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Several precision technologies are being developed to assist farmers in informed irrigation 

decision-making. These technologies aim to enhance irrigation water efficiency, check 

overirrigation, boost crop water productivity, and promote the sustainable utilization of water 

resources. We hypothesize that soil moisture parameters used in irrigation decision tools need to 

be validated to best represent the correct state of soil moisture in the field. This is an important 

factor that affects the accuracy of the irrigation recommendations forecasted by the decision 

support tools. In this research, we evaluated different methods of estimating field capacity (FC) 

and wilting point (WP) to optimize soil moisture parameters for irrigation scheduling. Several 

studies have emphasized the importance of observational FC but none have been able to quantify 

and compare various methods relative to observational FC (FCobs). To test our hypothesis, we 

used one irrigation decision support system (IDSS) and compared it to Web Soil Survey (WSS) 

and Pedo Transfer Functions (PTF) for FC. For WP, we compared the IDSS, WSS and PTF 

methods to laboratory method (LAB). IDSS was categorized into two different types of methods- 

Single Data Point Optimization (SDPO) and Time Series Optimization (TSO), based on how 

they estimate FC and WP. Furthermore, we quantified the uncertainty of predicting the soil 

moisture parameters by those methods using RMSPE (Root Mean Square Prediction Error). The 

study area covered eight locations in three states across the Great Plains of North America 



 

including North and South Dakota, Eastern and Western Nebraska, and Kansas for the 2023 

growing season. The results showed that WSS had the highest RMSPEWSS of 18.6% with a 

potential delay in irrigation of 15 days and 6 fewer irrigation events followed by PTF with 

RMSPEPTF of 13.6% with a potential delay in irrigation of 11 days and 5 fewer irrigation events. 

The SDPO had the lowest RMSPESDPO of 0.7% with a potential delay in irrigation of -1 day and 

no missed irrigation event. TSO had an RMSPETSO which reflects the temporal variability in the 

estimation of FC, and it was around 0.8%. Soil Water Depletion (SWD) was plotted for each of 

the four methods to compare them with the baseline (FCobs and WPLAB). This study will benefit 

irrigation scheduling practices by providing a better understanding of the insights available from 

field and lab data and how to best manage the data from the soil moisture probes.   
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1.0 Introduction and Motivation 

The question of when and how much to irrigate has been important and 

challenging for producers, as well as agronomists and irrigation engineers from time 

immemorial. Several precision technologies are being developed to assist farmers in 

informed irrigation decision-making (Barker et al., 2019; Bhatti et al., 2020; Haghverdi et 

al., 2016; Lena et al., 2020; Mendes et al., 2019; O’Shaughnessy et al., 2015; Osroosh et 

al., 2016; Stone et al., 2020; Sui & Yan, 2017; Taghvaeian et al., 2014; Thorp, 2020; 

Vories et al., 2021). These technologies aim to enhance irrigation water efficiency, check 

overwatering, boost crop water productivity, and promote the sustainable utilization of 

water resources. However, precision irrigation has drawbacks, including associated costs 

and the absence of effective algorithms and real-time data availability for irrigation 

scheduling (Evett et al., 2020a, 2020b, 2020c). 

Integrated sensing systems, advanced modeling tools, and irrigation scheduling 

algorithms are identified as beneficial for both site-specific and conventional irrigation 

methods (Thorp et al., 2022). Precision agriculture data streams necessitate a thorough 

understanding of soil, plant, and field characteristics in both temporal and spatial 

dimensions (Zhang et al., 2021). To ensure sustainable irrigation water management, 

precision irrigation technologies should prioritize plant-water relations within the soil-

plant-atmosphere continuum. Furthermore, precision irrigation tools that integrate sensor 

data, remote sensing inputs, and modeling approaches have shown promise as effective 

decision-support systems for irrigation management (Bhatti et al., 2023). 

The estimation of soil moisture relies on various sensing methods, each with its 

own set of principles, leading to potential errors and uncertainties. Numerous studies 
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have evaluated the accuracy of these methods across different soil conditions and textures 

(Evett et al., 2002; Leib et al., 2003; Baumhardt et al., 2000; Varble and Chávez, 2011; 

Jabro et al., 2018; Zhu et al., 2019; Chow et al., 2009). The primary objective of these 

studies has been to assess the ability of sensors to accurately represent soil moisture 

content (measured as volumetric water content or θv) and to develop correction strategies 

for improving θv estimation (Evett and Steiner, 1995; Irmak and Haman, 2001; Heng et 

al., 2002; Quinones et al., 2003; Irmak and Irmak, 2005; Jabro et al., 2005; Brocca et al., 

2007; Irmak et al., 2010; Mittelbach et al., 2012; Su et al., 2014; Datta et al., 2018; Irmak, 

2019a; Zhu et al., 2019). Research on this topic emphasizes the importance of accurate θv 

estimation to determine the suitability of sensors for specific applications. Soil moisture 

sensors are expected to inform irrigation decisions rather than solely reporting θv values 

and other metrics like total soil water could be better metrics for irrigation management 

(Sharma et al., 2021). 

Singh et al. (2020) in their study tested the impact of soil structure and texture on 

the accuracy of θv measurements using a capacitance-based electromagnetic sensor and 

evaluated the uncertainty associated with irrigation scheduling using soil water depletion-

based methods and management-based θv. Their study reported that it might be more 

suitable for producers to evaluate the effectiveness of a soil moisture sensor directly in 

the field rather than conducting soil tests in a laboratory and calibrating the sensor 

accordingly. 

There is a research gap in exploring the utilization of irrigation decision support 

systems for in-field optimization of soil water parameters and evaluating the extent to 

which these new precision irrigation technologies could reduce uncertainties in irrigation 
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scheduling, especially when compared to conventional and simplistic methods. I 

hypothesize that irrigation decision support systems need to validate soil moisture 

parameters to best represent the correct state of soil moisture in the field. This is an 

important factor that affects the accuracy of the irrigation recommendations forecasted by 

the decision support tools. The soil moisture parameters to be calibrated include field 

capacity (FC), wilting point (WP), and management-allowed depletion (MAD). This 

capability to adjust the soil water parameters based on field observations of the soil 

moisture is a feature of Valley Scheduling™ (VS), a product of Valmont Industries, Inc.  

To test the hypothesis, the VS irrigation decision support system (IDSS) was used 

and compared to the Web Soil Survey (WSS) and Pedo Transfer Functions (PTF) for FC. 

For WP, IDSS, WSS, and PTF methods were compared to the laboratory method (LAB).  

Studies have shown that the laboratory analysis of FC are not capable of duplicating soil-

water dynamics in situ; thus, it is preferable to conduct field tests to determine the FC 

(Zettl et al. 2011). Hence, the laboratory analysis of only WP was conducted in this study. 

IDSS was categorized into two different types of methods- Single Data Point 

Optimization (SDPO) and Time Series Optimization (TSO), based on how they estimate 

FC and WP.  

The study was conducted at eight locations across three states in the Great Plains 

of North America, including North and South Dakota, Eastern and Western Nebraska, and 

Kansas. Data and soil samples were collected from corn fields for the 2023 growing 

season.  

This study will help understand the role of parameterization in an irrigation 

scheduling program and how one can effectively adapt and utilize calibration of the soil 
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moisture readings to enhance the accuracy of decision-making in irrigation water 

management. It will provide insights into how to streamline the calibration of the 

capacitance-based soil moisture sensor readings and also help understand how different 

soils across the Great Plains of North America affect the need to recalibrate the soil 

moisture data from the probe during the growing season. 

In this research, I evaluate different technologies available to growers to assist in 

irrigation scheduling and compare them with in-field optimization of soil moisture 

parameters with the specific objective of quantifying the impact of soil parameter method 

on soil water depletion and irrigation scheduling. 

 

1.1 Soil Water Parameters 

Soil water parameters are essential for assessing plant water stress, 

determining irrigation requirements, and optimizing crop management strategies. 

The amount of water in a soil can be expressed in various ways but θv is often 

more meaningful than others. This is because θv provides a standardized measure 

that is independent of soil texture and bulk density variations. It allows for easier 

comparison and interpretation of soil moisture data across different soil types. The 

different soil water parameters that are essential to define for this study are Field 

Capacity (FC), Permanent Wilting Point (WP), and Management Allowed 

Depletion (MAD).  

