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Aerobic Exercise Training Prevents Heart Failure-Induced
Skeletal Muscle Atrophy by Anti-Catabolic, but Not
Anabolic Actions
Rodrigo W. A. Souza1, Warlen P. Piedade1, Luana C. Soares1, Paula A. T. Souza1, Andreo F. Aguiar4,
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Abstract

Background: Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects
of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from
cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle
wasting.

Methods and Results: We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-
operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-
ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-a
serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-a, NFkB (p65), MAFbx, MuRF1,
FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented,
as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression
(IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1a levels.

Conclusions: Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was
accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through
anti-catabolic activity, presumably caused by PGC1a action. These findings indicate the therapeutic potential of aerobic ET
to block HF-induced muscle atrophy by counteracting the increased catabolic state.
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Introduction

Cardiac dysfunction precedes heart failure (HF) and is typically

characterized by enlargement of the heart and increased myocyte

cell volume [1]. Pathological hypertrophy of the myocardium

temporarily preserves its pump function, although prolongation of

this state is a leading predictor of HF [1]. HF is the main cause of

hospitalization and death worldwide. In the terminal phase of HF,

a complex metabolic syndrome called cardiac cachexia, which is

characterized by a loss of muscle and fat mass that is unresponsive

to nutritional supplementation alone and which has been

identified as a strong independent risk factor for mortality, is

often observed [2]. However, the process leading to the

progressive muscle atrophy that ultimately results in cardiac

cachexia is still not completely understood.

Skeletal muscle atrophy is related to endocrine disorders and

inflammatory conditions that can induce hypertrophy and

atrophy-related gene/protein expression. Considerable evidence

suggests that neurohormonal and immune mechanisms may play a

central role in the pathogenesis of HF by controlling the balance

between pro- and anti-growth signals in the skeletal muscle.

Several factors have been demonstrated to be responsible for

muscle wasting during HF, including reduced local insulin-like

growth factor I (IGF-I) expression [3], increased muscular tumor

necrosis factor alpha (TNF-a) [4], increased myostatin expression

[5], and overexpression of the E3-ligases Muscle RING Finger 1

(MuRF-1) and atrogin-1/Muscle Atrophy F-Box (MAFbx), which

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e110020

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0110020&domain=pdf
proyster
Typewritten Text
Ivan Vechetti, Nutrition & Health Sciences, University of Nebraska-Lincoln; ivechetti@unl.edu



activate the ubiquitin–proteasome system [6]. However, a direct

effect of humoral factors on muscle-mass regulators during HF has

not been well established.

In HF, alterations in multiple anabolic and catabolic systems

result in progressive catabolism, which leads to skeletal muscle

atrophy in advanced stages of the disease [7,8]. IGF-I/AKT/

mTOR is an essential regulator of skeletal muscle capacity for

protein synthesis and degradation [9]. In the canonical IGF-I/

AKT/mTOR pathway, AKT activation of mTOR and the

subsequent phosphorylation of p70S6K and 4E-BP1 induce

protein synthesis. In the early stages, chronic HF-related muscle

atrophy is associated with reduced expression of IGF-I [10]. In

addition to protein synthesis, the IGF-I pathway inhibits protein

degradation through the sequestration of the forkhead box O

(FoxO) family of transcription factors in the cytoplasm, where they

are transcriptionally inactive [11]. In skeletal muscle, FoxO1 and 3

activation have been observed under conditions of muscle atrophy,

such as cachexia [12] and HF [13], thereby promoting the

transcription of atrophy-related genes. However, FoxO-induced

muscle atrophy activity is also modulated by other intracellular

signaling molecules, such as peroxisome proliferator-activated

receptor-c coactivator-1a (PGC1a), a regulator of skeletal muscle

mass, particularly in conditions of muscle atrophy [14]. Significant

evidence has demonstrated that increased PGC1a expression is

sufficient to inhibit in vivo FoxO3-induced muscle fiber atrophy

and that transgenic muscle-specific PGC1a overexpression pro-

tects against denervation- and fasting-induced atrophy, an effect

associated with a reduction of the expression of MAFbx, MuRF1,

and cathepsin L [14].

Exercise training (ET) is a widely accepted and widely proposed

nonpharmacological intervention to minimize the symptoms of

HF [15]. In humans, ET has been shown to directly improve

metabolic and functional abnormalities of the peripheral muscles

without changing cardiac performance [16]. In addition, ET has

anti-inflammatory effects, with the potential to reduce local

cytokine expression (e.g., TNF-a, IL-1b, and IL-6) [4] and

increase the expression of anti-apoptotic factors (e.g., myostatin)

[17], indicating that this type of intervention could partially

reverse the catabolic state in skeletal muscle.

While the potential beneficial effects of ET on the loss of muscle

mass in HF are clear, the exact molecular mechanisms by which

ET might delay the onset of cardiac cachexia in the HF remain

unclear. Therefore, the aim of the present study was to examine

the effects of ET during the transition from cardiac dysfunction to

HF on the expression of muscle mass-related anabolic and

catabolic factors. We hypothesized that ET would increase

anabolic factor expression and decrease catabolic factor expres-

sion, thus preventing muscle wasting during the transition from

cardiac dysfunction to HF.

Materials and Methods

Animal Care and Experimental Design
All experiments and procedures were performed in accordance

with the Guide for the Care and Use of Laboratory Animals

published by the U.S. National Institute of Health and were

approved by the Animal Ethics Committee, São Paulo State

University (#198). Three- to four-week-old male Wistar rats

weighing 90–100 g were anesthetized with a mixture of ketamine

(50 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.). A total of 16 rats

was submitted to aortic stenosis (AS) surgery, which involved

placing a 0.6-mm-i.d. stainless steel clip on the ascending aorta via

a thoracic incision [1]. A total of 16 age-matched control animals

underwent left thoracotomy without clip placement (Sham group).

