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 The benefit of unmanned aircraft systems and image processing methods in 
agronomic research across numerous crops has been well documented as has the 
importance of wheat, Triticum aestivum L., on the global food supply. Hence there is 
great interest in digital solutions applied to aspects of wheat breeding. A major trait of 
importance to winter wheat breeders in higher latitudes is winter survival, which can 
result in poor yield and performance if lines do not survive extreme cold. Scoring winter 
survival is most commonly based on visual score of 0% to 100% with the higher 
percentage conveying higher winter survival rates. With the increased interest in hybrid 
wheat lines, it has brought an increased need to screen for hybrid necrotic lines in the 
field. With both hybrid necrosis and winter kill reducing the stand count of a plot, the 
advantageous situation arose to be able to investigate digital solutions of measuring 
wheat stand and their relationship with winter survival and hybrid necrosis. We were able 
to show that the utilization of multiple vegetative indices and segmentation indices 
derived from multispectral imagery within the same linear model was able to predict 
stand with a correlation of r = 0.836 (p < 0.01; flight date 5/18/2020) to visually scored 
plot stand data. Using unnormalized RGB model utilizing segmentation indices (an index 
that is used to separate vegetative pixels from background pixels) was able to achieve a 
prediction with a correlation of r = 0.924 (p < 0.01; flight date 5/18/2020) with the 
visually scored plot stand data, lending to the potential use of segmentation in 
conjunction with processes where RGB images are not normalized. In lines exhibiting 
symptoms of hybrid necrosis a clear clustering pattern could be observed as the season 
progressed for NDVI values of hybrid necrotic lines compared to non-necrotic lines.  
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Chapter 1: Introduction 

1.1 Wheat: 

Common wheat (Triticum aestivum L.) has been a pivotal crop for the past 10,000 

years, originating from a cross between emmer (a tetraploid wheat 2n=4x=28 

chromosomes) with wild goat grass, Aegilops tauschii Coss. (2n=2x=14; Feldman, 2001). 

Throughout the centuries wheat has served as a major source of carbohydrates and 

proteins for the globe at one point providing 55% of the caloric intake (Gustafson, 2009). 

Historically the improvement of wheat cultivars was accomplished through exploration 

and exchange of seed allowing the natural selection pressures of new environments to 

produce new land races (Baenziger, 2009). It was within the past two centuries that wheat 

cultivars have been developed through controlled hybridization and artificial selection 

(Baenziger, 2009). It is through these methods that plant breeders have been able to 

increase wheat productivity in the world with ever increasing demand. 

 According to the United States Department of Agriculture the global wheat 

production in 2023 is 781,980,000 metric tons and in the United States alone 46.7 million 

acres of wheat were planted during 2021. The Food and Agriculture Organization projects 

global population to reach 9.7 billion by 2050 and that global food production will need 

to increase by 70%, further increasing the importance of the development of better more 

productive wheat cultivars.  

 

1.2 Winterkill: 
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 A major aspect of developing better more productive winter wheat cultivars is 

overcoming challenges presented by harsh environments such as winter kill. Winter 

wheat being a fall sown crop requires an overwintering or vernalization period to induce 

flowering allowing for grain to be produced. Due to the vernalization requirement of 

winter wheat, it can be subject to winterkill in higher latitudes resulting in a significant 

decrease in yield (Alessi and Power, 1971). Winterkill is the result of cell damage from 

ice forming within the wheat cells (Lyons et al. 1979).  It has been shown that winterkill 

is caused in varying degrees by both extreme freezing events below -20⁰ C (Taylor and 

Olsen, 1985) and prolonged mild freezing events below -4⁰ C (Gusta et al. 1997; Roberts, 

1985). This understanding of winter kill has been further described through the 

estimation of freezing degree days, showing a 1% increase in mortality for every 1⁰ C∙d 

increase in freezing degree days (Zheng et al. 2018). In addition to freezing temperature, 

desiccation has also been shown to have a negative impact on winter survival resulting in 

differential winterkill of winter hardened cultivars under conditions that did not pass the 

critical temperature threshold of -20⁰ C (Taylor and Olsen, 1985).  

Winterkill can be mitigated through a number of management practices. No-till 

practices leave residue behind that holds more snow providing better insulation from 

extreme temperatures (Cox et al. 1986). Planting date (Fowler, 1982), nutrient 

applications (Pittman and Tipples, 1978) and planting depth (Loeppky et al, 1989) have 

all shown a positive influence on winter survival in addition to cultivar selection.  

The most commonly practiced method of rating wheat lines for winter kill is 

through the visual method where 0% represents no plants surviving in a plot of winter 

wheat and 100% representing all plants in a plot surviving the winter (Saulescu and 
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Braun, 2001). It is through this visual scale the wheat breeders have evaluated breeding 

populations to select lines that have improved winter hardiness and survival to provide to 

producers. There have been other methods proposed to rate lines for winter hardiness 

such as in controlled freezing experiments where the temperature that results in the death 

of 50% (lethal temperature 50, LT50) of the wheat plants is recorded. LT50 had a high 

negative correlation of 95% (r = 0.95) with visual ratings of winter survival (Pomeroy 

and Fowler, 1973). While the LT50 has been shown to correlate strongly with crown 

freezing tolerance (Brule-Babel and Fowler, 1981) and crown freezing tolerance is 

accepted as a prerequisite of winter hardiness (Brule-Babel and Fowler, 1989), the LT50 

has not been able to prove itself to be a reliable method to measure winter hardiness 

across a variety of different environments (Bridger et al. 1996; Gusta et al. 2001). 

In addition to visual scoring, the use of vegetative indices of ground level imagery 

has been used to measure winter survival with correlation of 95% (r = 0.95; Chen et al. 

2019). The potential to use objective image-based analysis provides the opportunity to 

alleviate issues with the visual scoring method resulting from human error, bias and 

limitations in being able to identifying small differences between lines (Poland and 

Nelson 2011). Image based analysis can also lead to reduced resource costs associated 

with needing skilled labor to walk the field. It is through on-going research like using a 

vegetative index to help select for cultivars with better winter hardiness that wheat 

breeders will be able to consistently provide yield protection from environmental stresses 

like harsh winters. 

 

1.3 Hybrid Wheat 
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In addition to protecting from yield loss in harsh environments, hybrid wheat 

cultivars also have the potential to increase overall production. Hybrid wheat is a 

category of F1 wheat cultivars that are developed through a specific cross between two 

inbred parents that have been identified as good combiners. The goal of hybrids is to take 

advantage of the phenomenon known as heterosis or hybrid vigor, where the performance 

of the hybrid exceeds the performance of parental lines used to create it (Koemel et al., 

2004). Hybrid durum cultivars have been found to produce up to a 20% increase in yield 

performance over the highest yielding inbred lines (Gowda et al., 2012). Hybrids also 

exhibited increased early vigor and height without an increased susceptibility to lodging 

in addition to increased yield (Longin et al., 2013). In addition to increased trait 

performance hybrids are expected to have greater stability in performance across a larger 

breadth of environments (Gowda et al., 2010). 

 Hybrid wheat showed some early success in commercialization in the United 

States, Australia, and Europe during the early 1990’s (Gupta et al., 2019) however the 

success was short lived as competition from improved pure lines and the hybrid seed 

production costs and difficulties, overcame the profitability of hybrids. The difficulty of 

producing hybrid seed arises from the inflorescence of wheat. Wheat produces spikelets 

of perfect flowers along a single rachis (Gao et al., 2019) that contain both the male and 

female structures in tightly packed florets. Due to the enclosed nature of wheat florets, 

wheat is a predominately self-pollinating crop with a very low incidence of natural cross 

pollination. To overcome the issue of self-pollination two primary approaches have been 

explored, the use of chemical hybridizing agents (CHA) and the development of male 

sterile lines (Gupta et al., 2019). It was through the use of CHA that hybrids first reached 
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commercialization in the 1990’s. Specifically CHA’s Genesis and Crosier were seen to 

produce a sterilization rate of 95-100% (Gupta et al., 2019). Even though hybrids were 

gaining popularity, they were unable to overcome the production costs and regulatory 

limitations of the CHA. As commercialization moved away from CHA derived hybrids, 

hybrids derived from cytoplasmic or genetic male sterile systems became the forefront of 

hybrid research. The most likely candidate for commercialization are the cytoplasmic 

male sterile (CMS) system, a three line system with sterile line (A-line; in a sterile 

cytoplasm and without genes to restore fertility), a maintainer (B-line; an alloplasmic line 

of the A-line with a fertile cytoplasm) and male restorer (R-line) where the R-line 

contains restoration genes that allow full restoration of the F1 hybrid between the A-line 

and the R-line. The most commonly used CMS system and most reliable uses T. 

timopheevii Zhuk (Mukai and Tsunewaki, 1979; Singh et al., 2010).  

Other male sterile systems have also been explored but have not garnered the 

same popularity as the three-line timopheevii CMS system. Photoperiod sensitive 

cytoplasmic male sterility is a two-line system based in Ae. Crassa Boiss. Ex Hohen 

cytoplasm where the line is sterile under long day conditions and fertile under short day 

conditions and an insensitive R-line that would restore fertility to the F1 under long day 

conditions (Murai and Tsunewaki, 1993). Genetic male sterility is another two-line 

system that utilizes a dominant male fertile genes and recessive sterile genes. The 

difficulty with system is the sterility line is maintained in heterogenous state requiring 

culling of fertile females (Singh et al., 2015). Chromosomal male sterility utilizes a three-

line system to develop the sterile female and maintainer lines, involving a deletion on the 

4B chromosome that contains the recessive sterile gene. The male line that will be used 
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for the F1 seed production must contain an alien 4E chromosome that carries the 

restoration gene. The attraction of this system is the presence of the blue aleurone gene 

allowing for the sorting of sterile and self-fertile lines based on color (Zhou et al., 2006; 

Whitford et al., 2013).  

The biggest inhibitor of hybrid seed production is the cost of maintaining the male 

and female lines in relatively small strips that prevent the use of large combines or 

require additional resources to shred the male lines. One proposed method to overcome 

this is the use of the transgenic SeedLink system where the barnase gene, which provides 

glufosinate resistance, is linked to a sterility gene allowing for males and females to be 

planted in a mix and the males to be removed via glufosinate application, this method is 

used in both the barnase-barstar system in canola (Whitford et al., 2013) and the split 

barnase system (Kempe et al., 2014). Though not an exhaustive list, the exploration of 

numerous male sterile systems by researchers around the globe has provided great 

potential for the commercially viable production of hybrid wheat. 

 

1.4 Hybrid Necrosis 

 A hurdle faced in the production of wheat hybrids is the loss of potential parental 

lines due to those same parents carrying genes for hybrid necrosis. Hybrid necrosis is a 

phenomenon observed in F1 wheat plants where the leaf tissue and sheath tissue become 

necrotic to a lethal or semi lethal extant (Caldwell, 1943; Tsunewaki, 1992; Tomar et al., 

1991). Hybrid necrosis is caused by the combined presence of two dominant genes Ne1, 

located on chromosome arm 5BL and Ne2, located on chromosome arm 2BS (Zeven, 
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1972; Nishikawa, 1974). Hybrid necrosis was first characterized as the delayed necrosis 

of leaf tissue first appearing only after the first leaf has reached physiological maturity 

and the second leaf is well grown (Caldwell, 1943). This expression of necrosis has 

proven to be barrier to introduction of new genes to breeding populations and combining 

desirable genes within those populations (Bizimungu et al., 1998) due to both genes 

being widespread throughout breeding populations across the globe (Tsunewaki, 1992). 

The frequency of the hybrid necrosis genes provides an additional challenge to hybrid 

programs, as inbred programs discover hybrid necrotic combinations at the early crossing 

stage of line development while a hybrid program may not discover a necrotic 

combination until two parental lines have progressed much further into the breeding 

pipeline consuming substantially more resources. This potential resource loss exacerbates 

the need for hybrid programs to track the frequency of necrosis genes in their breeding 

populations and provides the basis of the need for efficient methods to accurately classify 

hybrids exhibiting hybrid necrosis with vegetative indices derived from aerial imagery. 

 

1.5 Vegetative Indices 

 It has been widely demonstrated that aerial imagery coupled with image 

processing has the potential to provide a high throughput and accurate measurement of 

numerous traits across all crops. One of the most commonly used methods to measure 

traits that can be associated with chlorophyl content is to extract the normalized 

difference vegetative index (NDVI) (Tucker, 1979; Roujean and Breon, 1995) from a 

multispectral image containing the bands green, red and near infrared (NIR) (Stanton et 

al., 2017; Shafian et al., 2018). NDVI was shown to have a strong relationship with visual 
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ground cover (r2 = 0.93) and leaf area index (r2 = 0.95) in winter wheat (Shi et al., 2016). 

Other indices that have been developed to capture similar traits associated with 

chlorophyl content such as the renormalized difference vegetation index (RDVI) utilizing 

the red and NIR bands providing a benefit of reduced sensitivity to soil reflectance 

(Roujean and Breon, 1995; Li et al., 2018). Green normalized difference vegetation index 

(GNDVI) utilizing the NIR and green bands, provides a better correlation to Chlorophyll-

a (Gitelson et al., 1996; Li et al., 2018). Normalized difference red edge index (NDRE) 

utilizing the NIR and red edge bands, also had a strong correlation with chlorophyll and 

leaf nitrogen status (Fitzgerald et al., 2006; Li et al., 2018). 

 It has also been shown among some traits that indices derived from imagery 

captured in the visual spectrum with commercial true color (RGB) cameras have a similar 

correlation as those captured from multispectral cameras. For instance the excessive 

green segmentation index (ExG), which utilizes the red, green and blue bands to 

delimitate soil from vegetation (Woebbecke et al., 1995), had similar correlation (r = 

0.88) with ground cover in spring wheat as NDVI (r = 0.76) (Rasmussen et al., 2015). 

The excessive green minus excessive red segmentation index (ExGR) showed improved 

capabilities to distinguish between vegetative matter and soil background over ExG 

(Neto, 2004). The color index of vegetation extraction (CIVE) was derived from the RGB 

color bands to segment vegetative matter from soil background and was shown to have a 

good correlation (r = 0.661) with soybean, Glycine max, biomass (Kataoka et al., 2003). 

ExG, ExGR and CIVE have all shown to be an acceptable method of segmentation of 

vegetation from clean soil under both cloudy and sunny conditions as was exhibited in 

images of corn, Zea mays, on various soil types (Yang et al., 2015). These segmentation 



9 
 

indices (ExG, ExGR, CIVE) are calculated by determining a cutoff value or threshold 

that indicates what pixels to classify as soil and as vegetation, the total number of 

vegetation pixels are then counted to determine the plot value of the segmentation index, 

also referred to as vegetative fraction (Gitelson et al., 2002). The red green blue 

vegetative index (RGBVI) is also derived from the RGB bands and has shown good 

ability to be used in biomass predictions (r2 = 0.82) (Bendig et al., 2015), and good 

correlation with canopy cover (r = 0.75) (Li et al., 2018). An advantage of many of the 

mentioned indices is the ability to calculate all of them from the five bands present in 

many multispectral cameras (red, green, blue, near infrared and red edge), allowing for 

numerous measurements to be performed on the same images. 

 

1.6 Objective 

 The objective of this study was to explore the relationship between several 

vegetative indices (NDVI, NDRE, GNDVI, RDVI, RGBVI) and segmentation indices 

(ExG, ExGR, CIVE) as they relate to visual winter survival scores. It is also of interest to 

determine the efficacy of predicting winter survival with the use of multiple indices as 

predictors within the same linear model as opposed to using multiple separate models that 

include only one index as a predictor. In addition to measuring winter survival, a second 

objective was to investigate patterns of canopy cover in lines with hybrid necrosis (often 

expressed after the plant survives the winter) and how changes in canopy cover over time 

can differentiate between lines with hybrid necrosis and lines with poor winter hardiness. 
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Chapter 2: Methods 

2.1 Field 

 25 F1 hybrids from Germany, provided by Dr. Friedrich Longin of Hohenheim 

University (Table 2.1), were planted in a yield trial setting in fall of 2019 and evaluated in 

spring 2020 at the University of Nebraska-Lincolns Havelock field. Each plot was 3 

meters in length planted with a five-row small plot planter, 0.23 meters between rows, 

and .115 meter overhang on both end rows for a total plot width of 1.15 meters. The 25 

lines were replicated 3 times and randomized across a 2 x 40 grid layout (2 passes, 40 

ranges and included five fill plots). Each plot was planted at a seeding rate of 66 kg/ha-1. 

All plots were walked after emergence to check for germination issues. The following 

spring during early tillering the lines were visually scored on 0% to 100% score for plot 

stand which is an indicator of winter survival. This set of hybrids had multiple male 

parents, hence some hybrids segregated for hybrid necrosis. The plot data was reviewed 

for accuracy using ariel imagery. It was determined with the aid of aerial imagery that the 

visually rated plot stand scores for hybrids coded as A and M in replication 2 were 

swapped. Based on this determination and the data from the other two replications, the 

visually rated plot stand scores were corrected. Hybrid necrosis was coded as a 1 for 

presence of necrosis and 0 for no necrosis.  