FC and WP define the upper and lower limits of water availability 

respectively. θFC is defined as the soil water content at which the rate of drainage, 

induced by gravity, becomes negligible. FC indicates the maximum amount of 
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water that soil can retain against gravity after excess water has drained away. θWP 

is defined as the soil water content at which the crop permanently wilts and 

cannot recover even with irrigation. At WP, plants can no longer extract water 

from the soil and experience water stress resulting in significant yield loss. 

Therefore, irrigation is required before the available water is entirely depleted to 

avoid significant water stress and yield loss. Hence, the management-allowed 

depletion (MAD) concept is commonly employed, initiating irrigation when the 

soil water decreases to a specific θMAD level (Evett, 2007). MAD serves as a 

management strategy to maximize soil water extraction and prevent yield 

reduction from water stress. The θMAD level varies based on soil type, rooting 

depth, crop sensitivity to water stress, season timing, irrigation system 

characteristics, and other factors (Martin et al., 1990). It is typically chosen to 

ensure the soil never becomes excessively dry to limit plant growth and yield, 

although it may sometimes allow for some level of plant stress. Irrigation is often 

triggered at a θv higher than θMAD to compensate for potential errors in θv 

measurement that could lead to unintended crop stress (Singh et al., 2020).

1.2 Observational Field Capacity (FCobs) 

Values of FC is highly dependent on operational method. The lab method 

as well as field method can result in different values for the same soil. There are 

several reasons for this. For instance, the soil water potential associated with FC 

is related to texture which is difficult to predict (Romano and Santini, 2002). 

Another major issue is the characteristics of each soil horizon and the interactions 

between them. This further increases the uncertainty in the estimation of FC. 
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Martin et al., 1990 and Romano and Santini, 2002 asserted that the soil water 

potential associated with FC can increase with soil layering. Furthermore, an 

intact soil profile captures in-situ effects of free drainage that can be problematic 

in determining FC.  

The classic method for measuring FC involves saturating the soil profile, 

covering the soil surface, and monitoring soil water content and drainage 

(Romano and Santini, 2002). Lo et al. (2017) suggested that a less demanding 

method for determining FC would be by measuring “observational field capacity” 

(FCobs), by estimating FC in the field under non-experimental conditions. The 

concept of FCobs is consistent with the suggestion by Martin et al. (1990) that “a 

good indication of the field capacity water content can be determined by sampling 

field soils one to three days after a thorough irrigation or rain and when crop 

water use is small.” Also, FCobs has been measured in previous site-specific 

research (Hezarjaribi and Sourell, 2007; Jiang et al., 2007; Haghverdi et al., 

2015). Figure 1 shows a diagrammatic representation of estimating FCobs. 

 

2.0 Methodology 

The methodology section is divided into different parts. Firstly, each of the different 

methods used in this study for the estimation of FC and WP is described. The FC was 

estimated using four different methods – WSS, PTF, IDSS – SDPO and TSO. The WP 

was estimated by the aforementioned methods and a LAB analysis was conducted using 

the thermocouple psychrometer.  
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Then details on the field sites, sampling techniques, calibration techniques, and 

laboratory analysis followed by statistical analysis are provided. In general, the soil 

parameters FC and WP were optimized to give the best performance for practical 

irrigation management. We call this process parameterization. This is distinct from 

calibration, for example, calibrating a soil water sensor to give a more accurate reading of 

volumetric water content (θv).

2.1 Different methods of optimizing soil water parameters 

i. Web Soil Survey (WSS) 

WSS is an online platform developed by the United States 

Department of Agriculture (USDA) to provide comprehensive soil survey 

information. This tool offers a vast database of soil data, including soil 

maps, classifications, and properties, covering various locations across the 

United States. Users can access this information through an interactive 

map interface or by inputting specific geographical coordinates or 

addresses. The WSS enables in-depth exploration and analysis of soil 

characteristics, aiding users in assessing soil suitability for different land 

uses, understanding soil-water interactions, and studying soil-health 

dynamics. 

The WSS provides estimates of FC and WP based on soil texture, 

organic matter content, and other soil properties. These values are 

typically presented in soil data tables or as part of soil interpretation 

reports generated for specific locations. The FC is typically expressed as 

the soil moisture content (in percentage or volumetric water content) at a 
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specific tension (i.e., -33 kPa or -1/3 bar). The WP is commonly defined as 

the soil moisture content (in percentage or volumetric water content) at a 

specific tension (i.e., -1500 kPa or -15 bars). 

For the purpose of this study, the area of interest(s) (AOIs) were 

created on the WSS platform by inputting the geographic coordinates for 

each field. This was the only input to the platform to get the FC and WP 

values. The WSS is an easy-to-use, free-of-cost method of estimating field 

capacity and wilting point for decisions regarding irrigation scheduling, 

crop water requirements, and soil management practices tailored to their 

specific soil and climate conditions.

ii. Pedo Transfer Functions (PTF) 

PTFs are empirical relationships that aim to predict soil hydraulic 

properties based on easily measurable soil attributes. The PTFs developed 

by Saxton and Rawls are particularly noteworthy for their robustness and 

widespread application. 

Saxton and Rawls (2006) proposed a set of PTFs that relate soil 

hydraulic properties, such as hydraulic conductivity (K) and soil water 

retention characteristics (θ(h)), to basic soil properties including soil 

texture, organic matter content, bulk density, and soil structure. These 

functions are typically developed using large databases of soil data 

collected from various locations, allowing for the development of models 

that can generalize across different soil types and conditions. The basic 

premise behind PTFs is to establish empirical relationships between soil 
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properties that are easy to measure in the field or laboratory and those that 

are more difficult or costly to determine directly. They are often 

implemented in soil and water management models, hydrological models, 

and agricultural decision support systems to simulate soil-water dynamics, 

optimize irrigation scheduling, assess soil erosion risk, and support land 

use planning. 

PTFs estimate FC and WP based on soil texture, organic matter 

content, bulk density, and other soil properties. These functions utilize 

empirical relationships derived from extensive soil database analyses to 

predict FC and WP for different soil types and conditions. 

In this study, the composite soil samples were collected for three 

different depths (0 – 30 cm, 30 – 60 cm and 60 – 90 cm) from each of the 

eight locations and sent for texture analysis and organic matter content to 

the Ward Laboratories, Inc. The sand percentage and clay percentage, and 

organic matter content from the laboratory results were used as input for 

the SPAW Version 6.02.75 to estimate the soil water characteristics. The 

FC and WP were estimated for the three different soil depths for the eight 

locations.

2.2 Irrigation Decision Support System (IDSS) 

IDSS tools and platforms optimize water management in agriculture by 

providing real-time data, analytics, and recommendations to farmers and 

stakeholders. These tools utilize various algorithms and models to estimate 

critical soil parameters and forecast irrigation recommendations, which are 
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essential for effective irrigation scheduling and water conservation. These tools 

empower farmers to make informed decisions regarding irrigation scheduling, 

water allocation, and crop management, ultimately improving water use efficiency 

and agricultural productivity. 

The IDSS used in this study was Valley Scheduling™ (VS), a product of 

Valmont Industries, Inc. This is an advanced irrigation water management 

software developed to improve irrigation scheduling decisions. This tool utilizes 

real-time data, including soil moisture levels, weather forecasts, and crop water 

requirements, to generate customized irrigation schedules tailored to specific field 

conditions and crop growth stages. The tool integrates the real-time data and 

water balance model to provide decisions on when and how much to irrigate, 

helping to prevent crop stress, over-irrigation while minimizing negative 

environmental impacts. 

This platform has the ability to calibrate the soil moisture readings in real-

time based on time-series data, field observations, etc. This feature allows 

flexibility in improving the soil water parameter readings by the sensor and thus 

helps in better irrigation recommendations. For the purpose of this study, I 

focused on only the calibration feature out of the many different features of this 

tool. All eight sites in this study used the VS platform for irrigation scheduling. 

Each site had one soil moisture probe installed at a location decided by the 

Irrigation Specialist. 

