
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Department of Agronomy and Horticulture:
Dissertations, Theses, and Student Research Agronomy and Horticulture, Department of

12-2023

Evaluation of Vegetative Indices to Determine Canopy Ground Evaluation of Vegetative Indices to Determine Canopy Ground

Cover for Winter Survival and Hybrid Necrosis in Winter Wheat Cover for Winter Survival and Hybrid Necrosis in Winter Wheat

Micheal Young
University of Nebraska-Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/agronhortdiss

 Part of the Agronomy and Crop Sciences Commons, Plant Biology Commons, Plant Breeding and

Genetics Commons, Plant Pathology Commons, and the Research Methods in Life Sciences Commons

Young, Micheal, "Evaluation of Vegetative Indices to Determine Canopy Ground Cover for Winter Survival
and Hybrid Necrosis in Winter Wheat" (2023). Department of Agronomy and Horticulture: Dissertations,
Theses, and Student Research. 255.
https://digitalcommons.unl.edu/agronhortdiss/255

This Thesis is brought to you for free and open access by the Agronomy and Horticulture, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Department of Agronomy
and Horticulture: Dissertations, Theses, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/agronhortdiss
https://digitalcommons.unl.edu/agronhortdiss
https://digitalcommons.unl.edu/ag_agron
https://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/108?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/108?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/107?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1385?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/agronhortdiss/255?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages

Evaluation of Vegetative Indices to Determine Canopy Ground Cover for Winter Survival

and Hybrid Necrosis in Winter Wheat

by

Micheal Young

A THESIS

Presented to the Faculty of

The graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Agronomy

Under the Supervision of Professor Stephen Baenziger

Lincoln, Nebraska

December 2023

Evaluation of Vegetative Indices to Determine Canopy Ground Cover for Winter Survival

and Hybrid Necrosis in Winter Wheat

Micheal Young, M.S.

University of Nebraska, 2023

Advisor: Stephen Baenziger

 The benefit of unmanned aircraft systems and image processing methods in
agronomic research across numerous crops has been well documented as has the
importance of wheat, Triticum aestivum L., on the global food supply. Hence there is
great interest in digital solutions applied to aspects of wheat breeding. A major trait of
importance to winter wheat breeders in higher latitudes is winter survival, which can
result in poor yield and performance if lines do not survive extreme cold. Scoring winter
survival is most commonly based on visual score of 0% to 100% with the higher
percentage conveying higher winter survival rates. With the increased interest in hybrid
wheat lines, it has brought an increased need to screen for hybrid necrotic lines in the
field. With both hybrid necrosis and winter kill reducing the stand count of a plot, the
advantageous situation arose to be able to investigate digital solutions of measuring
wheat stand and their relationship with winter survival and hybrid necrosis. We were able
to show that the utilization of multiple vegetative indices and segmentation indices
derived from multispectral imagery within the same linear model was able to predict
stand with a correlation of r = 0.836 (p < 0.01; flight date 5/18/2020) to visually scored
plot stand data. Using unnormalized RGB model utilizing segmentation indices (an index
that is used to separate vegetative pixels from background pixels) was able to achieve a
prediction with a correlation of r = 0.924 (p < 0.01; flight date 5/18/2020) with the
visually scored plot stand data, lending to the potential use of segmentation in
conjunction with processes where RGB images are not normalized. In lines exhibiting
symptoms of hybrid necrosis a clear clustering pattern could be observed as the season
progressed for NDVI values of hybrid necrotic lines compared to non-necrotic lines.

i

Table of Contents

Chapter 1: Introduction……. Page:1

1.1 Wheat……. Page:1

1.2 Winter Kill……. Page:1

1.3 Hybrid Wheat……. Page: 3

1.4 Hybrid Necrosis……. Page: 6

1.5 Vegetative Indices……. Page: 7

1.6 Objective……. Page: 9

Chapter 2: Methods……. Page: 10

 2.1 Field……. Page: 10

 2.2 UAV Flights……. Page: 12

 2.3 Image Processing……. Page: 12

 2.4 Statistical Analysis……. Page: 17

Chapter 3: Results……. Page: 21

 3.1 Field……. Page: 21

 3.2 Multispectral Image Data and Plot Prediction Results ……. Page: 21

 3.3 True Color Image Data and Plot Stand Prediction Results ……. Page: 28

 3.4 Evaluation of Observed Patterns with Hybrid Necrosis……. Page: 31

Chapter 4: Discussion……. Page: 35

ii

References……. Page: 40

Appendix A: Multispectral Image Processing Python Code……. Page: 44

Appendix B: True Color Image Processing Python Code……. Page: 75

Appendix C: Statistical analysis RStudio Code……. Page: 85

iii

Multimedia Objects

Tables

Table 2.1 Pedigrees of Hybrids used in this study…Page:10

Table 2.2 Vegetative and Segmentation Indices…Page: 13

Table 2.3 True Color Segmentation Index Thresholds…Page: 16

Table 2.4 Selected Multispectral Combined Prediction Models …Page:19

Table 2.5 Selected True Color Combined Prediction Models …Page:20

Table 3.1 Multi Spectral p and r Values of Indices from Linear Model Estimating Plot

Stand Across All Flight Dates …Page:22

Table 3.2 Multi Spectral p and r Values of Indices from Linear Model Estimating Plot

Stand for Flight 5/18/2020…Page:22

Table 3.3 Multi Spectral p Values of Indices from Linear Model Estimating Plot Stand for

Flight 5/29/2020…Page:23

Table 3.4 Multi Spectral p Values of Indices from Linear Model Estimating Plot Stand for

Flight 6/12/2020…Page:24

Table 3.5 Multispectral Prediction Models Correlation and RMSE with the Observed

Data …Page:26

Table 3.6 RGB: p and r Values of Indices from Linear Model Estimating Plot Stand for

Flight Across All Flight Dates …Page:28

iv

Table 3.7 RGB: p and r Values of Indices from Linear Model Estimating Plot Stand for

Flight 4/25/2020…Page:28

Table 3.8 RGB: p and r Values of Indices from Linear Model Estimating Plot Stand for

Flight 5/18/2020…Page:29

Table 3.9 RGB: p and r Values of Indices from Linear Model Estimating Plot Stand for

Flight 5/29/2020…Page:29

Table 3.10 RGB: p and r Values of Indices from Linear Model Estimating Plot Stand for

Flight 6/12/2020…Page:29

Table 3.11 True Color Prediction Models Correlation and RMSE …Page:30

Figures

Figure 2.1 ExG Masked NDVI, Flight 5/29…Page:15

Figure 2.2 True Color and ExGR Leaf Shadow…Page:16

Figure. 3.1 Scatter plots of NDVI & Stand Grouped by Flight…Page:32

Figure 3.2 Scatterplots of RGB CIVE & Stand Grouped by Flight… Page:34

1

Chapter 1: Introduction

1.1 Wheat:

Common wheat (Triticum aestivum L.) has been a pivotal crop for the past 10,000

years, originating from a cross between emmer (a tetraploid wheat 2n=4x=28

chromosomes) with wild goat grass, Aegilops tauschii Coss. (2n=2x=14; Feldman, 2001).

Throughout the centuries wheat has served as a major source of carbohydrates and

proteins for the globe at one point providing 55% of the caloric intake (Gustafson, 2009).

Historically the improvement of wheat cultivars was accomplished through exploration

and exchange of seed allowing the natural selection pressures of new environments to

produce new land races (Baenziger, 2009). It was within the past two centuries that wheat

cultivars have been developed through controlled hybridization and artificial selection

(Baenziger, 2009). It is through these methods that plant breeders have been able to

increase wheat productivity in the world with ever increasing demand.

 According to the United States Department of Agriculture the global wheat

production in 2023 is 781,980,000 metric tons and in the United States alone 46.7 million

acres of wheat were planted during 2021. The Food and Agriculture Organization projects

global population to reach 9.7 billion by 2050 and that global food production will need

to increase by 70%, further increasing the importance of the development of better more

productive wheat cultivars.

1.2 Winterkill:

2

 A major aspect of developing better more productive winter wheat cultivars is

overcoming challenges presented by harsh environments such as winter kill. Winter

wheat being a fall sown crop requires an overwintering or vernalization period to induce

flowering allowing for grain to be produced. Due to the vernalization requirement of

winter wheat, it can be subject to winterkill in higher latitudes resulting in a significant

decrease in yield (Alessi and Power, 1971). Winterkill is the result of cell damage from

ice forming within the wheat cells (Lyons et al. 1979). It has been shown that winterkill

is caused in varying degrees by both extreme freezing events below -20⁰ C (Taylor and

Olsen, 1985) and prolonged mild freezing events below -4⁰ C (Gusta et al. 1997; Roberts,

1985). This understanding of winter kill has been further described through the

estimation of freezing degree days, showing a 1% increase in mortality for every 1⁰ C∙d

increase in freezing degree days (Zheng et al. 2018). In addition to freezing temperature,

desiccation has also been shown to have a negative impact on winter survival resulting in

differential winterkill of winter hardened cultivars under conditions that did not pass the

critical temperature threshold of -20⁰ C (Taylor and Olsen, 1985).

Winterkill can be mitigated through a number of management practices. No-till

practices leave residue behind that holds more snow providing better insulation from

extreme temperatures (Cox et al. 1986). Planting date (Fowler, 1982), nutrient

applications (Pittman and Tipples, 1978) and planting depth (Loeppky et al, 1989) have

all shown a positive influence on winter survival in addition to cultivar selection.

The most commonly practiced method of rating wheat lines for winter kill is

through the visual method where 0% represents no plants surviving in a plot of winter

wheat and 100% representing all plants in a plot surviving the winter (Saulescu and

3

Braun, 2001). It is through this visual scale the wheat breeders have evaluated breeding

populations to select lines that have improved winter hardiness and survival to provide to

producers. There have been other methods proposed to rate lines for winter hardiness

such as in controlled freezing experiments where the temperature that results in the death

of 50% (lethal temperature 50, LT50) of the wheat plants is recorded. LT50 had a high

negative correlation of 95% (r = 0.95) with visual ratings of winter survival (Pomeroy

and Fowler, 1973). While the LT50 has been shown to correlate strongly with crown

freezing tolerance (Brule-Babel and Fowler, 1981) and crown freezing tolerance is

accepted as a prerequisite of winter hardiness (Brule-Babel and Fowler, 1989), the LT50

has not been able to prove itself to be a reliable method to measure winter hardiness

across a variety of different environments (Bridger et al. 1996; Gusta et al. 2001).

In addition to visual scoring, the use of vegetative indices of ground level imagery

has been used to measure winter survival with correlation of 95% (r = 0.95; Chen et al.

2019). The potential to use objective image-based analysis provides the opportunity to

alleviate issues with the visual scoring method resulting from human error, bias and

limitations in being able to identifying small differences between lines (Poland and

Nelson 2011). Image based analysis can also lead to reduced resource costs associated

with needing skilled labor to walk the field. It is through on-going research like using a

vegetative index to help select for cultivars with better winter hardiness that wheat

breeders will be able to consistently provide yield protection from environmental stresses

like harsh winters.

1.3 Hybrid Wheat

4

In addition to protecting from yield loss in harsh environments, hybrid wheat

cultivars also have the potential to increase overall production. Hybrid wheat is a

category of F1 wheat cultivars that are developed through a specific cross between two

inbred parents that have been identified as good combiners. The goal of hybrids is to take

advantage of the phenomenon known as heterosis or hybrid vigor, where the performance

of the hybrid exceeds the performance of parental lines used to create it (Koemel et al.,

2004). Hybrid durum cultivars have been found to produce up to a 20% increase in yield

performance over the highest yielding inbred lines (Gowda et al., 2012). Hybrids also

exhibited increased early vigor and height without an increased susceptibility to lodging

in addition to increased yield (Longin et al., 2013). In addition to increased trait

performance hybrids are expected to have greater stability in performance across a larger

breadth of environments (Gowda et al., 2010).

 Hybrid wheat showed some early success in commercialization in the United

States, Australia, and Europe during the early 1990’s (Gupta et al., 2019) however the

success was short lived as competition from improved pure lines and the hybrid seed

production costs and difficulties, overcame the profitability of hybrids. The difficulty of

producing hybrid seed arises from the inflorescence of wheat. Wheat produces spikelets

of perfect flowers along a single rachis (Gao et al., 2019) that contain both the male and

female structures in tightly packed florets. Due to the enclosed nature of wheat florets,

wheat is a predominately self-pollinating crop with a very low incidence of natural cross

pollination. To overcome the issue of self-pollination two primary approaches have been

explored, the use of chemical hybridizing agents (CHA) and the development of male

sterile lines (Gupta et al., 2019). It was through the use of CHA that hybrids first reached

5

commercialization in the 1990’s. Specifically CHA’s Genesis and Crosier were seen to

produce a sterilization rate of 95-100% (Gupta et al., 2019). Even though hybrids were

gaining popularity, they were unable to overcome the production costs and regulatory

limitations of the CHA. As commercialization moved away from CHA derived hybrids,

hybrids derived from cytoplasmic or genetic male sterile systems became the forefront of

hybrid research. The most likely candidate for commercialization are the cytoplasmic

male sterile (CMS) system, a three line system with sterile line (A-line; in a sterile

cytoplasm and without genes to restore fertility), a maintainer (B-line; an alloplasmic line

of the A-line with a fertile cytoplasm) and male restorer (R-line) where the R-line

contains restoration genes that allow full restoration of the F1 hybrid between the A-line

and the R-line. The most commonly used CMS system and most reliable uses T.

timopheevii Zhuk (Mukai and Tsunewaki, 1979; Singh et al., 2010).

Other male sterile systems have also been explored but have not garnered the

same popularity as the three-line timopheevii CMS system. Photoperiod sensitive

cytoplasmic male sterility is a two-line system based in Ae. Crassa Boiss. Ex Hohen

cytoplasm where the line is sterile under long day conditions and fertile under short day

conditions and an insensitive R-line that would restore fertility to the F1 under long day

conditions (Murai and Tsunewaki, 1993). Genetic male sterility is another two-line

system that utilizes a dominant male fertile genes and recessive sterile genes. The

difficulty with system is the sterility line is maintained in heterogenous state requiring

culling of fertile females (Singh et al., 2015). Chromosomal male sterility utilizes a three-

line system to develop the sterile female and maintainer lines, involving a deletion on the

4B chromosome that contains the recessive sterile gene. The male line that will be used

6

for the F1 seed production must contain an alien 4E chromosome that carries the

restoration gene. The attraction of this system is the presence of the blue aleurone gene

allowing for the sorting of sterile and self-fertile lines based on color (Zhou et al., 2006;

Whitford et al., 2013).

The biggest inhibitor of hybrid seed production is the cost of maintaining the male

and female lines in relatively small strips that prevent the use of large combines or

require additional resources to shred the male lines. One proposed method to overcome

this is the use of the transgenic SeedLink system where the barnase gene, which provides

glufosinate resistance, is linked to a sterility gene allowing for males and females to be

planted in a mix and the males to be removed via glufosinate application, this method is

used in both the barnase-barstar system in canola (Whitford et al., 2013) and the split

barnase system (Kempe et al., 2014). Though not an exhaustive list, the exploration of

numerous male sterile systems by researchers around the globe has provided great

potential for the commercially viable production of hybrid wheat.

1.4 Hybrid Necrosis

 A hurdle faced in the production of wheat hybrids is the loss of potential parental

lines due to those same parents carrying genes for hybrid necrosis. Hybrid necrosis is a

phenomenon observed in F1 wheat plants where the leaf tissue and sheath tissue become

necrotic to a lethal or semi lethal extant (Caldwell, 1943; Tsunewaki, 1992; Tomar et al.,

1991). Hybrid necrosis is caused by the combined presence of two dominant genes Ne1,

located on chromosome arm 5BL and Ne2, located on chromosome arm 2BS (Zeven,

7

1972; Nishikawa, 1974). Hybrid necrosis was first characterized as the delayed necrosis

of leaf tissue first appearing only after the first leaf has reached physiological maturity

and the second leaf is well grown (Caldwell, 1943). This expression of necrosis has

proven to be barrier to introduction of new genes to breeding populations and combining

desirable genes within those populations (Bizimungu et al., 1998) due to both genes

being widespread throughout breeding populations across the globe (Tsunewaki, 1992).

The frequency of the hybrid necrosis genes provides an additional challenge to hybrid

programs, as inbred programs discover hybrid necrotic combinations at the early crossing

stage of line development while a hybrid program may not discover a necrotic

combination until two parental lines have progressed much further into the breeding

pipeline consuming substantially more resources. This potential resource loss exacerbates

the need for hybrid programs to track the frequency of necrosis genes in their breeding

populations and provides the basis of the need for efficient methods to accurately classify

hybrids exhibiting hybrid necrosis with vegetative indices derived from aerial imagery.

1.5 Vegetative Indices

 It has been widely demonstrated that aerial imagery coupled with image

processing has the potential to provide a high throughput and accurate measurement of

numerous traits across all crops. One of the most commonly used methods to measure

traits that can be associated with chlorophyl content is to extract the normalized

difference vegetative index (NDVI) (Tucker, 1979; Roujean and Breon, 1995) from a

multispectral image containing the bands green, red and near infrared (NIR) (Stanton et

al., 2017; Shafian et al., 2018). NDVI was shown to have a strong relationship with visual

8

ground cover (r2 = 0.93) and leaf area index (r2 = 0.95) in winter wheat (Shi et al., 2016).

Other indices that have been developed to capture similar traits associated with

chlorophyl content such as the renormalized difference vegetation index (RDVI) utilizing

the red and NIR bands providing a benefit of reduced sensitivity to soil reflectance

(Roujean and Breon, 1995; Li et al., 2018). Green normalized difference vegetation index

(GNDVI) utilizing the NIR and green bands, provides a better correlation to Chlorophyll-

a (Gitelson et al., 1996; Li et al., 2018). Normalized difference red edge index (NDRE)

utilizing the NIR and red edge bands, also had a strong correlation with chlorophyll and

leaf nitrogen status (Fitzgerald et al., 2006; Li et al., 2018).

 It has also been shown among some traits that indices derived from imagery

captured in the visual spectrum with commercial true color (RGB) cameras have a similar

correlation as those captured from multispectral cameras. For instance the excessive

green segmentation index (ExG), which utilizes the red, green and blue bands to

delimitate soil from vegetation (Woebbecke et al., 1995), had similar correlation (r =

0.88) with ground cover in spring wheat as NDVI (r = 0.76) (Rasmussen et al., 2015).

The excessive green minus excessive red segmentation index (ExGR) showed improved

capabilities to distinguish between vegetative matter and soil background over ExG

(Neto, 2004). The color index of vegetation extraction (CIVE) was derived from the RGB

color bands to segment vegetative matter from soil background and was shown to have a

good correlation (r = 0.661) with soybean, Glycine max, biomass (Kataoka et al., 2003).