The rats were housed in collective polypropylene cages (2 animals

per cage) covered with metallic grids in a temperature-controlled

room (22–24uC) under a reverse light cycle (the dark cycle began

at 7:00 a.m., and the light cycle began at 7:00 p.m.). The animals

were given standard rat chow (Labina; Purina, SP, Brazil) and

water ad libitum.
At 18 weeks after surgery, when the AS animals presented a

cardiac dysfunction as measured by echocardiography, both

groups (Sham and AS) were randomly redistributed in either

sedentary untrained groups (Sham-UN, n= 8, and AS-UN, n= 8)

and groups that underwent to 10 weeks of aerobic ET protocol

(Sham-ET, n= 8, and AS-ET, n= 8). The ET protocol is

described in detail below. Our laboratory has previously demon-

strated that rats with AS start to exhibit evidence of HF

approximately 21–25 weeks after surgery [18,19]. Thus, after 28

weeks, all 4 groups underwent another echocardiogram and were

then euthanized. The experimental design is shown in Figure 1. At

the time of euthanasia, the rats were weighed and anesthetized

with intraperitoneal pentobarbital sodium (50 mg/kg). The heart

was removed via thoracotomy, and the atria and ventricles were

separated and weighed. The soleus and plantaris muscles, which

were chosen because of their contrasting structural and metabolic

characteristics (i.e., fiber type distribution and prevalent metabo-

lism), were harvested, rapidly frozen in isopentane cooled by liquid

nitrogen, and subsequently stored at 280uC. For the HF

examination, 2 observers determined the presence or absence of

clinical and pathological HF features at the time of euthanasia.

The clinical finding suggestive of HF was tachypnea and labored

respiration. The pathological assessment of cardiac decompensa-

tion included left atrial thrombi, pulmonary congestion (lung

weight/body weight ratio.2 SD above the mean for the Sham-

UN group), right ventricular hypertrophy, ascites, and hepatic

congestion [20]. In this study, rats with atrial thrombi, pulmonary

congestion, and/or right ventricular hypertrophy were considered

to have HF [21].

Lactate Threshold Determination
To determine their lactate threshold and the velocity at which

the lactate threshold occurred, the animals allocated into the

exercise training study were subjected to incremental exercise

testing on a motor treadmill adapted to experimental models [22].

The lactate threshold was defined as the running velocity that

could be maintained without a lactate increase of 1.0 mmol/L

above the blood lactate concentration obtained at the previous

speed [23]. The protocol used for the incremental load test was

adapted from that previously described by Carvalho et al. [24] and

was performed at the end of Week 1 (week of adaptation), Week 4,

and Week 7.

After a 1-week (10 min/day) adaption to the treadmill exercises,

the rats were submitted to exercise testing. The treadmill speed

started at 6 m/min and was progressively increased by 3 m/min

every 3 min at 0% grade until exhaustion, which was defined as

the point at which the rats could no longer maintain a running

speed over 3 min. After each load increase, the animal was

manually removed from the treadmill for 1 min for blood

collection. Blood samples were taken from the tail vein and was

pipetted evenly onto a test strip, which was inserted into a portable

lactate analyzer (Accutrend Lactate, Boehringer-Mannheim)

[25,26]. The equipment was calibrated with a code strip specific

to each lactate determination package.

Aerobic Exercise Training
Rats in the training groups, Sham-ET and AS-ET, performed

an aerobic ET program for 10 weeks (5 days/week). The program

Exercise Training Prevents Muscle Atrophy during Heart Failure
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was modified from those previously described by De Souza et al.

[27] and Siu et al. [28]. The duration and intensity of the training

sessions progressively increased from 5 min, 5 m/min (Sham-ET

and AS-ET, 1st week) to 10, 12, and 14 min, 9 m/min (Sham-ET)

and 6 m/min (AS-ET, 2nd to 4th week); 16, 18 and 20 min, 18 m/

min (Sham-ET) and 12 m/min (AS-ET, 5th to 7th week); 20, 22

and 22 min, 21 m/min (Sham-ET) and 15 m/min (AS-ET, 8th to

10th week). The running speed corresponded to the lactate

threshold, which was determined by the incremental exercise test

(described above) performed at the end of Weeks 1, 4, and 7 to

adjust the training velocities. The training sessions were performed

at the same time of day, between 2 and 4 p.m.

Echocardiographic Study
Echocardiographic measurements were performed before and

after aerobic ET using a commercially available echocardiograph

(General Electric Medical Systems, Vivid S6, Tirat Carmel, Israel)

equipped with a 5–11.5 MHz multifrequency transducer. Rats

were anesthetized by intramuscular injection of a mixture of

ketamine (50 mg/kg) and xylazine (0.5 mg/kg) and positioned in

supine position and ultrasound transmission gel was applied to the

precordium. A two-dimensional parasternal short-axis view of the

left ventricle (LV) was obtained at the level of the papillary

muscles. M-mode tracings were obtained from short-axis views of

the LV at or just below the tip of the mitral-valve leaflets, and at

the level of the aortic valve and left atrium. All LV structures were

manually measured by the same observer according to the leading-

edge method of the American College of Echocardiography [29].

The measurements obtained were the mean of at least five cardiac

cycles on the M-mode tracings. The following structural variables

were measured: left atrium (LA) diameter, LV diastolic and systolic

dimensions (LVDD and LVSD, respectively), LV diastolic

posterior wall thickness (PWT), LV relative thickness in diastole

(RWT; calculated as 2*PWT/LVDD), and aortic diameter (AO).