Table 2.1 Pedigrees of Hybrids used in this study 

Code Pedigree Mother Father 

A CAPITOLE-
VILMORIN x 
earlymix 

CAPITOLE-
VILMORIN 

Mix of Ferrum, 
Apache, Porthus 

B KRAJCAR x 
earlymix 

KRAJCAR Mix of Ferrum, 
Apache, Porthus 
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C NIAB SHW BC 
038-10-8-1-1 x 
earlymix 

NIAB SHW BC 
038-10-8-1-1 

Mix of Ferrum, 
Apache, Porthus 

D NIAB SHW BC 
038-15-8-1-1 x 
earlymix 

NIAB SHW BC 
038-15-8-1-1 

Mix of Ferrum, 
Apache, Porthus 

E ROB-173-2-A-17-7 
x earlymix 

ROB-173-2-A-17-7 Mix of Ferrum, 
Apache, Porthus 

F MAJOR x earlymix MAJOR Mix of Ferrum, 
Apache, Porthus 

G NIAB SHW BC 
038-15-9-1-1 x 
earlymix 

NIAB SHW BC 
038-15-9-1-1 

Mix of Ferrum, 
Apache, Porthus 

H RIGOUDI x 
earlymix 

RIGOUDI Mix of Ferrum, 
Apache, Porthus 

I NIAB SHW BC 
050-6-9-1-1 x 
earlymix 

NIAB SHW BC 
050-6-9-1-1 

Mix of Ferrum, 
Apache, Porthus 

J NIAB SHW BC 
038-5-4-1-1 x 
latemix 

NIAB SHW BC 
038-5-4-1-1 

Mix of Hohenheim 
parents 

K NIAB SHW BC 
038-10-1-1-1 x 
latemix 

NIAB SHW BC 
038-10-1-1-1 

Mix of Hohenheim 
parents 

L BLEROY x latemix BLEROY Mix of Hohenheim 
parents 

M NIAB SHW BC 
038-2-15-1-1 x 
latemix 

NIAB SHW BC 
038-2-15-1-1 

Mix of Hohenheim 
parents 

N NIAB SHW BC 
045-12-9-1-1 x 
latemix 

NIAB SHW BC 
045-12-9-1-1 

Mix of Hohenheim 
parents 

O ROB-173-2-A-
17_6 x latemix 

ROB-173-2-A-
17_6 

Mix of Hohenheim 
parents 

P WW-13019-210-
310-402a-1 x 
latemix 

WW-13019-210-
310-402a-1 

Mix of Hohenheim 
parents 

Q WW-14010-203-
303-6/3 x latemix 

WW-14010-203-
303-6/3 

Mix of Hohenheim 
parents 

R WW-13023-213-
313-405-3 x 
latemix 

WW-13023-213-
313-405-3 

Mix of Hohenheim 
parents 

S WW-14008-201-
301-15/1 x latemix 

WW-14008-201-
301-15/1 

Mix of Hohenheim 
parents 

T WW-14008-201-
301-2/3 x latemix 

WW-14008-201-
301-2/3 

Mix of Hohenheim 
parents 
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U WW-14008-201-
301-21/3 x latemix 

WW-14008-201-
301-21/3 

Mix of Hohenheim 
parents 

V WW-14008-201-
301-4/2 x latemix 

WW-14008-201-
301-4/2 

Mix of Hohenheim 
parents 

W WW-14009-202-
302-14/1 x latemix 

WW-14009-202-
302-14/1 

Mix of Hohenheim 
parents 

X WW-14009-202-
302-4/3 x latemix 

WW-14009-202-
302-4/3 

Mix of Hohenheim 
parents 

Y WW-14010-203-
303-1/3 x latemix 

WW-14010-203-
303-1/3 

Mix of Hohenheim 
parents 

 

 

2.2 UAV flights 

 The multispectral images were captured with Micasense RedEdge multi spectral ± 

camera (Bands: Blue: 475 ± 20 nm; Green: 560 ± 20 nm; Red: 668 ± 10 nm; RedEdge:  

nm; Near Infra-Red: 840 ± 40 nm) mounted on a DJI Matrice 600 Pro. The multispectral 

images were captured on 05/18/2020 (wheat growth stage: jointing), 05/29/2020 (wheat 

growth stage: early heading) and 06/12/2020 (wheat growth stage: grain filling). True 

color (RGB) images were captured on 04/25/2020 (wheat growth stage: early tillering), 

05/18/2020, 05/29/2020 and 06/12/2020. The true color camera on 04/25/2020 was flown 

with a Mavic 2 Pro and the remaining true color images were from cameras flown with a 

DJI Matrice 600 Pro. All flights followed a preprogrammed path ensuring all plots were 

captured with overlapping images. 

 

2.3 Image processing 

 All images were stitched together with Pix4D. The create grid tool in ArcPro was 

used to generate polygons for plot delimitation. All polygon grids overlaying the 
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multispectral images were the exact same size. Each flight of the true color images 

needed a different sized grid to effectively capture each plot due to minor bending of the 

images. The true band images were clipped to the area of interest to reduce processing 

load. The bands of multispectral images (R, G, B, RE, NIR) had a value range from 0 to 1 

while the bands captured with true color camera were left unnormalized and had a value 

range from 0 to 255. NDVI (Figure 2.1, Image A), NDRE, GNDVI, RDVI, RGBVI, ExG, 

ExGR and CIVE (Table 2.2) were calculated for all flights of the multi spectral imagery. 

ExG, ExGR and CIVE were calculated for all flights of the true color imagery.  

 

Table 2.2 Vegetative and Segmentation Indices Used in this Study 

Index Formula Application Source 

NDVI (NIR-Red)/(NIR+Red) Associated with 

chlorophyll content 

Tucker, 1979 

NDRE (NIR-RedEdge)/(NIR+RedEdge) Associated with 

chlorophyll and 

nitrogen 

Fitzgerald et 

al., 2006 

GNDVI (NIR-Green)/(NIR+Green) Associated with 

chlorophyll-a 

Gitelson et al., 

1996 

RDVI (NIR-Red)/√(NIR+Red) 

 

Reduced sensitivity to 

soil reflectance 

Roujean and 

Breon, 1995 

RGBVI (Green2-Blue×Red)/(Green2+Blue×Red) Associated with 

biomass 

Bendig et al., 

2015 

ExG 2×Green-Red-Blue Segments soil from 

vegetation 

(Woebbecke et 

al., 1995 
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ExGR (2×Green-Red-Blue)-(1.4×Red-Green) Segments soil from 

vegetation 

Neto, 2004 

CIVE 0.441×Red-0.881×Green+0.385×Blue+18.78745 Segments soil from 

vegetation 

Kataoka et al., 

2003 

NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI: Green 
Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; RGBVI: Red 
Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; 
CIVE: Color Index of Vegetative Extraction 

 

Vegetative indices were not calculated for the RGB images due to unnormalized RGB 

images being unreliable for measuring the mean reflectance (Woebbecke et al., 1995). 

The true color images were analyzed as unnormalized since the same bands were covered 

in the multi spectral imagery and to investigate the efficacy of segmentation indices on 

unnormalized images. 

 For the multispectral data sets a threshold was determined for each segmentation 

index by visually examining pixel values of vegetative and soil pixels. ExG was given a 

threshold of greater than or equal to 0.029 (Figure 2.1, Image B). ExGR was given a 

threshold of greater than or equal to 0.01. CIVE was given a threshold of less than or 

equal to 18.77. It was visually determined by examination of each flight date image that 

these thresholds were sufficient across all three flights. To generate masks (using one 

image to isolate areas of a second image), each segmentation index had values outside of 

their respective threshold set to 0 and values within their threshold set to no data utilizing 

Python, resulting in a mask that outlined the vegetative pixels and removed the soil 

background (Figure 2.1, Image C). The masks were then overlayed onto each vegetative 

index using the Mosaic Data Management tool in Arc Pro (Figure 2.1, Image D). 
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Figure 2.1 ExG Masked NDVI, Flight 5/29, Image A: NDVI on flight 5/29, Image B: ExG on flight 5/29, 
Image C: ExG segmented mask on flight 5/29, Image D: ExG mask overlayed on NDVI for flight 5/29 
NDVI: Normalized Difference Vegetative Index; ExG: Excessive Green 

 

 In Python the mean value of all pixels within a plot’s respective polygon for the masked 

and unmasked vegetative indices was calculated for each plot. Values for segmentation 

indices were calculated by counting the total number of pixels that met the threshold 

criteria within a plot’s respective polygon. For segmentation of the true color images, 

thresholds were visually determined for each individual flight (Table 2.3). ExGR was not 

given an upper threshold on flights 5/29 and 6/12 due to mature leaves and shadows of 

mature leaves having the same or very similar values (Figure 2.2). The values of the 

segmentation indices for the true color data set were determined by calculating the total 

number of pixels that met the threshold criterion. 
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Figure 2.2 True Color and ExGR Leaf Shadow, Image A: RGB image of leaf (circled in green) and 
shadow (circled in red), Image B: ExGR image of the same leaf (circled in green) and shadow(circled in 
red). ExGR: Excessive Green Minus Excessive REd 

  

 

Table 2.3 True Color Segmentation Index Thresholds 

Flight Segmentation Index Threshold 

4/25 ExG Img ≥ 45; Img ≤ 175 

5/18 ExG Img ≥ 45; Img ≤ 175 

5/29 ExG Img ≥ 30; Img ≤ 175 

6/12 ExG Img ≥ 20; Img ≤ 175 

4/25 ExGR Img ≤ 158 

5/18 ExGR Img ≤ 65; Img ≥ 165 

5/29 ExGR* Img ≤ 65 

6/12 ExGR* Img ≤ 65 

4/25 CIVE Img ≥ 175 



17 
 

5/18 CIVE Img ≥ 175 

5/29 CIVE Img ≥ 175; Img ≤ 12 

6/12 CIVE Img ≥ 175; Img ≤ 10 

ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative 
Extraction 
* Issue with upper threshold distinguishing between leaves and shadows 

 

2.4 Statistical Analysis 

 All statistical analysis was performed in RStudio (v2023.09.0;R Core Team 

2021). A significant difference of plot stands between genotypes was determined using an 

Analysis of Variance (ANOVA). Additionally, the significance of each index between 

genotypes was determined with an ANOVA, indices with a non-significant difference 

between genotypes were removed. All data were analyzed as plot data due to spatial 

variation observed in the field for lines coded as T and S.  

A linear model (initial model) was used to analyze the multispectral data that 

utilized visual rating of winter survival (plot stand) as the response and all of the indices 

including an interaction with flight date as the predictors. 

Stand ~ NDVImu*Flight + NDREmu*Flight + GNDVImu*Flight + RGBVImu*Flight + 

ExG_NDVImu*Flight + ExG_NDREmu*Flight + ExG_GNDVImu*Flight + 

ExG_RDVImu*Flight + (ExG_ExGct/81300)*Flight + ExGR_NDVImu*Flight + 

ExGR_NDREmu*Flight + ExGR_GNDVImu*Flight + ExGR_RDVImu*Flight + 

ExGR_RGBVImu*Flight + (ExGR_ExGRct/81300)*Flight + CIVE_NDVImu*Flight + 

CIVE_NDREmu*Flight + CIVE_GNDVImu*Flight + CIVE_RDVImu*Flight + 

CIVE_RGBVImu*Flight + (CIVE_CIVEct/81300)*Flight 
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Masked images were coded as mask_vi (ex. ExG_NDVI is the NDVI image masked with 

the ExG segmentation index). The segmentation indices were rescaled by dividing them 

by the total number of pixels in the polygon to alleviate issues with the segmentation 

indices being on a much different scale than the vegetative indices. Additionally, the data 

was also separated by flight date and a model containing all indices was generated for 

each individual flight date. A two-way ANOVA was run on all models.  

 Pearsons’s correlation was calculated between all indices and plot stand within 

each flight date and across all flight dates. Scatterplots of indices and plot stand were 

used to identify patterns between hybrid necrotic and non-hybrid necrotic lines that had 

winterkill, regarding how the lines filled their respective plots over time after their initial 

plot stand rating. The data used in the scatterplots was separated by flight and labeled 

based on hybrid necrosis status. 

 To determine which indices to use in a prediction model a selection criterion of α 

= 0.05 was used. Indices that were shown to be significant (p < 0.05) based on the two-

way ANOVA performed on the initial model were grouped into a single model (combined 

prediction model) while the non-significant indices were removed (Table 2.4). Separate 

individual models were also made containing a single index for each index that was 

considered significant based on the two-way ANOVA from the initial model. 

Plot Stand ~ VI*Flight 

 

All steps statistical analysis steps performed up until this point were repeated on the 

multispectral data set with the only difference being the data was regrouped based on 

flight date and the interaction of flight date was removed from the models (Table 2.4). 
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Table 2.4 Selected Multispectral Combined Prediction Models 

Flight Date Prediction Model 

All Plot Stand ~ NDRE*Flight + RGBVI*Flight + ExG_NDRE*Flight + 
ExGR_NDRE*Flight + ExGR_ExGR*Flight + CIVE_NDRE*Flight 

05/18/2020 Plot Stand ~ NDRE + CIVE_NDVI 

05/29/2020 Plot Stand ~ GNDVI + ExG_NDVI + ExG_RGBVI + ExGR_RGBVI 
+ CIVE_NDVI + CIVE_RGBVI 

06/12/2020 Plot Stand ~ RGBVI + ExG_GNDVI + ExG_NDRE + CIVE_NDRE 
+ CIVE_GNDVI 

NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI: 
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; 
RGBVI: Red 
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG) 

 

The train function from the Caret package (Kuhn, 2008) was used to generate 

cross validation and prediction sets, across all selected models. Each prediction model 

was used to predict plot stand. The predicted plot stands were correlated to the visually 

scored plot stand. 

 To analyze the true color data set, a linear model containing all three segmentation 

indices across all flights was analyzed using a two-way ANOVA. Pearsons’s correlation 

was used to calculate an r value between each index and plot stand. Based on the results 

on the ANOVA indices with a p < 0.05 were selected to used in a prediction model (Table 

2.4). Flight date 06/12/2020 only had one index that was significant (CIVE) but was 

included in Table 2.5 for completeness of the table. Each segmentation index that was 

significant was also used in an individual model. 

Plot Stand ~ SI*Flight 
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 This analysis and selection criterion was repeated on the true color data, but the data 

were separated by flight date (Table 2.5). 

Table 2.5 Selected True Color Combined Prediction Models 

Flight Date Prediction Model 

All Plot Stand ~ ExG*Flight + ExGR*Flight + CIVE*Flight 

04/25/2020 Plot Stand ~ ExG + CIVE 

05/18/2020 Plot Stand ~ ExGR + CIVE 

05/29/2020 Plot Stand ~ ExG + ExGR + CIVE 

06/12/2020 Plot Stand ~ CIVE 

NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; 
GNDVI: Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference 
Vegetative Index; RGBVI: Red 
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG) 

 

Scatterplots of the segmentation indices and plot stand were used to identify 

patterns between hybrid necrotic and non-hybrid necrotic lines that had winterkill, 

regarding how the lines filled their respective plots over time after their initial plot stand 

rating. The data used in the scatterplots was separated by flight and labeled based on 

hybrid necrosis status.  

The train function from the Caret package (Kuhn, 2008) was used to generate 

cross validation and prediction sets, across all selected true color models. Each prediction 

model was used to predict plot stand. The predicted plot stands were then correlated to 

the visually scored plot stand. 

The plot data for both multi spectral and true color data sets were examined for 

numeric patterns of index values across flight dates from NDVI (multispectral) and CIVE 
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(true color) to comparing non-hybrid necrotic winter killed hybrids, non-winter killed 

hybrids and hybrid necrotic hybrids. 

 

Chapter 3: Results 

3.1 Field 

 All plots had good germination post planting. 14 plots, consisting of 6 hybrids 

(hybrids coded as D, G, J, M, S, T), suffered varying degrees of winter kill with winter 

survival scores ranging from 40% to 80% as estimated by plot stand. Hybrids T and S 

only had 1 of their 3 replications exhibit winter kill and both of the winterkilled reps were 

in the central area of the trial. Hybrid necrosis was observed across 9 plots, consisting of 

3 hybrids (lines D, G, J). All hybrids exhibiting hybrid necrosis also exhibited winter kill 

with winter survival scores ranging from 30-60%. The visual plot stand had a significant 

difference among genotypes (p <0.001). Plot stand was also significantly different among 

genotypes when the data was separated by flight date (p <0.001). 

 

3.2 Multispectral Image Data and Plot Prediction Results 

All indices were determined to be significantly different (p<0.001) for genotypes 

for all data sets, with the exception of ExG_RGBVI in the data set with all flight dates 

combined, ExG_RGBVI was removed from further analysis. All indices were found to 

have a good correlation (r > 0.5) or strong correlation (r > 0.8) when correlated to plot 

stand across all flight dates (Table 3.1) and within individual flight dates (Table 3.2, 3.3, 
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and 3.4). However, not all indices were significant (p < 0.05). Whether an index was 

significant varied amongst the models depending on the data set (combined data in Table 

3.1, and individual flight date data in Tables 3.2, 3.3, 3.4). 