ExG, ExGR and CIVE have all shown to be an acceptable method of segmentation of

vegetation from clean soil under both cloudy and sunny conditions as was exhibited in

images of corn, Zea mays, on various soil types (Yang et al., 2015). These segmentation

9

indices (ExG, ExGR, CIVE) are calculated by determining a cutoff value or threshold

that indicates what pixels to classify as soil and as vegetation, the total number of

vegetation pixels are then counted to determine the plot value of the segmentation index,

also referred to as vegetative fraction (Gitelson et al., 2002). The red green blue

vegetative index (RGBVI) is also derived from the RGB bands and has shown good

ability to be used in biomass predictions (r2 = 0.82) (Bendig et al., 2015), and good

correlation with canopy cover (r = 0.75) (Li et al., 2018). An advantage of many of the

mentioned indices is the ability to calculate all of them from the five bands present in

many multispectral cameras (red, green, blue, near infrared and red edge), allowing for

numerous measurements to be performed on the same images.

1.6 Objective

 The objective of this study was to explore the relationship between several

vegetative indices (NDVI, NDRE, GNDVI, RDVI, RGBVI) and segmentation indices

(ExG, ExGR, CIVE) as they relate to visual winter survival scores. It is also of interest to

determine the efficacy of predicting winter survival with the use of multiple indices as

predictors within the same linear model as opposed to using multiple separate models that

include only one index as a predictor. In addition to measuring winter survival, a second

objective was to investigate patterns of canopy cover in lines with hybrid necrosis (often

expressed after the plant survives the winter) and how changes in canopy cover over time

can differentiate between lines with hybrid necrosis and lines with poor winter hardiness.

10

Chapter 2: Methods

2.1 Field

 25 F1 hybrids from Germany, provided by Dr. Friedrich Longin of Hohenheim

University (Table 2.1), were planted in a yield trial setting in fall of 2019 and evaluated in

spring 2020 at the University of Nebraska-Lincolns Havelock field. Each plot was 3

meters in length planted with a five-row small plot planter, 0.23 meters between rows,

and .115 meter overhang on both end rows for a total plot width of 1.15 meters. The 25

lines were replicated 3 times and randomized across a 2 x 40 grid layout (2 passes, 40

ranges and included five fill plots). Each plot was planted at a seeding rate of 66 kg/ha-1.

All plots were walked after emergence to check for germination issues. The following

spring during early tillering the lines were visually scored on 0% to 100% score for plot

stand which is an indicator of winter survival. This set of hybrids had multiple male

parents, hence some hybrids segregated for hybrid necrosis. The plot data was reviewed

for accuracy using ariel imagery. It was determined with the aid of aerial imagery that the

visually rated plot stand scores for hybrids coded as A and M in replication 2 were

swapped. Based on this determination and the data from the other two replications, the

visually rated plot stand scores were corrected. Hybrid necrosis was coded as a 1 for

presence of necrosis and 0 for no necrosis.

Table 2.1 Pedigrees of Hybrids used in this study

Code Pedigree Mother Father

A CAPITOLE-
VILMORIN x
earlymix

CAPITOLE-
VILMORIN

Mix of Ferrum,
Apache, Porthus

B KRAJCAR x
earlymix

KRAJCAR Mix of Ferrum,
Apache, Porthus

11

C NIAB SHW BC
038-10-8-1-1 x
earlymix

NIAB SHW BC
038-10-8-1-1

Mix of Ferrum,
Apache, Porthus

D NIAB SHW BC
038-15-8-1-1 x
earlymix

NIAB SHW BC
038-15-8-1-1

Mix of Ferrum,
Apache, Porthus

E ROB-173-2-A-17-7
x earlymix

ROB-173-2-A-17-7 Mix of Ferrum,
Apache, Porthus

F MAJOR x earlymix MAJOR Mix of Ferrum,
Apache, Porthus

G NIAB SHW BC
038-15-9-1-1 x
earlymix

NIAB SHW BC
038-15-9-1-1

Mix of Ferrum,
Apache, Porthus

H RIGOUDI x
earlymix

RIGOUDI Mix of Ferrum,
Apache, Porthus

I NIAB SHW BC
050-6-9-1-1 x
earlymix

NIAB SHW BC
050-6-9-1-1

Mix of Ferrum,
Apache, Porthus

J NIAB SHW BC
038-5-4-1-1 x
latemix

NIAB SHW BC
038-5-4-1-1

Mix of Hohenheim
parents

K NIAB SHW BC
038-10-1-1-1 x
latemix

NIAB SHW BC
038-10-1-1-1

Mix of Hohenheim
parents

L BLEROY x latemix BLEROY Mix of Hohenheim
parents

M NIAB SHW BC
038-2-15-1-1 x
latemix

NIAB SHW BC
038-2-15-1-1

Mix of Hohenheim
parents

N NIAB SHW BC
045-12-9-1-1 x
latemix

NIAB SHW BC
045-12-9-1-1

Mix of Hohenheim
parents

O ROB-173-2-A-
17_6 x latemix

ROB-173-2-A-
17_6

Mix of Hohenheim
parents

P WW-13019-210-
310-402a-1 x
latemix

WW-13019-210-
310-402a-1

Mix of Hohenheim
parents

Q WW-14010-203-
303-6/3 x latemix

WW-14010-203-
303-6/3

Mix of Hohenheim
parents

R WW-13023-213-
313-405-3 x
latemix

WW-13023-213-
313-405-3

Mix of Hohenheim
parents

S WW-14008-201-
301-15/1 x latemix

WW-14008-201-
301-15/1

Mix of Hohenheim
parents

T WW-14008-201-
301-2/3 x latemix

WW-14008-201-
301-2/3

Mix of Hohenheim
parents

12

U WW-14008-201-
301-21/3 x latemix

WW-14008-201-
301-21/3

Mix of Hohenheim
parents

V WW-14008-201-
301-4/2 x latemix

WW-14008-201-
301-4/2

Mix of Hohenheim
parents

W WW-14009-202-
302-14/1 x latemix

WW-14009-202-
302-14/1

Mix of Hohenheim
parents

X WW-14009-202-
302-4/3 x latemix

WW-14009-202-
302-4/3

Mix of Hohenheim
parents

Y WW-14010-203-
303-1/3 x latemix

WW-14010-203-
303-1/3

Mix of Hohenheim
parents

2.2 UAV flights

 The multispectral images were captured with Micasense RedEdge multi spectral ±

camera (Bands: Blue: 475 ± 20 nm; Green: 560 ± 20 nm; Red: 668 ± 10 nm; RedEdge:

nm; Near Infra-Red: 840 ± 40 nm) mounted on a DJI Matrice 600 Pro. The multispectral

images were captured on 05/18/2020 (wheat growth stage: jointing), 05/29/2020 (wheat

growth stage: early heading) and 06/12/2020 (wheat growth stage: grain filling). True

color (RGB) images were captured on 04/25/2020 (wheat growth stage: early tillering),

05/18/2020, 05/29/2020 and 06/12/2020. The true color camera on 04/25/2020 was flown

with a Mavic 2 Pro and the remaining true color images were from cameras flown with a

DJI Matrice 600 Pro. All flights followed a preprogrammed path ensuring all plots were

captured with overlapping images.

2.3 Image processing

 All images were stitched together with Pix4D. The create grid tool in ArcPro was

used to generate polygons for plot delimitation. All polygon grids overlaying the

13

multispectral images were the exact same size. Each flight of the true color images

needed a different sized grid to effectively capture each plot due to minor bending of the

images. The true band images were clipped to the area of interest to reduce processing

load. The bands of multispectral images (R, G, B, RE, NIR) had a value range from 0 to 1

while the bands captured with true color camera were left unnormalized and had a value

range from 0 to 255. NDVI (Figure 2.1, Image A), NDRE, GNDVI, RDVI, RGBVI, ExG,

ExGR and CIVE (Table 2.2) were calculated for all flights of the multi spectral imagery.

ExG, ExGR and CIVE were calculated for all flights of the true color imagery.

Table 2.2 Vegetative and Segmentation Indices Used in this Study

Index Formula Application Source

NDVI (NIR-Red)/(NIR+Red) Associated with

chlorophyll content

Tucker, 1979

NDRE (NIR-RedEdge)/(NIR+RedEdge) Associated with

chlorophyll and

nitrogen

Fitzgerald et

al., 2006

GNDVI (NIR-Green)/(NIR+Green) Associated with

chlorophyll-a

Gitelson et al.,

1996

RDVI (NIR-Red)/√(NIR+Red)

Reduced sensitivity to

soil reflectance

Roujean and

Breon, 1995

RGBVI (Green2-Blue×Red)/(Green2+Blue×Red) Associated with

biomass

Bendig et al.,

2015

ExG 2×Green-Red-Blue Segments soil from

vegetation

(Woebbecke et

al., 1995

14

ExGR (2×Green-Red-Blue)-(1.4×Red-Green) Segments soil from

vegetation

Neto, 2004

CIVE 0.441×Red-0.881×Green+0.385×Blue+18.78745 Segments soil from

vegetation

Kataoka et al.,

2003

NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI: Green
Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; RGBVI: Red
Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red;
CIVE: Color Index of Vegetative Extraction

Vegetative indices were not calculated for the RGB images due to unnormalized RGB

images being unreliable for measuring the mean reflectance (Woebbecke et al., 1995).

The true color images were analyzed as unnormalized since the same bands were covered

in the multi spectral imagery and to investigate the efficacy of segmentation indices on

unnormalized images.

 For the multispectral data sets a threshold was determined for each segmentation

index by visually examining pixel values of vegetative and soil pixels. ExG was given a

threshold of greater than or equal to 0.029 (Figure 2.1, Image B). ExGR was given a

threshold of greater than or equal to 0.01. CIVE was given a threshold of less than or

equal to 18.77. It was visually determined by examination of each flight date image that

these thresholds were sufficient across all three flights. To generate masks (using one

image to isolate areas of a second image), each segmentation index had values outside of

their respective threshold set to 0 and values within their threshold set to no data utilizing

Python, resulting in a mask that outlined the vegetative pixels and removed the soil

background (Figure 2.1, Image C). The masks were then overlayed onto each vegetative

index using the Mosaic Data Management tool in Arc Pro (Figure 2.1, Image D).

15

Figure 2.1 ExG Masked NDVI, Flight 5/29, Image A: NDVI on flight 5/29, Image B: ExG on flight 5/29,
Image C: ExG segmented mask on flight 5/29, Image D: ExG mask overlayed on NDVI for flight 5/29
NDVI: Normalized Difference Vegetative Index; ExG: Excessive Green

 In Python the mean value of all pixels within a plot’s respective polygon for the masked

and unmasked vegetative indices was calculated for each plot. Values for segmentation

indices were calculated by counting the total number of pixels that met the threshold

criteria within a plot’s respective polygon. For segmentation of the true color images,

thresholds were visually determined for each individual flight (Table 2.3). ExGR was not

given an upper threshold on flights 5/29 and 6/12 due to mature leaves and shadows of

mature leaves having the same or very similar values (Figure 2.2). The values of the

segmentation indices for the true color data set were determined by calculating the total

number of pixels that met the threshold criterion.

16

Figure 2.2 True Color and ExGR Leaf Shadow, Image A: RGB image of leaf (circled in green) and
shadow (circled in red), Image B: ExGR image of the same leaf (circled in green) and shadow(circled in
red). ExGR: Excessive Green Minus Excessive REd

Table 2.3 True Color Segmentation Index Thresholds

Flight Segmentation Index Threshold

4/25 ExG Img ≥ 45; Img ≤ 175

5/18 ExG Img ≥ 45; Img ≤ 175

5/29 ExG Img ≥ 30; Img ≤ 175

6/12 ExG Img ≥ 20; Img ≤ 175

4/25 ExGR Img ≤ 158

5/18 ExGR Img ≤ 65; Img ≥ 165

5/29 ExGR* Img ≤ 65

6/12 ExGR* Img ≤ 65

4/25 CIVE Img ≥ 175

17

5/18 CIVE Img ≥ 175

5/29 CIVE Img ≥ 175; Img ≤ 12

6/12 CIVE Img ≥ 175; Img ≤ 10

ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative
Extraction
* Issue with upper threshold distinguishing between leaves and shadows

2.4 Statistical Analysis

 All statistical analysis was performed in RStudio (v2023.09.0;R Core Team

2021). A significant difference of plot stands between genotypes was determined using an

Analysis of Variance (ANOVA). Additionally, the significance of each index between

genotypes was determined with an ANOVA, indices with a non-significant difference

between genotypes were removed. All data were analyzed as plot data due to spatial

variation observed in the field for lines coded as T and S.

A linear model (initial model) was used to analyze the multispectral data that

utilized visual rating of winter survival (plot stand) as the response and all of the indices

including an interaction with flight date as the predictors.

Stand ~ NDVImu*Flight + NDREmu*Flight + GNDVImu*Flight + RGBVImu*Flight +

ExG_NDVImu*Flight + ExG_NDREmu*Flight + ExG_GNDVImu*Flight +

ExG_RDVImu*Flight + (ExG_ExGct/81300)*Flight + ExGR_NDVImu*Flight +

ExGR_NDREmu*Flight + ExGR_GNDVImu*Flight + ExGR_RDVImu*Flight +

ExGR_RGBVImu*Flight + (ExGR_ExGRct/81300)*Flight + CIVE_NDVImu*Flight +

CIVE_NDREmu*Flight + CIVE_GNDVImu*Flight + CIVE_RDVImu*Flight +

CIVE_RGBVImu*Flight + (CIVE_CIVEct/81300)*Flight

18

Masked images were coded as mask_vi (ex. ExG_NDVI is the NDVI image masked with

the ExG segmentation index). The segmentation indices were rescaled by dividing them

by the total number of pixels in the polygon to alleviate issues with the segmentation

indices being on a much different scale than the vegetative indices. Additionally, the data

was also separated by flight date and a model containing all indices was generated for

each individual flight date. A two-way ANOVA was run on all models.

 Pearsons’s correlation was calculated between all indices and plot stand within

each flight date and across all flight dates. Scatterplots of indices and plot stand were

used to identify patterns between hybrid necrotic and non-hybrid necrotic lines that had

winterkill, regarding how the lines filled their respective plots over time after their initial

plot stand rating. The data used in the scatterplots was separated by flight and labeled

based on hybrid necrosis status.

 To determine which indices to use in a prediction model a selection criterion of α

= 0.05 was used. Indices that were shown to be significant (p < 0.05) based on the two-

way ANOVA performed on the initial model were grouped into a single model (combined

prediction model) while the non-significant indices were removed (Table 2.4). Separate

individual models were also made containing a single index for each index that was

considered significant based on the two-way ANOVA from the initial model.

Plot Stand ~ VI*Flight

All steps statistical analysis steps performed up until this point were repeated on the

multispectral data set with the only difference being the data was regrouped based on

flight date and the interaction of flight date was removed from the models (Table 2.4).

19

Table 2.4 Selected Multispectral Combined Prediction Models

Flight Date Prediction Model

All Plot Stand ~ NDRE*Flight + RGBVI*Flight + ExG_NDRE*Flight +
ExGR_NDRE*Flight + ExGR_ExGR*Flight + CIVE_NDRE*Flight

05/18/2020 Plot Stand ~ NDRE + CIVE_NDVI

05/29/2020 Plot Stand ~ GNDVI + ExG_NDVI + ExG_RGBVI + ExGR_RGBVI
+ CIVE_NDVI + CIVE_RGBVI

06/12/2020 Plot Stand ~ RGBVI + ExG_GNDVI + ExG_NDRE + CIVE_NDRE
+ CIVE_GNDVI

NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI:
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index;
RGBVI: Red
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG)

The train function from the Caret package (Kuhn, 2008) was used to generate

cross validation and prediction sets, across all selected models. Each prediction model

was used to predict plot stand. The predicted plot stands were correlated to the visually

scored plot stand.

 To analyze the true color data set, a linear model containing all three segmentation

indices across all flights was analyzed using a two-way ANOVA. Pearsons’s correlation

was used to calculate an r value between each index and plot stand. Based on the results

on the ANOVA indices with a p < 0.05 were selected to used in a prediction model (Table

2.4). Flight date 06/12/2020 only had one index that was significant (CIVE) but was

included in Table 2.5 for completeness of the table. Each segmentation index that was

significant was also used in an individual model.

Plot Stand ~ SI*Flight

20

 This analysis and selection criterion was repeated on the true color data, but the data

were separated by flight date (Table 2.5).

Table 2.5 Selected True Color Combined Prediction Models

Flight Date Prediction Model

All Plot Stand ~ ExG*Flight + ExGR*Flight + CIVE*Flight

04/25/2020 Plot Stand ~ ExG + CIVE

05/18/2020 Plot Stand ~ ExGR + CIVE

05/29/2020 Plot Stand ~ ExG + ExGR + CIVE

06/12/2020 Plot Stand ~ CIVE

NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge;
GNDVI: Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference
Vegetative Index; RGBVI: Red
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG)

Scatterplots of the segmentation indices and plot stand were used to identify

patterns between hybrid necrotic and non-hybrid necrotic lines that had winterkill,

regarding how the lines filled their respective plots over time after their initial plot stand

rating. The data used in the scatterplots was separated by flight and labeled based on

hybrid necrosis status.

The train function from the Caret package (Kuhn, 2008) was used to generate

cross validation and prediction sets, across all selected true color models. Each prediction

model was used to predict plot stand. The predicted plot stands were then correlated to

the visually scored plot stand.

The plot data for both multi spectral and true color data sets were examined for

numeric patterns of index values across flight dates from NDVI (multispectral) and CIVE

21

(true color) to comparing non-hybrid necrotic winter killed hybrids, non-winter killed

hybrids and hybrid necrotic hybrids.

Chapter 3: Results

3.1 Field

 All plots had good germination post planting. 14 plots, consisting of 6 hybrids

(hybrids coded as D, G, J, M, S, T), suffered varying degrees of winter kill with winter

survival scores ranging from 40% to 80% as estimated by plot stand. Hybrids T and S

only had 1 of their 3 replications exhibit winter kill and both of the winterkilled reps were

in the central area of the trial. Hybrid necrosis was observed across 9 plots, consisting of

3 hybrids (lines D, G, J). All hybrids exhibiting hybrid necrosis also exhibited winter kill

with winter survival scores ranging from 30-60%. The visual plot stand had a significant

difference among genotypes (p <0.001). Plot stand was also significantly different among

genotypes when the data was separated by flight date (p <0.001).

3.2 Multispectral Image Data and Plot Prediction Results

All indices were determined to be significantly different (p<0.001) for genotypes

for all data sets, with the exception of ExG_RGBVI in the data set with all flight dates

combined, ExG_RGBVI was removed from further analysis. All indices were found to

have a good correlation (r > 0.5) or strong correlation (r > 0.8) when correlated to plot

stand across all flight dates (Table 3.1) and within individual flight dates (Table 3.2, 3.3,

22

and 3.4). However, not all indices were significant (p < 0.05). Whether an index was

significant varied amongst the models depending on the data set (combined data in Table

3.1, and individual flight date data in Tables 3.2, 3.3, 3.4).