Left ventricular function was assessed by the following parameters:

heart rate (HR), endocardial fractional shortening (FS), LV

ejection fraction (EF), posterior wall shortening velocity (PWSV),

and early-to-late diastolic mitral inflow ratio (E/A ratio).

Muscles and Histochemical Procedures
Serial histological sections (12 mm thick) from soleus and

plantaris muscles were obtained in a cryostat (JUNG CM1800,

Leica Germany) at 224uC to histochemical analysis. To

determine muscle fiber-type frequency and cross sectional area

(CSA) myofibrillar adenosine triphosphatase (mATPase) histo-

chemistry was performed after preincubation at pH 4.2, 4.5 and

10.6 [30]. Muscle fibers (Type I, IIA, IID, and IIB) were identified

based on their staining intensities [31] (Figure 2). The stained

sections were used for photographic documentation of 4 histolog-

ical fields (400 random fibers; 206lens) from soleus and plantaris

muscles of each animal. Fiber type frequency and CSA (used as an

index of type-specific fiber atrophy) were analyzed using an Image

Analysis System Software (Leica QWin Plus, Germany).

Serum TNF-a and IGF-I Levels
TNF-a and IGF-I levels were analyzed by enzyme-immuno-

metric using a commercially available kits (Quantikine Rat TNF-a
Immunoassay, and Quantikine Mouse/Rat IGF-I Immunoassay,

R & D Systems, Minneapolis, MN) and the procedures were

performed according to manufacturer’s instructions. All the

samples were run in duplicate and the average values are reported.

Biochemical Assay Procedures
Soleus and plantaris muscle samples (200 mg) were homoge-

nized in 5 ml cold phosphate buffer (0.1 mmol/L, pH 7.4) using a

motor-driven Teflon glass Potter-Elvehjem (1 min, 1006g). The

whole homogenate was centrifuged at 10,0006g for 15 min, and

the supernatant was used for determination of lactate dehydroge-

nase (LDH; E.C.1.1.1.27) and citrate synthase (CS; E.C.4.1.3.7).

CS was measured in a medium containing 50 mmol/L Tris-HCl

pH 8.1, 0.3 mmol/L acetyl-CoA, 0.1 mmol/L DTNB (5,59

dithiobia-2-nitrobenzoic acid), and 0.5 mmol/L oxaloacetate,

according to Bass and colleagues [32]. The assay medium for

LDH contained 50.0 mmol/L Tris-HCl buffer pH 7.5,

0.15 mmol/L nicotinamide adenine dinucleotide reduced form

(NADH), and 1 mmol/L pyruvate, as previously described [33].

Enzyme activities were performed at 25uC using a microplate

reader (mQuant-MQX 200 with Kcjunior software to computer

system control, Bio-Tec Instruments, Winooski, Vermont, USA).

All chemicals and solvents were from Sigma (St. Louis, Missouri,

USA).

Quantitative Real-time PCR
Total RNA was extracted from soleus and plantaris muscles

using Trizol Reagent (Life Technologies, CA, USA), solubilized in

nuclease-free water and quantified (NanoVue Plus; GE Health-

Care, Little Chalfont, UK). After assessment of RNA concentra-

tion (ng/ml), purity (ensured by 260/280 nm ratio of ,2.0) and

Figure 1. Experimental design. Sham, control group; AS, animals submitted to aortic stenosis surgery; Sham-UN, control untrained group; Sham-
ET, control exercise training group; AS-UN, aortic stenosis untrained group; AS-ET, aortic stenosis exercise training group.
doi:10.1371/journal.pone.0110020.g001
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integrity (RNA integrity number .8; RNA 6000 Nano assay;

Agilent, Waldbronn, Germany), the RNA was treated with

Amplification Grade Deoxyribonuclease I (Life Technologies,

Carlsbad, CA, USA) to remove any genomic DNA contamination.

cDNA was synthesized using High Capacity cDNA Reverse

Transcription Kit (Life Technologies, Carlsbad, CA, USA)

according to the manufacturer’s protocols, and the genes involved

in atrophic system, as TNF-a (Rn00562055_m1), NFkB
(Rn01502266_m1), MAFbx (Rn00591730_m1), MuRF1

(Rn00590197_m1), FoxO1 (Rn01494868_m1) and myostatin

(Rn00569683_m1); hypertrophic system IGF-I

(Rn00710306_m1), AKT1 (Rn00583646_m1) and mTOR

(Rn00571541_m1) and anti-proteolytic PGC1a
(Rn00580241_m1) were analyzed. All genes were measured by

real-time quantitative PCR (RT-qPCR) using microfluidic Taq-

Man Low Density Array (TLDA; Life Technologies, Carlsbad,

CA, USA) cards. Five control genes were tested 18S rRNA

(Hs99999901_s1), Actb (Rn00667869_m1), Gapdh

(Rn01775763_g1), Hprt1 (Rn01527840_m1) and Tbp

(Rn01455648_m1) and Hprt1, Actb and Tbp were used as

reference genes to normalize the data as they recorded the highest

stability. A total of 100 ml reaction mixture with 50 ml of cDNA

template (200 ng mRNA) was added to 50 ml of TaqMan

Universal PCR Master Mix (Applied Biosystems, Foster City,

CA, USA) and was dispensed into loading wells on the TLDA

card. The cards were centrifuged twice at 1,200 rpm for 1 min

each time, sealed, and placed in the thermal cycler. The following

cycling conditions were used for all TLDA applications: 50uC for

2 min, 95uC for 10 min, and 40 cycles of 95uC for 15 s followed

by 60uC for 1 min and thermal cycling and fluorescence detection

was performed on Applied Biosystems ABI Prism ViiA7 Sequence

Detection System with ABI Prism ViiA7 SDS Software 2.4.