 

Table 3.1 Multi Spectral p and r Values of Indices from Linear Model Estimating 
Plot Stand Across All Flight Dates 

 
Index Type 

 
Index 

Correlation 
Between Plot 

Stand and Index 

 
p value from 

ANOVA 
VI NDVI r = 0.831 p = 0.365 
VI NDRE r = 0.806 p = 0.001 
VI GNDVI r = 0.833 p = 0.063 
VI RDVI r = 0.815 p = 0.922 
VI RGBVI r = 0.788 p = 0.029 

MVI ExG_NDVI r = 0.805 p = 0.961 
MVI ExG_NDRE r = 0.775 p = 0.012 
MVI ExG_GNDVI r = 0.741 p = 0.07 
MVI ExG_RDVI r = 0.777 p = 0.55 

SI ExG r = 0.800 p = 0.551 
MVI ExGR_NDVI r = 0.775 p = 0.728 
MVI ExGR_NDRE r = 0.721 p = 0.005 
MVI ExGR_GNDVI r = 0.731 p = 0.077 
MVI ExGR_RDVI r = 0.742 p = 0.433 
MVI ExGR_RGBVI r = 0.357 p = 0.168 

SI ExGR r = 0.862 p = 0.04 
MVI CIVE_NDVI r = 0.787 p = 0.535 
MVI CIVE_NDRE r = 0.781 p = 0.005 
MVI CIVE_GNDVI r = 0.706 p = 0.07 
MVI CIVE_RDVI r = 0.753 p = 0.654 
MVI CIVE_RGBVI r = 0.704 p = 0.409 

SI CIVE r = 0.737 p = 0.353 
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI: 
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; 
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus 
Excessive Red; CIVE: Color Index of Vegetative Extraction 
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG) 
Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index 
 

 

 
Table 3.2 Multi Spectral p Values of Indices from Linear Model Estimating Plot 

Stand for Flight 5/18/2020 
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Index Type 

 
Index 

Correlation 
Between Plot 

Stand and Index 

 
p value from 

ANOVA 
VI NDVI r = 0.916 p = 0.061 
VI NDRE r = 0.909 p = 0.002 
VI GNDVI r = 0.916 p = 0.462 
VI RDVI r = 0.917 p = 0.367 
VI RGBVI NA NA 

MVI ExG_NDVI r = 0.903 p = 0.2 
MVI ExG_NDRE r = 0.875 p = 0.514 
MVI ExG_GNDVI r = 0.882 p = 0.929 
MVI ExG_RDVI r = 0.905 p = 0.258 
MVI ExG_RGBVI NA NA 

SI ExG r = 0.857 p = 0.962 
MVI ExGR_NDVI r = 0.908 p = 0.95 
MVI ExGR_NDRE r = 0.868 p = 0.69 
MVI ExGR_GNDVI r = 0.877 p = 0.796 
MVI ExGR_RDVI r = 0.898 p =0.64 
MVI ExGR_RGBVI r = 0.810 p = 0.659 

SI ExGR r = 0.914 p = 0.688 
MVI CIVE_NDVI r = 0.899 p = 0.044 
MVI CIVE_NDRE r = 0.876 p = 0.341 
MVI CIVE_GNDVI r = 0.881 p = 0.831 
MVI CIVE_RDVI r = 0.904 p = 0.151 
MVI CIVE_RGBVI r = 0.886 p = 0.105 

SI CIVE r = 0.753 p = 0.781 
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI: 
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; 
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus 
Excessive Red; CIVE: Color Index of Vegetative Extraction 
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG) 

Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index 
 

 

Table 3.3 Multi Spectral p Values of Indices from Linear Model Estimating Plot 
Stand for Flight 5/29/2020 

 
Index Type 

 
Index 

Correlation 
Between Plot 

Stand and Index 

 
p value from 

ANOVA 
VI NDVI r = 0.883 p = 0.971 
VI NDRE r = 0.883 p = 0.068 
VI GNDVI r = 0.883 p = 0.048 
VI RDVI r = 0.881 p = 0.259 
VI RGBVI r = 0.881 p = 0.976 

MVI ExG_NDVI r = 0.882 p = 0.016 
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MVI ExG_NDRE r = 0.869 p = 0.42 
MVI ExG_GNDVI r = 0.859 p = 0.145 
MVI ExG_RDVI r = 0.884 p = 0.46 
MVI ExG_RGBVI r = 0.867 p = 0.005 

SI ExG r = 0.815 p = 0.439 
MVI ExGR_NDVI r = 0.89 p = 0.34 
MVI ExGR_NDRE r = 0.859 p = 0.106 
MVI ExGR_GNDVI r = 0.848 p = 0.269 
MVI ExGR_RDVI r = 0.865 p = 0.557 
MVI ExGR_RGBVI r = 0.829 p = 0.048 

SI ExGR r = 0.885 p = 0.885 
MVI CIVE_NDVI r = 0.884 p = 0.032 
MVI CIVE_NDRE r = 0.879 p = 0.399 
MVI CIVE_GNDVI r = 0.869 p = 0.094 
MVI CIVE_RDVI r = 0.885 p = 0.506 
MVI CIVE_RGBVI r = 0.852 p = 0.025 

SI CIVE r = 0.752 p = 0.774 
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI: 
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; 
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus 
Excessive Red; CIVE: Color Index of Vegetative Extraction 
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG) 
Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index 

 

 

 

Table 3.4 Multi Spectral p Values of Indices from Linear Model Estimating Plot 
Stand for Flight 6/12/2020 

 
Index Type 

 
Index 

Correlation 
Between Plot 

Stand and Index 

 
p value from 

ANOVA 
VI NDVI r = 0.833 p = 0.5 
VI NDRE r = 0.827 p = 0.238 
VI GNDVI r = 0.83 p = 0.624 
VI RDVI r = 0.834 p = 0.106 
VI RGBVI r = 0.834 p = 0.007 

MVI ExG_NDVI r = 0.789 p = 0.352 
MVI ExG_NDRE r = 0.78 p = 0.014 
MVI ExG_GNDVI r = 0.765 p = 0.023 
MVI ExG_RDVI r = 0.789 p = 0.105 
MVI ExG_RGBVI r = 0.726 p = 0.118 

SI ExG r = 0.775 p = 0.731 
MVI ExGR_NDVI r = 0.783 p = 0.998 
MVI ExGR_NDRE r = 0.756 p = 0.201 
MVI ExGR_GNDVI r = 0.742 p = 0.087 
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MVI ExGR_RDVI r = 0.769 p = 0.084 
MVI ExGR_RGBVI r = 0.704 p = 0.289 

SI ExGR r = 0.835 p = 0.095 
MVI CIVE_NDVI r = 0.783 p = 0.419 
MVI CIVE_NDRE r = 0.789 p = 0.007 
MVI CIVE_GNDVI r = 0.766 p = 0.02 
MVI CIVE_RDVI r = 0.779 p = 0.095 
MVI CIVE_RGBVI r = 0.693 p = 0.105 

SI CIVE r = 0.754 p = 0.917 
NDVI: Normalized Difference Vegetative Index; NDRE: Normalized Difference RedEdge; GNDVI: 
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; 
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus 
Excessive Red; CIVE: Color Index of Vegetative Extraction 
Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG) 
Index Types, VI: Vegetative Index; MVI: Masked Vegetative Index; SI: Segmentation Index 

 

To determine the combined prediction model, indices with a p < 0.05 were 

selected. For the data set consisting of all flights NDRE ( p = 0.001, r = 0.806), 

ExG_NDRE (p = 0.012, r = 0.775), ExGR_NDRE (p = 0.005, r = 0.721), ExGR (p = 

0.04, r = 0.862), and CIVE_NDRE (p = 0.005, r = 0.781) were selected as all other 

indices were non-significant in the initial model for the all flights data set (Table 3.1). 

Indices that met the significance criteria for the flight 5/18/2020 flight data set were 

NDRE (p = 0.002, r = 0.909) and CIVE_NDVI (p = 0.044, r = 0.899) (Table 3.2). For the 

flight 5/18/2020 flight data set, a collinearity problem was found between RGBVI and 

ExG_RGBVI. The error that caused this collinearity could not be identified nor could it 

be determined which index had the correct value and which did not, as a result both 

RGBVI and ExG_RGBVI in the 5/18/2020 flight data set were removed from further 

analysis. Indices with significance in the 5/29/2020 flight data set were GNDVI (p = 

0.048, r = 0.883), ExG_NDVI (p = 0.016, r = 0.882), ExG_RGBVI (p = 0.005, r = 

0.867), ExGR_RGBVI (p= 0.048, r = 0.829), CIVE_NDVI (p = 0.032, r = 0.884) and 

CIVE_RGBVI (p = 0.025, r = 0.852) (Table 3.3). For the flight data set 6/12/2020 the 

selected indices were RGBVI (p = 0.007, r = 0.834), ExG_NDRE (p = 0.014, r = 0.78), 
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ExG_GNDVI (p = 0.023, r = 0.765), CIVE_NDRE (p = 0.007, r = 0.789) and 

CIVE_GNDVI (p = 0.02, r = 0.766) (Table 3.4). 

 The prediction model with the lowest RMSE value across all multispectral flight 

datasets was the combined prediction model of all significant indices for the data set from 

flight date 5/18/2020 with an RMSE value of 7.679 (Table 3.5).  

Plot Stand ~ NDRE + CIVE_NDVI 

The Pearson coefficient for correlation between the predicted stand and the observed 

stand was r = 0.836 (p < 0.01) for the model with the lowest RMSE (Table 3.5). The 

model with the highest correlation (r = 0.898, p < 0.01) between the visual score of 

winter survival and the predicted score for winter survival and RMSE value of 10.234 

was the combined prediction model from the 6/12/2020 flight data set (Table 3.5) 

Plot Stand ~ RGBVI + ExG_GNDVI + ExG_NDRE + CIVE_NDRE + CIVE_GNDVI 

 

Table 3.5 Multispectral Prediction Models Correlation and RMSE with the 

Observed Data 

 

Flight 

Date 

 

Prediction Model 

Correlation 

of Plot Stand 

to Predicted 

Plot Stand 

 

RMSE 

All Plot Stand ~ NDRE*Flight + RGBVI*Flight + 
ExG_NDRE *Flight  + ExGR_NDRE*Flight + 
ExGR*Flight + CIVE_NDRE*Flight  

r = 0.891** 
(n = 73) 

9.669 

All Plot Stand ~ NDRE*Flight r = 0.878** 
(n = 73) 

9.64 

All Plot Stand ~ RGBVI*Flight r = 0.873** 9.723 
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(n = 73) 
All Plot Stand ~ ExG_NDRE*Flight r = 0.873** 

(n = 73) 
10.456 

All Plot Stand ~ ExGR_NDRE*Flight r = 0.859** 
(n = 73) 

11.204 

All Plot Stand ~ ExGR*Flight r = 0.837** 
(n = 73) 

9.342 

All Plot Stand ~ CIVE_NDRE*Flight r = 0.861** 
(n = 73) 

10.735 

05/18/2020 Plot Stand ~ NDRE + CIVE_NDVI r = 0.836** 
(n = 23) 

7.679 

05/18/2020 Plot Stand ~ NDRE r = 0.845** 
(n = 23) 

8.118 

05/18/2020 Plot Stand ~ CIVE_NDVI r = 0.857** 
(n = 23) 

8.641 

05/29/2020 Plot Stand ~ GNDVI + ExG_NDVI + 
ExG_RGBVI + ExGR_RGBVI + CIVE_NDVI 
+ CIVE_RGBVI 

r = 0.84** 
(n = 23) 

8.884 

05/29/2020 Plot Stand ~ GNDVI r = 0.815** 
(n = 23) 

8.468 

05/29/2020 Plot Stand ~ ExG_NDVI r = 0.882** 
(n = 23) 

9.309 

05/29/2020 Plot Stand ~ ExG_RGBVI r = 0.883** 
(n = 23) 

9.918 

05/29/2020 Plot Stand ~ ExGR_RGBVI r = 0.867** 
(n = 23) 

11.176 

05/29/2020 Plot Stand ~ CIVE_NDVI r = 0.884** 
(n = 23) 

8.538 

05/29/2020 Plot Stand ~ CIVE_RGBVI r = 0.852** 
(n = 23) 

9.908 

06/12/2020 Plot Stand ~ RGBVI + ExG_GNDVI + 
ExG_NDRE + CIVE_NDRE + CIVE_GNDVI  

r = 0.898** 
(n = 23) 

10.234 

06/12/2020 Plot Stand ~ RGBVI r = 0.845** 
(n = 23) 

10.606 

06/12/2020 Plot Stand ~ ExG_GNDVI r = 0.833** 
(n = 23) 

12.051 

06/12/2020 Plot Stand ~ ExG_NDRE r =0.827** 
(n = 23) 

12.196 

06/12/2020 Plot Stand ~ CIVE_NDRE r = 0.834** 
(n = 23) 

11.847 

06/12/2020 Plot Stand ~ CIVE_GNDVI r = 0.789** 
(n = 23) 

11.721 

NDVI: Normalized Difference Veg  etative Index; NDRE: Normalized Difference RedEdge; GNDVI: 
Green Normalized Difference Vegetative Index; RDVI: Renormalized Difference Vegetative Index; 
RGBVI: Red Green Blue Vegetative Index; ExG: Excessive Green; ExGR: Excessive Green Minus 
Excessive Red; CIVE: Color Index of Vegetative Extraction 
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Masked indices are coded as mask_vegetative index (ex. ExG_NDVI: NDVI masked by ExG) 
** indicates p < 0.01 

 

3.3 True Color Image Data and Plot Stand Prediction Results 

 All of the segmentation indices were determined to be significantly different for 

genotypes across all flight dates and within individual flight dates. The true color data 

showed variable correlation depending on the flight date data set (combined data in Table 

3.6, and individual flight date data in Tables 3.7, 3.8, 3.9, 3.10). The highest correlation (r 

= 0.918, p < 0.001) with plot stand was ExGR on flight 5/18/2020. As seen with the 

multispectral data some of the indices were non-significant when analyzed in a combined 

linear model for each data set (initial model; combined flight date data in Table 3.6, and 

individual flight date data in Tables 3.7, 3.8, 3.9, 3.10). 

 

Table 3.6 RGB: P Values of Indices from Linear Model Estimating Plot Stand for 
Flight Across All Flight Dates 

 
Index 

Correlation Between Plot 
Stand and Segmentation 

index 

 
p value from ANOVA 

ExG r = 0.442 p = 0.005 
*ExGR* r = 0.468 p < 0.001 

CIVE r = 0.522 p = 0.019 
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative 
Extraction 
*Upper threshold not used on flights 5/29/202 an 6/12/2020 data due to issues delineating between 
shadows and mature leaves 

 

 

Table 3.7 RGB: P Values of Indices from Linear Model Estimating Plot Stand for 
Flight 4/25/2020 

 
Index 

Correlation Between 
Plot Stand and 

Segmentation index 

 
p value from ANOVA 

ExG r = 0.78 p < 0.001 
ExGR r = 0.773 p = 0.141 
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CIVE r = 0.833 p < 0.001 
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative 
Extraction 

 

 

Table 3.8 RGB: P Values of Indices from Linear Model Estimating Plot Stand for 
Flight 5/18/2020 

 
Index 

Correlation Between 
Plot Stand and 

Segmentation index 

 
p value from ANOVA 

ExG r = 0.77 p = 0.051 
ExGR r = 0.918 p < 0.001 
CIVE r = 0.899 p = 0.006 

ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative 
Extraction 

 

 

Table 3.9 RGB: P Values of Indices from Linear Model Estimating Plot Stand for 
Flight 5/29/2020 

 
Index 

Correlation Between 
Plot Stand and 

Segmentation index 

 
p value from ANOVA 

ExG r = 0.666 p < 0.001 
*ExGR* r = 0.843 p < 0.001 

CIVE r = 0.799 p = 0.007 
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative 
Extraction 
*Upper threshold not used due to issues delineating between shadows and mature leaves 

 

 

Table 3.10 RGB: P Values of Indices from Linear Model Estimating Plot Stand for 
Flight 6/12/2020 

 
Index 

Correlation Between 
Plot Stand and 

Segmentation index 

 
p value from ANOVA 

ExG r = 0.253 p = 0.372 
*ExGR* r = 0.738 p = 0.393 

CIVE r = 0.79 p = 0.004 
ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative 
Extraction 
*Upper threshold not used due to issues delineating between shadows and mature leaves 
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 The results from the two-way ANOVA were used to select indices with a p < 0.05 

to generate combined prediction models. For the data set that includes all flight dates, the 

indices ExG (p = 0.005, r = 0.442), ExGR (p <0.001, r = 0.468) and CIVE (p = 0.019, r = 

0.522) were significant (Table 3.6). The 04/25/2020 flight date data set showed 

significance for indices ExG (p < 0.001, r = 0.78) and CIVE (p < 0.001, r = 0.833; Table 

3.7). Indices with significance for flight date 05/18/2020 were ExGR (p < 0.001, r = 

0.918) and CIVE (p = 0.006, r = 0.899; Table 3.8). Flight date 5/29/2020 had significance 

for indices ExG (p < 0.001, r = 0.666), ExGR (p < 0.001, r = 0.843) and CIVE (p = 

0.007, r = 0.799; Table 3.9). Lastly, the data set for flight date 6/12/2020 only CIVE (p = 

0.004, r = 0.79) was significant (Table 3.10). 

 The prediction model with the lowest RMSE value across all true color datasets 

was the combined model of all significant indices for the flight date 5/18/2020 with an 

RMSE value of 7.041 (Table 3.11).  

Plot Stand ~ ExGR + CIVE 

The Pearson coefficient for correlation between the predicted plot stand and the visually 

scored plot stand was r = 0.924 (p < 0.01) for flight date 5/18/2020, the highest r value 

among the true color predictions and the multispectral predictions (Table 3.11). 