Table 3.1 Multi Spectral p and r Values of Indices from Linear Model Estimating
Plot Stand Across All Flight Dates

Index Type

Index

Correlation
Between Plot

Stand and Index

p value from

ANOVA
VI NDVI r = 0.831 p = 0.365
VI NDRE r = 0.806 p = 0.001
VI GNDVI r = 0.833 p = 0.063
VI RDVI r = 0.815 p = 0.922
VI RGBVI r = 0.788 p = 0.029

MVI ExG_NDVI r = 0.805 p = 0.961
MVI ExG_NDRE r = 0.775 p = 0.012
MVI ExG_GNDVI r = 0.741 p = 0.07
MVI ExG_RDVI r = 0.777 p = 0.55

SI ExG r = 0.800 p = 0.551
MVI ExGR_NDVI r = 0.775 p = 0.728
MVI ExGR_NDRE r = 0.721 p = 0.005
MVI ExGR_GNDVI r = 0.731 p = 0.077
MVI ExGR_RDVI r = 0.742 p = 0.433
MVI ExGR_RGBVI r = 0.357 p = 0.168

SI ExGR r = 0.862 p = 0.04
MVI CIVE_NDVI r = 0.787 p = 0.535
MVI CIVE_NDRE r = 0.781 p = 0.005
MVI CIVE_GNDVI r = 0.706 p = 0.07
MVI CIVE_RDVI r = 0.753 p = 0.654
MVI CIVE_RGBVI r = 0.704 p = 0.409

SI CIVE r = 0.737 p = 0.353
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI:
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index;
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus
Excessive Red; CIVE: Color Index of Vegetative Extraction
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG)
Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index

Table 3.2 Multi Spectral p Values of Indices from Linear Model Estimating Plot

Stand for Flight 5/18/2020

23

Index Type

Index

Correlation
Between Plot

Stand and Index

p value from

ANOVA
VI NDVI r = 0.916 p = 0.061
VI NDRE r = 0.909 p = 0.002
VI GNDVI r = 0.916 p = 0.462
VI RDVI r = 0.917 p = 0.367
VI RGBVI NA NA

MVI ExG_NDVI r = 0.903 p = 0.2
MVI ExG_NDRE r = 0.875 p = 0.514
MVI ExG_GNDVI r = 0.882 p = 0.929
MVI ExG_RDVI r = 0.905 p = 0.258
MVI ExG_RGBVI NA NA

SI ExG r = 0.857 p = 0.962
MVI ExGR_NDVI r = 0.908 p = 0.95
MVI ExGR_NDRE r = 0.868 p = 0.69
MVI ExGR_GNDVI r = 0.877 p = 0.796
MVI ExGR_RDVI r = 0.898 p =0.64
MVI ExGR_RGBVI r = 0.810 p = 0.659

SI ExGR r = 0.914 p = 0.688
MVI CIVE_NDVI r = 0.899 p = 0.044
MVI CIVE_NDRE r = 0.876 p = 0.341
MVI CIVE_GNDVI r = 0.881 p = 0.831
MVI CIVE_RDVI r = 0.904 p = 0.151
MVI CIVE_RGBVI r = 0.886 p = 0.105

SI CIVE r = 0.753 p = 0.781
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI:
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index;
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus
Excessive Red; CIVE: Color Index of Vegetative Extraction
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG)

Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index

Table 3.3 Multi Spectral p Values of Indices from Linear Model Estimating Plot
Stand for Flight 5/29/2020

Index Type

Index

Correlation
Between Plot

Stand and Index

p value from

ANOVA
VI NDVI r = 0.883 p = 0.971
VI NDRE r = 0.883 p = 0.068
VI GNDVI r = 0.883 p = 0.048
VI RDVI r = 0.881 p = 0.259
VI RGBVI r = 0.881 p = 0.976

MVI ExG_NDVI r = 0.882 p = 0.016

24

MVI ExG_NDRE r = 0.869 p = 0.42
MVI ExG_GNDVI r = 0.859 p = 0.145
MVI ExG_RDVI r = 0.884 p = 0.46
MVI ExG_RGBVI r = 0.867 p = 0.005

SI ExG r = 0.815 p = 0.439
MVI ExGR_NDVI r = 0.89 p = 0.34
MVI ExGR_NDRE r = 0.859 p = 0.106
MVI ExGR_GNDVI r = 0.848 p = 0.269
MVI ExGR_RDVI r = 0.865 p = 0.557
MVI ExGR_RGBVI r = 0.829 p = 0.048

SI ExGR r = 0.885 p = 0.885
MVI CIVE_NDVI r = 0.884 p = 0.032
MVI CIVE_NDRE r = 0.879 p = 0.399
MVI CIVE_GNDVI r = 0.869 p = 0.094
MVI CIVE_RDVI r = 0.885 p = 0.506
MVI CIVE_RGBVI r = 0.852 p = 0.025

SI CIVE r = 0.752 p = 0.774
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI:
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index;
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus
Excessive Red; CIVE: Color Index of Vegetative Extraction
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG)
Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index

Table 3.4 Multi Spectral p Values of Indices from Linear Model Estimating Plot
Stand for Flight 6/12/2020

Index Type

Index

Correlation
Between Plot

Stand and Index

p value from

ANOVA
VI NDVI r = 0.833 p = 0.5
VI NDRE r = 0.827 p = 0.238
VI GNDVI r = 0.83 p = 0.624
VI RDVI r = 0.834 p = 0.106
VI RGBVI r = 0.834 p = 0.007

MVI ExG_NDVI r = 0.789 p = 0.352
MVI ExG_NDRE r = 0.78 p = 0.014
MVI ExG_GNDVI r = 0.765 p = 0.023
MVI ExG_RDVI r = 0.789 p = 0.105
MVI ExG_RGBVI r = 0.726 p = 0.118

SI ExG r = 0.775 p = 0.731
MVI ExGR_NDVI r = 0.783 p = 0.998
MVI ExGR_NDRE r = 0.756 p = 0.201
MVI ExGR_GNDVI r = 0.742 p = 0.087

25

MVI ExGR_RDVI r = 0.769 p = 0.084
MVI ExGR_RGBVI r = 0.704 p = 0.289

SI ExGR r = 0.835 p = 0.095
MVI CIVE_NDVI r = 0.783 p = 0.419
MVI CIVE_NDRE r = 0.789 p = 0.007
MVI CIVE_GNDVI r = 0.766 p = 0.02
MVI CIVE_RDVI r = 0.779 p = 0.095
MVI CIVE_RGBVI r = 0.693 p = 0.105

SI CIVE r = 0.754 p = 0.917
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI:
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index;
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus
Excessive Red; CIVE: Color Index of Vegetative Extraction
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG)
Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index

To determine the combined prediction model, indices with a p < 0.05 were

selected. For the data set consisting of all flights NDRE (p = 0.001, r = 0.806),

ExG_NDRE (p = 0.012, r = 0.775), ExGR_NDRE (p = 0.005, r = 0.721), ExGR (p =

0.04, r = 0.862), and CIVE_NDRE (p = 0.005, r = 0.781) were selected as all other

indices were non-significant in the initial model for the all flights data set (Table 3.1).

Indices that met the significance criteria for the flight 5/18/2020 flight data set were

NDRE (p = 0.002, r = 0.909) and CIVE_NDVI (p = 0.044, r = 0.899) (Table 3.2). For the

flight 5/18/2020 flight data set, a collinearity problem was found between RGBVI and

ExG_RGBVI. The error that caused this collinearity could not be identified nor could it

be determined which index had the correct value and which did not, as a result both

RGBVI and ExG_RGBVI in the 5/18/2020 flight data set were removed from further

analysis. Indices with significance in the 5/29/2020 flight data set were GNDVI (p =

0.048, r = 0.883), ExG_NDVI (p = 0.016, r = 0.882), ExG_RGBVI (p = 0.005, r =

0.867), ExGR_RGBVI (p= 0.048, r = 0.829), CIVE_NDVI (p = 0.032, r = 0.884) and

CIVE_RGBVI (p = 0.025, r = 0.852) (Table 3.3). For the flight data set 6/12/2020 the

selected indices were RGBVI (p = 0.007, r = 0.834), ExG_NDRE (p = 0.014, r = 0.78),

26

ExG_GNDVI (p = 0.023, r = 0.765), CIVE_NDRE (p = 0.007, r = 0.789) and

CIVE_GNDVI (p = 0.02, r = 0.766) (Table 3.4).

 The prediction model with the lowest RMSE value across all multispectral flight

datasets was the combined prediction model of all significant indices for the data set from

flight date 5/18/2020 with an RMSE value of 7.679 (Table 3.5).

Plot Stand ~ NDRE + CIVE_NDVI

The Pearson coefficient for correlation between the predicted stand and the observed

stand was r = 0.836 (p < 0.01) for the model with the lowest RMSE (Table 3.5). The

model with the highest correlation (r = 0.898, p < 0.01) between the visual score of

winter survival and the predicted score for winter survival and RMSE value of 10.234

was the combined prediction model from the 6/12/2020 flight data set (Table 3.5)

Plot Stand ~ RGBVI + ExG_GNDVI + ExG_NDRE + CIVE_NDRE + CIVE_GNDVI

Table 3.5 Multispectral Prediction Models Correlation and RMSE with the

Observed Data

Flight

Date

Prediction Model

Correlation

of Plot Stand

to Predicted

Plot Stand

RMSE

All Plot Stand ~ NDRE*Flight + RGBVI*Flight +
ExG_NDRE *Flight + ExGR_NDRE*Flight +
ExGR*Flight + CIVE_NDRE*Flight

r = 0.891**
(n = 73)

9.669

All Plot Stand ~ NDRE*Flight r = 0.878**
(n = 73)

9.64

All Plot Stand ~ RGBVI*Flight r = 0.873** 9.723

27

(n = 73)
All Plot Stand ~ ExG_NDRE*Flight r = 0.873**

(n = 73)
10.456

All Plot Stand ~ ExGR_NDRE*Flight r = 0.859**
(n = 73)

11.204

All Plot Stand ~ ExGR*Flight r = 0.837**
(n = 73)

9.342

All Plot Stand ~ CIVE_NDRE*Flight r = 0.861**
(n = 73)

10.735

05/18/2020 Plot Stand ~ NDRE + CIVE_NDVI r = 0.836**
(n = 23)

7.679

05/18/2020 Plot Stand ~ NDRE r = 0.845**
(n = 23)

8.118

05/18/2020 Plot Stand ~ CIVE_NDVI r = 0.857**
(n = 23)

8.641

05/29/2020 Plot Stand ~ GNDVI + ExG_NDVI +
ExG_RGBVI + ExGR_RGBVI + CIVE_NDVI
+ CIVE_RGBVI

r = 0.84**
(n = 23)

8.884

05/29/2020 Plot Stand ~ GNDVI r = 0.815**
(n = 23)

8.468

05/29/2020 Plot Stand ~ ExG_NDVI r = 0.882**
(n = 23)

9.309

05/29/2020 Plot Stand ~ ExG_RGBVI r = 0.883**
(n = 23)

9.918

05/29/2020 Plot Stand ~ ExGR_RGBVI r = 0.867**
(n = 23)

11.176

05/29/2020 Plot Stand ~ CIVE_NDVI r = 0.884**
(n = 23)

8.538

05/29/2020 Plot Stand ~ CIVE_RGBVI r = 0.852**
(n = 23)

9.908

06/12/2020 Plot Stand ~ RGBVI + ExG_GNDVI +
ExG_NDRE + CIVE_NDRE + CIVE_GNDVI

r = 0.898**
(n = 23)

10.234

06/12/2020 Plot Stand ~ RGBVI r = 0.845**
(n = 23)

10.606

06/12/2020 Plot Stand ~ ExG_GNDVI r = 0.833**
(n = 23)

12.051

06/12/2020 Plot Stand ~ ExG_NDRE r =0.827**
(n = 23)

12.196

06/12/2020 Plot Stand ~ CIVE_NDRE r = 0.834**
(n = 23)

11.847

06/12/2020 Plot Stand ~ CIVE_GNDVI r = 0.789**
(n = 23)

11.721

NDVI: Normalized Difference Veg etative Index; NDRE: Normalized Difference RedEdge; GNDVI:
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index;
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus
Excessive Red; CIVE: Color Index of Vegetative Extraction

28

Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG)
** indicates p < 0.01

3.3 True Color Image Data and Plot Stand Prediction Results

 All of the segmentation indices were determined to be significantly different for

genotypes across all flight dates and within individual flight dates. The true color data

showed variable correlation depending on the flight date data set (combined data in Table

3.6, and individual flight date data in Tables 3.7, 3.8, 3.9, 3.10). The highest correlation (r

= 0.918, p < 0.001) with plot stand was ExGR on flight 5/18/2020. As seen with the

multispectral data some of the indices were non-significant when analyzed in a combined

linear model for each data set (initial model; combined flight date data in Table 3.6, and

individual flight date data in Tables 3.7, 3.8, 3.9, 3.10).

Table 3.6 RGB: P Values of Indices from Linear Model Estimating Plot Stand for
Flight Across All Flight Dates

Index

Correlation Between Plot
Stand and Segmentation

index

p value from ANOVA

ExG r = 0.442 p = 0.005
ExGR r = 0.468 p < 0.001

CIVE r = 0.522 p = 0.019
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative
Extraction
*Upper threshold not used on flights 5/29/202 an 6/12/2020 data due to issues delineating between
shadows and mature leaves

Table 3.7 RGB: P Values of Indices from Linear Model Estimating Plot Stand for
Flight 4/25/2020

Index

Correlation Between
Plot Stand and

Segmentation index

p value from ANOVA

ExG r = 0.78 p < 0.001
ExGR r = 0.773 p = 0.141

29

CIVE r = 0.833 p < 0.001
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative
Extraction

Table 3.8 RGB: P Values of Indices from Linear Model Estimating Plot Stand for
Flight 5/18/2020

Index

Correlation Between
Plot Stand and

Segmentation index

p value from ANOVA

ExG r = 0.77 p = 0.051
ExGR r = 0.918 p < 0.001
CIVE r = 0.899 p = 0.006

ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative
Extraction

Table 3.9 RGB: P Values of Indices from Linear Model Estimating Plot Stand for
Flight 5/29/2020

Index

Correlation Between
Plot Stand and

Segmentation index

p value from ANOVA

ExG r = 0.666 p < 0.001
ExGR r = 0.843 p < 0.001

CIVE r = 0.799 p = 0.007
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative
Extraction
*Upper threshold not used due to issues delineating between shadows and mature leaves

Table 3.10 RGB: P Values of Indices from Linear Model Estimating Plot Stand for
Flight 6/12/2020

Index

Correlation Between
Plot Stand and

Segmentation index

p value from ANOVA

ExG r = 0.253 p = 0.372
ExGR r = 0.738 p = 0.393

CIVE r = 0.79 p = 0.004
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative
Extraction
*Upper threshold not used due to issues delineating between shadows and mature leaves

30

 The results from the two-way ANOVA were used to select indices with a p < 0.05

to generate combined prediction models. For the data set that includes all flight dates, the

indices ExG (p = 0.005, r = 0.442), ExGR (p <0.001, r = 0.468) and CIVE (p = 0.019, r =

0.522) were significant (Table 3.6). The 04/25/2020 flight date data set showed

significance for indices ExG (p < 0.001, r = 0.78) and CIVE (p < 0.001, r = 0.833; Table

3.7). Indices with significance for flight date 05/18/2020 were ExGR (p < 0.001, r =

0.918) and CIVE (p = 0.006, r = 0.899; Table 3.8). Flight date 5/29/2020 had significance

for indices ExG (p < 0.001, r = 0.666), ExGR (p < 0.001, r = 0.843) and CIVE (p =

0.007, r = 0.799; Table 3.9). Lastly, the data set for flight date 6/12/2020 only CIVE (p =

0.004, r = 0.79) was significant (Table 3.10).

 The prediction model with the lowest RMSE value across all true color datasets

was the combined model of all significant indices for the flight date 5/18/2020 with an

RMSE value of 7.041 (Table 3.11).

Plot Stand ~ ExGR + CIVE

The Pearson coefficient for correlation between the predicted plot stand and the visually

scored plot stand was r = 0.924 (p < 0.01) for flight date 5/18/2020, the highest r value

among the true color predictions and the multispectral predictions (Table 3.11).

Table 3.11 True Color Prediction Models Correlation and RMSE

Flight

Date

Prediction Model

Correlation

of Plot

Stand to

RMSE

31

Predicted

Plot Stand

All Plot Stand ~ ExG*Flight + ExGR*Flight +
CIVE*Flight

r = 0.87**
(n = 73)

10.234

All Plot Stand ~ ExG*Flight r = 0.654**
(n = 73)

15.531

All Plot Stand ~ ExGR*Flight r = 0.821**
(n = 73)

11.544

All Plot Stand ~ CIVE*Flight r = 0.831**
(n = 73)

11.027

04/25/2020 Plot Stand ~ ExG + CIVE r = 0.87**
(n = 23)

9.644

04/25/2020 Plot Stand ~ ExG r = 0.78**
(n = 23)

12.622

04/25/2020 Plot Stand ~ CIVE r = 0.833**
(n = 23)

11.0

05/18/2020 Plot Stand ~ ExGR + CIVE r = 0.924**
(n = 23)

7.041

05/18/2020 Plot Stand ~ ExGR r = 0.918**
(n = 23)

7.425

05/18/2020 Plot Stand ~ CIVE r = 0.899**
(n = 23)

8.44

05/29/2020 Plot Stand ~ ExG + ExGR + CIVE r = 0.878**
(n = 23)

9.832

05/29/2020 Plot Stand ~ ExG r = 0.666**
(n = 23)

15.548

05/29/2020 Plot Stand ~ ExGR r = 0.843**
(n = 23)

10.417

05/29/2020 Plot Stand ~ CIVE r = 0.799**
(n = 23)

12.0

06/12/2020 Plot Stand ~ CIVE r = 0.79**
(n = 23)

11.699

ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative
Extraction
** indicates p < 0.01

3.4 Evaluation of Observed Patterns with Hybrid Necrosis

32

In the scatter plots of NDVI it can be observed that the necrotic lines (blue) and

non-necrotic lines (red) cluster together much tighter as the flights became later in the

season (Fig. 3.1). This same pattern can be observed in the scatter plots of the other

indices to varying degrees.

Fig. 3.1 Scatter plots of NDVI & Stand Grouped by Flight

When looking at the numeric data an interesting pattern was observed. The hybrid

necrotic hybrids either showed little to no gain in their NDVI value or a moderate

increase between the 5/18/2020 flight and 5/29/2020 flight followed by a decrease in

NDVI value at the 6/12/2020 flight to relatively similar levels as the 05/18/2020 flight.