TLDAs data were analyzed using the DataAssist software 2.0 (Life

Technologies).

Western blot
Protein levels of TNF-a, NFkB (p65), MAFbx, MuRF1, FoxO1,

Phospho-FoxO1 (Ser256), myostatin, IGF-I, AKT, Phospho-AKT

(Ser473), mTOR, Phospho-mTOR (Ser2448), PGC1a and Gapdh

were quantified by Western blot assays in soleus and plantaris

muscle extracts. Muscle samples were homogenised in lysis buffer

(1% Triton X-100, 10 mM sodium pyrophosphate, 100 mM NaF,

10 mg/mL aprotinin, 1 mM phenylmethylsulfonylfluoride

(PMSF), 0.25 mM Na3VO4, 150 mM NaCl and 50 mM Tris-

HCl pH 7.5). The samples were centrifuged and 50 mL of the

homogenate fraction were resuspended in 25 mL of Laemmli

loading buffer (2% SDS, 20% glycerol, 0.04 mg/mL bromophe-

nol blue, 0.12 M Tris-HCl pH 6.8, and 0.28 M b-mercaptoeth-

anol). Fifty micrograms of total protein were separated by one-

dimensional SDS-PAGE, stained with Ponceau S red (Sigma

Chemical) to confirm equal loading of each sample. As a second

approach to verify similar loading between the lanes, gels were

loaded in duplicate, and one gel was stained with Coomassie blue.

Proteins were transferred from a gel to a nitrocellulose membrane

(Bio-Rad Laboratories, Hercules, CA, USA). Using a vacuum-

enhanced detection system (SNAP i.d., Millipore, Billerica, MA,

USA) nonspecific binding sites were blocked with a 3% bovine

serum albumin (BSA) solution in phosphate-saline buffer (PBS-T:

0.1 M NaH2PO4?H2O, 0.1 M Na2HPO4?7H2O, 0.15 M NaCl,

0.1% Tween-20, pH 7.4) for 10 minutes. Following blocking, the

membranes were incubated with specific primary antibodies

against TNF-a (Santa Cruz, California, USA; #sc-1349), NFkB
- p65 (Santa Cruz, California, USA; #sc-8008), MAFbx (Santa

Cruz, California, USA; #sc-27644), MuRF1 (Santa Cruz,

California, USA; #sc-27642), FoxO1 (Cell Signaling, Beverly,

USA; #9454), myostatin (Santa Cruz, California, USA; #sc-

6884), Phospho-FoxO1 (Cell Signaling, Beverly, USA; #9461),

IGF-I (Santa Cruz, California, USA; #sc-7144), AKT (Cell

Signaling, Beverly, USA; #9272), Phospho-AKT (Cell Signaling,

Beverly, USA; #4060), mTOR (Cell Signaling, Beverly, USA;

#2972), Phospho-mTOR (Cell Signaling, Beverly, USA; #5536),

PGC1a (Abcam, Cambridge, UK; ab-106814) and Gapdh (Cell

Signaling, Beverly, USA; #2118) in a 1% BSA solution for

10 min. After four wash steps with PBS-T, membranes were

incubated in a 1:2,000 dilution of specific secondary antibodies

(Santa Cruz Biotechnology, Santa Cruz, CA, USA) conjugated

with horseradish peroxidase for 10 min. Finally, immunoreactive

protein signals were detected using SuperSignal West Pico

Chemiluminescent Substrate Kit (Thermo Fisher Scientific, Rock-

ford, IL, USA), according to the manufacturer’s instructions. The

chemiluminescent signal was visualized and quantified by densi-

tometry using the image analyzer ImageQuant 350 (GE

Healthcare, Little Chalfont, UK). The values were normalized

by the values obtained for Gapdh protein.

Statistical Analysis
Data are expressed as mean 6 SD. Shapiro-Wilk normality test

was used to verify data normal distribution. Differences in

echocardiographic parameters before aerobic ET between Sham

and AS animals were tested with unpaired Student’s t test. The

muscle fiber type frequency data were analyzed using Kruskal-

Wallis test. One-way analysis of variance (ANOVA) followed by a
posteriori Tukey multiple comparison test was used to analyze

circulating TNF-a, CSA, CS, LDH, mRNA and protein

expression data after ET among the groups. To analyze the

involvement of exercise on cardiac parameters between before and

after aerobic ET, echocardiographic values were probed with two-

way ANOVA for repeated measures with a Bonferroni’s post test.
Linear regression was used to assess the relationship between

PGC1a - FoxO1 mRNA and protein expression in the plantaris

Figure 2. Serial cross sections of the rat hindlimb muscles. Soleus (a) and plantaris (b, c and d) muscles taken from a Sham-UN group rat
demonstrating fiber-type delineation as determined by the myofibrillar adenosine triphosphatase (mATPase) reaction after preincubation at pH 4.2
(b), 4.5 (a, c), and 10.6 (d). (I, type I; A, type IIA; D, type IID; and B, type IIB).
doi:10.1371/journal.pone.0110020.g002
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muscle. Statistical significance was considered achieved when the

value of p was ,0.05.

Results

Clinical and Anatomical Parameters
Relevant anatomical data are summarized in Table 1. At 18

weeks post-surgery and before the aerobic ET period, all the AS

rats displayed deterioration of cardiac structure and function but

did not present HF signs. In this study, an HF diagnosis was based

on the presence of tachypnea and labored respiration and

confirmed by pathological post mortem findings, such as right

ventricular hypertrophy, pulmonary congestion, left atrial throm-

bus, and ascites. At 28 weeks after surgery, six of 8 AS-UN animals

showed severe ascites, moderate tachypnea and atrial thrombi;

however, the AS-ET animals presented a reduced intensity and

frequency of these signs. Of the 8 AS-ET rats, three had mild

ascites and tachypnea and only one presented atrial thrombi.