 

Table 3.11 True Color Prediction Models Correlation and RMSE 

 

Flight 

Date 

 

Prediction Model 

Correlation 

of Plot 

Stand to 

 

RMSE 
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Predicted 

Plot Stand 

All Plot Stand ~ ExG*Flight + ExGR*Flight + 
CIVE*Flight 

r = 0.87** 
(n = 73) 

10.234 

All Plot Stand ~ ExG*Flight r = 0.654** 
(n = 73) 

15.531 

All Plot Stand ~ ExGR*Flight r = 0.821** 
(n = 73) 

11.544 

All Plot Stand ~ CIVE*Flight r = 0.831** 
(n = 73) 

11.027 

04/25/2020 Plot Stand ~ ExG + CIVE r = 0.87** 
(n = 23) 

9.644 

04/25/2020 Plot Stand ~ ExG r = 0.78** 
(n = 23) 

12.622 

04/25/2020 Plot Stand ~ CIVE  r = 0.833** 
(n = 23) 

11.0 

05/18/2020 Plot Stand ~ ExGR + CIVE r = 0.924** 
(n = 23) 

7.041 

05/18/2020 Plot Stand ~ ExGR r = 0.918** 
(n = 23) 

7.425 

05/18/2020 Plot Stand ~ CIVE r = 0.899** 
(n = 23) 

8.44 

05/29/2020 Plot Stand ~ ExG + ExGR + CIVE r = 0.878** 
(n = 23) 

9.832 

05/29/2020 Plot Stand ~ ExG r = 0.666** 
(n = 23) 

15.548 

05/29/2020 Plot Stand ~ ExGR r = 0.843** 
(n = 23) 

10.417 

05/29/2020 Plot Stand ~ CIVE r = 0.799** 
(n = 23) 

12.0 

06/12/2020 Plot Stand ~ CIVE r = 0.79** 
(n = 23) 

11.699 

ExG: Excessive Green; ExGR: Excessive Green Minus Excessive Red; CIVE: Color Index of Vegetative 
Extraction 
** indicates p < 0.01 

 

3.4 Evaluation of Observed Patterns with Hybrid Necrosis 
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In the scatter plots of NDVI it can be observed that the necrotic lines (blue) and 

non-necrotic lines (red) cluster together much tighter as the flights became later in the 

season (Fig. 3.1). This same pattern can be observed in the scatter plots of the other 

indices to varying degrees.  

Fig. 3.1 Scatter plots of NDVI & Stand Grouped by Flight 

 

When looking at the numeric data an interesting pattern was observed. The hybrid 

necrotic hybrids either showed little to no gain in their NDVI value or a moderate 

increase between the 5/18/2020 flight and 5/29/2020 flight followed by a decrease in 

NDVI value at the 6/12/2020 flight to relatively similar levels as the 05/18/2020 flight. 

For example, replication 3 of hybrid D had NDVI value of 0.326 on 5/18/2020, which 
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went up to 0.396 on 5/29/2020 and then back down to 0.326 on 6/12/2020. This same 

trend can also be observed in the non-winter killed non-hybrid necrotic hybrids, just with 

much higher NDVI values. For example: replication 1 of hybrid C had an NDVI value of 

0.684 on 5/18/2020, 0.738 on 5/29/2020 and 0.689 on 6/12/2020. This pattern observed 

in the hybrid necrotic hybrids changes when looking at the hybrid that was not an hybrid 

necrotic hybrid but did exhibit winter kill, hybrid M, where the NDVI value rises from 

5/18/2020 to 5/29/2020 but then plateaus or has relatively small gains in NDVI from 

5/29/2020 to 6/12/2020. Example: Replication 2 of hybrid M has a NDVI value of 0.42 

on 5/18/2020, 0.551 on 5/29/2020 and 0.557 on 6/12/2020. 

In the scatter plot of CIVE and plot stand for the true color data sets a pattern of 

increased clustering can be observed in the hybrid necrotic lines as compared to the non-

hybrid necrotic hybrids (Fig. 3.2) as flight dates progressed in the season, just as was 

observed with NDVI in the multispectral data (Fig. 3.1). This pattern of clustering was 

similar to the scatter plot of the ExGR index but was not present in the ExG scatter plot. 
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Fig. 3.2 Scatterplots of RGB CIVE & Stand Grouped by Flight 

 The CIVE data from the true color data set showed a different pattern to the 

NDVI values from multispectral data with the addition of data from the 04/25/2020 flight 

date. All hybrids, regardless of hybrid necrosis status or winter kill showed a large 

increase in CIVE values from 04/25/2020 to 05/18/2020. The non-hybrid necrotic non-

winter killed hybrids showed a consistent pattern of 5/18/2020 being the peak for CIVE 

with slight decrease for the 5/29/2020 and subsequently another small relative decrease in 

CIVE values for 6/12/2020 For example, replication 1 of hybrid P had CIVE values of 

113,168 on 4/25/2020, 435,230 on 5/18/2020, 367,698 on 5/29/2020 and 321,460 on 

6/12/2020. The hybrid necrotic hybrids either peaked on 5/29/2020 and plateaued, had a 

slight decrease on 6/12/2020 or they continued to slightly increase on 6/12/2020, but 

never reached more than around 50% of the peak CIVE values for non-hybrid necrotic 
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non-winterkilled plots. For example, replication 2 of Hybrid J had CIVE values of 12,313 

on 4/25/2020, 84,622 on 5/18/2020, 85,081 on 5/29/2020, and 81,555 on 6/12/2020 while 

replicate 1 of hybrid G had CIVE values of 12,499 on 4/25/2020, 93,599 on 5/18/2020, 

119,930 on 5/29/2020 and 141,292 on 6/12/2020. The hybrid M that was not hybrid 

necrotic but did exhibit winter kill in all three replications showed an increase of CIVE 

values across all dates for replicates 1 and 3 while replicate 2 had a slight decrease in 

CIVE from 5/29/2020 to 6/12/2020. The CIVE values of hybrid M replicates did increase 

to over 50% of the peak CIVE value of non-necrotic hybrids that did not exhibit winter 

kill. Example: Replicate 1 of hybrid M had CIVE value of 20,469 on 4/25/2020, 145,075 

on 5/18/2020, 263,243 on 5/29/2020 and 278,895 on 6/12/2020.  

Chapter 4: Discussion 

 The primary objective of this study was to explore the relationship between 

vegetative indices and segmentation indices as they relate to plot stand which is an 

indicator of winter survival and to identify a prediction model to determine winter 

survival scores. We proposed a method of utilizing a combined linear model to predict 

winter survival of winter wheat using multiple vegetative indices with the goal of a 

higher correlation of predicted plot stand and visually rated plot stand, over models 

including only one vegetative index. Previous research has an extensive history using 

vegetative and segmentation indices to measure canopy cover of different crops, 

including the comparison of some of the indices (Li et al., 2018; Neto, 2004; Rasmussen 

et al., 2015). To the best of our knowledge, little research has been done in using multiple 

indices within the same linear model to improve prediction. Additionally, little research 

has been done in using segmentation indices to mask other vegetative indices for use in 
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prediction of plot stand or canopy cover in wheat. When compared to individual indices 

the masked indices had little to no benefit over their respective indices, however when 

utilized in combined prediction model some of the masked indices were shown to have a 

greater level significance and contributed to a better prediction outcome.  Overall, we 

were able to show in both scenarios, unnormalized RGB images and multispectral 

images, in specific flight dates, the best approach was to use a combined linear model for 

stand prediction, with an r = 0.924 (p < 0.01) and r = 0.836 (p < 0.01) respectively, both 

of which had strong correlation and the lowest RMSE in comparison to models with 

individual indices. 

In regard to the objective of observing patterns in plot stand over time for hybrid 

necrosis, it was shown that several vegetative indices were observed to have a strong 

relationship with hybrid necrosis as the season progressed to later timed flights. This 

correlation would be expected with the decrease in green biomass that should be 

observed in more mature necrotic lines (Caldwell, 1943). It was also observed that hybrid 

necrosis exhibits a clear clustering pattern that separates them from non-necrotic lines for 

numerous indices, most notably NDVI. The numeric data observation also showed a clear 

trend of NDVI values decreasing much earlier for hybrids exhibiting hybrid necrosis. 

Both the scatter plot and numeric patterns showed a clear trend in differences of necrotic 

hybrids and non-necrotic hybrids, allowing for the potential for necrotic lines to be 

classified with the use of prediction algorithm or machine learning program. Using the 

CIVE segmentation index with the true color dataset also showed noticeable differences 

between necrotic hybrids and non-necrotic hybrids. With the scatterplot of CIVE showing 

a similar clustering pattern to the NDVI scatter plot and the numeric data showing 
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increases in plot stand to be substantially smaller in necrotic hybrids than non-necrotic 

hybrids that exhibited winter kill. The true color images were left unnormalized for the 

purpose of showing the potential for unnormalized segmentation to be used with machine 

learning or AI software, that utilize raw RGB images to classify plants exhibiting 

symptoms of hybrid necrosis, saving on processing time and resources. 

 Though the excessive green (ExG), color index of vegetation extraction (CIVE) 

in the true color images and excessive green minus excessive red (ExGR) had good 

correlation with plot stand depending on the flight, it must be taken into consideration 

that the ExGR had to drop the upper threshold value due to the inability to segment 

mature leaves from shadows. It must also be noted that a standard threshold could not be 

used for the true color data set, and custom thresholds had to be determined for each 

flight for the respective segmentation indices. The need for a new threshold for each 

flight date in the true color images indicates the need to be cautious when considering the 

thresholding in the multispectral imaging was sufficient to be used across all flights, this 

may have just been due to chance and would need to be further evaluated on whether a 

standard threshold could be developed for a specific crop. 

A limitation of this study that should be considered is the small number of lines 

observed with limited variability in winter survival and hybrid necrosis and that the data 

were from one location for a single year. All of the hybrid necrotic lines suffered from 

winterkill and only 1 hybrid that did not exhibit hybrid necrosis had winter kill in all 3 

replications. If repeated, it would be ideal to design a study with checks of known 

variability in winter survival planted with a greater number of hybrids that are made with 

only two parental lines, that also produce more combinations with hybrid necrosis. This 
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data could be done by seed mixtures of winter and spring cultivars to provide a gradient 

of winter killing.  Similarly seed mixtures of known hybrid necrotic and non-hybrid 

necrotic hybrids could provide a gradient of hybrid necrotic and winter killed data.   

Based on the results it appears that the utilization of combined linear models that 

use more than one index as a predictor provides slightly better results over models that 

use a single index as a predictor. This was best seen in the non-normalized true color 

using both ExGR and CIVE (r = 0.924, p < 0.01) had incremental gain in correlation 

between predicted plot stand and visually rated plot stand over second highest 

correlation, the single index ExGR (r = 0.918, p < 0.01) while also having the lowest 

RMSE value of 7.041. Even though the difference between the combined model (ExGR + 

CIVE) and ExGR may not provide a functionally useful significant difference the results 

indicate the potential for future research to expand and refine the concept of using 

multiple indices in a single linear model potentially realizing larger more biologically 

relevant gains in correlation between predicted values and traditionally rated values. As 

the indices use the same multispectral bands, multiple indices can be readily generated 

and combined in models using standard computer software. In the multispectral data set, 

the prediction model with lowest RMSE value of 7.679, which included the vegetative 

index NDRE and the masked vegetative index CIVE_NDVI (r = 0.836, p < 0.01), did not 

have the largest correlation between predicted plot stand and visually rated plot stand, 

among the prediction models. The multispectral prediction with highest plot stand 

correlation (r = 0.898, p < 0.01) was combined model from flight 6/12/2020 that included 

the indices RGBVI, ExG_GNDVI, ExG_NDRE, CIVE_NDRE and CIVE_GNDVI 

which had and RMSE value of 10.234. That RMSE was larger than 13 of the other 
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multispectral prediction models. This provides an interesting scenario where the 

statistically appropriate model to choose does not predict the trait of interest better than 

models that should not be chosen based on RMSE. Further research is needed to expand 

on the idea that utilizing more than one index as a predictor in a single linear model can 

provide beneficial gains in prediction of agronomic traits. Furthermore, we believe that 

enough evidence has been shown in the efficacy of using non-normalized RGB values to 

measure plot stand to provide justification for further research using non-normalized 

RGB values in prediction of both continuous and categorical traits.  

If we were to make recommendations for future research regarding measuring 

plot stand in winter with a combined model, it would be to utilize a statistical selection 

method of indices similar to one used in this study to best fit the specific field conditions 

present in the flight data. In terms of flight dates, it is our opinion that the earlier flight 

dates of 4/25/2020 and 5/18/2020 would provide the most accurate measurement of plot 

stand, as these dates occur before the wheat plots are able to “recover” and fill in more of 

the plot area due to reduced competition. For identifying patterns in hybrid necrosis, it 

appeared that a minimum of three flights were necessary to capture the changes as the 

hybrid necrotic hybrids expressed more tissue death. The earlier flight of 4/25/2020 

provided little to no benefit in observing hybrid necrosis most likely due to the flight date 

being before and expression of hybrid necrosis was present. 
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Appendix A: Multispectral Image processing Python Code 

 

import rasterio 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import fiona 

import rasterio.mask 

from pandas import DataFrame 

import geopandas as gpd 

 

#5\18 Vegetative indices extraction 

# Import tif files 

green = rasterio.open('518_green.tif') 

red = rasterio.open('518_red.tif') 

nir = rasterio.open('518_nir.tif') 

re = rasterio.open('518_red edge.tif') 

blue = rasterio.open('518_blue.tif') 

 

# read in 2d array 

nirmap = nir.read(1) 

greenmap = green.read(1) 

redmap = red.read(1) 

remap = re.read(1) 

bluemap = blue.read(1) 

 

# correct band to remove negative values 

nirc = np.where(nirmap < 0, 0, nirmap) 

redc = np.where(redmap < 0, 0, redmap) 

rec = np.where(remap < 0, 0, remap) 

greenc = np.where(greenmap < 0, 0, greenmap) 

bluec = np.where(bluemap < 0, 0, bluemap) 
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# calculate unmasked VI 

ndvimap = (nirc - redc) / (nirc + redc) #vi 

ndremap = (nirc - rec) / (nirc + rec) #vi 

gndvimap = (nirc - greenc) / (nirc + greenc) #vi 

exgmap = (2*greenc) - redc - bluec #mask index 

rdvimap = (nirc-redc)/(np.sqrt((nirc+redc))) #vi 

rgbvimap = ((greenc**2) - (bluec*redc))/((greenc**2)+(bluec*redc)) #vi 

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index 

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index 

 

# reshape VI's 

NDVI = np.reshape(ndvimap,(1,ndvimap.shape[0], ndvimap.shape[1])) 

NDRE = np.reshape(ndremap,(1, ndremap.shape[0], ndremap.shape[1])) 

GNDVI = np.reshape(gndvimap,(1, gndvimap.shape[0], gndvimap.shape[1])) 

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1])) 

RDVI = np.reshape(rdvimap,(1, rdvimap.shape[0], rdvimap.shape[1])) 

RGBVI = np.reshape(rgbvimap,(1, rgbvimap.shape[0], rgbvimap.shape[1])) 

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1])) 

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1])) 

 

#define out_meta using the meta dat from one of the original tif files 

out_meta = red.meta 

 

# save reshaped VI's as tif files 

with rasterio.open('ndvisave.tif', "w", **out_meta) as dest: 

    dest.write(NDVI) 

with rasterio.open('ndresave.tif', 'w', **out_meta) as dest: 

    dest.write(NDRE) 

with rasterio.open('gndvisave.tif', 'w', **out_meta) as dest: 

    dest.write(GNDVI) 

with rasterio.open('exgsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExG) 

with rasterio.open('rdvisave.tif', 'w', **out_meta) as dest: 
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    dest.write(RDVI) 

with rasterio.open('rgbvisave.tif', 'w', **out_meta) as dest: 

    dest.write(RGBVI) 

with rasterio.open('civesave.tif', 'w', **out_meta) as dest: 

    dest.write(CIVE) 

with rasterio.open('exgrsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExGR) 

 

#Change crs of shp to epsg 32614 

data = gpd.read_file('Multi Grid 518-612.shp') 

data = data.to_crs(epsg=32614) 

data.to_file('CMulti Grid 518-612.shp') 

 

# Calculate 5/18 unmasked VI's 

NDVImu = [] 

NDREmu = [] 

GNDVImu = [] 

RDVImu = [] 

RGBVImu = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('ndvisave.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            NDVImu.append(np.nanmean(out_image)) 

             



47 
 

        with rasterio.open('ndresave.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            NDREmu.append(np.nanmean(out_image))      

             

        with rasterio.open('gndvisave.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('rdvisave.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('rgbvisave.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            RGBVImu.append(np.nanmean(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, NDVImu, NDREmu, GNDVImu, RDVImu, RGBVImu]) 

df = df.T 

df.columns = ['ID', 'NDVImu', 'NDREmu', 'GNDVImu', 'RDVImu', 'RGBVImu'] 

           

# export data frame to excel file 

df.to_excel('Output/Unmasked_VI_518.xlsx', index = False)    

df 

 

# Check grid polygon size 

NDVImu = [] 

 

ID = [] 
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for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('ndvisave.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 225, out_image).astype(float) 

            NDVImu.append(np.count_nonzero(out_image)) 

 

#combine the means of th VI's into one data frame 

df = DataFrame([ID, NDVImu]) 

df = df.T 

df.columns = ['ID', 'NDVImu']   

df 

   

# Correct crs of new shape file to isolate area of interest for mask generation 

data = gpd.read_file('MaskShape.shp') 

data = data.to_crs(epsg=32614) 

data.to_file('CMaskShape.shp') 

 

# Create 518 ExG Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image>=0.029, None, 0).astype(float) 

        with rasterio.open('exgmask.tif', 'w', **out_meta) as dest: 
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            dest.write(out_image) 

 

# Create 518 ExGR Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('exgrsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image>=0.01, None, 0).astype(float) 

        with rasterio.open('exgrmask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# Create 518 CIVE Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('civesave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image<=18.77, None, 0).astype(float) 

        with rasterio.open('civemask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# calculate mean for ExG Masked 518 VI's 

ExG_NDVImu = [] 

ExG_NDREmu = [] 

ExG_GNDVImu = [] 

ExG_ExGct = [] 

ExG_RDVImu = [] 