The length of the soil moisture probe used was 90 cm with a sensor at 

every 10 cm. In Valley Scheduling, this can be visualized under the Root Zone 
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Graph. This divides the root zone into 9 equal layers giving the soil moisture 

readings at different depths of soil horizons.  

iii. Single Data Point Optimization (SDPO) 

After installation of the soil moisture probe, the soil moisture 

parameters i.e., FC and WP were calibrated by the hand feel soil moisture 

data collected by the Irrigation Specialist while installing the soil moisture 

probe. The hand-feel or touch-feeling soil moisture estimations were rated 

using a 20-point scale that ranges from 1 – 10 with an interval of 0.5. 

These ratings represent different soil moisture levels expressed in terms of 

percentage of FC. For example, if the farmer or Irrigation Specialist 

selected 88% that means that they felt that the soil had moisture equivalent 

to 88% of FC. Here are the ratings used for the hand-feel method: 1 – 

100%, 1.5 – 96%, 2 – 92%, 2.5 – 88%, 3 – 83%, 3.5 – 79%, 4 – 75%, 5 – 

67%, 5.5 – 63%, 6 – 58%, 6.5 – 54%, 7 – 50%, 7.5 – 43%, 8 – 35%, 8.5 – 

27%, 9 – 18%, 9.5 – 9%, 10 – 0%.  

Although the hand-feel method is a good approximation of the soil 

moisture level in the field, it is subjective. It can also vary from one 

individual to another. However, it gives a starting point for the soil 

moisture parameters and helps visualize if the data makes sense and if the 

probe was installed correctly or not. 

For the purpose of this study, the SDPO is described as a method 

that estimates FC and WP by using a combination of the hand-feel method 

and initial sensor reading to calibrate the soil water parameters. It is 
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possible that the initial soil calibration values might have been very 

slightly adjusted to reflect the real-time condition of the field, but no 

major adjustments were made to the FC and WP values. 

iv. Time Series Optimization (TSO) 

SDPO and TSO both fall under the IDSS, but they are different in 

terms of how they calibrate the soil moisture values. This is why we are 

treating them as separate methods for estimating the soil water parameters. 

The soil moisture sensors start sending the soil moisture values 

after they are installed in the field. The sensors update soil moisture values 

approximately every 30 minutes and approximately send four values in 2 

hours. These sensor readings can be visualized under the ‘Sensor Graph’ 

option. These graphs are regularly monitored by the Irrigation Specialists. 

The time series soil moisture curves for the eight sites in this research 

were regularly monitored.  

Rainfall or irrigation appears as a peak or an increase in the sensor 

line on the Chart. In VS, FC is determined for each soil layer (9 layers). 

FC can be determined after an irrigation or rainfall event when the water 

percolates down to the sensor below. This percolation is observed as an 

increase in soil moisture content in the soil moisture (SM) sensor lines 

below. It is common to see an increase in soil moisture for the top 8-16 

inches (SM1, SM2, SM3). In soils that have good drainage, one may see 

an increase in the bottom layers too. We select a point after the soil 

moisture line peaks and the slope of the line begins to flatten. This may be 
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1-2 days after the rainfall or irrigation event. If a lower sensor does not 

increase after rainfall or irrigation, it shouldn't be used to determine FC. 

For example, the time series data was visualized and the points on the 

curve were identified that coincided with a rainfall or irrigation event. The 

soil profile can be fully or partially saturated after this event. We wait for 

maybe a day or two until the readings stabilize and select that point as the 

field capacity. Another thing to note here is that it is very common to 

observe that only the top few layers reach field capacity. It varies due to 

soil texture, porosity, amount of rainfall, crop growth stage, etc. We can 

better estimate the soil water parameters for all the layers by regular 

monitoring of the field sites. The calibration of the soil water parameters 

can be updated based on the time series data readings of the sensors. 

Although it is typically assumed that FC and WP are constant in 

time, we observed that the soil water parameters sometimes change during 

the growing season. There might be situations where one calibration 

worked well until a specific date but after that, it needs to be adjusted. In 

this case, VS allows to create a new calibration and gives the option to 

update the date when we want to implement the new calibration. This 

results in multiple calibrations for the soil moisture parameters in the 

growing season. This is a unique feature, and it helps in making informed 

decisions for irrigation scheduling. The reason why there is a need for 

multiple calibrations is unclear and crop growth stage can be thought to be 

one of the driving factors. Nevertheless, this feature helps in the real-time 
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calibration of soil parameters based on field observations and time series 

data. 

Thus, the TSO method estimates the FC which is the exact 

definition of observational field capacity. FCobs might be best represented 

by FCTSO because the process used to determine the FC by TSO 

determines FC in the field under non-experimental conditions after a 

major rainfall or irrigation event.

v. Laboratory analysis (LAB) 

The LAB analysis was only conducted for WP analysis. The 

DewPoint PotentiaMeter method was used for measuring the water 

content associated with the soil samples that were close to the WP (-1.5 

MPa). The water potential (Ψ) is the measurement of the energy status of 

the water in a system, in other words, it indicates how tight water is 

bound, structurally or chemically, within a substance.  

The following procedures were used to get a precise reading. In 

general, an iterative process was used to adjust the gravimetric water 

content (w) of soil samples that were close to WP.  Firstly, the soil texture 

analysis from the Ward Laboratories for each soil sample was classified 

based on sand, silt, and clay percentage. An initial target gravimetric water 

content was selected based on the soil texture. The following equation was 

used to calculate the amount of water that needs to be added to a 50g soil 

sample. 

𝑀# = 𝑀%&[(1 − 𝑤%&)𝑤 − 𝑤%&] (1) 
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where, 𝑀# is the mass of water to add to a given mass of air-dry soil to get 

the desired water content, 𝑀%& is the mass of air-dry soil, 𝑤 is the desired 

final water content, and 𝑤%& is the air-dry water content of the soil. 

Then the soil samples were finely ground and 50g of the soil was 

measured and put in a container. The calculated amount of water was 

added to the 50g soil and mixed. It was then covered and sealed using a 

tape and then it was allowed to sit for at least 24 hours to equilibrate. After 

24 hours the Dewpoint PotentiaMeter was first calibrated before taking the 

readings. Then a small portion of the sample was put in the plastic cup, 

and it was inserted into the WP4’s sample drawer. If the MPa readings fall 

within the range of -0.8 and -3.0, then the soil sample container is weighed 

and placed in the drying oven for 48 hours. After 48 hours, the soil 

containers are weighed again, and this gives the first reading for 

calculating the WP. To be able to find the WP two samples are required. 

One that is dryer than -1.5 and one that is wetter than -1.5. The second 

sample was prepared based on the readings from the first sample. After 

getting two readings that were within the range of -0.8 and -3.0, the 

following natural log interpolation equations were used for getting the 

gravimetric WP values.   

𝑤./.1 = 𝑤/ + (𝑤3 − 𝑤/)
𝑙𝑛(Ψ/ −1.5⁄ )
𝑙𝑛(Ψ/ Ψ3⁄ )

(2) 

where, 𝑤/ is the measured water content corresponding to the water 

potential Ψ/ of the first sample and Ψ3 is the measured water content 

corresponding to the water potential of the second sample. Then the 
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following equation was used to get the volumetric water content (𝜃) WP 

values. 

𝜃./.1 = 𝑤./.1
𝜌;
𝜌#

(3) 

where, 𝜃./.1 is the volumetric WP, 𝜌; is the bulk density of the soil and 

𝜌# is the density of water.

 

2.3 Description of the Field Sites 

The field sites selected for this study are spread across six counties and four 

states across the Great Plains of North America. These fields are commercial 

fields of farmers and not experimental sites. Hence, the geolocation and names of 

these fields are anonymized in this study. These sites are referred to as the County 

names they are located in. This study was conducted during the 2023 growing 

season. All the field sites selected for this study cultivated corn (Zea mays) during 

this cropping season. Below is the list of these fields: - 

i. York County, Eastern Nebraska (York) 

ii. Dawson County, Western Nebraska (Dawson) 

iii. Custer County, Western Nebraska (Custer) 

iv. Beadle County- Site 1, South Dakota (Beadle Site-1) 

v. Beadle County- Site 2, South Dakota (Beadle Site-2) 

vi. Oliver County- Site 1, North Dakota (Oliver Site-1) 

vii. Oliver County- Site 2, North Dakota (Oliver Site-2) 

viii. Shawnee County, Kansas (Shawnee) 
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2.4 Installation specifications 

The soil moisture sensors installed were Sentek Drill and Drop soil 

moisture probes. These probes feature capacitance-based technology in which soil 

profile measurements can be taken on a near-continuous basis. These soil 

moisture probes allow user-defined or site-specific calibration equations to be 

applied to each sensor. The probe is fully encapsulated and is completely buried in 

the soil to reduce the risk of machinery damage. The probes installed were of 

length 90 cm with sensors at every 10 cm. 