For example, replication 3 of hybrid D had NDVI value of 0.326 on 5/18/2020, which

33

went up to 0.396 on 5/29/2020 and then back down to 0.326 on 6/12/2020. This same

trend can also be observed in the non-winter killed non-hybrid necrotic hybrids, just with

much higher NDVI values. For example: replication 1 of hybrid C had an NDVI value of

0.684 on 5/18/2020, 0.738 on 5/29/2020 and 0.689 on 6/12/2020. This pattern observed

in the hybrid necrotic hybrids changes when looking at the hybrid that was not an hybrid

necrotic hybrid but did exhibit winter kill, hybrid M, where the NDVI value rises from

5/18/2020 to 5/29/2020 but then plateaus or has relatively small gains in NDVI from

5/29/2020 to 6/12/2020. Example: Replication 2 of hybrid M has a NDVI value of 0.42

on 5/18/2020, 0.551 on 5/29/2020 and 0.557 on 6/12/2020.

In the scatter plot of CIVE and plot stand for the true color data sets a pattern of

increased clustering can be observed in the hybrid necrotic lines as compared to the non-

hybrid necrotic hybrids (Fig. 3.2) as flight dates progressed in the season, just as was

observed with NDVI in the multispectral data (Fig. 3.1). This pattern of clustering was

similar to the scatter plot of the ExGR index but was not present in the ExG scatter plot.

34

Fig. 3.2 Scatterplots of RGB CIVE & Stand Grouped by Flight

 The CIVE data from the true color data set showed a different pattern to the

NDVI values from multispectral data with the addition of data from the 04/25/2020 flight

date. All hybrids, regardless of hybrid necrosis status or winter kill showed a large

increase in CIVE values from 04/25/2020 to 05/18/2020. The non-hybrid necrotic non-

winter killed hybrids showed a consistent pattern of 5/18/2020 being the peak for CIVE

with slight decrease for the 5/29/2020 and subsequently another small relative decrease in

CIVE values for 6/12/2020 For example, replication 1 of hybrid P had CIVE values of

113,168 on 4/25/2020, 435,230 on 5/18/2020, 367,698 on 5/29/2020 and 321,460 on

6/12/2020. The hybrid necrotic hybrids either peaked on 5/29/2020 and plateaued, had a

slight decrease on 6/12/2020 or they continued to slightly increase on 6/12/2020, but

never reached more than around 50% of the peak CIVE values for non-hybrid necrotic

35

non-winterkilled plots. For example, replication 2 of Hybrid J had CIVE values of 12,313

on 4/25/2020, 84,622 on 5/18/2020, 85,081 on 5/29/2020, and 81,555 on 6/12/2020 while

replicate 1 of hybrid G had CIVE values of 12,499 on 4/25/2020, 93,599 on 5/18/2020,

119,930 on 5/29/2020 and 141,292 on 6/12/2020. The hybrid M that was not hybrid

necrotic but did exhibit winter kill in all three replications showed an increase of CIVE

values across all dates for replicates 1 and 3 while replicate 2 had a slight decrease in

CIVE from 5/29/2020 to 6/12/2020. The CIVE values of hybrid M replicates did increase

to over 50% of the peak CIVE value of non-necrotic hybrids that did not exhibit winter

kill. Example: Replicate 1 of hybrid M had CIVE value of 20,469 on 4/25/2020, 145,075

on 5/18/2020, 263,243 on 5/29/2020 and 278,895 on 6/12/2020.

Chapter 4: Discussion

 The primary objective of this study was to explore the relationship between

vegetative indices and segmentation indices as they relate to plot stand which is an

indicator of winter survival and to identify a prediction model to determine winter

survival scores. We proposed a method of utilizing a combined linear model to predict

winter survival of winter wheat using multiple vegetative indices with the goal of a

higher correlation of predicted plot stand and visually rated plot stand, over models

including only one vegetative index. Previous research has an extensive history using

vegetative and segmentation indices to measure canopy cover of different crops,

including the comparison of some of the indices (Li et al., 2018; Neto, 2004; Rasmussen

et al., 2015). To the best of our knowledge, little research has been done in using multiple

indices within the same linear model to improve prediction. Additionally, little research

has been done in using segmentation indices to mask other vegetative indices for use in

36

prediction of plot stand or canopy cover in wheat. When compared to individual indices

the masked indices had little to no benefit over their respective indices, however when

utilized in combined prediction model some of the masked indices were shown to have a

greater level significance and contributed to a better prediction outcome. Overall, we

were able to show in both scenarios, unnormalized RGB images and multispectral

images, in specific flight dates, the best approach was to use a combined linear model for

stand prediction, with an r = 0.924 (p < 0.01) and r = 0.836 (p < 0.01) respectively, both

of which had strong correlation and the lowest RMSE in comparison to models with

individual indices.

In regard to the objective of observing patterns in plot stand over time for hybrid

necrosis, it was shown that several vegetative indices were observed to have a strong

relationship with hybrid necrosis as the season progressed to later timed flights. This

correlation would be expected with the decrease in green biomass that should be

observed in more mature necrotic lines (Caldwell, 1943). It was also observed that hybrid

necrosis exhibits a clear clustering pattern that separates them from non-necrotic lines for

numerous indices, most notably NDVI. The numeric data observation also showed a clear

trend of NDVI values decreasing much earlier for hybrids exhibiting hybrid necrosis.

Both the scatter plot and numeric patterns showed a clear trend in differences of necrotic

hybrids and non-necrotic hybrids, allowing for the potential for necrotic lines to be

classified with the use of prediction algorithm or machine learning program. Using the

CIVE segmentation index with the true color dataset also showed noticeable differences

between necrotic hybrids and non-necrotic hybrids. With the scatterplot of CIVE showing

a similar clustering pattern to the NDVI scatter plot and the numeric data showing

37

increases in plot stand to be substantially smaller in necrotic hybrids than non-necrotic

hybrids that exhibited winter kill. The true color images were left unnormalized for the

purpose of showing the potential for unnormalized segmentation to be used with machine

learning or AI software, that utilize raw RGB images to classify plants exhibiting

symptoms of hybrid necrosis, saving on processing time and resources.

 Though the excessive green (ExG), color index of vegetation extraction (CIVE)

in the true color images and excessive green minus excessive red (ExGR) had good

correlation with plot stand depending on the flight, it must be taken into consideration

that the ExGR had to drop the upper threshold value due to the inability to segment

mature leaves from shadows. It must also be noted that a standard threshold could not be

used for the true color data set, and custom thresholds had to be determined for each

flight for the respective segmentation indices. The need for a new threshold for each

flight date in the true color images indicates the need to be cautious when considering the

thresholding in the multispectral imaging was sufficient to be used across all flights, this

may have just been due to chance and would need to be further evaluated on whether a

standard threshold could be developed for a specific crop.

A limitation of this study that should be considered is the small number of lines

observed with limited variability in winter survival and hybrid necrosis and that the data

were from one location for a single year. All of the hybrid necrotic lines suffered from

winterkill and only 1 hybrid that did not exhibit hybrid necrosis had winter kill in all 3

replications. If repeated, it would be ideal to design a study with checks of known

variability in winter survival planted with a greater number of hybrids that are made with

only two parental lines, that also produce more combinations with hybrid necrosis. This

38

data could be done by seed mixtures of winter and spring cultivars to provide a gradient

of winter killing. Similarly seed mixtures of known hybrid necrotic and non-hybrid

necrotic hybrids could provide a gradient of hybrid necrotic and winter killed data.

Based on the results it appears that the utilization of combined linear models that

use more than one index as a predictor provides slightly better results over models that

use a single index as a predictor. This was best seen in the non-normalized true color

using both ExGR and CIVE (r = 0.924, p < 0.01) had incremental gain in correlation

between predicted plot stand and visually rated plot stand over second highest

correlation, the single index ExGR (r = 0.918, p < 0.01) while also having the lowest

RMSE value of 7.041. Even though the difference between the combined model (ExGR +

CIVE) and ExGR may not provide a functionally useful significant difference the results

indicate the potential for future research to expand and refine the concept of using

multiple indices in a single linear model potentially realizing larger more biologically

relevant gains in correlation between predicted values and traditionally rated values. As

the indices use the same multispectral bands, multiple indices can be readily generated

and combined in models using standard computer software. In the multispectral data set,

the prediction model with lowest RMSE value of 7.679, which included the vegetative

index NDRE and the masked vegetative index CIVE_NDVI (r = 0.836, p < 0.01), did not

have the largest correlation between predicted plot stand and visually rated plot stand,

among the prediction models. The multispectral prediction with highest plot stand

correlation (r = 0.898, p < 0.01) was combined model from flight 6/12/2020 that included

the indices RGBVI, ExG_GNDVI, ExG_NDRE, CIVE_NDRE and CIVE_GNDVI

which had and RMSE value of 10.234. That RMSE was larger than 13 of the other

39

multispectral prediction models. This provides an interesting scenario where the

statistically appropriate model to choose does not predict the trait of interest better than

models that should not be chosen based on RMSE. Further research is needed to expand

on the idea that utilizing more than one index as a predictor in a single linear model can

provide beneficial gains in prediction of agronomic traits. Furthermore, we believe that

enough evidence has been shown in the efficacy of using non-normalized RGB values to

measure plot stand to provide justification for further research using non-normalized

RGB values in prediction of both continuous and categorical traits.

If we were to make recommendations for future research regarding measuring

plot stand in winter with a combined model, it would be to utilize a statistical selection

method of indices similar to one used in this study to best fit the specific field conditions

present in the flight data. In terms of flight dates, it is our opinion that the earlier flight

dates of 4/25/2020 and 5/18/2020 would provide the most accurate measurement of plot

stand, as these dates occur before the wheat plots are able to “recover” and fill in more of

the plot area due to reduced competition. For identifying patterns in hybrid necrosis, it

appeared that a minimum of three flights were necessary to capture the changes as the

hybrid necrotic hybrids expressed more tissue death. The earlier flight of 4/25/2020

provided little to no benefit in observing hybrid necrosis most likely due to the flight date

being before and expression of hybrid necrosis was present.

40

References

Alessi, J. and Power, J.F. (1971), Influences of Method of Seeding and Moisture on Winter Wheat Survival
and Yield1. Agron. J., 63: 81-83. https://doi.org/10.2134/agronj1971.00021962006300010025x

B. Bizimungu, J. Collin, A. Comeau, and C.-A. St-Pierre. 1998. Hybrid necrosis as a barrier to gene
transfer in hexaploid winter wheat × triticale crosses. Canadian Journal of Plant Science. 78(2):
239-244. https://doi.org/10.4141/P96-185

Bendig, J., Kang, Y., Helge, A., Andreas, B., Simon, B., Janis, B., et al. (2015). Combining UAV-based
plant height from crop surface models, visible, and near infrared vegetation indices for biomass
monitoring in barley. Int. J. Appl. Earth Obs. Geoinform. 39, 79–87. doi: 10.1016/j.jag.2015.
02.012

 Bridger, G. M. (McGill University, et al. “Crown Freezing Tolerance and Field Winter Survival of Winter
Cereals in Eastern Canada.” Crop Science, vol. 36, no. 1, 1996, pp. 150–57,
https://doi.org/10.2135/cropsci1996.0011183X003600010027x.

Caldwell RM, Compton LE (1943) Complementary lethal genes in wheat causing a progressive lethal
necrosis of seedlings. J Hered 34:67–70

Camargo Neto, Joao, "A combined statistical-soft computing approach for classification and mapping weed
species in minimum -tillage systems" (2004). ETD collection for University of Nebraska -
Lincoln. AAI3147135. https://digitalcommons.unl.edu/dissertations/AAI3147135

Chen Y, Sidhu HS, Kaviani M, McElroy MS, Pozniak CJ, Navabi A. Application of image-based
phenotyping tools to identify QTL for in-field winter survival of winter wheat (Triticum aestivum
L.). Theor Appl Genet. 2019 Sep;132(9):2591-2604. doi: 10.1007/s00122-019-03373-6. Epub
2019 Jun 8. PMID: 31177292.

Cox DJ, Larsen JK, Brun LJ (1986) Winter survival response of winter wheat—tillage and cultivar
selection. Agron J 78:795–80

D. W. A. Roberts. 1985. The Effect of Long Exposure to Low Temperatures on the Cold Hardiness of
Sprouting Wheat in the Dark. Canadian Journal of Plant Science. 65(4): 893-900.
htps://doi.org/10.4141/cjps85-115

Fitzgerald, G. J., Rodriguez, D., Christensen, L. K., Belford, R., Sadras, V. O., and Clarke, T. R. (2006).
Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat
environments. 5th European Conference on Implementation of Precision Agriculture, Uppsala,
Sweden, 9-12 June 2005. Secaucus, NJ, United States: Springer.
htps://doi.org/10.1007/s11119-006-9011-z

Fowler, David. (1982). Date of Seeding, Fall Growth, and Winter Survival of Winter Wheat and Rye.
Agronomy Journal - AGRON J. 74. 1060-1063. 10.2134/agronj1982.00021962007400060030x.

Gao XQ, Wang N, Wang XL, Zhang XS. Architecture of Wheat Inflorescence: Insights from Rice. Trends
Plant Sci. 2019 Sep;24(9):802-809. doi: 10.1016/j.tplants.2019.06.002. Epub 2019 Jun 27. PMID:
31257155.

Gitelson, A., Kaufman, Y. J., and Merzlyak, M. N. (1996). Use of a green channel in remote sensing of
global vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289–298. doi: 10.1016/S0034-
4257(96)00072-7

Gitelson, A.A., Kaufman, Y.J., Stark, R. and Rundquist, D. (2002) Novel Algorithms for Remote
Estimation of Vegetation Fraction. Remote Sensing of Environment, 80, 76-87.
http://dx.doi.org/10.1016/S0034-4257(01)00289-9

https://doi.org/10.2134/agronj1971.00021962006300010025x
https://doi.org/10.4141/P96-185
https://doi.org/10.2135/cropsci1996.0011183X003600010027x
https://digitalcommons.unl.edu/dissertations/AAI3147135
https://doi.org/10.4141/cjps85-115
https://doi.org/10.1007/s11119-006-9011-z
http://dx.doi.org/10.1016/S0034-4257(01)00289-9

41

Gowda, M., Kling, C., Würschum, T., Liu, W., Maurer, H.P., Hahn, V. and Reif, J.C. (2010), Hybrid
Breeding in Durum Wheat: Heterosis and Combining Ability. Crop Sci., 50: 2224-2230.
https://doi.org/10.2135/cropsci2009.10.0637

Gupta, P.K., Balyan, H.S., Gahlaut, V. et al. Hybrid wheat: past, present and future. Theor Appl Genet 132,
2463–2483 (2019). https://doi.org/10.1007/s00122-019-03397-y

Li J, Shi Y, Veeranampalayam-Sivakumar A-N and Schachtman DP (2018) Elucidating Sorghum Biomass,
Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From
Unmanned Aircraft System. Front. Plant Sci. 9:1406. doi: 10.3389/fpls.2018.01406

Loeppky, Heather, G. Lafond, Fowler, David. (1989). Seeding Depth in Relation to Plant Development,
Winter Survival, and Yield of No-Till Winter Wheat. Agronomy Journal - AGRON J. 81.
10.2134/agronj1989.00021962008100010023x.

Longin CF, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M,
Zhao Y, Reif JC. Hybrid wheat: quantitative genetic parameters and consequences for the design
of breeding programs. Theor Appl Genet. 2013 Nov;126(11):2791-801. doi: 10.1007/s00122-013-
2172-z. Epub 2013 Aug 4. PMID: 23913277.

L. V. Gusta, B. J. O'Connor, and M. G. MacHutcheon. 1997. The selection of superior winter-hardy
genotypes using a prolonged freeze test. Canadian Journal of Plant Science. 77(1): 15-21.
htps://doi.org/10.4141/P95-197

L. V. Gusta, B. J. O’Connor, Y. -P. Gao, and S. Jana. 2001. A re-evaluation of controlled freeze-tests and
controlled environment hardening conditions to estimate the winter survival potential of hardy
winter wheats. Canadian Journal of Plant Science. 81(2): 241-246.
htps://doi.org/10.4141/P00-068

J.M. Lyons, J.K. Raison, P.L. Steponkus, 1979: The plant membrane in response to low temperature: an
overview. In: Low temperature stress in crop plants: the role of the membrane (LYONS, L. M.,
GRAHAM, D., RAISON, J. K., eds.), pp. 1–24. New York: Academic Press.

Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine
vision. Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM 2003), 2, b1079-b1083 vol.2.

Kempe K, Rubtsova M, Gils M (2014) Split-gene system for hybrid wheat seed production. Proc Natl Acad
Sci 111:9097–9102 https://doi.org/10.1073/pnas.1402836111

Koichiro Tsunewaki. 1992. Aneuploid analyses of hybrid necrosis and hybrid chlorosis in tetraploid wheats
using the D genome chromosome substitution lines of durum wheat. Genome. 35(4): 594-601.
https://doi.org/10.1139/g92-089

Kuhn, Max (2008). “Building Predictive Models in R Using the caret Package.” Journal of Statistical
Software, 28(5), 1–26. doi:10.18637/jss.v028.i05,
https://www.jstatsoft.org/index.php/jss/article/view/v028i05.

M. K. Pomeroy and D. B. Fowler. 1973. Use of Lethal Dose Temperature Estimates as Indices of Frost
Tolerance for Wheat Cold Acclimated Under Natural and Controlled Environments. Canadian
Journal of Plant Science. 53(3): 489-494. htps://doi.org/10.4141/cjps73-093

M.P. Reynolds, J.I. Ortiz-Monasterio, and A. McNab (eds.). 2001. Application of Physiology in Wheat
Breeding. Mexico, D.F.: CIMMYT

Mukai, Y., Tsunewaki, K. Basic studies on hybrid wheat breeding. Theoret. Appl. Genetics 54, 153–160
(1979). https://doi.org/10.1007/BF00263045

https://doi.org/10.2135/cropsci2009.10.0637
https://doi.org/10.1007/s00122-019-03397-y
https://doi.org/10.4141/P95-197
https://doi.org/10.4141/P00-068
https://doi.org/10.1073/pnas.1402836111
https://doi.org/10.1139/g92-089
https://doi.org/10.4141/cjps73-093
https://doi.org/10.1007/BF00263045

42

Nishikawa K, Mori T, Takami N, Furuta Y (1974) Mapping of progressive necrosis gene Ne1 and Ne2 of
common wheat by the telocentric method. Japan J Breed 24:277–281
https://doi.org/10.1270/jsbbs1951.24.277

Poland JA, Nelson RJ. In the eye of the beholder: the effect of rater variability and different rating scales on
QTL mapping. Phytopathology. 2011 Feb;101(2):290-8. doi: 10.1094/PHYTO-03-10-0087.
PMID: 20955083.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.

