in solution (Fig. 4). It is well documented
that the presence of alkali and alkaline earth cations in-
crease dissolution rates of quartz, and in some cases,
increases the solubility (Barker et al., 1994; Dove and
Rimstidt, 1994; House, 1994; Dove and Nix, 1997). How-
ever, as shown in Fig. 3, the addition of dissolved silicate
had no observable effect on U(VI) sorption in the pH range
studied. Since site competition with Ca2+, ionic strength,
and dissolved silicate can be discounted as factors, the ob-
served decrease in U(VI) sorption in the presence of Ca
must be due to the predicted changes in U(VI) aqueous
speciation.

3.4. Ferrihydrite

Sorption of 1 lM U(VI) on ferrihydrite was measured as
a function of pH and Ca concentration under two sets of
chemical conditions: (a) with 10�4 M Fe as ferrihydrite in
systems equilibrated with air (430 ppm CO2) and (b) with
10�3 M Fe as ferrihydrite in systems equilibrated with 2%
CO2 gas.
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Sorption of U(VI) onto ferrihydrite (at 10�4 M Fe) was
lower in the presence of 1.8 mM Ca in the pH range 7.3–8.0
in comparison to a 10.9 mM NaNO3 solution (no Ca) of
similar ionic strength (Fig. 5). Experiments were not con-
ducted above pH 8 in the presence of Ca because calcite
precipitation is predicted at pH > 7.99 for these conditions.
Like the results observed for quartz, the decrease in U(VI)
sorption becomes apparent near the pH value at which the
Ca2UO2(CO3)3

0(aq) species becomes predominant
(Fig. 1a). Ca2+ sorption was not detectable in any of the
experiments with ferrihydrite, but it is known that Ca2+

sorbs to the ferrihydrite surface under certain conditions
(Kinniburgh et al., 1975; Dempsey and Singer, 1980;
Cowan et al., 1991) and would be expected to influence sur-
face charge (Davis and Kent, 1990).

Surface complexation model predictions are shown for
the effect of Ca on U(VI) sorption in Fig. 5, including for-
mation of the aqueous CaxUO2(CO3)3 species, both with
and without consideration of Ca2+ sorption. A Ca2+ sorp-
tion model for ferrihydrite was derived for these calcula-
tions based on a fit to experimental data in Cowan et al.
(1991), using parameters consistent with the U(VI) sorp-
tion model for ferrihydrite (Table 3). The model calcula-
tions over-predict the effect of Ca caused by formation of
the Ca2UO2 (CO3)3

0(aq) species, unless Ca2+ sorption is
also considered. Including Ca2+ sorption in the model calcu-
lations affects the predicted surface charge of the ferrihy-
drite, causing the electrical potential to increase in the b
plane in comparison to the calculations without Ca2+ sorp-
tion. Because one of the U(VI) surface species has a negative
charge (i.e., (SO)2UO2CO3

2�), the increase in electrical po-
tential in the b plane has a favorable influence on formation

of the ternary-uranyl-carbonato surface complex. Thus,
inclusion of Ca2+ sorption in the model calculations im-
proves the prediction of the net effect of Ca on U(VI)
sorption.

A second set of conditions (10�3 M Fe as ferrihydrite;
2% CO2) was also tested for the effect of Ca on U(VI)
sorption (Fig. 6). Equilibration with the higher partial
pressure of CO2(g) shifts the sorption edge for U(VI)
in the absence of Ca to a lower pH range (compare Figs.
5 and 6), as was observed by Waite et al. (1994). The
presence of 1.8 mM Ca decreased U(VI) sorption in the
pH range 6.7–7.2 under these conditions in comparison
to a 5 mM NaNO3 solution (Fig. 6). Experiments were
not conducted above pH 7.2 in the presence of 1.8 mM
Ca and 2% CO2 because of calcite precipitation. For
these conditions, the effect of Ca is not apparent at the
pH value (6.3) at which the Ca2UO2(CO3)3

0(aq) species
becomes predominant (Fig. 1c), but this might be ob-
scured by the fact that the decrease is negligible when
U(VI) sorption is very strong (near 100% adsorbed).
The surface complexation model predictions of the effect
of Ca were in reasonable agreement with the experimen-
tal observations (Fig. 6). As before, the predicted effect
of Ca addition to the system is caused by two processes:
(a) the formation of Ca2UO2(CO3)3

0(aq) species, which
decreases U(VI) adsorption and (b) Ca2+ sorption, which
increases U(VI) adsorption by increasing the electrical
potential in the b plane. The net result under these
conditions is a decrease in U(VI) sorption.

In general, the largest effect of Ca on U(VI) sorption was
observed when U(VI) sorption was less than 100% and the
pH was at a value at which the Ca2UO2(CO3)3

0(aq) species
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was predicted to dominate U(VI) aqueous speciation. The
predominance of the Ca2UO2(CO3)3

0(aq) species is sensitive
to factors such as pH, Ca concentration, and the partial pres-
sure of carbon dioxide gas, but is also very sensitive to ionic
strength because of the high charge of the UO2(CO3)2

2� and
UO2(CO3)3

4� species (Fig. 1). The effect of Ca on U(VI)
adsorption on quartz is greater than the effect on ferrihydrite
under the conditions studied. This is most likely due to the
high surface area and strong U(VI) adsorption by ferrihy-
drite. The experimental data and model predictions of the ef-
fect of Ca on U(VI) sorption were in good agreement when
the formation constants of the aqueous species
CaUO2(CO3)3

2� and Ca2UO2(CO3)3
0(aq) were included in

the surface complexation modeling predictions. It is unlikely
that either the CaUO2(CO3)3

2� or Ca2UO2(CO3)3
0(aq)

aqueous species adsorb via the Ca atoms to the ferrihydrite
surface because the Ca atoms are already bonded to oxygen
atoms of the carbonate anions (Bernhard et al., 2001).

The results demonstrate that the presence of Ca2+ in
solution can decrease U(VI) sorption on ferrihydrite and
quartz under conditions at which the Ca2UO2(CO3)3

0(aq)
species dominates U(VI) aqueous speciation. Such condi-
tions are prevalent in many uranium-contaminated aqui-
fers (Bernhard et al., 2001; Brooks et al., 2003; Davis and
Curtis, 2003; Davis et al., 2004; Wang et al., 2004). The
data and modeling calculations illustrate that it is impor-
tant to take into account the effect of Ca on U(VI) aqueous
speciation when predicting the sorption and mobility of
U(VI) at contaminated sites.
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