Although the LV weight and LV/BW ratio were increased in both

of the AS groups, the ET period attenuated the presence of cardiac

thrombi and the increase in the atria, right ventricle, and lung

weights in both absolute and BW-normalized values.

Cardiac Geometry, Function and Running Performance
To evaluate cardiac function, all the animals were submitted to

an echocardiographic study before and after the aerobic ET

protocol (Table 2). Before ET, AS groups showed pathological

cardiac remodeling evidenced by increased PWT and RWT, while

cardiac dysfunction was demonstrated by a decrease in PWSV and

an elevation of the mitral E/A wave and LA/AO ratios. No

change in heart rate (HR) under anesthesia was observed,

indicating that the depth of anesthesia was similar among the

groups during the echocardiographic examination. At the end of

the experiment, the AS-UN group displayed a deterioration of

cardiac dysfunction compared with the AS group at 18-weeks as

shown by significant LV dilation at systole (LVSD) and diastole

(LVDD) and accompanied by an increased PWT and E/A wave

ratio. Furthermore, after 10 weeks of the training period, the left

ventricular PWSV, endocardial FS and EF deteriorated even

further in the AS-UN group compared with the preprotocol 18-

week AS rats.

The echocardiographic parameters remained unchanged in the

AS-ET group after aerobic ET. Moreover, in the AS-ET the ET

protocol prevented contractile dysfunction (decreased FS) and

ejection fraction (EF) and avoided increases in the LV diameter at

systole and diastole compared with the AS-UN group. In addition,

we observed improved exercise tolerance and performance, as

demonstrated by a significant increase in velocity at the lactate

threshold in the Sham-ET and AS-ET groups between the Week 1

and Week 7 tests (Figure 3).

Citrate Synthase and Lactate Dehydrogenase Activities
The activities of the enzymes citrate synthase (CS) (an indicator

of cellular aerobic metabolism) and lactate dehydrogenase (LDH)

(an indicator of anaerobic metabolism) were measured in soleus

and plantaris muscle samples obtained from all groups after

aerobic ET. HF induced a significant decrease (25%) in CS

activity in both muscles in the AS-UN group compared with the

Sham-UN group. CS maximal activity was similar within ET rats

studied (Sham-ET and AS-ET), moreover, CS activity was

preserved in AS-ET group when compared with AS-UN,

suggesting that oxidative metabolism was improved, enhancing

the muscle performance (Figure 4, A and C). LDH activity in the

plantaris muscle was significantly increased in the AS-UN group

compared with the Sham-UN group (Figure 4D), while the AS-ET

group remained unchanged. In the soleus muscle, no significant

difference was observed in LDH enzyme activity among the

groups (Figure 4B).

Muscle Fiber Type Frequency and Cross-Sectional Area
Using the histochemical reaction of myofibrillar ATPase (m-

ATPase), we observed that aerobic ET performed between cardiac

dysfunction and HF prevented in 16% the reduction in the

percentage of slow-twitch fibers (i.e., Type I) and Type I-to-Type

IIA fiber conversion in the soleus muscle of the AS-ET rats

(Figure 5A). In the plantaris muscle, ET attenuated the decrease in

Type IIA fibers to approximately 22%, and it decreased the Type

IIA-to-Type IID fiber conversion in AS-ET compared to AS-UN

group (Figure 5B). To determine if the aerobic ET subjected

Table 1. Anatomical data after exercise training.

Sham-UN (n=8) Sham-ET (n =8) AS-UN (n=8) AS-ET (n =8)

BW (g) 489629 475648 464636 440645

LV (g) 0.7760.07 0.6560.07 1.1560.15* 1.0660.13#

LV/BW (mg/g) 1.5760.18 1.3760.20 2.5360.23* 2.4560.22#

RV (g) 0.2560.05 0.2460.03 0.4660.10* 0.3560.09

RV/BW (mg/g) 0.5260.09 0.5160.04 1.0060.26* 0.8660.25

Atria (g) 0.1160.03 0.1060.01 0.4060.08* 0.2860.09#{

Atria/BW (mg/g) 0.2360.06 0.2060.02 0.8760.17* 0.6460.22#{

Incidence of cardiac thrombi 0% 0% 56% 11%

Lung (g) 1.9260.44 1.8960.20 3.2560.62* 2.5260.59{

Lung/BW (mg/g) 3.9260.93 4.0060.54 7.1661.53* 5.4961.17{

Sham and aortic stenosis rats that remained untrained (UN) or were submitted to aerobic exercise training (ET) during the 10 weeks of training protocol; AS-ET, aortic
stenosis rats that BW, body weight; LV, left ventricle; RV, right ventricle. Data are expressed as mean 6 SD, except for the percentage of animals that displayed cardiac
thrombi.
*p,0.05 vs. Sham-UN;
#p,0.05 vs. Sham-ET;
{p,0.05 vs. AS-UN.
doi:10.1371/journal.pone.0110020.t001
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between cardiac dysfunction and HF was able to prevent atrophy

of the soleus and plantaris muscles, we used the m-ATPase

reaction to measure the skeletal muscle fiber cross-sectional area

(CSA). At the end of the experiment, the AS-UN group presented

a significant reduction in the CSA of Type I and IIA fibers in the

soleus muscle (Table 3). Moreover, in this muscle, aerobic ET

attenuated the reduction of fibers CSA in AS-ET animals. On the

other hand, Type I and IIA fibers of plantaris muscle were not

affected by AS and ET stimuli. However, a significant decrease in

the CSA of plantaris Type IID and IIB fibers was observed in the

AS-UN group, indicating that ET prevented the atrophy of

plantaris Type IID and IIB fibers (Table 4).