The location where the soil moisture probe was installed was selected 

based on several considerations. The appropriate soil moisture probe location was 

determined with the help of available satellite imagery including previous 

normalized difference vegetation index (NDVI) maps, publicly-available soil 

mapping, and also by asking the growers for their preferences and knowledge of 

the field soils. The location is assessed by the irrigation specialist to check if the 

plants around the site are healthy and look uniform. The probe is carefully 

installed in the crop row between two plants and special attention is paid to not 

damage any plants close to the probe.  

These soil moisture probes were installed at a location that best represents 

the condition of the field. These locations were selected by the Irrigation 

Specialists based on their experience from past years and the considerations 

mentioned above. In the case of a center pivot irrigation system, the installation 

site is selected after radially crossing at least two wheel tracks of the center pivot. 

The installations were done from the emergence to the 8-leaf stage of corn. The 
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irrigation specialist assessed the location by checking the uniformity of the plants 

growing around that area. Then the probe was installed by drilling a hole to the 

soil with the help of a special auger in the row between two healthy plants. It 

ensured that the plants growing near the sensor were not damaged during the 

installation. This is a very important step to ensure that the soil moisture sensor 

senses the soil moisture sensed by the roots of the crop. The soil moisture sensor 

is then connected to the telemetry device that sends soil moisture data 

approximately at every 30-minute interval.  

Only one probe is installed per field because the objective is to get an 

approximation of the soil moisture in the soil profile so that we can predict and 

prescribe irrigation schedules to farmers. Another reason is to minimize the cost 

of irrigation scheduling because installing multiple sensors in a single field is too 

costly. Moreover, the field sites selected in this study are fairly uniform in their 

soil type. 

 

2.5 Soil sampling 

The soil samples were collected from each of the field sites. The sampling 

was conducted at the time of removal of the soil moisture probes. I used the 

Dakota probes for soil sampling at three different depths. The first sample was 

collected at a depth of 0 to 30 cm (R1), the second sample at a depth of 30 to 60 

cm (R2), and the third sample at 60 to 90 cm (R3). The soil samples were taken 

within an approximate radius of 30 centimeters around the soil moisture probe by 

digging five different holes. The samples collected from different holes were 
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mixed to make a composite sample. This was done to account for spatial 

variability. I did not collect soil samples from different locations of the field 

because the objective of the study was to evaluate the calibration of the soil 

moisture probe readings by placing the probe at the selected location chosen by 

the irrigation specialists. The soil samples from each field site were collected just 

before removing the probes from the field at the black layer formation stage of 

corn.

 

2.6 Uncertainty analysis and statistics 

Statistical Method:  

Randomized Controlled Block Design (RCBD) model was used for 

conducting statistical analysis. Locations were considered as a blocking factor in 

the design. Linear model was for analysis of the response variables (FC and WP) 

individually where both follow a normal distribution.  

𝑦>?@ = 𝜇 + 𝛼> + 𝛽? + 𝛾@ + 	𝛼𝛾>@ + 𝑒>?@ (4) 

where, 𝑦>?@ = 𝐹𝐶	𝑜𝑟	𝑊𝑃	𝑓𝑜𝑟	𝑖PQ𝑚𝑒𝑡ℎ𝑜𝑑	𝑎𝑡	𝑘PQ𝑟𝑜𝑜𝑡	𝑑𝑒𝑝𝑡ℎ	𝑖𝑛	𝑗PQ𝑏𝑙𝑜𝑐𝑘, 𝜇 =

𝑜𝑣𝑒𝑟𝑎𝑙𝑙	𝑚𝑒𝑎𝑛, 𝛼> = 𝑓𝑖𝑥𝑒𝑑	𝑒𝑓𝑓𝑒𝑐𝑡	𝑑𝑢𝑒	𝑡𝑜	𝑖PQ𝑚𝑒𝑡ℎ𝑜𝑑, 𝛽? =

𝑟𝑎𝑛𝑑𝑜𝑚	𝑒𝑓𝑓𝑒𝑐𝑡	𝑑𝑢𝑒	𝑡𝑜	𝑏𝑙𝑜𝑐𝑘, 𝛾@ = 𝑓𝑖𝑥𝑒𝑑	𝑒𝑓𝑓𝑒𝑐𝑡	𝑑𝑢𝑒	𝑡𝑜	𝑘PQ𝑠𝑜𝑖𝑙	𝑑𝑒𝑝𝑡ℎ, 

𝛼𝛾>@ = 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑒𝑐𝑡	𝑑𝑢𝑒	𝑡𝑜	𝑖PQ𝑚𝑒𝑡ℎ𝑜𝑑	𝑎𝑡	𝑘PQ𝑠𝑜𝑖𝑙	𝑑𝑒𝑝𝑡ℎ and 

𝑒>?@	𝑖𝑠	𝑡ℎ𝑒	𝑒𝑟𝑟𝑜𝑟	𝑡𝑒𝑟𝑚. 

The PROC MIXED procedure in SAS 9.4 was used to analyze the 

response variables: FC and WP. When differences occurred, they were reported at 

the α = 0.05 significance level with Tukey-Kramer adjustment applied to obtain 
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appropriate p-values, and significant effects or significant differences were 

reported by determining the p-value. The p-value is dependent upon either the t-

values or F-values and is indicated as Pr >F or Pr >|t|. If the p-value is less than 

0.05, we claim that there is a significant effect of that factor.  

Interactions occur when the effect of one variable depends on the value of 

another variable. In other words, the mean value of the response at a given level 

of a variable depends on the level of another variable. Interaction effects could be 

present between a categorical and a continuous variable. Interaction effects could 

also be present between two categorical variables. In the case of three categorical 

variables, there may be two-way interactions between pairs of variables and three-

way interactions between the three variables. In this study, there are four 

treatment factors for field capacity and five treatment factors for wilting point.  

Therefore, all possible interactions were compared and assessed. Tukey-Kramer 

adjustments were used to account for multiple comparisons, where appropriate to 

control the family-wise error rate of α and to prevent inflation of Type I error. 

 

Uncertainty analysis: 

Uncertainty analysis was performed using Root Mean Square Prediction 

Errors (RMSPE). This provided valuable insights into the reliability and precision 

of predictions generated by different methods. By quantifying the average 

magnitude of prediction errors, RMSPE offers a measure of uncertainty inherent 

in the predictive capability of a method. A higher RMSPE indicates greater 

variability and uncertainty in predictions, suggesting less confidence in the 
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model's accuracy. Conversely, a lower RMSPE signifies more precise predictions 

and reduced uncertainty. Incorporating RMSPE into uncertainty analysis helps in 

the quantification of the potential impact of prediction errors on decision-making 

processes. The following equation was used for calculating the RMSPE for the 

four methods used in this study for the estimation of FC and WP: 

𝑅𝑀𝑆𝑃𝐸cdPQe&fg	eh	ij	 = k∑ (𝜃m − 𝜃;)3𝑅&n
>o/

𝑛
(5) 

where, RMSE = Root Mean Square Prediction Error for FC or WP, 

Method refers to the different optimization methods: WSS or PTF or SDPO or 

TSO, θm = Predicted or estimated Field capacity or Wilting by a method, θb = 

Baseline estimation which is the average of all the time series optimizations for 

FC and average of all laboratory estimations for WP, Rd = Root depth and n = 

Total number of field sites. 
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3.0 Results and Discussion 

3.1 Evapotranspiration, rainfall and irrigation 

Real-time weather data were imported from the VS platform. VS uses 

weather station data for the weather statistics. Each site had a weather station at 

their location except the sites in South Dakota. For the South Dakota sites, 

ClearAgâ data was used. The actual crop evapotranspiration (ETc), rainfall, and 

irrigation were imported from the VS platform for all the sites. ETc is estimated 

by using the following equation in VS: 