Rasmussen, Jesper & Ntakos, Georgios & Nielsen, Jon & Svensgaard, Jesper & Poulsen, Robert &
Christensen, S.. (2016). Are vegetation indices derived from consumer-grade cameras mounted on
UAVs sufficiently reliable for assessing experimental plots?. European Journal of Agronomy. 74.
75-92. 10.1016/j.eja.2015.11.026.

Roujean J-L., Breon, F-M. (1995) Estimating PAR Absorbed by Vegetation from Bi-Directional
Reflectance Measurements. Remote Sensing of Environment, 51, 375-384.
htp://dx.doi.org/10.1016/0034-4257(94)00114-3

Ryan Whitford, Delphine Fleury, Jochen C. Reif, Melissa Garcia, Takashi Okada, Viktor Korzun, Peter
Langridge, Hybrid breeding in wheat: technologies to improve hybrid wheat seed production,
Journal of Experimental Botany, Volume 64, Issue 18, December 2013, Pages 5411–5428,
https://doi.org/10.1093/jxb/ert333

Shafian S, Rajan N, Schnell R, Bagavathiannan M, Valasek J, Shi Y, et al. (2018) Unmanned aerial
systems-based remote sensing for monitoring sorghum growth and development. PLoS ONE
13(5): e0196605. htps://doi.org/10.1371/journal.pone.0196605

Shi Y, Thomasson JA, Murray SC, Pugh NA, Rooney WL, et al. (2016) Unmanned Aerial Vehicles for
High-Throughput Phenotyping and Agronomic Research. PLOS ONE 11(7): e0159781.
https://doi.org/10.1371/journal.pone.0159781

Singh, S K & Chatrath, Ravish & Mishra, Bhola. (2010). Perspective of hybrid wheat research: A review.
Indian Journal of Agricultural Sciences. 80. 1013-27.

Stanton, Carly & Starek, Michael & Elliott, Norman & Brewer, Michael & Maeda, Murilo & Chu,
Tianxing. (2017). Unmanned aircraft system-derived crop height and normalized difference
vegetation index metrics for sorghum yield and aphid stress assessment. Journal of Applied
Remote Sensing. 11. 026035. 10.1117/1.JRS.11.026035.

Taylor, G. A., & Olsen, R. A. (1985). DESICCATION AS A MAJOR FACTOR IN WINTER INJURY OF
WHEAT I. Field Studies. Cereal Research Communications, 13(4), 337–341.
http://www.jstor.org/stable/23782950

Tomar SMS, Kochumadhavan M, Nambisan PNN (1991) Hybrid weakness in Triticum dicoccum Schubl.
Wheat Inf Serv 72:9–11

Tucker, J. C. (1979), Red and photographic infrared linear combination for monitoring vegetation. Remote
Sens. Environ. 8:127-150. htps://doi.org/10.1016/0034-4257(79)90013-0

U. J. Pittman and K. H. Tipples. 1978. Survival, Yield, Protein Content, and Baking Quality of Hard Red
Winter Wheats Grown Under Various Fertilizer Practices in Southern Alberta. Canadian Journal of
Plant Science. 58(4): 1049-1060. htps://doi.org/10.4141/cjps78-160

Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed
identification under various soil, residue, and lighting conditions. Transactions of the American
Society of Agricultural Engineers, 38(1), 259-269.

https://doi.org/10.1270/jsbbs1951.24.277
https://www.r-project.org/
http://dx.doi.org/10.1016/0034-4257(94)00114-3
https://doi.org/10.1371/journal.pone.0196605
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.4141/cjps78-160

43

Yang, Wenzhu & Zhao, Xiaolan & Sile, Wang & Zhang, Jingsi & Feng, Jiaqi. (2015). Greenness
identification based on HSV decision tree. Information Processing in Agriculture. 2.
10.1016/j.inpa.2015.07.003.

Zeven AC (1972) Determination of the chromosome and its arm carrying the Ne1-locus of Triticum
aestivum L., Chinese Spring and the Ne1-expressivity. Wheat Inf Serv 33–34:4–6

Zheng, Dongxiao & Yang, Xiaoguang & Minguez, M. & Mu, Chenying & He, Qing & Wu, Xia. (2018).
Effect of freezing temperature and duration on winter survival and grain yield of winter wheat.
Agricultural and Forest Meteorology. 260. 1-8. 10.1016/j.agrformet.2018.05.011.

Zhou, Kuanji & Wang, Shihong & Feng, Yuqin & Liu, Zhongxiang & Wang, Genxuan. (2006). The 4E-
System of Producing Hybrid Wheat. Crop Science - CROP SCI. 46. 10.2135/cropsci2005.0029.

44

Appendix A: Multispectral Image processing Python Code

import rasterio

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import fiona

import rasterio.mask

from pandas import DataFrame

import geopandas as gpd

#5\18 Vegetative indices extraction

Import tif files

green = rasterio.open('518_green.tif')

red = rasterio.open('518_red.tif')

nir = rasterio.open('518_nir.tif')

re = rasterio.open('518_red edge.tif')

blue = rasterio.open('518_blue.tif')

read in 2d array

nirmap = nir.read(1)

greenmap = green.read(1)

redmap = red.read(1)

remap = re.read(1)

bluemap = blue.read(1)

correct band to remove negative values

nirc = np.where(nirmap < 0, 0, nirmap)

redc = np.where(redmap < 0, 0, redmap)

rec = np.where(remap < 0, 0, remap)

greenc = np.where(greenmap < 0, 0, greenmap)

bluec = np.where(bluemap < 0, 0, bluemap)

45

calculate unmasked VI

ndvimap = (nirc - redc) / (nirc + redc) #vi

ndremap = (nirc - rec) / (nirc + rec) #vi

gndvimap = (nirc - greenc) / (nirc + greenc) #vi

exgmap = (2*greenc) - redc - bluec #mask index

rdvimap = (nirc-redc)/(np.sqrt((nirc+redc))) #vi

rgbvimap = ((greenc**2) - (bluec*redc))/((greenc**2)+(bluec*redc)) #vi

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index

reshape VI's

NDVI = np.reshape(ndvimap,(1,ndvimap.shape[0], ndvimap.shape[1]))

NDRE = np.reshape(ndremap,(1, ndremap.shape[0], ndremap.shape[1]))

GNDVI = np.reshape(gndvimap,(1, gndvimap.shape[0], gndvimap.shape[1]))

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1]))

RDVI = np.reshape(rdvimap,(1, rdvimap.shape[0], rdvimap.shape[1]))

RGBVI = np.reshape(rgbvimap,(1, rgbvimap.shape[0], rgbvimap.shape[1]))

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1]))

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1]))

#define out_meta using the meta dat from one of the original tif files

out_meta = red.meta

save reshaped VI's as tif files

with rasterio.open('ndvisave.tif', "w", **out_meta) as dest:

 dest.write(NDVI)

with rasterio.open('ndresave.tif', 'w', **out_meta) as dest:

 dest.write(NDRE)

with rasterio.open('gndvisave.tif', 'w', **out_meta) as dest:

 dest.write(GNDVI)

with rasterio.open('exgsave.tif', 'w', **out_meta) as dest:

 dest.write(ExG)

with rasterio.open('rdvisave.tif', 'w', **out_meta) as dest:

46

 dest.write(RDVI)

with rasterio.open('rgbvisave.tif', 'w', **out_meta) as dest:

 dest.write(RGBVI)

with rasterio.open('civesave.tif', 'w', **out_meta) as dest:

 dest.write(CIVE)

with rasterio.open('exgrsave.tif', 'w', **out_meta) as dest:

 dest.write(ExGR)

#Change crs of shp to epsg 32614

data = gpd.read_file('Multi Grid 518-612.shp')

data = data.to_crs(epsg=32614)

data.to_file('CMulti Grid 518-612.shp')

Calculate 5/18 unmasked VI's

NDVImu = []

NDREmu = []

GNDVImu = []

RDVImu = []

RGBVImu = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('ndvisave.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 NDVImu.append(np.nanmean(out_image))

47

 with rasterio.open('ndresave.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 NDREmu.append(np.nanmean(out_image))

 with rasterio.open('gndvisave.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('rdvisave.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 RDVImu.append(np.nanmean(out_image))

 with rasterio.open('rgbvisave.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 RGBVImu.append(np.nanmean(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, NDVImu, NDREmu, GNDVImu, RDVImu, RGBVImu])

df = df.T

df.columns = ['ID', 'NDVImu', 'NDREmu', 'GNDVImu', 'RDVImu', 'RGBVImu']

export data frame to excel file

df.to_excel('Output/Unmasked_VI_518.xlsx', index = False)

df

Check grid polygon size

NDVImu = []

ID = []

48

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('ndvisave.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 225, out_image).astype(float)

 NDVImu.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, NDVImu])

df = df.T

df.columns = ['ID', 'NDVImu']

df

Correct crs of new shape file to isolate area of interest for mask generation

data = gpd.read_file('MaskShape.shp')

data = data.to_crs(epsg=32614)

data.to_file('CMaskShape.shp')

Create 518 ExG Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image>=0.029, None, 0).astype(float)

 with rasterio.open('exgmask.tif', 'w', **out_meta) as dest:

49

 dest.write(out_image)

Create 518 ExGR Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('exgrsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image>=0.01, None, 0).astype(float)

 with rasterio.open('exgrmask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

Create 518 CIVE Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('civesave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image<=18.77, None, 0).astype(float)

 with rasterio.open('civemask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

calculate mean for ExG Masked 518 VI's

ExG_NDVImu = []

ExG_NDREmu = []

ExG_GNDVImu = []

ExG_ExGct = []

ExG_RDVImu = []

ExG_RGBVImu = []

50

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('518_exg_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_exg_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_NDREmu.append(np.nanmean(out_image))

 with rasterio.open('518_exg_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_exg_exg.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

 with rasterio.open('518_exg_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

51

 ExG_RDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_exg_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_RGBVImu.append(np.nanmean(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_NDVImu, ExG_NDREmu, ExG_GNDVImu, ExG_RDVImu, ExG_RGBVImu,
ExG_ExGct])

df = df.T

df.columns = ['ID', 'ExG_NDVImu', 'ExG_NDREmu', 'ExG_GNDVImu', 'ExG_RDVImu',
'ExG_RGBVImu', 'ExG_ExGct']

export data frame to excel file

df.to_excel('Output/ExG_Masked_VI_518.xlsx', index = False)

df

calculate mean for ExGR 518 Masked VI's

ExGR_NDVImu = []

ExGR_NDREmu = []

ExGR_GNDVImu = []

ExGR_RDVImu = []

ExGR_RGBVImu = []

ExGR_ExGRct = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

52

 with rasterio.open('518_exgr_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_exgr_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_NDREmu.append(np.nanmean(out_image))

 with rasterio.open('518_exgr_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_exgr_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_RDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_exgr_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_RGBVImu.append(np.nanmean(out_image))

 with rasterio.open('518_exgr_exgr.tif', 'r') as exgrsave:

 out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 ExGR_ExGRct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExGR_NDVImu, ExGR_NDREmu, ExGR_GNDVImu, ExGR_RDVImu,
ExGR_RGBVImu, ExGR_ExGRct])

53

df = df.T

df.columns = ['ID', 'ExGR_NDVImu', 'ExGR_NDREmu', 'ExGR_GNDVImu', 'ExGR_RDVImu',
'ExGR_RGBVImu', 'ExGR_ExGRct']

export data frame to excel file

df.to_excel('Output/ExGR_Masked_VI_518.xlsx', index = False)

df

calculate mean for CIVE 518 Masked VI's

CIVE_NDVImu = []

CIVE_NDREmu = []

CIVE_GNDVImu = []

CIVE_RDVImu = []

CIVE_RGBVImu = []

CIVE_CIVEct = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('518_cive_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_cive_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_NDREmu.append(np.nanmean(out_image))

54

 with rasterio.open('518_cive_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_cive_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_RDVImu.append(np.nanmean(out_image))

 with rasterio.open('518_cive_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_RGBVImu.append(np.nanmean(out_image))

 with rasterio.open('518_cive_cive.tif', 'r') as civesave:

 out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 CIVE_CIVEct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, CIVE_NDVImu, CIVE_NDREmu, CIVE_GNDVImu, CIVE_RDVImu,
CIVE_RGBVImu, CIVE_CIVEct])

df = df.T

df.columns = ['ID', 'CIVE_NDVImu', 'CIVE_NDREmu', 'CIVE_GNDVImu', 'CIVE_RDVImu',
'CIVE_RGBVImu', 'CIVE_CIVEct']

export data frame to excel file

df.to_excel('Output/CIVE_Masked_VI_518.xlsx', index = False)

df

#5/29

Import tif files

55

green = rasterio.open('529_green.tif')

red = rasterio.open('529_red.tif')

nir = rasterio.open('529_nir.tif')

re = rasterio.open('529_red edge.tif')

blue = rasterio.open('529_blue.tif')

read in 2d array

nirmap = nir.read(1)

greenmap = green.read(1)

redmap = red.read(1)

remap = re.read(1)

bluemap = blue.read(1)

correct band to remove negative values

nirc = np.where(nirmap < 0, 0, nirmap)

redc = np.where(redmap < 0, 0, redmap)

rec = np.where(remap < 0, 0, remap)

greenc = np.where(greenmap < 0, 0, greenmap)

bluec = np.where(bluemap < 0, 0, bluemap)

calculate unmasked VI

ndvimap = (nirc - redc) / (nirc + redc) #vi

ndremap = (nirc - rec) / (nirc + rec) #vi

gndvimap = (nirc - greenc) / (nirc + greenc) #vi

exgmap = (2*greenc) - redc - bluec #mask index

rdvimap = (nirc-redc)/(np.sqrt((nirc+redc))) #vi

rgbvimap = ((greenc**2) - (bluec*redc))/((greenc**2)+(bluec*redc)) #vi

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index

reshape VI's into 3d arrays

NDVI = np.reshape(ndvimap,(1,ndvimap.shape[0], ndvimap.shape[1]))

NDRE = np.reshape(ndremap,(1, ndremap.shape[0], ndremap.shape[1]))

56

GNDVI = np.reshape(gndvimap,(1, gndvimap.shape[0], gndvimap.shape[1]))

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1]))

RDVI = np.reshape(rdvimap,(1, rdvimap.shape[0], rdvimap.shape[1]))

RGBVI = np.reshape(rgbvimap,(1, rgbvimap.shape[0], rgbvimap.shape[1]))

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1]))

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1]))

out_meta = red.meta

with rasterio.open('ndvisave.tif', "w", **out_meta) as dest:

 dest.write(NDVI)

with rasterio.open('ndresave.tif', 'w', **out_meta) as dest:

 dest.write(NDRE)

with rasterio.open('gndvisave.tif', 'w', **out_meta) as dest:

 dest.write(GNDVI)

with rasterio.open('exgsave.tif', 'w', **out_meta) as dest:

 dest.write(ExG)

with rasterio.open('rdvisave.tif', 'w', **out_meta) as dest:

 dest.write(RDVI)

with rasterio.open('rgbvisave.tif', 'w', **out_meta) as dest:

 dest.write(RGBVI)

with rasterio.open('civesave.tif', 'w', **out_meta) as dest:

 dest.write(CIVE)

with rasterio.open('exgrsave.tif', 'w', **out_meta) as dest:

 dest.write(ExGR)

isolate the individual plots within the VI tif files using mask function with shp file

produce mean of VI pixels within each shp file plot for each VI while generating plot ids associated with
indices

NDVImu = []

NDREmu = []

GNDVImu = []

RDVImu = []

57

RGBVImu = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('ndvisave.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 NDVImu.append(np.nanmean(out_image))

 with rasterio.open('ndresave.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 NDREmu.append(np.nanmean(out_image))

 with rasterio.open('gndvisave.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('rdvisave.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 RDVImu.append(np.nanmean(out_image))

 with rasterio.open('rgbvisave.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

58

 RGBVImu.append(np.nanmean(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, NDVImu, NDREmu, GNDVImu, RDVImu, RGBVImu])

df = df.T

df.columns = ['ID', 'NDVImu', 'NDREmu', 'GNDVImu', 'RDVImu', 'RGBVImu']

export data frame to excel file

df.to_excel('Output/Unmasked_VI_529.xlsx', index = False)

df

Create 529 ExG Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image>=0.029, None, 0).astype(float)

 with rasterio.open('exgmask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

Create 529 ExGR Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('exgrsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image>=0.01, None, 0).astype(float)

59

 with rasterio.open('exgrmask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

Create 529 CIVE Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('civesave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image<=18.77, None, 0).astype(float)

 with rasterio.open('civemask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

calculate mean for ExG Masked 529 VI's

ExG_NDVImu = []

ExG_NDREmu = []

ExG_GNDVImu = []

ExG_ExGct = []

ExG_RDVImu = []

ExG_RGBVImu = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('529_exg_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

60

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_exg_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_NDREmu.append(np.nanmean(out_image))

 with rasterio.open('529_exg_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_exg_exg.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

 with rasterio.open('529_exg_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_RDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_exg_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_RGBVImu.append(np.nanmean(out_image))

#combine the means of the VI's into one data frame

df = DataFrame([ID, ExG_NDVImu, ExG_NDREmu, ExG_GNDVImu, ExG_RDVImu, ExG_RGBVImu,
ExG_ExGct])

df = df.T

61

df.columns = ['ID', 'ExG_NDVImu', 'ExG_NDREmu', 'ExG_GNDVImu', 'ExG_RDVImu',
'ExG_RGBVImu', 'ExG_ExGct']

export data frame to excel file

df.to_excel('Output/ExG_Masked_VI_529.xlsx', index = False)

df

calculate mean for ExGR 529 Masked VI's

ExGR_NDVImu = []

ExGR_NDREmu = []

ExGR_GNDVImu = []

ExGR_RDVImu = []

ExGR_RGBVImu = []

ExGR_ExGRct = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('529_exgr_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_exgr_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_NDREmu.append(np.nanmean(out_image))

62

 with rasterio.open('529_exgr_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_exgr_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_RDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_exgr_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_RGBVImu.append(np.nanmean(out_image))

 with rasterio.open('529_exgr_exgr.tif', 'r') as exgrsave:

 out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 ExGR_ExGRct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExGR_NDVImu, ExGR_NDREmu, ExGR_GNDVImu, ExGR_RDVImu,
ExGR_RGBVImu, ExGR_ExGRct])

df = df.T

df.columns = ['ID', 'ExGR_NDVImu', 'ExGR_NDREmu', 'ExGR_GNDVImu', 'ExGR_RDVImu',
'ExGR_RGBVImu', 'ExGR_ExGRct']

export data frame to excel file

df.to_excel('Output/ExGR_Masked_VI_529.xlsx', index = False)

df

calculate mean for CIVE 529 Masked VI's

CIVE_NDVImu = []