Figure 3. Blood lactate concentration in the AS-ET and Sham-ET groups assessed on the 1st, 4th and 7th weeks by incremental load
test. Values are expressed as the mean6 SD. Significant differences (p,0.05) at the same time were in AS-ET group: a. vs. 9 m/min; b. vs. 15 m/min;
and c. vs. 18 m/min. Sham-ET: d. vs. 12 m/min; e. vs. 21 m/min; and f. vs. 24 m/min.
doi:10.1371/journal.pone.0110020.g003

Figure 4. CS and LDH activities. Soleus (A and B) and plantaris (C and D) muscles of the Sham-UN, Sham-ET, AS-UN, and AS-ET groups. Data are
presented as the mean 6 SD. *p,0.05 vs. Sham-UN; {p,0.05 vs. AS-UN.
doi:10.1371/journal.pone.0110020.g004
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Systemic Concentration of TNF-a and IGF-I
The serum concentration of TNF-a showed a significant

increase only between the non-trained HF animals (AS-UN

group) and Sham-UN group (AS-UN: 18.0463.96 pg/mL vs.

Sham-UN: 12.0761.67 pg/mL; p,0.05). However, AS-ET group

still remained not significantly lower than of the AS-UN group

(Figure 6A). On the other hand, the serum concentration of IGF-I

was significantly lower in the non-trained rats (AS-UN group) as

compared to Sham-UN (AS-UN: 918.76123.2 pg/mL vs. Sham-

UN: 1328.06143.7 pg/mL, p,0.05); the trained rats (AS-ET)

remained not significantly higher than the sedentary rats

(Figure 6B).

Skeletal Muscle Gene and Protein Expression
Proteolytic system. To investigate the effects of ET on

changes in the skeletal muscle proteolytic system in HF animals,

Figure 5. Soleus (A) and plantaris (B) muscle fiber-type frequencies. Representative photographs of mATPase reaction after preincubation at
pH 4.5 and the data of the muscle fiber-type frequencies in Sham-UN, Sham-ET, AS-UN, and AS-ET groups. (Type I; type IIA; type IID; and type IIB).
Soleus (A), type I and IIA *p,0.05 vs. Sham-UN; {p,0.05 vs. AS-UN. Plantaris (B), type IIA and IID, *p,0.05 vs. Sham-UN; {p,0.05 vs. AS-UN.
doi:10.1371/journal.pone.0110020.g005

Table 3. Cross sectional area (mm2) of the two major soleus muscle fiber types after ET.

Sham-UN (n=8) Sham-ET (n=8) AS-UN (n=8) AS-ET (n =8)

I 3564.096307.87 3582.966204.80 3056.926281.86* 3565.186376.28{

IIA 3485.776232.03 3755.206359.61 2950.676223.70* 3976.286408.96{

Data are expressed as mean 6 SD.
*p,0.05 vs. Sham-UN;
{p,0.05 vs. AS-UN.
One-way ANOVA + Tukey test.
doi:10.1371/journal.pone.0110020.t003

Exercise Training Prevents Muscle Atrophy during Heart Failure

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e110020



we measured the mRNA and protein levels of TNF-a, NFkB
(p65), MAFbx, MuRF1, FoxO1, and myostatin in the soleus and

plantaris muscles (Figure 7). Furthermore, the catabolic effect of

HF on skeletal muscle was assessed by the phosphorylation status

of FoxO1Ser256 in Sham-UN, Sham-ET, AS-UN and AS-ET rats.

In the soleus muscle, there was a significant (p,0.05) increase in

TNF-a, NFkB (p65), FoxO1, and myostatin gene (Figure 7A) and

protein (Figure 7B and C) expression in the AS-UN group

compared to the Sham-UN group (Figure 7B and C). Interest-

ingly, this upregulation in catabolic factor expression was

attenuated in the AS-ET group (Figure 7A and B) in conjunction

with an increase in the phosphorylation levels of FoxO1Ser256. In

addition, MAFbx mRNA was significantly increased, and the

increases in MAFbx and MuRF1 protein content in the AS-UN

group were significantly attenuated in the AS-ET group

(Figure 7B and C). In the plantaris muscle (Figure 7D, E, and

F), we observed a significant (p,0.05) increase in TNF-a and

FoxO1 gene and protein expression in the AS-UN group and a

decrease in the ratios of phosphorylated FoxO1 protein to total

protein expression and a significant attenuation in the AS-ET

group. Furthermore, a significant increase in myostatin gene and

protein expression was observed in the AS-UN group, and

attenuation of this increase at the protein level was observed in the

AS-ET group. In addition, MAFbx gene and protein expression

were increased in the AS-UN group compared with the Sham-UN

group, but no significant effect of ET was observed in the AS-ET

group. NFkB (p65) mRNA expression was increased in the AS-

UN group and attenuated in the AS-ET group. Moreover, AS-UN

group showed not significantly higher in MuRF1 gene and protein

expression and attenuated protein levels in the AS-ET group.

Hypertrophy Pathway. To determine if ET stimulates the

hypertrophic pathway and attenuates the atrophic effect observed

in skeletal muscles in our HF model, we measured IGF-I

expression and its downstream AKT and mTOR. Our results

indicated that there were no differences (p.0.05) in IGF-I mRNA

and protein levels in the soleus (Figure 8A and B) and plantaris

(Figure 8D and E) muscles among the groups. Similarly, no

changes in AKT and mTOR mRNA and the ratios of

phosphorylated protein to total protein expression occurred

among the groups in either muscle type (Figure 8).