𝐸𝑇q = 𝐸𝑇r ∗ 𝐾g ∗ 𝐾u ∗ 𝐾v (6) 

where ET0 is the short-grass reference evapotranspiration based on the 

Penman-Monteith equation, KC is the crop coefficient that adjusts the ET0 based 

on crop growth stage, KS is the stress coefficient based on the soil moisture 

content, KL is the localization coefficient that accounts for reduced evaporation 

when irrigation does not cover the whole area (Allen et al., 1998). VS uses three 

different models to estimate KL for different crops. For the eight sites in this 

study, Keller & Bliesner (1990) model was used to estimate KL. The highest 

recorded cumulative ETc between June 15 to September 15, 2023 was for the 

Western Nebraska sites with an ETc of 400 mm (16 inches) and the lowest was for 

the North Dakota sites with an ETc of 290 mm (12 inches). The intra-seasonal 

crop water requirement (CWR) for maize across the eight sites are in the 

following order: Dawson (404 mm) = Custer (404 mm) > Shawnee (386 mm) > 

Beadle Site-2 (353 mm) > Beadle Site-1 (343 mm) > York (323 mm) > Oliver 

Site-1 (300 mm) > Oliver Site-2 (295 mm). 
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Each of the eight locations had a tipping bucket rain gauge installed on top 

of the telemetry device. The rain bucket captures all the water that is applied to 

the crops, i.e., rainfall and irrigation. Out of the eight sites only the sites in York, 

Oliver Site-2, and both the sites in Beadle had an irrigation sensor (pressure and 

GPS location) installed to their pivots. During the season, there are instances 

when there are technical issues associated with the data import to the platform. 

There is also a possibility of the rain bucket being shaded by the maize leaves. 

These are some of the potential factors that might lead to errors associated with 

the measurement of these parameters. The cumulative rainfall of the eight sites is 

in the following order: Oliver Site-2 (405 mm) > Dawson (367 mm) > Oliver 

Site-1 (349 mm) > Shawnee (290 mm) > Custer (276 mm) > Beadle Site-1 (209 

mm) > Beadle Site-2 (201 mm) > York (164 mm). 

The irrigation amounts of the sites are in the following order: York (260 

mm) > Custer (213 mm) > Dawson (153 mm) > Oliver Site-1 (133 mm) > Beadle 

Site-2 (122 mm) > Beadle Site-1 (119 mm) > Oliver Site-2 (98 mm) > Shawnee 

(73 mm). Table 1 shows the average temperature, actual crop evapotranspiration, 

rainfall, and irrigation data for all eight sites. 

 

3.2 Soil properties 

Soil properties of the eight sites are presented in Table 2. Composite soil 

samples were collected from each location at three different soil depths (R1, R2 

and R3). The air-dried samples were sent to the Ward laboratories for texture 

analysis (Sand%, Silt%, and Clay%) and organic matter content (OM). The bulk 
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density of the soil was estimated by using the soil texture and organic matter 

content as inputs for the Saxton and Rawls (2006) pedotransfer function. 

The soil properties table shows the variability in the soil across the sites 

and different soil horizons. The soil texture, organic matter, and bulk density 

directly affect the soil water parameters and soil water holding properties. The 

table shows that the site in York had silty clay loam and silty clay soil type with 

the highest organic matter content (OM-LOI) of 3.2% at depths 30 to 60 cm 

compared to other sites. The highest bulk density recorded was for the sites in 

Oliver at a depth of 60 to 90 cm, 1.59 kgcm-3. 

 

3.3 Outputs from irrigation decision support system or VS platform 

The IDSS or emerging irrigation scheduling platforms are devised for 

farmers and irrigation managers to equip them with the necessary information 

required to reduce the uncertainty around irrigation decision-making. They make 

use of real-time localized weather data, weather forecasts, crop phenology, 

irrigation machinery, and soil properties to model crop water requirements and 

provide irrigation scheduling reports. These irrigation scheduling reports include 

information on when and how much to irrigate. Figures 4, 5, 6 and 7 show graphs 

that are visible to the farmers or users of the Scheduling platform in real-time.  

The SDPO method explained in the methodology section includes a 

combination of hand-feel and the initial data from the soil moisture sensor to 

calibrate the soil water parameters. The feel and appearance method is widely 

used but requires a great deal of judgment and experience for good estimates of 
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soil water. Experienced users probably achieve an accuracy of a fraction of 

available water remaining (fr) plus or minus 0.10 (Eisenhauer et al., 2021). The 

results show that for some locations the FC estimate of SDPO was as good as 

TSO. These locations were York and both the sites at Beadle. 

The sites at Shawnee, Custer, Dawson, and both the sites at Oliver had 

multiple TSOs during the season. This means that for these fields the FC 

estimates were adjusted during the season based on the time series data received 

from the soil moisture sensor. These decisions were made by observing the soil 

moisture trends, especially after heavy rainfall. The multiple TSOs during the 

season also reflect the intra-season variability that occurs in a non-experimental 

site during the growing season. 

 

3.4 Statistical analysis 

Firstly, the normality of response variables was assessed for both FC and 

WP. The graphs of the studentized residual panel for FC and WP are provided in 

the Appendix. The bottom-left graph of the studentized residual panel shows the 

QQ plot. The tails of the response data were observed to be fairly on the straight 

line suggesting that the data was normally distributed. The top-right shows the 

histogram of the data and the overlaid curve was observed to be symmetric, again 

indicating normal distribution. Thus, normal distribution was used to model both 

the response variables (FC and WP).  

The covariance parameter estimates provide the estimated variance in 

‘Locations’ as well as ‘Residual Variance’. ‘Locations’ refers to the eight field 
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sites which were considered as ‘Blocks’. The estimated variance among the eight 

sites or blocks for FC was estimated to be 17.7 and for WP, it was estimated to be 

6.2. The residual variance for FC was estimated to be 24 while for WP it was 

estimated to be 12.9. 

The ‘Type III test of fixed effects’ table gives the results of testing the 

effect of ‘Methods’, and ‘Root depth’ and their interaction on ‘FC’. Here, the 

‘Methods’ refers to the different methods that were used in the estimation of FC 

and WP. The ‘Root depth’ refers to the three different root depths that were 

sampled to test their effect on the estimation of FC and WP. The results showed 

that there is a significant difference between the estimates of FC for at least one 

pair of methods as suggested by a p-value of less than 0.0001. However, the main 

effect of ‘Root depth’ was found to be marginally significant since the p-value 

associated with it was 0.0378, not very small compared to 0.05. The interaction 

effect of ‘Methods by Root depth’ was not found to be significant.  

The tables in the appendix show the least square means estimates for 

various levels of each ‘Methods’ and ‘Root depth’. The columns provide the 

estimates and their standard error for ‘FC’ and ‘WP’ for each level of factor 

variables.  

As the main effect of Methods and Root depth were found to be 

significant, further investigation was done to understand which possible pair/s 

were significantly different from each other. Therefore, all possible pair-wise 

combinations between levels of each variable were compared. Tukey-Kramer 

adjustment was used to control the family-wise error rate of α. In other words, 
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with many comparisons done, the Tukey-Kramer adjustment helps prevent 

inflation of Type I error (rejecting null when it is true). The significant differences 

are marked with ‘*’ in Tables 5 and 6.  

There was a significant difference in the estimated mean ‘FC’ between 

PTF and SDPO as suggested by a p-value of less than 0.0001.  The other pairs 

that had significant differences in the estimated mean were PTF and TSO, SDPO 

and WSS, and TSO and WSS. PTF and WSS had moderately significant 

differences with a p-value of 0.03. However, TSO and SDPO did not have a 

significant difference in their estimation. In addition, with 95% confidence, the 

true mean ‘FC’ for TSO was 9.1 to 16.5 units (percent volumetric water content) 

higher compared to PTF. The mean for TSO was 14.2 to 21.6 units higher 

compared to WSS. For PTF, the mean was 1.3 to 8.8 units higher as compared to 

WSS. The Figure 2 shows the correlation between the means of the methods with 

respect to TSO along with the confidence intervals for the methods, R2, and 

equation. 