ExG_RGBVImu = [] 
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ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('518_exg_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_exg_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_NDREmu.append(np.nanmean(out_image)) 

             

             

        with rasterio.open('518_exg_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_exg_exg.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('518_exg_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 
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            ExG_RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_exg_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_RGBVImu.append(np.nanmean(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_NDVImu, ExG_NDREmu, ExG_GNDVImu, ExG_RDVImu, ExG_RGBVImu, 
ExG_ExGct]) 

df = df.T 

df.columns = ['ID', 'ExG_NDVImu', 'ExG_NDREmu', 'ExG_GNDVImu', 'ExG_RDVImu', 
'ExG_RGBVImu', 'ExG_ExGct'] 

           

# export data frame to excel file 

df.to_excel('Output/ExG_Masked_VI_518.xlsx', index = False)    

df 

 

# calculate mean for ExGR 518 Masked VI's 

ExGR_NDVImu = [] 

ExGR_NDREmu = [] 

ExGR_GNDVImu = [] 

ExGR_RDVImu = [] 

ExGR_RGBVImu = [] 

ExGR_ExGRct = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 
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        with rasterio.open('518_exgr_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_exgr_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_NDREmu.append(np.nanmean(out_image)) 

             

             

        with rasterio.open('518_exgr_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_exgr_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_exgr_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_RGBVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_exgr_exgr.tif', 'r') as exgrsave: 

            out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            ExGR_ExGRct.append(np.count_nonzero(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExGR_NDVImu, ExGR_NDREmu, ExGR_GNDVImu, ExGR_RDVImu, 
ExGR_RGBVImu, ExGR_ExGRct]) 
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df = df.T 

df.columns = ['ID', 'ExGR_NDVImu', 'ExGR_NDREmu', 'ExGR_GNDVImu', 'ExGR_RDVImu', 
'ExGR_RGBVImu', 'ExGR_ExGRct'] 

           

# export data frame to excel file 

df.to_excel('Output/ExGR_Masked_VI_518.xlsx', index = False)    

df 

 

# calculate mean for CIVE 518 Masked VI's 

CIVE_NDVImu = [] 

CIVE_NDREmu = [] 

CIVE_GNDVImu = [] 

CIVE_RDVImu = [] 

CIVE_RGBVImu = [] 

CIVE_CIVEct = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('518_cive_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_cive_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_NDREmu.append(np.nanmean(out_image)) 
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        with rasterio.open('518_cive_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_cive_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_cive_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_RGBVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('518_cive_cive.tif', 'r') as civesave: 

            out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            CIVE_CIVEct.append(np.count_nonzero(out_image)) 

 

#combine the means of th VI's into one data frame 

df = DataFrame([ID, CIVE_NDVImu, CIVE_NDREmu, CIVE_GNDVImu, CIVE_RDVImu, 
CIVE_RGBVImu, CIVE_CIVEct]) 

df = df.T 

df.columns = ['ID', 'CIVE_NDVImu', 'CIVE_NDREmu', 'CIVE_GNDVImu', 'CIVE_RDVImu', 
'CIVE_RGBVImu', 'CIVE_CIVEct'] 

           

# export data frame to excel file 

df.to_excel('Output/CIVE_Masked_VI_518.xlsx', index = False)    

df 

 

#5/29 

# Import tif files 
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green = rasterio.open('529_green.tif') 

red = rasterio.open('529_red.tif') 

nir = rasterio.open('529_nir.tif') 

re = rasterio.open('529_red edge.tif') 

blue = rasterio.open('529_blue.tif') 

 

# read in 2d array 

nirmap = nir.read(1) 

greenmap = green.read(1) 

redmap = red.read(1) 

remap = re.read(1) 

bluemap = blue.read(1) 

 

# correct band to remove negative values 

nirc = np.where(nirmap < 0, 0, nirmap) 

redc = np.where(redmap < 0, 0, redmap) 

rec = np.where(remap < 0, 0, remap) 

greenc = np.where(greenmap < 0, 0, greenmap) 

bluec = np.where(bluemap < 0, 0, bluemap) 

 

# calculate unmasked VI 

ndvimap = (nirc - redc) / (nirc + redc) #vi 

ndremap = (nirc - rec) / (nirc + rec) #vi 

gndvimap = (nirc - greenc) / (nirc + greenc) #vi 

exgmap = (2*greenc) - redc - bluec #mask index 

rdvimap = (nirc-redc)/(np.sqrt((nirc+redc))) #vi 

rgbvimap = ((greenc**2) - (bluec*redc))/((greenc**2)+(bluec*redc)) #vi 

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index 

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index 

 

# reshape VI's into 3d arrays 

NDVI = np.reshape(ndvimap,(1,ndvimap.shape[0], ndvimap.shape[1])) 

NDRE = np.reshape(ndremap,(1, ndremap.shape[0], ndremap.shape[1])) 
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GNDVI = np.reshape(gndvimap,(1, gndvimap.shape[0], gndvimap.shape[1])) 

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1])) 

RDVI = np.reshape(rdvimap,(1, rdvimap.shape[0], rdvimap.shape[1])) 

RGBVI = np.reshape(rgbvimap,(1, rgbvimap.shape[0], rgbvimap.shape[1])) 

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1])) 

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1])) 

 

out_meta = red.meta 

 

with rasterio.open('ndvisave.tif', "w", **out_meta) as dest: 

    dest.write(NDVI) 

with rasterio.open('ndresave.tif', 'w', **out_meta) as dest: 

    dest.write(NDRE) 

with rasterio.open('gndvisave.tif', 'w', **out_meta) as dest: 

    dest.write(GNDVI) 

with rasterio.open('exgsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExG) 

with rasterio.open('rdvisave.tif', 'w', **out_meta) as dest: 

    dest.write(RDVI) 

with rasterio.open('rgbvisave.tif', 'w', **out_meta) as dest: 

    dest.write(RGBVI) 

with rasterio.open('civesave.tif', 'w', **out_meta) as dest: 

    dest.write(CIVE) 

with rasterio.open('exgrsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExGR) 

 

# isolate the individual plots within the VI tif files using mask function with shp file 

# produce mean of VI pixels within each shp file plot for each VI while generating plot ids associated with 
indices 

 

NDVImu = [] 

NDREmu = [] 

GNDVImu = [] 

RDVImu = [] 
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RGBVImu = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('ndvisave.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('ndresave.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            NDREmu.append(np.nanmean(out_image)) 

             

        with rasterio.open('gndvisave.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('rdvisave.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('rgbvisave.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 
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            RGBVImu.append(np.nanmean(out_image)) 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, NDVImu, NDREmu, GNDVImu, RDVImu, RGBVImu]) 

df = df.T 

df.columns = ['ID', 'NDVImu', 'NDREmu', 'GNDVImu', 'RDVImu', 'RGBVImu'] 

           

# export data frame to excel file 

df.to_excel('Output/Unmasked_VI_529.xlsx', index = False)    

df 

 

# Create 529 ExG Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image>=0.029, None, 0).astype(float) 

        with rasterio.open('exgmask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# Create 529 ExGR Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('exgrsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image>=0.01, None, 0).astype(float) 
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        with rasterio.open('exgrmask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# Create 529 CIVE Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('civesave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image<=18.77, None, 0).astype(float) 

        with rasterio.open('civemask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# calculate mean for ExG Masked 529 VI's 

ExG_NDVImu = [] 

ExG_NDREmu = [] 

ExG_GNDVImu = [] 

ExG_ExGct = [] 

ExG_RDVImu = [] 

ExG_RGBVImu = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('529_exg_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 
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            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_exg_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_NDREmu.append(np.nanmean(out_image)) 

             

             

        with rasterio.open('529_exg_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_exg_exg.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('529_exg_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_exg_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_RGBVImu.append(np.nanmean(out_image)) 

             

#combine the means of the VI's into one data frame 

df = DataFrame([ID, ExG_NDVImu, ExG_NDREmu, ExG_GNDVImu, ExG_RDVImu, ExG_RGBVImu, 
ExG_ExGct]) 

df = df.T 



61 
 

df.columns = ['ID', 'ExG_NDVImu', 'ExG_NDREmu', 'ExG_GNDVImu', 'ExG_RDVImu', 
'ExG_RGBVImu', 'ExG_ExGct'] 

           

# export data frame to excel file 

df.to_excel('Output/ExG_Masked_VI_529.xlsx', index = False)    

df 

 

# calculate mean for ExGR 529 Masked VI's 

ExGR_NDVImu = [] 

ExGR_NDREmu = [] 

ExGR_GNDVImu = [] 

ExGR_RDVImu = [] 

ExGR_RGBVImu = [] 

ExGR_ExGRct = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('529_exgr_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_exgr_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_NDREmu.append(np.nanmean(out_image)) 
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        with rasterio.open('529_exgr_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_exgr_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_exgr_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_RGBVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_exgr_exgr.tif', 'r') as exgrsave: 

            out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            ExGR_ExGRct.append(np.count_nonzero(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExGR_NDVImu, ExGR_NDREmu, ExGR_GNDVImu, ExGR_RDVImu, 
ExGR_RGBVImu, ExGR_ExGRct]) 

df = df.T 

df.columns = ['ID', 'ExGR_NDVImu', 'ExGR_NDREmu', 'ExGR_GNDVImu', 'ExGR_RDVImu', 
'ExGR_RGBVImu', 'ExGR_ExGRct'] 

           

# export data frame to excel file 

df.to_excel('Output/ExGR_Masked_VI_529.xlsx', index = False)    

df 

 

# calculate mean for CIVE 529 Masked VI's 

CIVE_NDVImu = [] 

CIVE_NDREmu = [] 
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CIVE_GNDVImu = [] 

CIVE_RDVImu = [] 

CIVE_RGBVImu = [] 

CIVE_CIVEct = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('529_cive_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_cive_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_NDREmu.append(np.nanmean(out_image)) 

             

             

        with rasterio.open('529_cive_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_cive_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_RDVImu.append(np.nanmean(out_image)) 
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        with rasterio.open('529_cive_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_RGBVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('529_cive_cive.tif', 'r') as civesave: 

            out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            CIVE_CIVEct.append(np.count_nonzero(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, CIVE_NDVImu, CIVE_NDREmu, CIVE_GNDVImu, CIVE_RDVImu, 
CIVE_RGBVImu, CIVE_CIVEct]) 

df = df.T 

df.columns = ['ID', 'CIVE_NDVImu', 'CIVE_NDREmu', 'CIVE_GNDVImu', 'CIVE_RDVImu', 
'CIVE_RGBVImu', 'CIVE_CIVEct'] 

           

# export data frame to excel file 

df.to_excel('Output/CIVE_Masked_VI_529.xlsx', index = False)    

df 

 

#6/12 

# Import tif files 

green = rasterio.open('612_green.tif') 

red = rasterio.open('612_red.tif') 

nir = rasterio.open('612_nir.tif') 

re = rasterio.open('612_red edge.tif') 

blue = rasterio.open('612_blue.tif') 

 

# read in 2d array 

nirmap = nir.read(1) 

greenmap = green.read(1) 

redmap = red.read(1) 
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remap = re.read(1) 

bluemap = blue.read(1) 

 

# correct band to remove negative values 

nirc = np.where(nirmap < 0, 0, nirmap) 

redc = np.where(redmap < 0, 0, redmap) 

rec = np.where(remap < 0, 0, remap) 

greenc = np.where(greenmap < 0, 0, greenmap) 

bluec = np.where(bluemap < 0, 0, bluemap) 

 

# calculate unmasked VI 

ndvimap = (nirc - redc) / (nirc + redc) #vi 

ndremap = (nirc - rec) / (nirc + rec) #vi 

gndvimap = (nirc - greenc) / (nirc + greenc) #vi 

exgmap = (2*greenc) - redc - bluec #mask index 

rdvimap = (nirc-redc)/(np.sqrt((nirc+redc))) #vi 

rgbvimap = ((greenc**2) - (bluec*redc))/((greenc**2)+(bluec*redc)) #vi 

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index 

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index 

 

# reshape VI's into 3d arrays 

NDVI = np.reshape(ndvimap,(1,ndvimap.shape[0], ndvimap.shape[1])) 

NDRE = np.reshape(ndremap,(1, ndremap.shape[0], ndremap.shape[1])) 

GNDVI = np.reshape(gndvimap,(1, gndvimap.shape[0], gndvimap.shape[1])) 

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1])) 

RDVI = np.reshape(rdvimap,(1, rdvimap.shape[0], rdvimap.shape[1])) 

RGBVI = np.reshape(rgbvimap,(1, rgbvimap.shape[0], rgbvimap.shape[1])) 

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1])) 

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1])) 

 

out_meta = red.meta 
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with rasterio.open('ndvisave.tif', "w", **out_meta) as dest: 

    dest.write(NDVI) 

with rasterio.open('ndresave.tif', 'w', **out_meta) as dest: 

    dest.write(NDRE) 

with rasterio.open('gndvisave.tif', 'w', **out_meta) as dest: 

    dest.write(GNDVI) 

with rasterio.open('exgsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExG) 

with rasterio.open('rdvisave.tif', 'w', **out_meta) as dest: 

    dest.write(RDVI) 

with rasterio.open('rgbvisave.tif', 'w', **out_meta) as dest: 

    dest.write(RGBVI) 

with rasterio.open('civesave.tif', 'w', **out_meta) as dest: 

    dest.write(CIVE) 

with rasterio.open('exgrsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExGR) 

 

# isolate the individual plots within the VI tif files using mask function with shp file 

# produce mean of VI pixels within each shp file plot for each VI while generating plot ids associated with 
indices 

 

NDVImu = [] 

NDREmu = [] 

GNDVImu = [] 

RDVImu = [] 

RGBVImu = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 
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        with rasterio.open('ndvisave.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('ndresave.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            NDREmu.append(np.nanmean(out_image)) 

             

             

        with rasterio.open('gndvisave.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('rdvisave.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('rgbvisave.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            RGBVImu.append(np.nanmean(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, NDVImu, NDREmu, GNDVImu, RDVImu, RGBVImu]) 

df = df.T 

df.columns = ['ID', 'NDVImu', 'NDREmu', 'GNDVImu', 'RDVImu', 'RGBVImu'] 

           

# export data frame to excel file 
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df.to_excel('Output/Unmasked_VI_612.xlsx', index = False)    

df 

 

# Create 612 ExG Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image>=0.029, None, 0).astype(float) 

        with rasterio.open('exgmask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# Create 612 ExGR Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        with rasterio.open('exgrsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image>=0.01, None, 0).astype(float) 

        with rasterio.open('exgrmask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# Create 612 CIVE Mask 

 

for i in range (1): 

    with fiona.open('CMaskShape.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 
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        with rasterio.open('civesave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape) 

            out_image = np.where(out_image<=18.77, None, 0).astype(float) 

        with rasterio.open('civemask.tif', 'w', **out_meta) as dest: 

            dest.write(out_image) 

 

# calculate mean for ExG Masked 612 VI's 

ExG_NDVImu = [] 

ExG_NDREmu = [] 

ExG_GNDVImu = [] 

ExG_ExGct = [] 

ExG_RDVImu = [] 

ExG_RGBVImu = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('612_exg_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_exg_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_NDREmu.append(np.nanmean(out_image)) 
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        with rasterio.open('612_exg_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_exg_exg.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('612_exg_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_exg_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExG_RGBVImu.append(np.nanmean(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_NDVImu, ExG_NDREmu, ExG_GNDVImu, ExG_RDVImu, ExG_RGBVImu, 
ExG_ExGct]) 

df = df.T 

df.columns = ['ID', 'ExG_NDVImu', 'ExG_NDREmu', 'ExG_GNDVImu', 'ExG_RDVImu', 
'ExG_RGBVImu', 'ExG_ExGct'] 

           

# export data frame to excel file 

df.to_excel('Output/ExG_Masked_VI_612.xlsx', index = False)    

df 

 

# calculate mean for ExGR 612 Masked VI's 

ExGR_NDVImu = [] 

ExGR_NDREmu = [] 
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ExGR_GNDVImu = [] 

ExGR_RDVImu = [] 

ExGR_RGBVImu = [] 

ExGR_ExGRct = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('612_exgr_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_exgr_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_NDREmu.append(np.nanmean(out_image)) 

             

             

        with rasterio.open('612_exgr_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_exgr_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_RDVImu.append(np.nanmean(out_image)) 
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        with rasterio.open('612_exgr_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            ExGR_RGBVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_exgr_exgr.tif', 'r') as exgrsave: 

            out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 

            ExGR_ExGRct.append(np.count_nonzero(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExGR_NDVImu, ExGR_NDREmu, ExGR_GNDVImu, ExGR_RDVImu, 
ExGR_RGBVImu, ExGR_ExGRct]) 

df = df.T 

df.columns = ['ID', 'ExGR_NDVImu', 'ExGR_NDREmu', 'ExGR_GNDVImu', 'ExGR_RDVImu', 
'ExGR_RGBVImu', 'ExGR_ExGRct'] 

           

# export data frame to excel file 

df.to_excel('Output/ExGR_Masked_VI_612.xlsx', index = False)    

df 

 

# calculate mean for CIVE 612 Masked VI's 

CIVE_NDVImu = [] 

CIVE_NDREmu = [] 

CIVE_GNDVImu = [] 

CIVE_RDVImu = [] 

CIVE_RGBVImu = [] 

CIVE_CIVEct = [] 

 

ID = [] 

for i in range(80): 

    with fiona.open('CMulti Grid 518-612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 
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        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

 

        with rasterio.open('612_cive_ndvi.tif', 'r') as ndvisave: 

            out_image, out_transform = rasterio.mask.mask(ndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_NDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_cive_ndre.tif', 'r') as ndresave: 

            out_image, out_transform = rasterio.mask.mask(ndresave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_NDREmu.append(np.nanmean(out_image)) 