Anti-Proteolytic Component. To explore additional aspects

of the prevention of skeletal muscle loss in HF via ET, PGC1a
expression was investigated. As shown in Figure 9, although no

statistically significant differences were observed in the soleus

muscle, in the plantaris muscles, we observed a decrease in PGC1a
mRNA levels in approximately 62% of the AS-UN animals

(Figure 9D); furthermore, PGC1a protein levels were approxi-

mately 55% lower in the AS-UN animals compared with the other

groups (Figure 9E and F). Interestingly, the AS-ET rats displayed

significant attenuation of the reduction in PGC1a mRNA and

protein levels, which remained at the same levels as in the Sham-

ET group. In addition, linear regression analysis of the plantaris

muscle results revealed a significant negative correlation between

FoxO1 and PGC1a mRNA expression (Pearson’s r=20.69,

p = 0.003) and FoxO1 and PGC1a protein levels (Pearson’s r=2

0.90, p,0.0001), based on an analysis of the individual data points

for the AS-UN and AS-ET groups (Figure 10).

Table 4. Cross sectional area (mm2) of plantaris muscle fiber types after ET.

Sham-UN (n=8) Sham-ET (n =8) AS-UN (n=8) AS-ET (n =8)

I 2317.286247.10 2223.106231.19 2270.526426.69 2158.096378.18

IIA 2229.726165.23 2222.166186.57 2141.536298.37 2246.696282.28

IID 2703.846272.88 2716.396184.22 2307.126276.74* 2679.916303.61{

IIB 4159.276397.15 4357.316405.12 3508.916228.85* 4273.556490.45{

Data are expressed as mean 6 SD.
*p,0.05 vs. Sham-UN;
{p,0.05 vs. AS-UN.
One-way ANOVA + Tukey test.
doi:10.1371/journal.pone.0110020.t004

Figure 6. Serum concentration. Proinflammatory cytokine TNF-a (A) and growth factor IGF-I (B) in AS-UN, AS-ET, Sham-UN, and Sham-ET groups.
Data are presented as the mean 6 SD. *p,0.05 vs. Sham-UN.
doi:10.1371/journal.pone.0110020.g006
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Figure 7. mRNA and protein levels of the skeletal muscle proteolytic system. A and D: mRNA levels in the soleus (A) and plantaris (D)
muscles; protein content in the soleus (B) and plantaris (E) muscles; representative blots of soleus (C) and plantaris (F) muscles in Sham-UN, Sham-ET,
AS-UN, and AS-ET groups. Data are expressed as the mean 6 SD; *Significant difference from the Sham-UN group, p,0.05; #p,0.05 vs. Sham-ET;
{p,0.05 vs. AS-UN group.
doi:10.1371/journal.pone.0110020.g007

Figure 8. mRNA and protein levels of skeletal muscle hypertrophy components. A and D: mRNA levels in the soleus (A) and plantaris (D)
muscles; protein content in the soleus (B) and plantaris (E) muscles; representative blots of soleus (C) and plantaris (F) muscles from Sham-UN, Sham-
ET, AS-UN, and AS-ET groups. Data are expressed as the mean6 SD; *Significant difference from the Sham-UN group, p,0.05;#p,0.05 vs. Sham-ET;
{p,0.05 from the AS-UN group.
doi:10.1371/journal.pone.0110020.g008
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Discussion

Metabolic abnormalities resulting in a progressive catabolic

state have been observed in various chronic diseases [34,35]. Since

skeletal muscle dysfunction and loss of lean muscle mass have been

described in HF [36,37], a number of studies have focused on

identifying therapies that could improve clinical outcomes. Studies

of HF have reported that ET is an effective non-pharmacological

therapy for improving exercise capacity and quality of life and

confers survival benefits [38]. Moreover, recent reports have

demonstrated that ET has beneficial effects against HF-induced

skeletal myopathy [39,40]. However, the molecular mechanisms

by which ET attenuates or reverses skeletal muscle myopathy,

which would become attractive targets for heart failure therapy,

remain elusive.

In the present study, we used the ascending aortic stenosis (AS)

model to promote a gradual development of left ventricular

hypertrophy and posterior HF in rats [1]. In this model, animals

develop cardiac remodeling that is associated, in the short term,

with diastolic dysfunction and improved systolic function, followed

by depressed systolic performance and HF. After 18 weeks of

supra-aortic stenosis and before the training intervention, cardiac

Figure 9. mRNA and protein levels of the skeletal muscle proteolysis inhibitor PGC1a. A and D: mRNA levels in the soleus (A) and plantaris
(D) muscles; protein content in the soleus (B) and plantaris (E) muscles; representative blots of soleus (C) and plantaris (F) muscles in Sham-UN, Sham-
ET, AS-UN, and AS-ET groups. Data are presented as the mean 6 SD; *Significant difference from the Sham-UN group, p,0.05; {p,0.05 from the AS-
UN group.
doi:10.1371/journal.pone.0110020.g009

Figure 10. Relationship between PGC1a - FoxO1 mRNA and protein expression in the plantaris muscle. There were significant negative
correlations between the PGC1a and FoxO mRNA/protein levels. For all correlations, individual data points from the AS-UN and AS-ET groups (n = 8
rats per group) were used.
doi:10.1371/journal.pone.0110020.g010
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remodeling was noted on an echocardiographic assessment,

although the animals did not show signs of HF. After 10 weeks

of aerobic ET, the AS-ET animals presented an improved in

structure and function in the systole and diastole compared with

AS-UN. In addition, ET prevented the deterioration of cardiac

structure and function in AS animals, when we compared the AS-

ET group and the 18-week AS rats. Our data support previous

findings that ET had a beneficial effect on the left ventricular

function of individuals with HF [41,42] and indicates that ET can

be an important clinical intervention for improving cardiac

structure and function during the transition from cardiac

dysfunction to HF.