CIVE_NDREmu = []

63

CIVE_GNDVImu = []

CIVE_RDVImu = []

CIVE_RGBVImu = []

CIVE_CIVEct = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('529_cive_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_cive_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_NDREmu.append(np.nanmean(out_image))

 with rasterio.open('529_cive_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('529_cive_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_RDVImu.append(np.nanmean(out_image))

64

 with rasterio.open('529_cive_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_RGBVImu.append(np.nanmean(out_image))

 with rasterio.open('529_cive_cive.tif', 'r') as civesave:

 out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 CIVE_CIVEct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, CIVE_NDVImu, CIVE_NDREmu, CIVE_GNDVImu, CIVE_RDVImu,
CIVE_RGBVImu, CIVE_CIVEct])

df = df.T

df.columns = ['ID', 'CIVE_NDVImu', 'CIVE_NDREmu', 'CIVE_GNDVImu', 'CIVE_RDVImu',
'CIVE_RGBVImu', 'CIVE_CIVEct']

export data frame to excel file

df.to_excel('Output/CIVE_Masked_VI_529.xlsx', index = False)

df

#6/12

Import tif files

green = rasterio.open('612_green.tif')

red = rasterio.open('612_red.tif')

nir = rasterio.open('612_nir.tif')

re = rasterio.open('612_red edge.tif')

blue = rasterio.open('612_blue.tif')

read in 2d array

nirmap = nir.read(1)

greenmap = green.read(1)

redmap = red.read(1)

65

remap = re.read(1)

bluemap = blue.read(1)

correct band to remove negative values

nirc = np.where(nirmap < 0, 0, nirmap)

redc = np.where(redmap < 0, 0, redmap)

rec = np.where(remap < 0, 0, remap)

greenc = np.where(greenmap < 0, 0, greenmap)

bluec = np.where(bluemap < 0, 0, bluemap)

calculate unmasked VI

ndvimap = (nirc - redc) / (nirc + redc) #vi

ndremap = (nirc - rec) / (nirc + rec) #vi

gndvimap = (nirc - greenc) / (nirc + greenc) #vi

exgmap = (2*greenc) - redc - bluec #mask index

rdvimap = (nirc-redc)/(np.sqrt((nirc+redc))) #vi

rgbvimap = ((greenc**2) - (bluec*redc))/((greenc**2)+(bluec*redc)) #vi

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index

reshape VI's into 3d arrays

NDVI = np.reshape(ndvimap,(1,ndvimap.shape[0], ndvimap.shape[1]))

NDRE = np.reshape(ndremap,(1, ndremap.shape[0], ndremap.shape[1]))

GNDVI = np.reshape(gndvimap,(1, gndvimap.shape[0], gndvimap.shape[1]))

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1]))

RDVI = np.reshape(rdvimap,(1, rdvimap.shape[0], rdvimap.shape[1]))

RGBVI = np.reshape(rgbvimap,(1, rgbvimap.shape[0], rgbvimap.shape[1]))

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1]))

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1]))

out_meta = red.meta

66

with rasterio.open('ndvisave.tif', "w", **out_meta) as dest:

 dest.write(NDVI)

with rasterio.open('ndresave.tif', 'w', **out_meta) as dest:

 dest.write(NDRE)

with rasterio.open('gndvisave.tif', 'w', **out_meta) as dest:

 dest.write(GNDVI)

with rasterio.open('exgsave.tif', 'w', **out_meta) as dest:

 dest.write(ExG)

with rasterio.open('rdvisave.tif', 'w', **out_meta) as dest:

 dest.write(RDVI)

with rasterio.open('rgbvisave.tif', 'w', **out_meta) as dest:

 dest.write(RGBVI)

with rasterio.open('civesave.tif', 'w', **out_meta) as dest:

 dest.write(CIVE)

with rasterio.open('exgrsave.tif', 'w', **out_meta) as dest:

 dest.write(ExGR)

isolate the individual plots within the VI tif files using mask function with shp file

produce mean of VI pixels within each shp file plot for each VI while generating plot ids associated with
indices

NDVImu = []

NDREmu = []

GNDVImu = []

RDVImu = []

RGBVImu = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

67

 with rasterio.open('ndvisave.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 NDVImu.append(np.nanmean(out_image))

 with rasterio.open('ndresave.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 NDREmu.append(np.nanmean(out_image))

 with rasterio.open('gndvisave.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('rdvisave.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 RDVImu.append(np.nanmean(out_image))

 with rasterio.open('rgbvisave.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 RGBVImu.append(np.nanmean(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, NDVImu, NDREmu, GNDVImu, RDVImu, RGBVImu])

df = df.T

df.columns = ['ID', 'NDVImu', 'NDREmu', 'GNDVImu', 'RDVImu', 'RGBVImu']

export data frame to excel file

68

df.to_excel('Output/Unmasked_VI_612.xlsx', index = False)

df

Create 612 ExG Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image>=0.029, None, 0).astype(float)

 with rasterio.open('exgmask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

Create 612 ExGR Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 with rasterio.open('exgrsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image>=0.01, None, 0).astype(float)

 with rasterio.open('exgrmask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

Create 612 CIVE Mask

for i in range (1):

 with fiona.open('CMaskShape.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

69

 with rasterio.open('civesave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape)

 out_image = np.where(out_image<=18.77, None, 0).astype(float)

 with rasterio.open('civemask.tif', 'w', **out_meta) as dest:

 dest.write(out_image)

calculate mean for ExG Masked 612 VI's

ExG_NDVImu = []

ExG_NDREmu = []

ExG_GNDVImu = []

ExG_ExGct = []

ExG_RDVImu = []

ExG_RGBVImu = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('612_exg_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_exg_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_NDREmu.append(np.nanmean(out_image))

70

 with rasterio.open('612_exg_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_exg_exg.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

 with rasterio.open('612_exg_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_RDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_exg_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExG_RGBVImu.append(np.nanmean(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_NDVImu, ExG_NDREmu, ExG_GNDVImu, ExG_RDVImu, ExG_RGBVImu,
ExG_ExGct])

df = df.T

df.columns = ['ID', 'ExG_NDVImu', 'ExG_NDREmu', 'ExG_GNDVImu', 'ExG_RDVImu',
'ExG_RGBVImu', 'ExG_ExGct']

export data frame to excel file

df.to_excel('Output/ExG_Masked_VI_612.xlsx', index = False)

df

calculate mean for ExGR 612 Masked VI's

ExGR_NDVImu = []

ExGR_NDREmu = []

71

ExGR_GNDVImu = []

ExGR_RDVImu = []

ExGR_RGBVImu = []

ExGR_ExGRct = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('612_exgr_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_exgr_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_NDREmu.append(np.nanmean(out_image))

 with rasterio.open('612_exgr_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_exgr_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_RDVImu.append(np.nanmean(out_image))

72

 with rasterio.open('612_exgr_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 ExGR_RGBVImu.append(np.nanmean(out_image))

 with rasterio.open('612_exgr_exgr.tif', 'r') as exgrsave:

 out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

 ExGR_ExGRct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExGR_NDVImu, ExGR_NDREmu, ExGR_GNDVImu, ExGR_RDVImu,
ExGR_RGBVImu, ExGR_ExGRct])

df = df.T

df.columns = ['ID', 'ExGR_NDVImu', 'ExGR_NDREmu', 'ExGR_GNDVImu', 'ExGR_RDVImu',
'ExGR_RGBVImu', 'ExGR_ExGRct']

export data frame to excel file

df.to_excel('Output/ExGR_Masked_VI_612.xlsx', index = False)

df

calculate mean for CIVE 612 Masked VI's

CIVE_NDVImu = []

CIVE_NDREmu = []

CIVE_GNDVImu = []

CIVE_RDVImu = []

CIVE_RGBVImu = []

CIVE_CIVEct = []

ID = []

for i in range(80):

 with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

73

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('612_cive_ndvi.tif', 'r') as ndvisave:

 out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_NDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_cive_ndre.tif', 'r') as ndresave:

 out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_NDREmu.append(np.nanmean(out_image))

 with rasterio.open('612_cive_gndvi.tif', 'r') as gndvisave:

 out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_GNDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_cive_rdvi.tif', 'r') as rdvisave:

 out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_RDVImu.append(np.nanmean(out_image))

 with rasterio.open('612_cive_rgbvi.tif', 'r') as rgbvisave:

 out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, None, out_image).astype(float)

 CIVE_RGBVImu.append(np.nanmean(out_image))

 with rasterio.open('612_cive_cive.tif', 'r') as civesave:

 out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True)

 out_image = np.where(out_image==0, 0, out_image).astype(float)

74

 CIVE_CIVEct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, CIVE_NDVImu, CIVE_NDREmu, CIVE_GNDVImu, CIVE_RDVImu,
CIVE_RGBVImu, CIVE_CIVEct])

df = df.T

df.columns = ['ID', 'CIVE_NDVImu', 'CIVE_NDREmu', 'CIVE_GNDVImu', 'CIVE_RDVImu',
'CIVE_RGBVImu', 'CIVE_CIVEct']

export data frame to excel file

df.to_excel('Output/CIVE_Masked_VI_612.xlsx', index = False)

df

75

Appendix B: True Color Image Processing Python Code

import rasterio

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import fiona

import rasterio.mask

from pandas import DataFrame

import geopandas as gpd

425 Analysis

#Read in RGB file

image = rasterio.open('425_cRGB.tif')

#read in 2d array

redmap = image.read(1)

greenmap = image.read(2)

bluemap = image.read(3)

imgmeta = rasterio.open('425_cRGB_Blue.tif')

correct band to remove negative values

redc = np.where(redmap < 0, 0, redmap)

greenc = np.where(greenmap < 0, 0, greenmap)

bluec = np.where(bluemap < 0, 0, bluemap)

calculate indices

exgmap = (2*greenc) - redc - bluec #mask index

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index

reshape VI's so they can be used with rast functions

76

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1]))

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1]))

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1]))

#define out_meta using the meta dat from one of the original tif files

out_meta = imgmeta.meta

save reshaped VI's as tif files

with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest:

 dest.write(ExG)

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest:

 dest.write(CIVE)

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest:

 dest.write(ExGR)

#Change crs of shp to epsg 32614

data = gpd.read_file('RGB Grid 425.shp')

data = data.to_crs(epsg=32614)

data.to_file('CRGB Grid 425.shp')

calculate mean for ExG Masked 425 VI's

ExG_ExGct = []

ExGR_ExGRct = []

CIVE_CIVEct = []

ID = []

for i in range(80):

 with fiona.open('CRGB Grid 425.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

77

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=175, out_image, 0).astype(float)

 out_image = np.where(out_image>=45, out_image, 0).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

 with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave:

 out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=158, out_image, 0).astype(float)

 ExGR_ExGRct.append(np.count_nonzero(out_image))

 with rasterio.open('rgb_civesave.tif', 'r') as civesave:

 out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True)

 out_image = np.where(out_image>=175, out_image, 0).astype(float)

 CIVE_CIVEct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct])

df = df.T

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct']

export data frame to excel file

df.to_excel('Output/RGB_Masked_VI_425.xlsx', index = False)

df

Check grid size

calculate ExG Masked 425 VI's

ExG_ExGct = []

78

ID = []

for i in range(80):

 with fiona.open('CRGB Grid 425.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=175, 225, out_image).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_ExGct])

df = df.T

df.columns = ['ID', 'ExG_ExGct']

df

#change remaining shape file crs's

data = gpd.read_file('RGB Grid 518.shp')

data = data.to_crs(epsg=32614)

data.to_file('CRGB Grid 518.shp')

data = gpd.read_file('RGB Grid 529.shp')

data = data.to_crs(epsg=32614)

data.to_file('CRGB Grid 529.shp')

79

data = gpd.read_file('RGB Grid 612.shp')

data = data.to_crs(epsg=32614)

data.to_file('CRGB Grid 612.shp')

518 Analysis

#Read in RGB file

image = rasterio.open('518_cRGB.tif')

#read in 2d array

redmap = image.read(1)

greenmap = image.read(2)

bluemap = image.read(3)

correct band to remove negative values

redc = np.where(redmap < 0, 0, redmap)

greenc = np.where(greenmap < 0, 0, greenmap)

bluec = np.where(bluemap < 0, 0, bluemap)

calculate unmasked VI

exgmap = (2*greenc) - redc - bluec #mask index

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index

reshape VI's so they can be used with rast functions

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1]))

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1]))

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1]))

#define out_meta using the meta dat from one of the original tif files

imgmeta = rasterio.open('518_cRGB_Red.tif')

out_meta = imgmeta.meta

save reshaped VI's as tif files

80

with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest:

 dest.write(ExG)

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest:

 dest.write(CIVE)

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest:

 dest.write(ExGR)

calculate mean for ExG Masked 518 VI's

ExG_ExGct = []

ExGR_ExGRct = []

CIVE_CIVEct = []

ID = []

for i in range(80):

 with fiona.open('CRGB Grid 518.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=175, out_image, 0).astype(float)

 out_image = np.where(out_image>=45, out_image, 0).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

 with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave:

 out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=65, 225, out_image).astype(float)

 out_image = np.where(out_image>=165, out_image, 0).astype(float)

 ExGR_ExGRct.append(np.count_nonzero(out_image))

81

 with rasterio.open('rgb_civesave.tif', 'r') as civesave:

 out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=10, 225, out_image).astype(float)

 out_image = np.where(out_image>=175, out_image, 0).astype(float)

 CIVE_CIVEct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct])

df = df.T

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct']

export data frame to excel file

df.to_excel('Output/RGB_Masked_VI_518.xlsx', index = False)

df

Check grid size

calculate ExG Masked 518 VI's

ExG_ExGct = []

ID = []

for i in range(80):

 with fiona.open('CRGB Grid 518.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

82

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=175, 225, out_image).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_ExGct])

df = df.T

df.columns = ['ID', 'ExG_ExGct']

df

529 Analysis

#Read in RGB file

image = rasterio.open('529_cRGB.tif')

#read in 2d array

redmap = image.read(1)

greenmap = image.read(2)

bluemap = image.read(3)

correct band to remove negative values

redc = np.where(redmap < 0, 0, redmap)

greenc = np.where(greenmap < 0, 0, greenmap)

bluec = np.where(bluemap < 0, 0, bluemap)

calculate unmasked VI

exgmap = (2*greenc) - redc - bluec #mask index

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index

reshape VI's so they can be used with rast functions

83

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1]))

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1]))

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1]))

#define out_meta using the meta dat from one of the original tif files

imgmeta = rasterio.open('529_cRGB_Red.tif')

out_meta = imgmeta.meta

save reshaped VI's as tif files

with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest:

 dest.write(ExG)

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest:

 dest.write(CIVE)

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest:

 dest.write(ExGR)

calculate mean for ExG Masked 529 VI's

ExG_ExGct = []

ExGR_ExGRct = []

CIVE_CIVEct = []

ID = []

for i in range(80):

 with fiona.open('CRGB Grid 529.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

84

 out_image = np.where(out_image<=175, out_image, 0).astype(float)

 out_image = np.where(out_image>=30, out_image, 0).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

 with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave:

 out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=65, out_image, 0).astype(float)

 ExGR_ExGRct.append(np.count_nonzero(out_image))

 with rasterio.open('rgb_civesave.tif', 'r') as civesave:

 out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=10, 225, out_image).astype(float)

 out_image = np.where(out_image>=175, out_image, 0).astype(float)

 CIVE_CIVEct.append(np.count_nonzero(out_image))

#combine the means of the VI's into one data frame

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct])

df = df.T

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct']

export data frame to excel file

df.to_excel('Output/RGB_Masked_VI_529.xlsx', index = False)

df

Check grid size

calculate ExG Masked 529 VI's

ExG_ExGct = []

ID = []

85

for i in range(80):

 with fiona.open('CRGB Grid 529.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=175, 225, out_image).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_ExGct])

df = df.T

df.columns = ['ID', 'ExG_ExGct']

df

612 Analysis

#Read in RGB file

image = rasterio.open('612_cRGB.tif')

#read in 2d array

redmap = image.read(1)

greenmap = image.read(2)

bluemap = image.read(3)

correct band to remove negative values

redc = np.where(redmap < 0, 0, redmap)

greenc = np.where(greenmap < 0, 0, greenmap)

86

bluec = np.where(bluemap < 0, 0, bluemap)

calculate unmasked VI

exgmap = (2*greenc) - redc - bluec #mask index

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index

reshape VI's so they can be used with rast functions

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1]))

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1]))

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1]))

#define out_meta using the meta dat from one of the original tif files

imgmeta = rasterio.open('612_cRGB_Red.tif')

out_meta = imgmeta.meta

save reshaped VI's as tif files

with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest:

 dest.write(ExG)

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest:

 dest.write(CIVE)

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest:

 dest.write(ExGR)

calculate mean for ExG Masked 612 VI's

ExG_ExGct = []

ExGR_ExGRct = []

CIVE_CIVEct = []

ID = []

for i in range(80):

87

 with fiona.open('CRGB Grid 612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=175, out_image, 0).astype(float)

 out_image = np.where(out_image>=45, out_image, 0).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

 with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave:

 out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=65, out_image, 0).astype(float)

 ExGR_ExGRct.append(np.count_nonzero(out_image))

 with rasterio.open('rgb_civesave.tif', 'r') as civesave:

 out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=10, 225, out_image).astype(float)

 out_image = np.where(out_image>=175, out_image, 0).astype(float)

 CIVE_CIVEct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct])

df = df.T

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct']

export data frame to excel file

df.to_excel('Output/RGB_Masked_VI_612.xlsx', index = False)

88

df

Check grid size

calculate ExG Masked 612 VI's

ExG_ExGct = []

ID = []

for i in range(80):

 with fiona.open('CRGB Grid 612.shp', 'r') as shapefile:

 shape = [[feature['geometry'] for feature in shapefile][i]]

 feature = [feature for feature in shapefile][i]

 idx = feature ['properties']['Grid']

 ID.append(idx)

 with rasterio.open('rgb_exgsave.tif', 'r') as exgsave:

 out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True)

 out_image = np.where(out_image<=175, 225, out_image).astype(float)

 ExG_ExGct.append(np.count_nonzero(out_image))

#combine the means of th VI's into one data frame

df = DataFrame([ID, ExG_ExGct])

df = df.T

df.columns = ['ID', 'ExG_ExGct']

df

89

Appendix C: Statistical Analysis RStudio Code


```{r setup, include=FALSE} 

library(knitr) 

library(tidyverse) 

library(lme4) 

library(car) 

library(broom) 

library(lmerTest) 

library(performance) 

library(GGally) 

library(MuMIn) 

library(optimx) 

library(caret) 