             

             

        with rasterio.open('612_cive_gndvi.tif', 'r') as gndvisave: 

            out_image, out_transform = rasterio.mask.mask(gndvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_GNDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_cive_rdvi.tif', 'r') as rdvisave: 

            out_image, out_transform = rasterio.mask.mask(rdvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_RDVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_cive_rgbvi.tif', 'r') as rgbvisave: 

            out_image, out_transform = rasterio.mask.mask(rgbvisave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, None, out_image).astype(float) 

            CIVE_RGBVImu.append(np.nanmean(out_image)) 

             

        with rasterio.open('612_cive_cive.tif', 'r') as civesave: 

            out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image==0, 0, out_image).astype(float) 
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            CIVE_CIVEct.append(np.count_nonzero(out_image)) 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, CIVE_NDVImu, CIVE_NDREmu, CIVE_GNDVImu, CIVE_RDVImu, 
CIVE_RGBVImu, CIVE_CIVEct]) 

df = df.T 

df.columns = ['ID', 'CIVE_NDVImu', 'CIVE_NDREmu', 'CIVE_GNDVImu', 'CIVE_RDVImu', 
'CIVE_RGBVImu', 'CIVE_CIVEct'] 

           

# export data frame to excel file 

df.to_excel('Output/CIVE_Masked_VI_612.xlsx', index = False)    

df 
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Appendix B: True Color Image Processing Python Code 

 

import rasterio 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import fiona 

import rasterio.mask 

from pandas import DataFrame 

import geopandas as gpd 

 

# 425 Analysis 

#Read in RGB file 

image = rasterio.open('425_cRGB.tif') 

 

#read in 2d array 

redmap = image.read(1) 

greenmap = image.read(2) 

bluemap = image.read(3) 

 

imgmeta = rasterio.open('425_cRGB_Blue.tif') 

 

# correct band to remove negative values 

redc = np.where(redmap < 0, 0, redmap) 

greenc = np.where(greenmap < 0, 0, greenmap) 

bluec = np.where(bluemap < 0, 0, bluemap) 

 

# calculate indices 

exgmap = (2*greenc) - redc - bluec #mask index 

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index 

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index 

 

# reshape VI's so they can be used with rast functions 
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ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1])) 

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1])) 

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1])) 

 

#define out_meta using the meta dat from one of the original tif files 

out_meta = imgmeta.meta 

 

# save reshaped VI's as tif files 

with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExG) 

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest: 

    dest.write(CIVE) 

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExGR) 

 

#Change crs of shp to epsg 32614 

data = gpd.read_file('RGB Grid 425.shp') 

data = data.to_crs(epsg=32614) 

data.to_file('CRGB Grid 425.shp') 

 

# calculate mean for ExG Masked 425 VI's 

ExG_ExGct = [] 

ExGR_ExGRct = [] 

CIVE_CIVEct = [] 

 

 

ID = [] 

 

for i in range(80): 

    with fiona.open('CRGB Grid 425.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 
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        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=175, out_image, 0).astype(float) 

            out_image = np.where(out_image>=45, out_image, 0).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave: 

            out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=158, out_image, 0).astype(float) 

            ExGR_ExGRct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('rgb_civesave.tif', 'r') as civesave: 

            out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image>=175, out_image, 0).astype(float) 

            CIVE_CIVEct.append(np.count_nonzero(out_image)) 

 

 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct'] 

           

# export data frame to excel file 

df.to_excel('Output/RGB_Masked_VI_425.xlsx', index = False)    

df 

 

# Check grid size 

# calculate ExG Masked 425 VI's 

ExG_ExGct = [] 
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ID = [] 

 

for i in range(80): 

    with fiona.open('CRGB Grid 425.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=175, 225, out_image).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_ExGct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct'] 

   

df 

 

#change remaining shape file crs's 

data = gpd.read_file('RGB Grid 518.shp') 

data = data.to_crs(epsg=32614) 

data.to_file('CRGB Grid 518.shp') 

 

data = gpd.read_file('RGB Grid 529.shp') 

data = data.to_crs(epsg=32614) 

data.to_file('CRGB Grid 529.shp') 
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data = gpd.read_file('RGB Grid 612.shp') 

data = data.to_crs(epsg=32614) 

data.to_file('CRGB Grid 612.shp') 

 

# 518 Analysis 

#Read in RGB file 

image = rasterio.open('518_cRGB.tif') 

 

#read in 2d array 

redmap = image.read(1) 

greenmap = image.read(2) 

bluemap = image.read(3) 

 

# correct band to remove negative values 

redc = np.where(redmap < 0, 0, redmap) 

greenc = np.where(greenmap < 0, 0, greenmap) 

bluec = np.where(bluemap < 0, 0, bluemap) 

 

# calculate unmasked VI 

exgmap = (2*greenc) - redc - bluec #mask index 

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index 

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index 

 

# reshape VI's so they can be used with rast functions 

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1])) 

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1])) 

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1])) 

 

#define out_meta using the meta dat from one of the original tif files 

imgmeta = rasterio.open('518_cRGB_Red.tif') 

out_meta = imgmeta.meta 

 

# save reshaped VI's as tif files 
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with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExG) 

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest: 

    dest.write(CIVE) 

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExGR) 

 

# calculate mean for ExG Masked 518 VI's 

ExG_ExGct = [] 

ExGR_ExGRct = [] 

CIVE_CIVEct = [] 

 

 

ID = [] 

 

for i in range(80): 

    with fiona.open('CRGB Grid 518.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=175, out_image, 0).astype(float) 

            out_image = np.where(out_image>=45, out_image, 0).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave: 

            out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=65, 225, out_image).astype(float) 

            out_image = np.where(out_image>=165, out_image, 0).astype(float) 

            ExGR_ExGRct.append(np.count_nonzero(out_image)) 
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        with rasterio.open('rgb_civesave.tif', 'r') as civesave: 

            out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=10, 225, out_image).astype(float) 

            out_image = np.where(out_image>=175, out_image, 0).astype(float) 

            CIVE_CIVEct.append(np.count_nonzero(out_image)) 

 

 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct'] 

           

# export data frame to excel file 

df.to_excel('Output/RGB_Masked_VI_518.xlsx', index = False)    

df 

 

# Check grid size 

# calculate ExG Masked 518 VI's 

ExG_ExGct = [] 

 

ID = [] 

 

for i in range(80): 

    with fiona.open('CRGB Grid 518.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 
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            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=175, 225, out_image).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_ExGct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct'] 

   

df 

 

# 529 Analysis 

#Read in RGB file 

image = rasterio.open('529_cRGB.tif') 

 

#read in 2d array 

redmap = image.read(1) 

greenmap = image.read(2) 

bluemap = image.read(3) 

 

# correct band to remove negative values 

redc = np.where(redmap < 0, 0, redmap) 

greenc = np.where(greenmap < 0, 0, greenmap) 

bluec = np.where(bluemap < 0, 0, bluemap) 

 

# calculate unmasked VI 

exgmap = (2*greenc) - redc - bluec #mask index 

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index 

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index 

 

# reshape VI's so they can be used with rast functions 
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ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1])) 

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1])) 

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1])) 

 

#define out_meta using the meta dat from one of the original tif files 

imgmeta = rasterio.open('529_cRGB_Red.tif') 

out_meta = imgmeta.meta 

 

# save reshaped VI's as tif files 

with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExG) 

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest: 

    dest.write(CIVE) 

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExGR) 

 

# calculate mean for ExG Masked 529 VI's 

ExG_ExGct = [] 

ExGR_ExGRct = [] 

CIVE_CIVEct = [] 

 

 

ID = [] 

 

for i in range(80): 

    with fiona.open('CRGB Grid 529.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 
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            out_image = np.where(out_image<=175, out_image, 0).astype(float) 

            out_image = np.where(out_image>=30, out_image, 0).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave: 

            out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=65, out_image, 0).astype(float) 

            ExGR_ExGRct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('rgb_civesave.tif', 'r') as civesave: 

            out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=10, 225, out_image).astype(float) 

            out_image = np.where(out_image>=175, out_image, 0).astype(float) 

            CIVE_CIVEct.append(np.count_nonzero(out_image)) 

 

 

 

             

#combine the means of the VI's into one data frame 

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct'] 

           

# export data frame to excel file 

df.to_excel('Output/RGB_Masked_VI_529.xlsx', index = False)    

df 

 

# Check grid size 

# calculate ExG Masked 529 VI's 

ExG_ExGct = [] 

 

ID = [] 
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for i in range(80): 

    with fiona.open('CRGB Grid 529.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=175, 225, out_image).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_ExGct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct'] 

 

df 

 

# 612 Analysis 

#Read in RGB file 

image = rasterio.open('612_cRGB.tif') 

 

#read in 2d array 

redmap = image.read(1) 

greenmap = image.read(2) 

bluemap = image.read(3) 

 

# correct band to remove negative values 

redc = np.where(redmap < 0, 0, redmap) 

greenc = np.where(greenmap < 0, 0, greenmap) 
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bluec = np.where(bluemap < 0, 0, bluemap) 

 

# calculate unmasked VI 

exgmap = (2*greenc) - redc - bluec #mask index 

civemap = ((0.441*redc)-(0.881*greenc)+(0.385*bluec)+18.78745) #mask index 

exgrmap = (exgmap - ((1.4*redc)-greenc)) #mask index 

 

# reshape VI's so they can be used with rast functions 

ExG = np.reshape(exgmap,(1, exgmap.shape[0], exgmap.shape[1])) 

CIVE = np.reshape(civemap,(1, civemap.shape[0], civemap.shape[1])) 

ExGR = np.reshape(exgrmap,(1, exgrmap.shape[0], exgrmap.shape[1])) 

 

#define out_meta using the meta dat from one of the original tif files 

imgmeta = rasterio.open('612_cRGB_Red.tif') 

out_meta = imgmeta.meta 

 

# save reshaped VI's as tif files 

with rasterio.open('rgb_exgsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExG) 

with rasterio.open('rgb_civesave.tif', 'w', **out_meta) as dest: 

    dest.write(CIVE) 

with rasterio.open('rgb_exgrsave.tif', 'w', **out_meta) as dest: 

    dest.write(ExGR) 

 

# calculate mean for ExG Masked 612 VI's 

ExG_ExGct = [] 

ExGR_ExGRct = [] 

CIVE_CIVEct = [] 

 

 

ID = [] 

 

for i in range(80): 
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    with fiona.open('CRGB Grid 612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=175, out_image, 0).astype(float) 

            out_image = np.where(out_image>=45, out_image, 0).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('rgb_exgrsave.tif', 'r') as exgrsave: 

            out_image, out_transform = rasterio.mask.mask(exgrsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=65, out_image, 0).astype(float) 

            ExGR_ExGRct.append(np.count_nonzero(out_image)) 

             

        with rasterio.open('rgb_civesave.tif', 'r') as civesave: 

            out_image, out_transform = rasterio.mask.mask(civesave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=10, 225, out_image).astype(float) 

            out_image = np.where(out_image>=175, out_image, 0).astype(float) 

            CIVE_CIVEct.append(np.count_nonzero(out_image)) 

 

 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_ExGct, ExGR_ExGRct, CIVE_CIVEct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct', 'ExGR_ExGRct', 'CIVE_CIVEct'] 

           

# export data frame to excel file 

df.to_excel('Output/RGB_Masked_VI_612.xlsx', index = False)    
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df 

 

# Check grid size 

# calculate ExG Masked 612 VI's 

ExG_ExGct = [] 

 

ID = [] 

 

for i in range(80): 

    with fiona.open('CRGB Grid 612.shp', 'r') as shapefile: 

        shape = [[feature['geometry'] for feature in shapefile][i]] 

        feature = [feature for feature in shapefile][i] 

        idx = feature ['properties']['Grid'] 

        ID.append(idx) 

             

        with rasterio.open('rgb_exgsave.tif', 'r') as exgsave: 

            out_image, out_transform = rasterio.mask.mask(exgsave, shape, nodata=0, crop=True) 

            out_image = np.where(out_image<=175, 225, out_image).astype(float) 

            ExG_ExGct.append(np.count_nonzero(out_image)) 

 

 

             

#combine the means of th VI's into one data frame 

df = DataFrame([ID, ExG_ExGct]) 

df = df.T 

df.columns = ['ID', 'ExG_ExGct'] 

   

df 
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Appendix C: Statistical Analysis RStudio Code 

 

```{r setup, include=FALSE} 

library(knitr) 

library(tidyverse) 

library(lme4) 

library(car) 

library(broom) 

library(lmerTest) 

library(performance) 

library(GGally) 

library(MuMIn) 

library(optimx) 

library(caret) 

``` 

```{r} 

# Data import 

 

data_multi <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) 

 

data_rgb <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) 

 

data_multi_518 <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 
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         Flight=factor(Flight), 

         HN=factor(HN)) %>% 

  filter(Flight=="518") 

 

data_rgb_518 <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="518") 

 

data_multi_529 <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) %>% 

  filter(Flight=="529") 

 

data_rgb_529 <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="529") 

 

data_multi_612 <- read_csv("Multi Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN)) %>% 

  filter(Flight=="612") 

 

data_rgb_612 <- read_csv("RGB Data.csv") %>% 
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  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="612") 

 

 

data_rgb_425 <- read_csv("RGB Data.csv") %>% 

  mutate(name=factor(name), 

         bloc=factor(bloc), 

         Flight=factor(Flight), 

         HN=factor(HN))%>% 

  filter(Flight=="425") 

 

 