There was a significant difference in the estimated mean WP between 

LAB and SDPO, LAB and PTF, and LAB and TSO as suggested by a p-value of 

less than 0.0001. There was a moderately significant difference between LAB and 

WSS with a p-value of 0.02. The other pairs that were significantly different were 

WSS and PTF, WSS and SDPO, WSS and TSO. In addition, with 95% 

confidence, the true mean WP for LAB was 7.3 to 13.1 units lower compared to 

TSO and 7.4 to 13.2 units lower compared to SDPO. The mean for LAB was 4.9 
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to 10.7 units lower compared to PTF. For PTF, the true mean was 1.3 to 8.8 units 

higher as compared to LAB and 1.7 to 7.5 units higher compared to WSS. 

The results showed that there are differences between the estimated field 

capacity and wilting point among different methods. For FC, these differences 

are, however, not significant between the pairs SDPO and TSO. There are 

differences in the estimated field capacity between different root depths. In 

addition, there is a moderately significant difference between the root depths pair 

R2 (30 – 60 cm) and R3 (60 – 90 cm). For WP, the differences were significant for 

all the pairs with LAB and WSS. The pair WSS and LAB was moderately 

significant. The Figure 3 shows the correlation between the means of the methods 

with respect to LAB along with the confidence intervals for the methods, R2, and 

equation. 

 

3.5 Uncertainty analysis 

The uncertainty analysis was performed by calculating the ‘Root Mean 

Square Prediction Error’ (RMSPE) for FC and WP. The RMSPE for FC was 

calculated using Equation 5 and 𝜃; in this case is the average of all the time series 

optimizations (TSO). The F-statistic was calculated to test the significant 

difference in the RMSPE estimations after accounting for the correlation between 

the four methods. The Table 7 shows the RMSPE values for the four methods for 

the estimation of FC with their statistical difference. The RMSPE of WSS and 

PTF were significantly different from SDPO but not significantly different from 
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each other. The RMSPE for FC of the four methods is in the following order: 

WSS (169.9 mm) > PTF (124.1 mm) > TSO (7.5 mm) » SDPO (6.0 mm). 

It is important to note that the RMSPE for WSS, PTF, and SDPO gives the 

value of prediction error across all the field sites. Hence, the RMSPE can capture 

the prediction error within blocks for a given season across the different sites. 

However, the RMSPE for TSO gives the prediction error which might capture the 

intra-season error in the estimation of FC (since some field sites had multiple FCs 

through the season from the TSO method). Therefore, it is worthwhile to say that 

calculating the RMSPE for different methods captures the spatial variability 

across sites (i.e., blocks) in the estimation of FC and the RMSPE for TSO can 

capture the temporal variability in the estimation of FC. 

The RMSPE for WP was calculated using equation 5 and 𝜃; in this case is 

the average of LAB estimations for WP. Similar to the FC, the F-statistic was 

calculated to test the significant difference in the RMSPE estimations after 

accounting for the correlation between the four methods. The table 8 shows the 

RMSPE values for the four methods for the estimation of FC with their statistical 

difference. The results showed that none of the RMSPEs were significantly 

different from each other. The RMSPE for WP of the four methods is in the 

following order: WSS (41.6 mm) < PTF (82.2 mm) < TSO (94.8 mm) » SDPO 

(96.0 mm).
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4.0 Research implications 

4.1 Value of using Soil Water Depletion (SWD) instead of Volumetric Water 

Content (qv) 

Soil water depletion (SWD) or soil water deficit (SWD) is defined as the 

amount of available water that has been removed from the root zone. It is the 

difference between θFC and θv, the actual soil water content. The difference 

between θv and θWP is the amount of available water remaining. 

SWD was plotted for each of the four methods. Figure 8 shows a panel of 

graphs comparing the SWD of each method with the baseline. SWD was 

calculated by the following equation: 

𝑆𝑊𝐷 =
(𝜃fgyz{| − 𝜃})

100 ∗ 𝑅𝑜𝑜𝑡	𝑑𝑒𝑝𝑡ℎ (7) 

𝜃} is the volumetric soil water content average across the root zones. The 

baseline for FC is the average of all the TSOs and the baseline for WP is the 

average of the LAB estimates across the eight sites. FC, MAD, and WP were 

calculated in terms of SWD. FCbase was set as 0 because the baseline FC 

corresponds to 0 water depletion. WPbase was calculated by calculating the Total 

Available Water (TAW) in the root zone. 

𝑇𝐴𝑊 = (𝜃fgyz{| − 𝜃ijyz{|) ∗ 𝑅𝑜𝑜𝑡	𝑑𝑒𝑝𝑡ℎ (8) 

WPbase corresponds to 100% depletion of the total available water in the root 

zone. MADbase was calculated by assuming it to be 70% of the FCbase which 

corresponds to 30% of the TAW. The FC, WP, and MAD for different methods 

were calculated by the following equations: 

𝐹𝐶cdPQe& = (𝐹𝐶;%�d − 𝐹𝐶mdPQe&) ∗ 𝑅𝑜𝑜𝑡	𝑑𝑒𝑝𝑡ℎ (9) 
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𝑊𝑃cdPQe& = (𝐹𝐶cdPQe& −𝑊𝑃cdPQe&) ∗ 𝑅𝑜𝑜𝑡	𝑑𝑒𝑝𝑡ℎ	 (10) 

𝑀𝐴𝐷cdPQe& = (0.3 ∗ 𝑇𝐴𝑊mdPQe&) (11) 

The Figure 8 shows the SWD panel graph for Shawnee, KS for the 2023 

growing season. The four different panels show how the soil water parameters 

(FC, WP, and MAD) shift for the different methods compared to FCobs and 

WPLAB. The figure clearly shows the value of using SWD over θv lies in its direct 

relevance to plant water stress and irrigation management. SWD quantifies the 

actual reduction in available water in the root zone, which directly affects plant 

water uptake and growth. This metric provides a clearer indication of the water 

stress experienced by plants and helps in determining the timing and amount of 

irrigation needed to maintain optimal soil moisture levels for crop growth. While 

θv measures the proportion of water present in the soil relative to its total volume, 

providing a general indication of soil moisture status and is valuable for 

monitoring soil moisture levels it may not directly translate to plant water stress 

or irrigation scheduling decisions. 

By calculating SWD, we mitigate bias in the soil moisture sensor readings 

sensor might have in the measurement of θv. 

 

4.2 Implications of the uncertainty in the estimation of Observational Field 

Capacity (FCobs) 

To illustrate the magnitude of the RMSPE in terms of impact on irrigation 

scheduling and water use, the potential delay in irrigation was calculated using the 

following equation: 
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𝐷𝑒𝑙𝑎𝑦	𝑖𝑛	𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = 	
𝑅𝑀𝑆𝑃𝐸cdPQe&

𝐸𝑇%}�
	∗ 𝑤fg	eh	ij	 (12) 

where 𝐸𝑇%}� is calculated by first finding the maximum ETc for all the individual 

fields and then taking the average of the ETc across the field sites from between 

June to September which was found to be 7.7 mm per day. 𝑤fg	eh	ij is the 

weighing factor of FC or WP on MAD. For FC, the w is 0.7 and 0.3 for WP.  

The delay in the number of irrigation events or the irrigation events that 

could potentially be missed due to the error in the estimation of FC was calculated 

using the following equation: 

𝑁𝑜. 𝑜𝑓	𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑚𝑖𝑠𝑠𝑒𝑑 = 	
𝐷𝑒𝑙𝑎𝑦	𝑖𝑛	𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛

𝑇g
	 (13) 

where, 𝑇g  is the cycle time or the amount of time taken by the center pivot 

to complete one revolution and it was assumed to be 2.5 days per event.  