``` 

```{r} 

# Data import 

 

data_multi <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) 

 

data_rgb <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) 

 

data_multi_518 <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 



90 
 

         Flight=factor(Flight), 

         HN=factor(HN)) %>% 

  filter(Flight=="518") 

 

data_rgb_518 <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="518") 

 

data_multi_529 <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) %>% 

  filter(Flight=="529") 

 

data_rgb_529 <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="529") 

 

data_multi_612 <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) %>% 

  filter(Flight=="612") 

 

data_rgb_612 <- read_csv("RGB Data.csv") %>% 



91 
 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="612") 

 

 

data_rgb_425 <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="425") 

 

 

``` 



```{r, echo = FALSE} 

# Check significance between genotypes 

# All flights Anova 

 

Stand_mod <- lm(Stand~name + bloc, data = data_multi) 

Anova(Stand_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Winter Survival Anova All Flights" ) 

 

Stand_mod_518 <- lm(Stand~name + bloc, data = data_multi_518) 

Anova(Stand_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 Winter Survival Anova" ) 

 

Stand_mod_529 <- lm(Stand~name + bloc, data = data_multi_529) 

Anova(Stand_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 Winter Survival Anova" ) 

 



92 
 

Stand_mod_612 <- lm(Stand~name + bloc, data = data_multi_612) 

Anova(Stand_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 Winter Survival Anova" ) 

 

ndvi_mod <- lm(NDVImu~name+bloc, data = data_multi) 

Anova(ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "NDVI Anova" ) 

 

ndre_mod <- lm(NDREmu~name+bloc, data = data_multi) 

Anova(ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "NDRE Anova" ) 

 

gndvi_mod <- lm(GNDVImu~name+bloc, data = data_multi) 

Anova(gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "GNDVI Anova" ) 

 

rdvi_mod <- lm(RDVImu~name+bloc, data = data_multi) 

Anova(rdvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "RDVI Anova" ) 

 

rgbvi_mod <- lm(RGBVImu~name+bloc, data = data_multi) 

Anova(rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "RGBVI Anova" ) 

 

exg_mod <- lm(ExG_ExGct~name+bloc, data = data_multi) 

Anova(exg_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG Anova" ) 

 

exg_ndvi_mod <- lm(ExG_NDVImu~name+bloc, data = data_multi) 

Anova(exg_ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_NDVI Anova" ) 

 

exg_ndre_mod <- lm(ExG_NDREmu~name+bloc, data = data_multi) 



93 
 

Anova(exg_ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_NDRE Anova" ) 

 

exg_gndvi_mod <- lm(ExG_GNDVImu~name+bloc, data = data_multi) 

Anova(exg_gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_GNDVI Anova" ) 

 

exg_rdvi_mod <- lm(ExG_RDVImu~name+bloc, data = data_multi) 

Anova(exg_rdvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_RDVI Anova" ) 

 

exg_rgbvi_mod <- lm(ExG_RGBVImu~name+bloc, data = data_multi) 

Anova(exg_rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_RGBVI Anova" ) 

 

exgr_mod <- lm(ExGR_ExGRct~name+bloc, data = data_multi) 

Anova(exgr_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR Anova" ) 

 

exgr_ndvi_mod <- lm(ExGR_NDVImu~name+bloc, data = data_multi) 

Anova(exgr_ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_NDVI Anova" ) 

 

exgr_ndre_mod <- lm(ExGR_NDREmu~name+bloc, data = data_multi) 

Anova(exgr_ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod <- lm(ExGR_GNDVImu~name+bloc, data = data_multi) 

Anova(exgr_gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod <- lm(ExGR_RDVImu~name+bloc, data = data_multi) 

Anova(exgr_rdvi_mod) %>% 



94 
 

  kable(digits=5, booktabs=T, caption = "ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod <- lm(ExGR_RGBVImu~name+bloc, data = data_multi) 

Anova(exgr_rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_RGBVI Anova" ) 

 

cive_mod <- lm(CIVE_CIVEct~name+bloc, data = data_multi) 

Anova(cive_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE Anova" ) 

 

cive_ndvi_mod <- lm(CIVE_NDVImu~name+bloc, data = data_multi) 

Anova(cive_ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_NDVI Anova" ) 

 

cive_ndre_mod <- lm(CIVE_NDREmu~name+bloc, data = data_multi) 

Anova(cive_ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_NDRE Anova" ) 

 

cive_gndvi_mod <- lm(CIVE_GNDVImu~name+bloc, data = data_multi) 

Anova(cive_gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod <- lm(CIVE_RDVImu~name+bloc, data = data_multi) 

Anova(cive_rdvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod <- lm(CIVE_RGBVImu~name+bloc, data = data_multi) 

Anova(cive_rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_RGBVI Anova" ) 

 

#### 518 Anova 

 

ndvi_mod_518 <- lm(NDVImu~name+bloc, data = data_multi_518) 



95 
 

Anova(ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 NDVI Anova" ) 

 

ndre_mod_518 <- lm(NDREmu~name+bloc, data = data_multi_518) 

Anova(ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 NDRE Anova" ) 

 

gndvi_mod_518 <- lm(GNDVImu~name+bloc, data = data_multi_518) 

Anova(gndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 GNDVI Anova" ) 

 

rdvi_mod_518 <- lm(RDVImu~name+bloc, data = data_multi_518) 

Anova(rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 RDVI Anova" ) 

 

rgbvi_mod_518 <- lm(RGBVImu~name+bloc, data = data_multi_518) 

Anova(rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 RGBVI Anova" ) 

 

exg_mod_518 <- lm(ExG_ExGct~name+bloc, data = data_multi_518) 

Anova(exg_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG Anova" ) 

 

exg_ndvi_mod_518 <- lm(ExG_NDVImu~name+bloc, data = data_multi_518) 

Anova(exg_ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = " 518 ExG_NDVI Anova" ) 

 

exg_ndre_mod_518 <- lm(ExG_NDREmu~name+bloc, data = data_multi_518) 

Anova(exg_ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG_NDRE Anova" ) 

 

exg_gndvi_mod_518 <- lm(ExG_GNDVImu~name+bloc, data = data_multi_518) 

Anova(exg_gndvi_mod_518) %>% 



96 
 

  kable(digits=5, booktabs=T, caption = "518 ExG_GNDVI Anova" ) 

 

exg_rdvi_mod_518 <- lm(ExG_RDVImu~name+bloc, data = data_multi_518) 

Anova(exg_rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG_RDVI Anova" ) 

 

exg_rgbvi_mod_518 <- lm(ExG_RGBVImu~name+bloc, data = data_multi_518) 

Anova(exg_rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG_RGBVI Anova" ) 

 

exgr_mod_518 <- lm(ExGR_ExGRct~name+bloc, data = data_multi_518) 

Anova(exgr_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR Anova" ) 

 

exgr_ndvi_mod_518 <- lm(ExGR_NDVImu~name+bloc, data = data_multi_518) 

Anova(exgr_ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_NDVI Anova" ) 

 

exgr_ndre_mod_518 <- lm(ExGR_NDREmu~name+bloc, data = data_multi_518) 

Anova(exgr_ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod_518 <- lm(ExGR_GNDVImu~name+bloc, data = data_multi_518) 

Anova(exgr_gndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod_518 <- lm(ExGR_RDVImu~name+bloc, data = data_multi_518) 

Anova(exgr_rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod_518 <- lm(ExGR_RGBVImu~name+bloc, data = data_multi_518) 

Anova(exgr_rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_RGBVI Anova" ) 



97 
 

 

cive_mod_518 <- lm(CIVE_CIVEct~name+bloc, data = data_multi_518) 

Anova(cive_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE Anova" ) 

 

cive_ndvi_mod_518 <- lm(CIVE_NDVImu~name+bloc, data = data_multi_518) 

Anova(cive_ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_NDVI Anova" ) 

 

cive_ndre_mod_518 <- lm(CIVE_NDREmu~name+bloc, data = data_multi_518) 

Anova(cive_ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_NDRE Anova" ) 

 

cive_gndvi_mod_518 <- lm(CIVE_GNDVImu~name+bloc, data = data_multi_518) 

Anova(cive_gndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod_518 <- lm(CIVE_RDVImu~name+bloc, data = data_multi_518) 

Anova(cive_rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod_518 <- lm(CIVE_RGBVImu~name+bloc, data = data_multi_518) 

Anova(cive_rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_RGBVI Anova" ) 

 

### 529 Anova 

 

ndvi_mod_529 <- lm(NDVImu~name+bloc, data = data_multi_529) 

Anova(ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 NDVI Anova" ) 

 

ndre_mod_529 <- lm(NDREmu~name+bloc, data = data_multi_529) 

Anova(ndre_mod_529) %>% 



98 
 

  kable(digits=5, booktabs=T, caption = "529 NDRE Anova" ) 

 

gndvi_mod_529 <- lm(GNDVImu~name+bloc, data = data_multi_529) 

Anova(gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 GNDVI Anova" ) 

 

rdvi_mod_529 <- lm(RDVImu~name+bloc, data = data_multi_529) 

Anova(rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 RDVI Anova" ) 

 

rgbvi_mod_529 <- lm(RGBVImu~name+bloc, data = data_multi_529) 

Anova(rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 RGBVI Anova" ) 

 

exg_mod_529 <- lm(ExG_ExGct~name+bloc, data = data_multi_529) 

Anova(exg_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG Anova" ) 

 

exg_ndvi_mod_529 <- lm(ExG_NDVImu~name+bloc, data = data_multi_529) 

Anova(exg_ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = " 529 ExG_NDVI Anova" ) 

 

exg_ndre_mod_529 <- lm(ExG_NDREmu~name+bloc, data = data_multi_529) 

Anova(exg_ndre_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_NDRE Anova" ) 

 

exg_gndvi_mod_529 <- lm(ExG_GNDVImu~name+bloc, data = data_multi_529) 

Anova(exg_gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_GNDVI Anova" ) 

 

exg_rdvi_mod_529 <- lm(ExG_RDVImu~name+bloc, data = data_multi_529) 

Anova(exg_rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_RDVI Anova" ) 



99 
 

 

exg_rgbvi_mod_529 <- lm(ExG_RGBVImu~name+bloc, data = data_multi_529) 

Anova(exg_rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_RGBVI Anova" ) 

 

exgr_mod_529 <- lm(ExGR_ExGRct~name+bloc, data = data_multi_529) 

Anova(exgr_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR Anova" ) 

 

exgr_ndvi_mod_529 <- lm(ExGR_NDVImu~name+bloc, data = data_multi_529) 

Anova(exgr_ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_NDVI Anova" ) 

 

exgr_ndre_mod_529 <- lm(ExGR_NDREmu~name+bloc, data = data_multi_529) 

Anova(exgr_ndre_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod_529 <- lm(ExGR_GNDVImu~name+bloc, data = data_multi_529) 

Anova(exgr_gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod_529 <- lm(ExGR_RDVImu~name+bloc, data = data_multi_529) 

Anova(exgr_rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod_529 <- lm(ExGR_RGBVImu~name+bloc, data = data_multi_529) 

Anova(exgr_rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_RGBVI Anova" ) 

 

cive_mod_529 <- lm(CIVE_CIVEct~name+bloc, data = data_multi_529) 

Anova(cive_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE Anova" ) 

 



100 
 

cive_ndvi_mod_529 <- lm(CIVE_NDVImu~name+bloc, data = data_multi_529) 

Anova(cive_ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_NDVI Anova" ) 

 

cive_ndre_mod_529 <- lm(CIVE_NDREmu~name+bloc, data = data_multi_529) 

Anova(cive_ndre_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_NDRE Anova" ) 

 

cive_gndvi_mod_529 <- lm(CIVE_GNDVImu~name+bloc, data = data_multi_529) 

Anova(cive_gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod_529 <- lm(CIVE_RDVImu~name+bloc, data = data_multi_529) 

Anova(cive_rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod_529 <- lm(CIVE_RGBVImu~name+bloc, data = data_multi_529) 

Anova(cive_rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_RGBVI Anova" ) 

 

### 612 Anova 

 

ndvi_mod_612 <- lm(NDVImu~name+bloc, data = data_multi_612) 

Anova(ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 NDVI Anova" ) 

 

ndre_mod_612 <- lm(NDREmu~name+bloc, data = data_multi_612) 

Anova(ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 NDRE Anova" ) 

 

gndvi_mod_612 <- lm(GNDVImu~name+bloc, data = data_multi_612) 

Anova(gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 GNDVI Anova" ) 



101 
 

 

rdvi_mod_612 <- lm(RDVImu~name+bloc, data = data_multi_612) 

Anova(rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 RDVI Anova" ) 

 

rgbvi_mod_612 <- lm(RGBVImu~name+bloc, data = data_multi_612) 

Anova(rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 RGBVI Anova" ) 

 

exg_mod_612 <- lm(ExG_ExGct~name+bloc, data = data_multi_612) 

Anova(exg_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG Anova" ) 

 

exg_ndvi_mod_612 <- lm(ExG_NDVImu~name+bloc, data = data_multi_612) 

Anova(exg_ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = " 612 ExG_NDVI Anova" ) 

 

exg_ndre_mod_612 <- lm(ExG_NDREmu~name+bloc, data = data_multi_612) 

Anova(exg_ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_NDRE Anova" ) 

 

exg_gndvi_mod_612 <- lm(ExG_GNDVImu~name+bloc, data = data_multi_612) 

Anova(exg_gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_GNDVI Anova" ) 

 

exg_rdvi_mod_612 <- lm(ExG_RDVImu~name+bloc, data = data_multi_612) 

Anova(exg_rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_RDVI Anova" ) 

 

exg_rgbvi_mod_612 <- lm(ExG_RGBVImu~name+bloc, data = data_multi_612) 

Anova(exg_rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_RGBVI Anova" ) 

 



102 
 

exgr_mod_612 <- lm(ExGR_ExGRct~name+bloc, data = data_multi_612) 

Anova(exgr_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR Anova" ) 

 

exgr_ndvi_mod_612 <- lm(ExGR_NDVImu~name+bloc, data = data_multi_612) 

Anova(exgr_ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_NDVI Anova" ) 

 

exgr_ndre_mod_612 <- lm(ExGR_NDREmu~name+bloc, data = data_multi_612) 

Anova(exgr_ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod_612 <- lm(ExGR_GNDVImu~name+bloc, data = data_multi_612) 

Anova(exgr_gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod_612 <- lm(ExGR_RDVImu~name+bloc, data = data_multi_612) 

Anova(exgr_rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod_612 <- lm(ExGR_RGBVImu~name+bloc, data = data_multi_612) 

Anova(exgr_rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_RGBVI Anova" ) 

 

cive_mod_612 <- lm(CIVE_CIVEct~name+bloc, data = data_multi_612) 

Anova(cive_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE Anova" ) 

 

cive_ndvi_mod_612 <- lm(CIVE_NDVImu~name+bloc, data = data_multi_612) 

Anova(cive_ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_NDVI Anova" ) 

 

cive_ndre_mod_612 <- lm(CIVE_NDREmu~name+bloc, data = data_multi_612) 



103 
 

Anova(cive_ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_NDRE Anova" ) 

 

cive_gndvi_mod_612 <- lm(CIVE_GNDVImu~name+bloc, data = data_multi_612) 

Anova(cive_gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod_612 <- lm(CIVE_RDVImu~name+bloc, data = data_multi_612) 

Anova(cive_rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod_612 <- lm(CIVE_RGBVImu~name+bloc, data = data_multi_612) 

Anova(cive_rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_RGBVI Anova" ) 

 

### RGB Anova 

 

Stand_mod_RGB <- lm(Stand~name + bloc, data = data_rgb) 

Anova(Stand_mod_RGB) %>% 

  kable(digits=5, booktabs=T, caption = "RGB Winter Survival Anova All Flights" ) 

 

Stand_mod_RGB_425 <- lm(Stand~name + bloc, data = data_rgb_425) 

Anova(Stand_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 Winter Survival Anova" ) 

 

Stand_mod_RGB_518 <- lm(Stand~name + bloc, data = data_rgb_518) 

Anova(Stand_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 Winter Survival Anova" ) 

 

Stand_mod_RGB_529 <- lm(Stand~name + bloc, data = data_rgb_529) 

Anova(Stand_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 Winter Survival Anova" ) 

 



104 
 

Stand_mod_RGB_612 <- lm(Stand~name + bloc, data = data_rgb_612) 

Anova(Stand_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 Winter Survival Anova" ) 

 

exg_mod_RGB_425 <- lm(ExG_ExGct~name+bloc, data = data_rgb_425) 

Anova(exg_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 425 ExG Anova" ) 

 

exgr_mod_RGB_425 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_425) 

Anova(exgr_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 425 ExGR Anova" ) 

 

cive_mod_RGB_425 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_425) 

Anova(cive_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 425 CIVE Anova" ) 

 

 

exg_mod_RGB_518 <- lm(ExG_ExGct~name+bloc, data = data_rgb_518) 

Anova(exg_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 ExG Anova" ) 

 

exgr_mod_RGB_518 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_518) 

Anova(exgr_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 ExGR Anova" ) 

 

cive_mod_RGB_518 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_518) 

Anova(cive_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 CIVE Anova" ) 

 

 

exg_mod_RGB_529 <- lm(ExG_ExGct~name+bloc, data = data_rgb_529) 

Anova(exg_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 ExG Anova" ) 



105 
 

 

exgr_mod_RGB_529 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_529) 

Anova(exgr_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 ExGR Anova" ) 

 

cive_mod_RGB_529 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_529) 

Anova(cive_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 CIVE Anova" ) 

 

 

exg_mod_RGB_612 <- lm(ExG_ExGct~name+bloc, data = data_rgb_612) 

Anova(exg_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 ExG Anova" ) 

 

exgr_mod_RGB_612 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_612) 

Anova(exgr_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 ExGR Anova" ) 

 

cive_mod_RGB_612 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_612) 

Anova(cive_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 CIVE Anova" ) 

 