``` 

 

```{r, echo = FALSE} 

# Check significance between genotypes 

# All flights Anova 

 

Stand_mod <- lm(Stand~name + bloc, data = data_multi) 

Anova(Stand_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Winter Survival Anova All Flights" ) 

 

Stand_mod_518 <- lm(Stand~name + bloc, data = data_multi_518) 

Anova(Stand_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 Winter Survival Anova" ) 

 

Stand_mod_529 <- lm(Stand~name + bloc, data = data_multi_529) 

Anova(Stand_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 Winter Survival Anova" ) 
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Stand_mod_612 <- lm(Stand~name + bloc, data = data_multi_612) 

Anova(Stand_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 Winter Survival Anova" ) 

 

ndvi_mod <- lm(NDVImu~name+bloc, data = data_multi) 

Anova(ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "NDVI Anova" ) 

 

ndre_mod <- lm(NDREmu~name+bloc, data = data_multi) 

Anova(ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "NDRE Anova" ) 

 

gndvi_mod <- lm(GNDVImu~name+bloc, data = data_multi) 

Anova(gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "GNDVI Anova" ) 

 

rdvi_mod <- lm(RDVImu~name+bloc, data = data_multi) 

Anova(rdvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "RDVI Anova" ) 

 

rgbvi_mod <- lm(RGBVImu~name+bloc, data = data_multi) 

Anova(rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "RGBVI Anova" ) 

 

exg_mod <- lm(ExG_ExGct~name+bloc, data = data_multi) 

Anova(exg_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG Anova" ) 

 

exg_ndvi_mod <- lm(ExG_NDVImu~name+bloc, data = data_multi) 

Anova(exg_ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_NDVI Anova" ) 

 

exg_ndre_mod <- lm(ExG_NDREmu~name+bloc, data = data_multi) 
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Anova(exg_ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_NDRE Anova" ) 

 

exg_gndvi_mod <- lm(ExG_GNDVImu~name+bloc, data = data_multi) 

Anova(exg_gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_GNDVI Anova" ) 

 

exg_rdvi_mod <- lm(ExG_RDVImu~name+bloc, data = data_multi) 

Anova(exg_rdvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_RDVI Anova" ) 

 

exg_rgbvi_mod <- lm(ExG_RGBVImu~name+bloc, data = data_multi) 

Anova(exg_rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExG_RGBVI Anova" ) 

 

exgr_mod <- lm(ExGR_ExGRct~name+bloc, data = data_multi) 

Anova(exgr_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR Anova" ) 

 

exgr_ndvi_mod <- lm(ExGR_NDVImu~name+bloc, data = data_multi) 

Anova(exgr_ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_NDVI Anova" ) 

 

exgr_ndre_mod <- lm(ExGR_NDREmu~name+bloc, data = data_multi) 

Anova(exgr_ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod <- lm(ExGR_GNDVImu~name+bloc, data = data_multi) 

Anova(exgr_gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod <- lm(ExGR_RDVImu~name+bloc, data = data_multi) 

Anova(exgr_rdvi_mod) %>% 
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  kable(digits=5, booktabs=T, caption = "ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod <- lm(ExGR_RGBVImu~name+bloc, data = data_multi) 

Anova(exgr_rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "ExGR_RGBVI Anova" ) 

 

cive_mod <- lm(CIVE_CIVEct~name+bloc, data = data_multi) 

Anova(cive_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE Anova" ) 

 

cive_ndvi_mod <- lm(CIVE_NDVImu~name+bloc, data = data_multi) 

Anova(cive_ndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_NDVI Anova" ) 

 

cive_ndre_mod <- lm(CIVE_NDREmu~name+bloc, data = data_multi) 

Anova(cive_ndre_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_NDRE Anova" ) 

 

cive_gndvi_mod <- lm(CIVE_GNDVImu~name+bloc, data = data_multi) 

Anova(cive_gndvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod <- lm(CIVE_RDVImu~name+bloc, data = data_multi) 

Anova(cive_rdvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod <- lm(CIVE_RGBVImu~name+bloc, data = data_multi) 

Anova(cive_rgbvi_mod) %>% 

  kable(digits=5, booktabs=T, caption = "CIVE_RGBVI Anova" ) 

 

#### 518 Anova 

 

ndvi_mod_518 <- lm(NDVImu~name+bloc, data = data_multi_518) 
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Anova(ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 NDVI Anova" ) 

 

ndre_mod_518 <- lm(NDREmu~name+bloc, data = data_multi_518) 

Anova(ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 NDRE Anova" ) 

 

gndvi_mod_518 <- lm(GNDVImu~name+bloc, data = data_multi_518) 

Anova(gndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 GNDVI Anova" ) 

 

rdvi_mod_518 <- lm(RDVImu~name+bloc, data = data_multi_518) 

Anova(rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 RDVI Anova" ) 

 

rgbvi_mod_518 <- lm(RGBVImu~name+bloc, data = data_multi_518) 

Anova(rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 RGBVI Anova" ) 

 

exg_mod_518 <- lm(ExG_ExGct~name+bloc, data = data_multi_518) 

Anova(exg_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG Anova" ) 

 

exg_ndvi_mod_518 <- lm(ExG_NDVImu~name+bloc, data = data_multi_518) 

Anova(exg_ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = " 518 ExG_NDVI Anova" ) 

 

exg_ndre_mod_518 <- lm(ExG_NDREmu~name+bloc, data = data_multi_518) 

Anova(exg_ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG_NDRE Anova" ) 

 

exg_gndvi_mod_518 <- lm(ExG_GNDVImu~name+bloc, data = data_multi_518) 

Anova(exg_gndvi_mod_518) %>% 
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  kable(digits=5, booktabs=T, caption = "518 ExG_GNDVI Anova" ) 

 

exg_rdvi_mod_518 <- lm(ExG_RDVImu~name+bloc, data = data_multi_518) 

Anova(exg_rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG_RDVI Anova" ) 

 

exg_rgbvi_mod_518 <- lm(ExG_RGBVImu~name+bloc, data = data_multi_518) 

Anova(exg_rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExG_RGBVI Anova" ) 

 

exgr_mod_518 <- lm(ExGR_ExGRct~name+bloc, data = data_multi_518) 

Anova(exgr_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR Anova" ) 

 

exgr_ndvi_mod_518 <- lm(ExGR_NDVImu~name+bloc, data = data_multi_518) 

Anova(exgr_ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_NDVI Anova" ) 

 

exgr_ndre_mod_518 <- lm(ExGR_NDREmu~name+bloc, data = data_multi_518) 

Anova(exgr_ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod_518 <- lm(ExGR_GNDVImu~name+bloc, data = data_multi_518) 

Anova(exgr_gndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod_518 <- lm(ExGR_RDVImu~name+bloc, data = data_multi_518) 

Anova(exgr_rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod_518 <- lm(ExGR_RGBVImu~name+bloc, data = data_multi_518) 

Anova(exgr_rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 ExGR_RGBVI Anova" ) 
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cive_mod_518 <- lm(CIVE_CIVEct~name+bloc, data = data_multi_518) 

Anova(cive_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE Anova" ) 

 

cive_ndvi_mod_518 <- lm(CIVE_NDVImu~name+bloc, data = data_multi_518) 

Anova(cive_ndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_NDVI Anova" ) 

 

cive_ndre_mod_518 <- lm(CIVE_NDREmu~name+bloc, data = data_multi_518) 

Anova(cive_ndre_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_NDRE Anova" ) 

 

cive_gndvi_mod_518 <- lm(CIVE_GNDVImu~name+bloc, data = data_multi_518) 

Anova(cive_gndvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod_518 <- lm(CIVE_RDVImu~name+bloc, data = data_multi_518) 

Anova(cive_rdvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod_518 <- lm(CIVE_RGBVImu~name+bloc, data = data_multi_518) 

Anova(cive_rgbvi_mod_518) %>% 

  kable(digits=5, booktabs=T, caption = "518 CIVE_RGBVI Anova" ) 

 

### 529 Anova 

 

ndvi_mod_529 <- lm(NDVImu~name+bloc, data = data_multi_529) 

Anova(ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 NDVI Anova" ) 

 

ndre_mod_529 <- lm(NDREmu~name+bloc, data = data_multi_529) 

Anova(ndre_mod_529) %>% 
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  kable(digits=5, booktabs=T, caption = "529 NDRE Anova" ) 

 

gndvi_mod_529 <- lm(GNDVImu~name+bloc, data = data_multi_529) 

Anova(gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 GNDVI Anova" ) 

 

rdvi_mod_529 <- lm(RDVImu~name+bloc, data = data_multi_529) 

Anova(rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 RDVI Anova" ) 

 

rgbvi_mod_529 <- lm(RGBVImu~name+bloc, data = data_multi_529) 

Anova(rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 RGBVI Anova" ) 

 

exg_mod_529 <- lm(ExG_ExGct~name+bloc, data = data_multi_529) 

Anova(exg_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG Anova" ) 

 

exg_ndvi_mod_529 <- lm(ExG_NDVImu~name+bloc, data = data_multi_529) 

Anova(exg_ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = " 529 ExG_NDVI Anova" ) 

 

exg_ndre_mod_529 <- lm(ExG_NDREmu~name+bloc, data = data_multi_529) 

Anova(exg_ndre_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_NDRE Anova" ) 

 

exg_gndvi_mod_529 <- lm(ExG_GNDVImu~name+bloc, data = data_multi_529) 

Anova(exg_gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_GNDVI Anova" ) 

 

exg_rdvi_mod_529 <- lm(ExG_RDVImu~name+bloc, data = data_multi_529) 

Anova(exg_rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_RDVI Anova" ) 
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exg_rgbvi_mod_529 <- lm(ExG_RGBVImu~name+bloc, data = data_multi_529) 

Anova(exg_rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExG_RGBVI Anova" ) 

 

exgr_mod_529 <- lm(ExGR_ExGRct~name+bloc, data = data_multi_529) 

Anova(exgr_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR Anova" ) 

 

exgr_ndvi_mod_529 <- lm(ExGR_NDVImu~name+bloc, data = data_multi_529) 

Anova(exgr_ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_NDVI Anova" ) 

 

exgr_ndre_mod_529 <- lm(ExGR_NDREmu~name+bloc, data = data_multi_529) 

Anova(exgr_ndre_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod_529 <- lm(ExGR_GNDVImu~name+bloc, data = data_multi_529) 

Anova(exgr_gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod_529 <- lm(ExGR_RDVImu~name+bloc, data = data_multi_529) 

Anova(exgr_rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod_529 <- lm(ExGR_RGBVImu~name+bloc, data = data_multi_529) 

Anova(exgr_rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 ExGR_RGBVI Anova" ) 

 

cive_mod_529 <- lm(CIVE_CIVEct~name+bloc, data = data_multi_529) 

Anova(cive_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE Anova" ) 
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cive_ndvi_mod_529 <- lm(CIVE_NDVImu~name+bloc, data = data_multi_529) 

Anova(cive_ndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_NDVI Anova" ) 

 

cive_ndre_mod_529 <- lm(CIVE_NDREmu~name+bloc, data = data_multi_529) 

Anova(cive_ndre_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_NDRE Anova" ) 

 

cive_gndvi_mod_529 <- lm(CIVE_GNDVImu~name+bloc, data = data_multi_529) 

Anova(cive_gndvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod_529 <- lm(CIVE_RDVImu~name+bloc, data = data_multi_529) 

Anova(cive_rdvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod_529 <- lm(CIVE_RGBVImu~name+bloc, data = data_multi_529) 

Anova(cive_rgbvi_mod_529) %>% 

  kable(digits=5, booktabs=T, caption = "529 CIVE_RGBVI Anova" ) 

 

### 612 Anova 

 

ndvi_mod_612 <- lm(NDVImu~name+bloc, data = data_multi_612) 

Anova(ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 NDVI Anova" ) 

 

ndre_mod_612 <- lm(NDREmu~name+bloc, data = data_multi_612) 

Anova(ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 NDRE Anova" ) 

 

gndvi_mod_612 <- lm(GNDVImu~name+bloc, data = data_multi_612) 

Anova(gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 GNDVI Anova" ) 
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rdvi_mod_612 <- lm(RDVImu~name+bloc, data = data_multi_612) 

Anova(rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 RDVI Anova" ) 

 

rgbvi_mod_612 <- lm(RGBVImu~name+bloc, data = data_multi_612) 

Anova(rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 RGBVI Anova" ) 

 

exg_mod_612 <- lm(ExG_ExGct~name+bloc, data = data_multi_612) 

Anova(exg_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG Anova" ) 

 

exg_ndvi_mod_612 <- lm(ExG_NDVImu~name+bloc, data = data_multi_612) 

Anova(exg_ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = " 612 ExG_NDVI Anova" ) 

 

exg_ndre_mod_612 <- lm(ExG_NDREmu~name+bloc, data = data_multi_612) 

Anova(exg_ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_NDRE Anova" ) 

 

exg_gndvi_mod_612 <- lm(ExG_GNDVImu~name+bloc, data = data_multi_612) 

Anova(exg_gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_GNDVI Anova" ) 

 

exg_rdvi_mod_612 <- lm(ExG_RDVImu~name+bloc, data = data_multi_612) 

Anova(exg_rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_RDVI Anova" ) 

 

exg_rgbvi_mod_612 <- lm(ExG_RGBVImu~name+bloc, data = data_multi_612) 

Anova(exg_rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExG_RGBVI Anova" ) 
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exgr_mod_612 <- lm(ExGR_ExGRct~name+bloc, data = data_multi_612) 

Anova(exgr_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR Anova" ) 

 

exgr_ndvi_mod_612 <- lm(ExGR_NDVImu~name+bloc, data = data_multi_612) 

Anova(exgr_ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_NDVI Anova" ) 

 

exgr_ndre_mod_612 <- lm(ExGR_NDREmu~name+bloc, data = data_multi_612) 

Anova(exgr_ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_NDRE Anova" ) 

 

exgr_gndvi_mod_612 <- lm(ExGR_GNDVImu~name+bloc, data = data_multi_612) 

Anova(exgr_gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_GNDVI Anova" ) 

 

exgr_rdvi_mod_612 <- lm(ExGR_RDVImu~name+bloc, data = data_multi_612) 

Anova(exgr_rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_RDVI Anova" ) 

 

exgr_rgbvi_mod_612 <- lm(ExGR_RGBVImu~name+bloc, data = data_multi_612) 

Anova(exgr_rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 ExGR_RGBVI Anova" ) 

 

cive_mod_612 <- lm(CIVE_CIVEct~name+bloc, data = data_multi_612) 

Anova(cive_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE Anova" ) 

 

cive_ndvi_mod_612 <- lm(CIVE_NDVImu~name+bloc, data = data_multi_612) 

Anova(cive_ndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_NDVI Anova" ) 

 

cive_ndre_mod_612 <- lm(CIVE_NDREmu~name+bloc, data = data_multi_612) 
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Anova(cive_ndre_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_NDRE Anova" ) 

 

cive_gndvi_mod_612 <- lm(CIVE_GNDVImu~name+bloc, data = data_multi_612) 

Anova(cive_gndvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_GNDVI Anova" ) 

 

cive_rdvi_mod_612 <- lm(CIVE_RDVImu~name+bloc, data = data_multi_612) 

Anova(cive_rdvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_RDVI Anova" ) 

 

cive_rgbvi_mod_612 <- lm(CIVE_RGBVImu~name+bloc, data = data_multi_612) 

Anova(cive_rgbvi_mod_612) %>% 

  kable(digits=5, booktabs=T, caption = "612 CIVE_RGBVI Anova" ) 

 

### RGB Anova 

 

Stand_mod_RGB <- lm(Stand~name + bloc, data = data_rgb) 

Anova(Stand_mod_RGB) %>% 

  kable(digits=5, booktabs=T, caption = "RGB Winter Survival Anova All Flights" ) 

 

Stand_mod_RGB_425 <- lm(Stand~name + bloc, data = data_rgb_425) 

Anova(Stand_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 Winter Survival Anova" ) 

 

Stand_mod_RGB_518 <- lm(Stand~name + bloc, data = data_rgb_518) 

Anova(Stand_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 Winter Survival Anova" ) 

 

Stand_mod_RGB_529 <- lm(Stand~name + bloc, data = data_rgb_529) 

Anova(Stand_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 Winter Survival Anova" ) 
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Stand_mod_RGB_612 <- lm(Stand~name + bloc, data = data_rgb_612) 

Anova(Stand_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 Winter Survival Anova" ) 

 

exg_mod_RGB_425 <- lm(ExG_ExGct~name+bloc, data = data_rgb_425) 

Anova(exg_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 425 ExG Anova" ) 

 

exgr_mod_RGB_425 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_425) 

Anova(exgr_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 425 ExGR Anova" ) 

 

cive_mod_RGB_425 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_425) 

Anova(cive_mod_RGB_425) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 425 CIVE Anova" ) 

 

 

exg_mod_RGB_518 <- lm(ExG_ExGct~name+bloc, data = data_rgb_518) 

Anova(exg_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 ExG Anova" ) 

 

exgr_mod_RGB_518 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_518) 

Anova(exgr_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 ExGR Anova" ) 

 

cive_mod_RGB_518 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_518) 

Anova(cive_mod_RGB_518) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 518 CIVE Anova" ) 

 

 

exg_mod_RGB_529 <- lm(ExG_ExGct~name+bloc, data = data_rgb_529) 

Anova(exg_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 ExG Anova" ) 
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exgr_mod_RGB_529 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_529) 

Anova(exgr_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 ExGR Anova" ) 

 

cive_mod_RGB_529 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_529) 

Anova(cive_mod_RGB_529) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 529 CIVE Anova" ) 

 

 

exg_mod_RGB_612 <- lm(ExG_ExGct~name+bloc, data = data_rgb_612) 

Anova(exg_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 ExG Anova" ) 

 

exgr_mod_RGB_612 <- lm(ExGR_ExGRct~name+bloc, data = data_rgb_612) 

Anova(exgr_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 ExGR Anova" ) 

 

cive_mod_RGB_612 <- lm(CIVE_CIVEct~name+bloc, data = data_rgb_612) 

Anova(cive_mod_RGB_612) %>% 

  kable(digits=5, booktabs=T, caption = "RGB 612 CIVE Anova" ) 

 

``` 

 

```{r} 

# Combined Model for Stand Multi Spec 

multi_mixed_mod <- lm(Stand~NDVImu*Flight + NDREmu*Flight + GNDVImu*Flight + 
RDVImu*Flight + RGBVImu*Flight + ExG_NDVImu*Flight + ExG_NDREmu*Flight + 
ExG_GNDVImu*Flight + ExG_RDVImu*Flight + I(ExG_ExGct/81300)*Flight + ExGR_NDVImu*Flight 
+ ExGR_NDREmu*Flight + ExGR_GNDVImu*Flight + ExGR_RDVImu*Flight + 
ExGR_RGBVImu*Flight + I(ExGR_ExGRct/81300)*Flight + CIVE_NDVImu*Flight + 
CIVE_NDREmu*Flight + CIVE_GNDVImu*Flight + CIVE_RDVImu*Flight + CIVE_RGBVImu*Flight 
+ I(CIVE_CIVEct/81300)*Flight,  

                            data = data_multi) 
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multi_mixed_518_mod <- lm(Stand~NDVImu + NDREmu + GNDVImu + RDVImu + RGBVImu + 
ExG_NDVImu + ExG_NDREmu + ExG_GNDVImu + ExG_RDVImu + I(ExG_ExGct/81300) + 
ExG_RGBVImu + ExGR_NDVImu + ExGR_NDREmu + ExGR_GNDVImu + ExGR_RDVImu + 
ExGR_RGBVImu + I(ExGR_ExGRct/81300) + CIVE_NDVImu + CIVE_NDREmu + CIVE_GNDVImu 
+ CIVE_RDVImu + CIVE_RGBVImu + I(CIVE_CIVEct/81300),  

                            data = data_multi_518) 

 

multi_mixed_529_mod <- lm(Stand~NDVImu + NDREmu + GNDVImu + RDVImu + RGBVImu + 
ExG_NDVImu + ExG_NDREmu + ExG_GNDVImu + ExG_RDVImu + I(ExG_ExGct/81300) + 
ExG_RGBVImu + ExGR_NDVImu + ExGR_NDREmu + ExGR_GNDVImu + ExGR_RDVImu + 
ExGR_RGBVImu + I(ExGR_ExGRct/81300) + CIVE_NDVImu + CIVE_NDREmu + CIVE_GNDVImu 
+ CIVE_RDVImu + CIVE_RGBVImu + I(CIVE_CIVEct/81300), 

                            data = data_multi_529) 

 

multi_mixed_612_mod <- lm(Stand~NDVImu + NDREmu + GNDVImu + RDVImu + RGBVImu + 
ExG_NDVImu + ExG_NDREmu + ExG_GNDVImu + ExG_RDVImu + I(ExG_ExGct/81300) + 
ExG_RGBVImu + ExGR_NDVImu + ExGR_NDREmu + ExGR_GNDVImu + ExGR_RDVImu + 
ExGR_RGBVImu + I(ExGR_ExGRct/81300) + CIVE_NDVImu + CIVE_NDREmu + CIVE_GNDVImu 
+ CIVE_RDVImu + CIVE_RGBVImu + I(CIVE_CIVEct/81300), 

                            data = data_multi_612) 

 

Anova(multi_mixed_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova Mixed" ) 

 

Anova(multi_mixed_518_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 518 Mixed" ) 

 

Anova(multi_mixed_529_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 529 Mixed" ) 

 

Anova(multi_mixed_612_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 612 Mixed" ) 