The WSS had the highest RMSPEWSS (169.9 mm) of 18.6% with a 

potential delay in the start of irrigation by 15 days and 6 missed irrigation events 

followed by PTF with RMSPEPTF (124.1 mm) of 13.6% with a potential delay in 

the start of irrigation by 11 days and 5 missed irrigation events. The SDPO had 

the lowest RMSPESDPO (6.0 mm) of 0.7% with an early start of irrigation by 1 day 

and no missed irrigation event. TSO had a RMSPETSO (7.5 mm) which reflects the 

temporal variability in the estimation of FC and it is around 0.8%. Since the real 

value of FCobs can be determined towards the end of the growing season, 

considering an intermediate value of FCTSO can result in an early start of irrigation 

by 1 day and no missed irrigation event. 
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 For WP, the WSS had the lowest RMSPEWSS (41.6 mm) of 4.6% with an 

early start of irrigation by 2 days and 1 extra irrigation event followed by PTF 

with RMSPEPTF (82.2 mm) of 9% with an early start of irrigation by 3 days and 1 

extra irrigation event. The SDPO had the highest RMSPESDPO (96.0 mm) of 

10.5% with a an early start of irrigation by 4 days and 1 extra irrigation event. 

TSO had a RMSPETSO (94.9 mm) with an early start of irrigation by 4 days and 1 

extra irrigation event. 
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5.0 Limitations and Future Work 

In this research, different methods of estimating FC and WP to optimize soil 

moisture parameters for irrigation scheduling were evaluated. However, several 

limitations should be considered when interpreting the results of this study. The 

calculation of Root Mean Square Prediction Error (RMSPE) provided insights into the 

uncertainty associated with each method. However, uncertainties in measurement, 

calibration, and data processing may still exist, influencing the accuracy and reliability of 

the results. The study was conducted in eight specific regions across three states in the 

Great Plains of North America. The findings may not be directly applicable to other 

geographic regions or different cropping systems, limiting the generalizability of the 

results. Soil moisture conditions exhibit temporal and spatial variability, which may not 

be fully captured by the methods evaluated in this study. Variations in data collection 

protocols, sensor calibration, laboratory data, and data processing techniques could 

introduce discrepancies or biases in the analysis.  

Future studies could focus on evaluating the impact of different soil moisture 

estimation methods on crop yield and economic outcomes. They could analyze the cost-

effectiveness of reducing uncertainty in soil moisture estimation through the adoption of 

new precision technologies. By comparing the costs associated with implementing and 

maintaining different soil moisture estimation methods, including sensor installation, 

calibration, and data processing, researchers can assess the economic feasibility of 

investing in these technologies to improve irrigation decision-making and optimize crop 

management practices. Furthermore, integrating agronomic data, such as crop yield and 

water use efficiency, with economic indicators, such as input costs and crop market 
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prices, would provide a comprehensive understanding of the trade-offs between accuracy, 

cost, and potential yield gains associated with different soil moisture estimation methods.

6.0 Conclusions 

In conclusion, this research provides insights into the estimation of soil moisture 

parameters for irrigation scheduling using various methods by evaluating the uncertainty 

of these methods across different soil conditions. Our findings highlight the importance 

of considering FCobs for the estimation of FC in irrigation decision-making. IDSS 

demonstrated promising results in minimizing RMSPE and optimizing irrigation timing. 

While WSS and PTF exhibited higher uncertainties and potential delays in irrigation 

events. 

Overall, this research contributes to advancing our understanding of soil moisture 

estimation methods and their implications for improving irrigation decision-making and 

enhancing agricultural productivity and sustainability. This study will benefit irrigation 

scheduling practices by developing a better understanding of the insights available from 

the estimation of FCobs for different soils and how to best manage the data from the soil 

moisture probes.  It will benefit the use of soil moisture probes and help direct irrigation 

specialists and their customers on the use of irrigation scheduling software. This is also 

relevant to other parts of the world where the use and calibration of soil moisture probe 

data is limited by the expertise or lack of expertise of the available irrigation specialists 

and farmers. By focusing on SWD, farmers, and irrigation managers can better 

understand the dynamics of water availability in the root zone and make more informed 

decisions regarding irrigation timing and efficiency
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List of Tables 

Table 1: Average temperature, actual crop evapotranspiration, rainfall, and irrigation data for all 
eight sites during the 2023 growing season (from emergence to maturity) 

Site Average Temperature 
(°C) 

Rainfall 
(mm) 

Crop Evapotranspiration 
“ETc” (mm) 

Irrigation 
(mm) 

 
Oliver County 
North Dakota Site 2 
 

19.3 404.9 294.6 98.0 

Dawson County 
Western Nebraska 
 

21.4 367.3 403.9 153.4 

Oliver County 
North Dakota Site 1 
 

19.3 349.0 299.7 133.4 

Shawnee County 
Kansas 
 

25.5 289.6 386.1 73.4 

Custer County 
Western Nebraska 
 

21.4 275.8 403.9 213.4 

Beadle County 
South Dakota Site 1 
 

22.4 208.8 342.9 119.4 

Beadle County 
South Dakota Site 2 
 

22.4 200.9 353.1 121.9 

York County 
Eastern Nebraska 
 

23.1 163.8 322.6 259.6 
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Table 2: Measured physical properties of soil at the eight sites. 

Sites Soil depth Sand % Silt % Clay % Organic 
Matter, % 

Bulk 
density, 
g/cm3 

 
York County 
Eastern Nebraska 

0 – 30 cm 12 50 38 3.2 1.26 
30 – 60 cm 6 40 54 2.5 1.21 
60 – 90 cm 6 40 54 1.8 1.22 

 
Dawson County 
Western Nebraska 

0 – 30 cm 14 48 38 2.6 1.30 
30 – 60 cm 18 47 35 1.6 1.38 
60 – 90 cm 25 46 29 1.2 1.45 

 
Custer County 
Western Nebraska 

0 – 30 cm 18 44 38 2.2 1.34 
30 – 60 cm 47 24 29 1.3 1.52 
60 – 90 cm 23 54 23 1.2 1.47 

 
Beadle County 
South Dakota 
Site 1 

0 – 30 cm 49 28 23 2.7 1.45 
30 – 60 cm 51 24 25 1.6 1.52 
60 – 90 cm 57 18 25 1.1 1.56 

 
Beadle County 
South Dakota 
Site 2 

0 – 30 cm 47 26 27 2.1 1.48 
30 – 60 cm 57 20 23 1.3 1.55 
60 – 90 cm 38 24 38 1.1 1.47 

 
Oliver County 
North Dakota 
Site 1 

0 – 30 cm 5 37 58 3.1 1.18 
30 – 60 cm 11 40 49 2.3 1.26 
60 – 90 cm 10 40 50 1.8 1.26 

 
Oliver County 
North Dakota 
Site 1 

0 – 30 cm 18 40 42 2.7 1.31 
30 – 60 cm 23 42 35 1.9 1.38 
60 – 90 cm 59 26 15 0.6 1.59 

 
Shawnee County 
Kansas 
 

0 – 30 cm 24 45 31 2.2 1.38 
30 – 60 cm 18 40 42 2.7 1.31 
60 – 90 cm 21 48 31 2.2 1.37 
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Table 3: Comparison of Field Capacity (in volumetric %) estimated by different methods across 
all sites. 

Sites Web Soil 
Survey (WSS) 

Pedotransfer 
Function (PTF) 

Irrigation Decision Support System 
(IDDS) 

 
Single Data Point 
Optimization 
(SDPO) 
 

Time Series 
Optimization 
(TSO) 

York County 
Eastern Nebraska 

33 42 55 55 

Dawson County 
Western Nebraska 

29 36 52 51 

Custer County 
Western Nebraska 

32 33 50 51 

Beadle County 
South Dakota 
Site 1 

29 27 40 40 

Beadle County 
South Dakota 
Site 2 

29 30 50 50 

Oliver County 
North Dakota 
Site 1 

29 43 53 51 

Oliver County 
North Dakota 
Site 2 

28 32 36 37 

Shawnee County 
Kansas 

30 37 48 48 



46 
 

 

Table 4: Comparison of Wilting Point (in volumetric %) estimated by different methods across 
all sites. 