``` 



```{r} 

# Combined Model for Stand Multi Spec 

multi_mixed_mod <- lm(Stand~NDVImu*Flight + NDREmu*Flight + GNDVImu*Flight + 
RDVImu*Flight + RGBVImu*Flight + ExG_NDVImu*Flight + ExG_NDREmu*Flight + 
ExG_GNDVImu*Flight + ExG_RDVImu*Flight + I(ExG_ExGct/81300)*Flight + ExGR_NDVImu*Flight 
+ ExGR_NDREmu*Flight + ExGR_GNDVImu*Flight + ExGR_RDVImu*Flight + 
ExGR_RGBVImu*Flight + I(ExGR_ExGRct/81300)*Flight + CIVE_NDVImu*Flight + 
CIVE_NDREmu*Flight + CIVE_GNDVImu*Flight + CIVE_RDVImu*Flight + CIVE_RGBVImu*Flight 
+ I(CIVE_CIVEct/81300)*Flight,  

                            data = data_multi) 

 

 



106 
 

multi_mixed_518_mod <- lm(Stand~NDVImu + NDREmu + GNDVImu + RDVImu + RGBVImu + 
ExG_NDVImu + ExG_NDREmu + ExG_GNDVImu + ExG_RDVImu + I(ExG_ExGct/81300) + 
ExG_RGBVImu + ExGR_NDVImu + ExGR_NDREmu + ExGR_GNDVImu + ExGR_RDVImu + 
ExGR_RGBVImu + I(ExGR_ExGRct/81300) + CIVE_NDVImu + CIVE_NDREmu + CIVE_GNDVImu 
+ CIVE_RDVImu + CIVE_RGBVImu + I(CIVE_CIVEct/81300),  

                            data = data_multi_518) 

 

multi_mixed_529_mod <- lm(Stand~NDVImu + NDREmu + GNDVImu + RDVImu + RGBVImu + 
ExG_NDVImu + ExG_NDREmu + ExG_GNDVImu + ExG_RDVImu + I(ExG_ExGct/81300) + 
ExG_RGBVImu + ExGR_NDVImu + ExGR_NDREmu + ExGR_GNDVImu + ExGR_RDVImu + 
ExGR_RGBVImu + I(ExGR_ExGRct/81300) + CIVE_NDVImu + CIVE_NDREmu + CIVE_GNDVImu 
+ CIVE_RDVImu + CIVE_RGBVImu + I(CIVE_CIVEct/81300), 

                            data = data_multi_529) 

 

multi_mixed_612_mod <- lm(Stand~NDVImu + NDREmu + GNDVImu + RDVImu + RGBVImu + 
ExG_NDVImu + ExG_NDREmu + ExG_GNDVImu + ExG_RDVImu + I(ExG_ExGct/81300) + 
ExG_RGBVImu + ExGR_NDVImu + ExGR_NDREmu + ExGR_GNDVImu + ExGR_RDVImu + 
ExGR_RGBVImu + I(ExGR_ExGRct/81300) + CIVE_NDVImu + CIVE_NDREmu + CIVE_GNDVImu 
+ CIVE_RDVImu + CIVE_RGBVImu + I(CIVE_CIVEct/81300), 

                            data = data_multi_612) 

 

Anova(multi_mixed_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova Mixed" ) 

 

Anova(multi_mixed_518_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 518 Mixed" ) 

 

Anova(multi_mixed_529_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 529 Mixed" ) 

 

Anova(multi_mixed_612_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 612 Mixed" ) 

``` 

```{r} 

 

# Multi-SPec paired plots 

 



107 
 

ggpairs(data_multi, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("Unmasked Pairs Plots") 

 

ggpairs(data_multi, columns=c("Stand","ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("ExG Pairs Plots") 

 

ggpairs(data_multi, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", "ExGR_GNDVImu", 
"ExGR_RDVImu", "ExG_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("ExGR Pairs Plots") 

ggpairs(data_multi, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu",  "CIVE_CIVEct")) + 

  ggtitle("CIVE Pairs Plots") 

``` 

```{r} 

# Multi-SPec paired plots by flight 

 

ggpairs(data_multi_518, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("518 Unmasked Pairs Plots") 

 

ggpairs(data_multi_518, columns=c("Stand", "ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("518 ExG Pairs Plots") 

 

ggpairs(data_multi_518, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", 
"ExGR_GNDVImu", "ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("518 ExGR Pairs Plots") 

 

ggpairs(data_multi_518, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct")) + 

  ggtitle("518 CIVE Pairs Plots") 

 

ggpairs(data_multi_529, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("529 Unmasked Pairs Plots") 



108 
 

 

ggpairs(data_multi_529, columns=c("Stand", "ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("529 ExG Pairs Plots") 

 

ggpairs(data_multi_529, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", 
"ExGR_GNDVImu", "ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("529 ExGR Pairs Plots") 

 

ggpairs(data_multi_529, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct")) + 

  ggtitle("529 CIVE Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("612 Unmasked Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("612 ExG Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", 
"ExGR_GNDVImu", "ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("612 ExGR Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct")) + 

  ggtitle("612 CIVE Pairs Plots") 

``` 

```{r} 

# Investigate Colinearity issue 

ggpairs(data_multi_518, columns=c("NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 

ggpairs(data_multi_518, columns=c("ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_ExGct", "ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 



109 
 

ggpairs(data_multi_518, columns=c("ExGR_NDVImu", "ExGR_NDREmu", "ExGR_GNDVImu", 
"ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct", "ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 

ggpairs(data_multi_518, columns=c( "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct", "ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 

 

``` 

```{r} 

# RGB Models All Flights 

rgb_mixed_mod <- lm(Stand~I(ExG_ExGct/638250)*Flight + I(ExGR_ExGRct/638250)*Flight + 
I(CIVE_CIVEct/638250)*Flight, 

                    data = data_rgb) 

 

# Anova across all extractions 

Anova(rgb_mixed_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova RGB" ) 

``` 

```{r} 

# RGB Models by Flight 

rgb_425_mod <- lm(Stand~I(ExG_ExGct/638250)+ I(ExGR_ExGRct/638250) + I(CIVE_CIVEct/638250), 

                       data = data_rgb_425) 

 

rgb_518_mod <- lm(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250), 

                  data = data_rgb_518) 

 

rgb_529_mod <- lm(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250), 

                       data = data_rgb_529) 

 

rgb_612_mod <- lm(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250), 

                       data = data_rgb_612) 

 

# Anova across all flights extractions 



110 
 

Anova(rgb_425_mod) %>% 

  kable(digits=9, booktabs=T, caption = "Anova 425 RGB" ) 

Anova(rgb_518_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 518 RGB" ) 

Anova(rgb_529_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 529 RGB" ) 

Anova(rgb_612_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 612 RGB" ) 

 

``` 

```{r} 

# RGB paired plots 

 

ggpairs(data_rgb, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("RGB Pairs Plots") 

 

``` 



```{r} 

# RGB paired plots by flight 

 

ggpairs(data_rgb_425, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("425 RGB Pairs Plots") 

 

ggpairs(data_rgb_518, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("518 RGB Pairs Plots") 

 

ggpairs(data_rgb_529, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("529 RGB Pairs Plots") 

 

ggpairs(data_rgb_612, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("612 RGB Pairs Plots") 

 



111 
 

``` 

```{r} 

#Prediction - Stand 

 

#Trainig Models 

multi_training_mod1 <- train(Stand~NDREmu*Flight + RGBVImu*Flight + ExG_NDREmu*Flight + 
ExGR_NDREmu*Flight + I(ExGR_ExGRct/81300)*Flight + CIVE_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod2 <- train(Stand~NDREmu*Flight,  

                           data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod3 <- train(Stand~RGBVImu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod4 <- train(Stand~ExG_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod5 <- train(Stand~ExGR_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod6 <- train(Stand~I(ExGR_ExGRct/81300)*Flight,  

                            data = data_multi, 

                            method="lm", 



112 
 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod7 <- train(Stand~CIVE_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod8 <- train(Stand~NDREmu + CIVE_NDVImu,  

                            data = data_multi_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod9 <- train(Stand~NDREmu,  

                            data = data_multi_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod10 <- train(Stand~CIVE_NDVImu,  

                            data = data_multi_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod11 <- train(Stand~GNDVImu + ExG_NDVImu + ExG_RGBVImu + 
ExGR_RGBVImu + CIVE_NDVImu + CIVE_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

multi_training_mod12 <- train(Stand~GNDVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod13 <- train(Stand~ExG_NDVImu,  

                            data = data_multi_529, 



113 
 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod14 <- train(Stand~ExG_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod15 <- train(Stand~ExGR_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod16 <- train(Stand~CIVE_NDVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod17 <- train(Stand~CIVE_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod18 <- train(Stand~RGBVImu + ExG_GNDVImu + ExG_NDREmu + CIVE_NDREmu 
+ CIVE_GNDVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod19 <- train(Stand~RGBVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 



114 
 

multi_training_mod20 <- train(Stand~ExG_GNDVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod21 <- train(Stand~ExG_NDREmu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod22 <- train(Stand~CIVE_NDREmu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod23 <- train(Stand~CIVE_GNDVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

``` 



```{r} 

#Select Multi Spec Model 

print('mod1') 

multi_training_mod1 

print('mod2') 

multi_training_mod2 

print('mod3') 

multi_training_mod3 

print('mod4') 

multi_training_mod4 

print('mod5') 



115 
 

multi_training_mod5 

print('mod6') 

multi_training_mod6 

print('mod7') 

multi_training_mod7 

print('mod8') 

multi_training_mod8 

print('mod9') 

multi_training_mod9 

print('mod10') 

multi_training_mod10 

print('mod11') 

multi_training_mod11 

print('mod12') 

multi_training_mod12 

print('mod13') 

multi_training_mod13 

print('mod14') 

multi_training_mod14 

print('mod15') 

multi_training_mod15 

print('mod16') 

multi_training_mod16 

print('mod17') 

multi_training_mod17 

print('mod18') 

multi_training_mod18 

print('mod19') 

multi_training_mod19 

print('mod20') 

multi_training_mod20 

print('mod21') 

multi_training_mod21 



116 
 

print('mod22') 

multi_training_mod22 

print('mod23') 

multi_training_mod23 

``` 

```{r} 

#Check correlation 

# Mod1 

multi_flight_data_prediction1 <- predict(multi_training_mod1$finalModel) 

cor(multi_flight_data_prediction1, data_multi$Stand, method= c("pearson")) 

 

# Mod2 

multi_flight_data_prediction2 <- predict(multi_training_mod2$finalModel) 

cor(multi_flight_data_prediction2, data_multi$Stand, method= c("pearson")) 

 

# Mod3 

multi_flight_data_prediction3 <- predict(multi_training_mod3$finalModel) 

cor(multi_flight_data_prediction3, data_multi$Stand, method= c("pearson")) 

 

# Mod4 

multi_flight_data_prediction4 <- predict(multi_training_mod4$finalModel) 

cor(multi_flight_data_prediction4, data_multi$Stand, method= c("pearson")) 

 

# Mod5 

multi_flight_data_prediction5 <- predict(multi_training_mod5$finalModel) 

cor(multi_flight_data_prediction5, data_multi$Stand, method= c("pearson")) 

 

# Mod6 

multi_flight_data_prediction6 <- predict(multi_training_mod6$finalModel) 

cor(multi_flight_data_prediction6, data_multi$Stand, method= c("pearson")) 

 

# Mod7 

multi_flight_data_prediction7 <- predict(multi_training_mod7$finalModel) 



117 
 

cor(multi_flight_data_prediction7, data_multi$Stand, method= c("pearson")) 

 

# Mod8 

multi_flight_data_prediction8 <- predict(multi_training_mod8$finalModel) 

cor(multi_flight_data_prediction8, data_multi_529$Stand, method= c("pearson")) 

 

# Mod9 

multi_flight_data_prediction9 <- predict(multi_training_mod9$finalModel) 

cor(multi_flight_data_prediction9, data_multi_529$Stand, method= c("pearson")) 

 

# Mod10 

multi_flight_data_prediction10 <- predict(multi_training_mod10$finalModel) 

cor(multi_flight_data_prediction10, data_multi_529$Stand, method= c("pearson")) 

 

# Mod11 

multi_flight_data_prediction11 <- predict(multi_training_mod11$finalModel) 

cor(multi_flight_data_prediction11, data_multi_529$Stand, method= c("pearson")) 

 

# Mod12 

multi_flight_data_prediction12 <- predict(multi_training_mod12$finalModel) 

cor(multi_flight_data_prediction12, data_multi_529$Stand, method= c("pearson")) 

 

# Mod13 

multi_flight_data_prediction13 <- predict(multi_training_mod13$finalModel) 

cor(multi_flight_data_prediction13, data_multi_529$Stand, method= c("pearson")) 

 

# Mod14 

multi_flight_data_prediction14 <- predict(multi_training_mod14$finalModel) 

cor(multi_flight_data_prediction14, data_multi_529$Stand, method= c("pearson")) 

 

# Mod15 

multi_flight_data_prediction15 <- predict(multi_training_mod15$finalModel) 

cor(multi_flight_data_prediction15, data_multi_529$Stand, method= c("pearson")) 



118 
 

 

# Mod16 

multi_flight_data_prediction16 <- predict(multi_training_mod16$finalModel) 

cor(multi_flight_data_prediction16, data_multi_529$Stand, method= c("pearson")) 

 

# Mod17 

multi_flight_data_prediction17 <- predict(multi_training_mod17$finalModel) 

cor(multi_flight_data_prediction17, data_multi_529$Stand, method= c("pearson")) 

 

# Mod18 

multi_flight_data_prediction18 <- predict(multi_training_mod18$finalModel) 

cor(multi_flight_data_prediction18, data_multi_529$Stand, method= c("pearson")) 

 

# Mod19 

multi_flight_data_prediction19 <- predict(multi_training_mod19$finalModel) 

cor(multi_flight_data_prediction19, data_multi_529$Stand, method= c("pearson")) 

 

# Mod20 

multi_flight_data_prediction20 <- predict(multi_training_mod20$finalModel) 

cor(multi_flight_data_prediction20, data_multi_529$Stand, method= c("pearson")) 

 

# Mod21 

multi_flight_data_prediction21 <- predict(multi_training_mod21$finalModel) 

cor(multi_flight_data_prediction21, data_multi_529$Stand, method= c("pearson")) 

 

# Mod22 

multi_flight_data_prediction22 <- predict(multi_training_mod22$finalModel) 

cor(multi_flight_data_prediction22, data_multi_529$Stand, method= c("pearson")) 

 

# Mod23 

multi_flight_data_prediction23 <- predict(multi_training_mod23$finalModel) 

cor(multi_flight_data_prediction23, data_multi_529$Stand, method= c("pearson")) 

 



119 
 

``` 



```{r} 

# Prediction for RGB 

 

rgb_training_mod1 <- train(Stand~I(ExG_ExGct/638250)*Flight + I(ExGR_ExGRct/638250)*Flight + 
I(CIVE_CIVEct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv"))   

 

rgb_training_mod2 <- train(Stand~I(ExG_ExGct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod3 <- train(Stand~I(ExGR_ExGRct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod4 <- train(Stand~I(CIVE_CIVEct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod5 <- train(Stand~I(ExG_ExGct/638250) + I(CIVE_CIVEct/638250),  

                            data = data_rgb_425, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod6 <- train(Stand~I(ExG_ExGct/638250),  

                            data = data_rgb_425, 

                            method="lm", 



120 
 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod7 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_425, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod8 <- train(Stand~I(ExGR_ExGRct/638250) + I(CIVE_CIVEct/638250),  

                            data = data_rgb_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod9 <- train(Stand~I(ExGR_ExGRct/638250),  

                            data = data_rgb_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod10 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod11 <- train(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250),  

                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod12 <- train(Stand~I(ExG_ExGct/638250),  

                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod13 <- train(Stand~I(ExGR_ExGRct/638250),  



121 
 

                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod14 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod15 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

``` 



```{r} 

print('mod1') 

rgb_training_mod1 

print('mod2') 

rgb_training_mod2 

print('mod3') 

rgb_training_mod3 

print('mod4') 

rgb_training_mod4 

print('mod5') 

rgb_training_mod5 

print('mod6') 

rgb_training_mod6 

print('mod7') 

rgb_training_mod7 

print('mod8') 

rgb_training_mod8 



122 
 

print('mod9') 

rgb_training_mod9 

print('mod10') 

rgb_training_mod10 

print('mod11') 

rgb_training_mod11 

print('mod12') 

rgb_training_mod12 

print('mod13') 

rgb_training_mod13 

print('mod14') 

rgb_training_mod14 

print('mod15') 

rgb_training_mod15 

``` 

rgb_training_mod correlation


```{r} 

#Check correlation 

#1 

rgb_flight_data_prediction1 <- predict(rgb_training_mod1$finalModel) 

cor(rgb_flight_data_prediction1, data_rgb$Stand, method= c("pearson")) 

 

#2 

rgb_flight_data_prediction2 <- predict(rgb_training_mod2$finalModel) 

cor(rgb_flight_data_prediction2, data_rgb$Stand, method= c("pearson")) 

 

#3 

rgb_flight_data_prediction3 <- predict(rgb_training_mod3$finalModel) 

cor(rgb_flight_data_prediction3, data_rgb$Stand, method= c("pearson")) 

 

#4 

rgb_flight_data_prediction4 <- predict(rgb_training_mod4$finalModel) 



123 
 

cor(rgb_flight_data_prediction4, data_rgb$Stand, method= c("pearson")) 

 

#5 

rgb_flight_data_prediction5 <- predict(rgb_training_mod5$finalModel) 

cor(rgb_flight_data_prediction5, data_rgb_425$Stand, method= c("pearson")) 

 

#6 

rgb_flight_data_prediction6 <- predict(rgb_training_mod6$finalModel) 

cor(rgb_flight_data_prediction6, data_rgb_425$Stand, method= c("pearson")) 

 

#7 

rgb_flight_data_prediction7 <- predict(rgb_training_mod7$finalModel) 

cor(rgb_flight_data_prediction7, data_rgb_425$Stand, method= c("pearson")) 

 

#8 

rgb_flight_data_prediction8 <- predict(rgb_training_mod8$finalModel) 

cor(rgb_flight_data_prediction8, data_rgb_425$Stand, method= c("pearson")) 

 

#9 

rgb_flight_data_prediction9 <- predict(rgb_training_mod9$finalModel) 

cor(rgb_flight_data_prediction9, data_rgb_425$Stand, method= c("pearson")) 

 

#10 

rgb_flight_data_prediction10 <- predict(rgb_training_mod10$finalModel) 

cor(rgb_flight_data_prediction10, data_rgb_425$Stand, method= c("pearson")) 

 

#11 

rgb_flight_data_prediction11 <- predict(rgb_training_mod11$finalModel) 

cor(rgb_flight_data_prediction11, data_rgb_425$Stand, method= c("pearson")) 

 

#12 

rgb_flight_data_prediction12 <- predict(rgb_training_mod12$finalModel) 

cor(rgb_flight_data_prediction12, data_rgb_425$Stand, method= c("pearson")) 



124 
 

 

#13 

rgb_flight_data_prediction13 <- predict(rgb_training_mod13$finalModel) 

cor(rgb_flight_data_prediction13, data_rgb_425$Stand, method= c("pearson")) 

 

#14 

rgb_flight_data_prediction14 <- predict(rgb_training_mod14$finalModel) 

cor(rgb_flight_data_prediction14, data_rgb_425$Stand, method= c("pearson")) 

 

#15 

rgb_flight_data_prediction15 <- predict(rgb_training_mod15$finalModel) 

cor(rgb_flight_data_prediction15, data_rgb_425$Stand, method= c("pearson")) 

``` 


	Evaluation of Vegetative Indices to Determine Canopy Ground Cover for Winter Survival and Hybrid Necrosis in Winter Wheat
	

	tmp.1701372075.pdf.MadYV