``` 

```{r} 

 

# Multi-SPec paired plots 
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ggpairs(data_multi, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("Unmasked Pairs Plots") 

 

ggpairs(data_multi, columns=c("Stand","ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("ExG Pairs Plots") 

 

ggpairs(data_multi, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", "ExGR_GNDVImu", 
"ExGR_RDVImu", "ExG_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("ExGR Pairs Plots") 

ggpairs(data_multi, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu",  "CIVE_CIVEct")) + 

  ggtitle("CIVE Pairs Plots") 

``` 

```{r} 

# Multi-SPec paired plots by flight 

 

ggpairs(data_multi_518, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("518 Unmasked Pairs Plots") 

 

ggpairs(data_multi_518, columns=c("Stand", "ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("518 ExG Pairs Plots") 

 

ggpairs(data_multi_518, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", 
"ExGR_GNDVImu", "ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("518 ExGR Pairs Plots") 

 

ggpairs(data_multi_518, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct")) + 

  ggtitle("518 CIVE Pairs Plots") 

 

ggpairs(data_multi_529, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("529 Unmasked Pairs Plots") 
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ggpairs(data_multi_529, columns=c("Stand", "ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("529 ExG Pairs Plots") 

 

ggpairs(data_multi_529, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", 
"ExGR_GNDVImu", "ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("529 ExGR Pairs Plots") 

 

ggpairs(data_multi_529, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct")) + 

  ggtitle("529 CIVE Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"RGBVImu")) + 

  ggtitle("612 Unmasked Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_RGBVImu", "ExG_ExGct")) + 

  ggtitle("612 ExG Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "ExGR_NDVImu", "ExGR_NDREmu", 
"ExGR_GNDVImu", "ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct")) + 

  ggtitle("612 ExGR Pairs Plots") 

 

ggpairs(data_multi_612, columns=c("Stand", "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct")) + 

  ggtitle("612 CIVE Pairs Plots") 

``` 

```{r} 

# Investigate Colinearity issue 

ggpairs(data_multi_518, columns=c("NDVImu", "NDREmu", "GNDVImu", "RDVImu", 
"ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 

ggpairs(data_multi_518, columns=c("ExG_NDVImu", "ExG_NDREmu", "ExG_GNDVImu", 
"ExG_RDVImu", "ExG_ExGct", "ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 
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ggpairs(data_multi_518, columns=c("ExGR_NDVImu", "ExGR_NDREmu", "ExGR_GNDVImu", 
"ExGR_RDVImu", "ExGR_RGBVImu", "ExGR_ExGRct", "ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 

ggpairs(data_multi_518, columns=c( "CIVE_NDVImu", "CIVE_NDREmu", "CIVE_GNDVImu", 
"CIVE_RDVImu", "CIVE_RGBVImu", "CIVE_CIVEct", "ExG_RGBVImu", "RGBVImu")) + 

  ggtitle("Collinearity Pairs Plots") 

 

``` 

```{r} 

# RGB Models All Flights 

rgb_mixed_mod <- lm(Stand~I(ExG_ExGct/638250)*Flight + I(ExGR_ExGRct/638250)*Flight + 
I(CIVE_CIVEct/638250)*Flight, 

                    data = data_rgb) 

 

# Anova across all extractions 

Anova(rgb_mixed_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova RGB" ) 

``` 

```{r} 

# RGB Models by Flight 

rgb_425_mod <- lm(Stand~I(ExG_ExGct/638250)+ I(ExGR_ExGRct/638250) + I(CIVE_CIVEct/638250), 

                       data = data_rgb_425) 

 

rgb_518_mod <- lm(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250), 

                  data = data_rgb_518) 

 

rgb_529_mod <- lm(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250), 

                       data = data_rgb_529) 

 

rgb_612_mod <- lm(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250), 

                       data = data_rgb_612) 

 

# Anova across all flights extractions 
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Anova(rgb_425_mod) %>% 

  kable(digits=9, booktabs=T, caption = "Anova 425 RGB" ) 

Anova(rgb_518_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 518 RGB" ) 

Anova(rgb_529_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 529 RGB" ) 

Anova(rgb_612_mod) %>% 

  kable(digits=5, booktabs=T, caption = "Anova 612 RGB" ) 

 

``` 

```{r} 

# RGB paired plots 

 

ggpairs(data_rgb, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("RGB Pairs Plots") 

 

``` 

 

```{r} 

# RGB paired plots by flight 

 

ggpairs(data_rgb_425, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("425 RGB Pairs Plots") 

 

ggpairs(data_rgb_518, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("518 RGB Pairs Plots") 

 

ggpairs(data_rgb_529, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("529 RGB Pairs Plots") 

 

ggpairs(data_rgb_612, columns=c("Stand", "ExG_ExGct", "ExGR_ExGRct", "CIVE_CIVEct")) + 

  ggtitle("612 RGB Pairs Plots") 
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``` 

```{r} 

#Prediction - Stand 

 

#Trainig Models 

multi_training_mod1 <- train(Stand~NDREmu*Flight + RGBVImu*Flight + ExG_NDREmu*Flight + 
ExGR_NDREmu*Flight + I(ExGR_ExGRct/81300)*Flight + CIVE_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod2 <- train(Stand~NDREmu*Flight,  

                           data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod3 <- train(Stand~RGBVImu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod4 <- train(Stand~ExG_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod5 <- train(Stand~ExGR_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod6 <- train(Stand~I(ExGR_ExGRct/81300)*Flight,  

                            data = data_multi, 

                            method="lm", 
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                            trControl = trainControl(method = "cv")) 

 

multi_training_mod7 <- train(Stand~CIVE_NDREmu*Flight,  

                            data = data_multi, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod8 <- train(Stand~NDREmu + CIVE_NDVImu,  

                            data = data_multi_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod9 <- train(Stand~NDREmu,  

                            data = data_multi_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod10 <- train(Stand~CIVE_NDVImu,  

                            data = data_multi_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod11 <- train(Stand~GNDVImu + ExG_NDVImu + ExG_RGBVImu + 
ExGR_RGBVImu + CIVE_NDVImu + CIVE_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

multi_training_mod12 <- train(Stand~GNDVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod13 <- train(Stand~ExG_NDVImu,  

                            data = data_multi_529, 
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                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod14 <- train(Stand~ExG_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod15 <- train(Stand~ExGR_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod16 <- train(Stand~CIVE_NDVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod17 <- train(Stand~CIVE_RGBVImu,  

                            data = data_multi_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod18 <- train(Stand~RGBVImu + ExG_GNDVImu + ExG_NDREmu + CIVE_NDREmu 
+ CIVE_GNDVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod19 <- train(Stand~RGBVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 
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multi_training_mod20 <- train(Stand~ExG_GNDVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod21 <- train(Stand~ExG_NDREmu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod22 <- train(Stand~CIVE_NDREmu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

multi_training_mod23 <- train(Stand~CIVE_GNDVImu,  

                            data = data_multi_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

``` 

 

```{r} 

#Select Multi Spec Model 

print('mod1') 

multi_training_mod1 

print('mod2') 

multi_training_mod2 

print('mod3') 

multi_training_mod3 

print('mod4') 

multi_training_mod4 

print('mod5') 
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multi_training_mod5 

print('mod6') 

multi_training_mod6 

print('mod7') 

multi_training_mod7 

print('mod8') 

multi_training_mod8 

print('mod9') 

multi_training_mod9 

print('mod10') 

multi_training_mod10 

print('mod11') 

multi_training_mod11 

print('mod12') 

multi_training_mod12 

print('mod13') 

multi_training_mod13 

print('mod14') 

multi_training_mod14 

print('mod15') 

multi_training_mod15 

print('mod16') 

multi_training_mod16 

print('mod17') 

multi_training_mod17 

print('mod18') 

multi_training_mod18 

print('mod19') 

multi_training_mod19 

print('mod20') 

multi_training_mod20 

print('mod21') 

multi_training_mod21 
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print('mod22') 

multi_training_mod22 

print('mod23') 

multi_training_mod23 

``` 

```{r} 

#Check correlation 

# Mod1 

multi_flight_data_prediction1 <- predict(multi_training_mod1$finalModel) 

cor(multi_flight_data_prediction1, data_multi$Stand, method= c("pearson")) 

 

# Mod2 

multi_flight_data_prediction2 <- predict(multi_training_mod2$finalModel) 

cor(multi_flight_data_prediction2, data_multi$Stand, method= c("pearson")) 

 

# Mod3 

multi_flight_data_prediction3 <- predict(multi_training_mod3$finalModel) 

cor(multi_flight_data_prediction3, data_multi$Stand, method= c("pearson")) 

 

# Mod4 

multi_flight_data_prediction4 <- predict(multi_training_mod4$finalModel) 

cor(multi_flight_data_prediction4, data_multi$Stand, method= c("pearson")) 

 

# Mod5 

multi_flight_data_prediction5 <- predict(multi_training_mod5$finalModel) 

cor(multi_flight_data_prediction5, data_multi$Stand, method= c("pearson")) 

 

# Mod6 

multi_flight_data_prediction6 <- predict(multi_training_mod6$finalModel) 

cor(multi_flight_data_prediction6, data_multi$Stand, method= c("pearson")) 

 

# Mod7 

multi_flight_data_prediction7 <- predict(multi_training_mod7$finalModel) 
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cor(multi_flight_data_prediction7, data_multi$Stand, method= c("pearson")) 

 

# Mod8 

multi_flight_data_prediction8 <- predict(multi_training_mod8$finalModel) 

cor(multi_flight_data_prediction8, data_multi_529$Stand, method= c("pearson")) 

 

# Mod9 

multi_flight_data_prediction9 <- predict(multi_training_mod9$finalModel) 

cor(multi_flight_data_prediction9, data_multi_529$Stand, method= c("pearson")) 

 

# Mod10 

multi_flight_data_prediction10 <- predict(multi_training_mod10$finalModel) 

cor(multi_flight_data_prediction10, data_multi_529$Stand, method= c("pearson")) 

 

# Mod11 

multi_flight_data_prediction11 <- predict(multi_training_mod11$finalModel) 

cor(multi_flight_data_prediction11, data_multi_529$Stand, method= c("pearson")) 

 

# Mod12 

multi_flight_data_prediction12 <- predict(multi_training_mod12$finalModel) 

cor(multi_flight_data_prediction12, data_multi_529$Stand, method= c("pearson")) 

 

# Mod13 

multi_flight_data_prediction13 <- predict(multi_training_mod13$finalModel) 

cor(multi_flight_data_prediction13, data_multi_529$Stand, method= c("pearson")) 

 

# Mod14 

multi_flight_data_prediction14 <- predict(multi_training_mod14$finalModel) 

cor(multi_flight_data_prediction14, data_multi_529$Stand, method= c("pearson")) 

 

# Mod15 

multi_flight_data_prediction15 <- predict(multi_training_mod15$finalModel) 

cor(multi_flight_data_prediction15, data_multi_529$Stand, method= c("pearson")) 
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# Mod16 

multi_flight_data_prediction16 <- predict(multi_training_mod16$finalModel) 

cor(multi_flight_data_prediction16, data_multi_529$Stand, method= c("pearson")) 

 

# Mod17 

multi_flight_data_prediction17 <- predict(multi_training_mod17$finalModel) 

cor(multi_flight_data_prediction17, data_multi_529$Stand, method= c("pearson")) 

 

# Mod18 

multi_flight_data_prediction18 <- predict(multi_training_mod18$finalModel) 

cor(multi_flight_data_prediction18, data_multi_529$Stand, method= c("pearson")) 

 

# Mod19 

multi_flight_data_prediction19 <- predict(multi_training_mod19$finalModel) 

cor(multi_flight_data_prediction19, data_multi_529$Stand, method= c("pearson")) 

 

# Mod20 

multi_flight_data_prediction20 <- predict(multi_training_mod20$finalModel) 

cor(multi_flight_data_prediction20, data_multi_529$Stand, method= c("pearson")) 

 

# Mod21 

multi_flight_data_prediction21 <- predict(multi_training_mod21$finalModel) 

cor(multi_flight_data_prediction21, data_multi_529$Stand, method= c("pearson")) 

 

# Mod22 

multi_flight_data_prediction22 <- predict(multi_training_mod22$finalModel) 

cor(multi_flight_data_prediction22, data_multi_529$Stand, method= c("pearson")) 

 

# Mod23 

multi_flight_data_prediction23 <- predict(multi_training_mod23$finalModel) 

cor(multi_flight_data_prediction23, data_multi_529$Stand, method= c("pearson")) 
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``` 

 

```{r} 

# Prediction for RGB 

 

rgb_training_mod1 <- train(Stand~I(ExG_ExGct/638250)*Flight + I(ExGR_ExGRct/638250)*Flight + 
I(CIVE_CIVEct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv"))   

 

rgb_training_mod2 <- train(Stand~I(ExG_ExGct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod3 <- train(Stand~I(ExGR_ExGRct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod4 <- train(Stand~I(CIVE_CIVEct/638250)*Flight,  

                            data = data_rgb, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod5 <- train(Stand~I(ExG_ExGct/638250) + I(CIVE_CIVEct/638250),  

                            data = data_rgb_425, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod6 <- train(Stand~I(ExG_ExGct/638250),  

                            data = data_rgb_425, 

                            method="lm", 



120 
 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod7 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_425, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod8 <- train(Stand~I(ExGR_ExGRct/638250) + I(CIVE_CIVEct/638250),  

                            data = data_rgb_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod9 <- train(Stand~I(ExGR_ExGRct/638250),  

                            data = data_rgb_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod10 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_518, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod11 <- train(Stand~I(ExG_ExGct/638250) + I(ExGR_ExGRct/638250) + 
I(CIVE_CIVEct/638250),  

                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod12 <- train(Stand~I(ExG_ExGct/638250),  

                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod13 <- train(Stand~I(ExGR_ExGRct/638250),  
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                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod14 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_529, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

rgb_training_mod15 <- train(Stand~I(CIVE_CIVEct/638250),  

                            data = data_rgb_612, 

                            method="lm", 

                            trControl = trainControl(method = "cv")) 

 

``` 

 

```{r} 

print('mod1') 

rgb_training_mod1 

print('mod2') 

rgb_training_mod2 

print('mod3') 

rgb_training_mod3 

print('mod4') 

rgb_training_mod4 

print('mod5') 

rgb_training_mod5 

print('mod6') 

rgb_training_mod6 

print('mod7') 

rgb_training_mod7 

print('mod8') 

rgb_training_mod8 
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print('mod9') 

rgb_training_mod9 

print('mod10') 

rgb_training_mod10 

print('mod11') 

rgb_training_mod11 

print('mod12') 

rgb_training_mod12 

print('mod13') 

rgb_training_mod13 

print('mod14') 

rgb_training_mod14 

print('mod15') 

rgb_training_mod15 

``` 

rgb_training_mod correlation   

 

```{r} 

#Check correlation 

#1 

rgb_flight_data_prediction1 <- predict(rgb_training_mod1$finalModel) 

cor(rgb_flight_data_prediction1, data_rgb$Stand, method= c("pearson")) 

 

#2 

rgb_flight_data_prediction2 <- predict(rgb_training_mod2$finalModel) 

cor(rgb_flight_data_prediction2, data_rgb$Stand, method= c("pearson")) 

 

#3 

rgb_flight_data_prediction3 <- predict(rgb_training_mod3$finalModel) 

cor(rgb_flight_data_prediction3, data_rgb$Stand, method= c("pearson")) 

 

#4 

rgb_flight_data_prediction4 <- predict(rgb_training_mod4$finalModel) 
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cor(rgb_flight_data_prediction4, data_rgb$Stand, method= c("pearson")) 

 

#5 

rgb_flight_data_prediction5 <- predict(rgb_training_mod5$finalModel) 

cor(rgb_flight_data_prediction5, data_rgb_425$Stand, method= c("pearson")) 

 

#6 

rgb_flight_data_prediction6 <- predict(rgb_training_mod6$finalModel) 

cor(rgb_flight_data_prediction6, data_rgb_425$Stand, method= c("pearson")) 

 

#7 

rgb_flight_data_prediction7 <- predict(rgb_training_mod7$finalModel) 

cor(rgb_flight_data_prediction7, data_rgb_425$Stand, method= c("pearson")) 

 

#8 

rgb_flight_data_prediction8 <- predict(rgb_training_mod8$finalModel) 

cor(rgb_flight_data_prediction8, data_rgb_425$Stand, method= c("pearson")) 

 

#9 

rgb_flight_data_prediction9 <- predict(rgb_training_mod9$finalModel) 

cor(rgb_flight_data_prediction9, data_rgb_425$Stand, method= c("pearson")) 

 

#10 

rgb_flight_data_prediction10 <- predict(rgb_training_mod10$finalModel) 

cor(rgb_flight_data_prediction10, data_rgb_425$Stand, method= c("pearson")) 

 

#11 

rgb_flight_data_prediction11 <- predict(rgb_training_mod11$finalModel) 

cor(rgb_flight_data_prediction11, data_rgb_425$Stand, method= c("pearson")) 

 

#12 

rgb_flight_data_prediction12 <- predict(rgb_training_mod12$finalModel) 

cor(rgb_flight_data_prediction12, data_rgb_425$Stand, method= c("pearson")) 
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#13 

rgb_flight_data_prediction13 <- predict(rgb_training_mod13$finalModel) 

cor(rgb_flight_data_prediction13, data_rgb_425$Stand, method= c("pearson")) 

 

#14 

rgb_flight_data_prediction14 <- predict(rgb_training_mod14$finalModel) 

cor(rgb_flight_data_prediction14, data_rgb_425$Stand, method= c("pearson")) 

 

#15 

rgb_flight_data_prediction15 <- predict(rgb_training_mod15$finalModel) 

cor(rgb_flight_data_prediction15, data_rgb_425$Stand, method= c("pearson")) 

``` 
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