Sites Web 
Soil 

Survey 
(WSS) 

Pedotransfer 
Function 

(PTF) 

Irrigation Decision Support 
System (IDDS) 

 

Laboratory 
Analysis 

Single Data 
Point 
Optimization 
(SDPO) 
 

Time Series 
Optimization 
(TSO) 

York County 
Eastern Nebraska 

20 29 28 28 17 

Dawson County 
Western Nebraska 

14 21 27 26 15 

Custer County 
Western Nebraska 

19 19 25 26 16 

Beadle County 
South Dakota 
Site 1 

15 16 20 20 12 

Beadle County 
South Dakota 
Site 2 

15 18 26 26 13 

Oliver County 
North Dakota 
Site 1 

20 31 26 25 14 

Oliver County 
North Dakota 
Site 2 

19 19 18 18 9 

Shawnee County 
Kansas 

15 21 24 24 14 

 



47 
 

 

Table 5: Pair-wise combinations between levels of each ‘Method’ of estimating Field Capacity 
with Tukey-Kramer adjustment to control the family-wise error rate of α and to prevent inflation 
of Type I error. 

Differences of Least Squares Means of Field Capacity (%) 

Effect Methods Methods Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 
Adj 

Lower 
Adj 

Upper 

Methods PTF SDPO -13.0607 1.4145 77 -9.23 <.0001 <.0001*** -16.7752 -9.3462 

Methods PTF TSO -12.8214 1.4145 77 -9.06 <.0001 <.0001*** -16.5359 -9.1069 

Methods PTF WSS 5.0958 1.4145 77 3.60 0.0006 0.0031** 1.3813 8.8104 

Methods SDPO TSO 0.2393 1.4145 77 0.17 0.8661 0.9983 -3.4752 3.9538 

Methods SDPO WSS 18.1565 1.4145 77 12.84 <.0001 <.0001*** 14.4420 21.8710 

Methods TSO WSS 17.9172 1.4145 77 12.67 <.0001 <.0001*** 14.2027 21.6318 

 

Table 6: Pair-wise combinations between levels of each ‘Method’ of estimating Wilting Point 
with Tukey-Kramer adjustment to control the family-wise error rate of α and to prevent inflation 
of Type I error. 

Differences of Least Squares Means of Wilting Point (%) 

Effect Methods Methods Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 
Adj 

Lower 
Adj 

Upper 

Methods LAB PTF -7.8158 1.0387 98 -7.52 <.0001 <.0001*** -10.7027 -4.9290 

Methods LAB SDPO -10.3642 1.0387 98 -9.98 <.0001 <.0001*** -13.2510 -7.4773 

Methods LAB TSO -10.2646 1.0387 98 -9.88 <.0001 <.0001*** -13.1514 -7.3777 

Methods LAB WSS -3.2242 1.0387 98 -3.10 0.0025 0.0206* -6.1110 -0.3373 

Methods PTF SDPO -2.5483 1.0387 98 -2.45 0.0159 0.1101 -5.4352 0.3385 

Methods PTF TSO -2.4488 1.0387 98 -2.36 0.0204 0.1360 -5.3356 0.4381 

Methods PTF WSS 4.5917 1.0387 98 4.42 <.0001 0.0002** 1.7048 7.4785 

Methods SDPO TSO 0.09958 1.0387 98 0.10 0.9238 1.0000 -2.7873 2.9864 

Methods SDPO WSS 7.1400 1.0387 98 6.87 <.0001 <.0001*** 4.2531 10.0269 

Methods TSO WSS 7.0404 1.0387 98 6.78 <.0001 <.0001*** 4.1536 9.9273 
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Table 7: Root Mean Square Prediction Error for the estimation of Field Capacity and the 
potential delay in irrigation and missed number of irrigation events caused by the error in 
estimation. 

Methods 
RMSPE 

(mm) 
ETavg 

(mm/day) Potential delay in irrigation (day) 
# of missed 

irrigation events 
 

WSS 169.9a 7.7 15 6 
PTF 124.1a 7.7 11 5 

SDPO 6.0b 7.7 -1 0 
TSO 7.5b 7.7 -1 0 

     

 

Table 8: Root Mean Square Prediction Error for the estimation of Wilting Point and the potential 
delay in irrigation and missed number of irrigation events caused by the error in estimation. 

Methods 
RMSPE 

(mm) 
ETavg 

(mm/day) Potential delay in irrigation (day) 
# of missed 

irrigation events 
 

WSS 
 

41.6a 
 

7.7 
 

-2 
 

-1 
PTF 82.2a 7.7 -3 -1 

SDPO 96.0a 7.7 -4 -1 
TSO 

 
94.8a 7.7 -4 -1 
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List of Figures 

 

Figure 1: Schematic diagram of in-field estimation of Observational Field Capacity (FCobs) on a 

non-experimental site. The graph shows the distinction between the volumetric water content at 

saturation (qs) and field capacity (qfc).  
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Figure 2: FC regression curve for the different methods (WSS, PTF, SDPO) vs. FCobs (TSO) with 

their confidence intervals. The shaded area shows the confidence intervals for the methods. The 

PTF has the highest confidence intervals represented by red color followed by WSS (blue color) 

and SDPO (green color). The solid black line shows the slope and SDPO is the closest to the 

slope. 
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Figure 3: WP regression curve for the different methods (WSS, PTF, SDPO, TSO) vs. WPLAB 

(LAB) with their confidence intervals. The shaded area shows the confidence intervals for the 

methods. The PTF has the highest confidence intervals represented by red color followed by 

WSS (purple color), SDPO (green color) and TSO (blue color). The solid black line shows the 

slope and WSS is the closest to the slope. 
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Figure 4: Root Zone soil moisture content for each layer. The lower panel shows the volumetric 

water content (in % of FC) for all the layers, FC, WP, MAD, rainfall (in inches) and irrigation (in 

inches) for the site at York County, NE. 
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Figure 5: Average soil moisture content, FC, WP, MAD, FC and WP for all layers, and rainfall 

and ETc for the 2023 growing season at Oliver County, ND.  
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Figure 6: Soil Moisture Graph showing the average soil moisture content for the 2023 growing 

season. It shows the average volumetric water content for all the layers, FC, WP, MAD, rainfall 

and ETc for the site at Beadle County, SD. 
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Appendix 

 

A.1 : The graphs of the studentized residual panel for FC showing that the means are normally 

distributed. 
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A.2 : The graphs of the studentized residual panel for WP showing that the means are normally 

distributed. 
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A.3 : Type III Tests of Fixed Effects table shows the results of testing the effect of ‘Methods’, ‘Root 
depth’ and their interaction on ‘Field Capacity’. 

Type 3 Tests of Fixed Effects (Field Capacity) 
 

Effect Num DF Den DF F Value Pr > F 
 

Methods 3 77 84.27 <0.0001*** 
 

Root depth 2 77 3.42 0.0378* 
 

Methods*Root depth 6 77 0.94 0.4712 
 

 

 

A.4 : Least squares means estimates of Field Capacity for various levels of each ‘Method’. 

Least Squares Means (Field Capacity) 

Methods Estimate Standard Error t Value Pr > |t| Alpha Lower Upper 

PTF 34.9333 1.7928 19.49 <.0001 0.05 31.3634 38.5033 

SDPO 47.9940 1.7928 26.77 <.0001 0.05 44.4241 51.5640 

TSO 47.7547 1.7928 26.64 <.0001 0.05 44.1848 51.3247 

WSS 29.8375 1.7928 16.64 <.0001 0.05 26.2676 33.4074 
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A.5 : Type III Tests of Fixed Effects table shows the results of testing the effect of ‘Methods’, ‘Root 
depth’ and their interaction on ‘Wilting Point’. 

Type 3 Tests of Fixed Effects (Wilting Point) 
 

Effect Num DF Den DF F Value Pr > F 
 

Methods 4 98 38.78 <.0001*** 

 
Root depth 2 98 2.42 0.0939 

 
Methods*Root depth 8 98 0.72 0.6760 

 
 

 

A.6 : Least squares means estimates of Wilting Point for various levels of each ‘Method’. 

Least Squares Means (Wilting Point) 

Methods Estimate Standard Error t Value Pr > |t| Alpha Lower Upper 

LAB 13.8258 1.1486 12.04 <.0001 0.05 11.5464 16.1053 

PTF 21.6417 1.1486 18.84 <.0001 0.05 19.3622 23.9211 

SDPO 24.1900 1.1486 21.06 <.0001 0.05 21.9106 26.4694 

TSO 24.0904 1.1486 20.97 <.0001 0.05 21.8110 26.3699 

WSS 17.0500 1.1486 14.84 <.0001 0.05 14.7706 19.3294 
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