Animal [10] and human [39] studies have demonstrated skeletal

muscle abnormalities in HF, including changes in morphology,

function, and depressed skeletal muscle aerobic capacity. In our

model of HF, we also observed changes in oxidative and glycolytic

skeletal muscle metabolic enzymes. The reduction of CS enzyme

activity in both the soleus and plantaris muscles in the AS-UN

group, suggests a decrease in aerobic metabolism. After 10 weeks

of aerobic ET, a significant attenuation in the decreasing CS

activity in AS-ET rats was evident. Although, our aerobic ET

protocol did not change this enzyme in the Sham-ET group,

probably due to the low training intensity used, CS was clearly

detected in the AS-ET animals. This prevention in the reduction

of CS activity in the AS-ET group may participate in de novo

ATP synthesis during ET in HF rats; therefore, the higher citrate

synthase activity in AS-ET rats than in AS-UN rats suggests

aerobic metabolism improvements. Furthermore, we observed an

increase in LDH enzyme in the AS-UN group, indicating higher

anaerobic metabolic activity in the skeletal muscle, which was

attenuated by ET. The changes in LDH activity were more

evident in the plantaris muscles of the AS-UN group, most likely

because this muscle has a higher frequency of Type II fibers

(glycolytic) than the soleus muscle. The increased percentage of

Type I fibers (oxidative metabolism) in the soleus and Type IIA

fibers (more oxidative compared with the IID and IIB fiber types)

in the plantaris muscle in the AS-ET group was further evidence

that ET attenuated the decrease in aerobic metabolism in these

muscles, because studies have shown that ET promotes a fiber type

transition and a myosin heavy chain content shift from a fast-to-

slow twitch [43,44]. Our findings regarding the fiber-type

transition during HF corroborate a report by Moreira et al. [45]

that moderate aerobic training increased the number of slow-

twitch fibers in the soleus and plantaris muscles. Thus, our data

strongly suggest that aerobic ET prevented the modulation of the

fiber type toward the more glycolytic metabolic pattern.

There is a striking association between skeletal muscle atrophy

and chronic HF [46]. Decreased muscle fiber CSA is a major

aggravator in HF syndrome and has been observed in experi-

mental HF studies [8,47,48]. However, the atrophy is dependent

on the model used and the type of muscle examined. Oxidative

muscles (e.g., the soleus) are more susceptible to damage caused by

inactivity or unloading, whereas glycolytic muscles (e.g., the

plantaris) tend to be more affected in diseased conditions [49,50].

Therefore, we decided to evaluate both the soleus and plantaris

muscles because of their contrasting metabolic properties. Soleus

atrophy in the AS-UN rats was correlated with a reduced CSA of

Type I and Type IIA muscle fibers. These findings are consistent

with a previous study by Moreira et al. [45], who also observed a

decrease in both fiber types (I and IIA) in the soleus muscle.

Moreover, in the plantaris muscle Moreira et al. [45] observed

atrophy only in the glycolytic-type fibers, similarly to our results,

which the plantaris muscle presented only IID and IIB glycolytic

fiber-type atrophy in the AS-UN rats. This result suggests that only

the glycolytic fiber types were more damaged under HF conditions

and might exhibit a greater loss of blood perfusion, and increased

damage from reactive oxygen species and local inflammation,

compared with oxidative fiber types [34,39,51].

Abnormalities in HF affect various endocrine systems leading to

an imbalance of catabolic and anabolic function. Skeletal muscle

atrophy during HF may be induced by the activation of local and

systemic markers of inflammation, most notably inflammatory

cytokine tumor necrosis factor (TNF-a), a proinflammatory

secreted cytokine that was originally called ‘‘cachectin’’ [52]. In

this study, similar to others [53,54], a significant increase in TNF-

a level were observed in the serum and in the tissue in our AS-UN

animals, while in the AS-ET animals, exercise attenuated the

expression of this cytokine. An anti-inflammatory effect of physical

exercise was recently proposed [55]; this effect may be mediated

not only by a reduction in visceral fat mass, with a subsequent

decrease in the production and release of proinflammatory

cytokines such as IL-6 and TNF-a, but also by the induction of

an anti-inflammatory environment with each bout of exercise [55].

Thus, our ET program in AS rats may have increased anti-

inflammatory cytokines in skeletal muscle, indicating a potential

mechanism for the anti-inflammatory effects of aerobic exercise in

cardiovascular disease.

Since TNF-a exhibit catabolic effects in various tissues [56], the

increased muscular expression of proinflammatory cytokine might

further contribute to the local catabolic state with progressive

atrophic alterations of the skeletal muscle in HF. The effects of

TNF-a on HF-related muscle myopathy are mediated through the

activation of a family of transcription factors known as nuclear

factor kappa B (NFkB), which regulate ubiquitin-dependent

proteosomal system activity (PDU) [57]. NFkB (p50/p65) activa-

tion leads to increased expression of the atrogenes MuRF1 and

MAFbx [57], which results in sarcomeric protein proteolysis,

promoting muscle atrophy. In our study, although there were

slight variations in the gene and/or protein expression levels of

NFkB, MuRF1, and MAFbx, the increased levels of these

catabolic components in the AS-UN group may be at least

partially responsible for the atrophy of the plantaris and soleus

muscles. Indeed, we previously demonstrated marked muscle

atrophy and a reciprocal increase in the components of the

ubiquitin-proteasome system (e.g., MuRF1 and MAFbx) in rats in

which HF was induced by monocrotaline [58]. These results

indicate the possible involvement of these atrogenes in the HF-

induced muscle atrophy process. Although several studies have

investigated the muscle atrophy that occurs during HF [40,45,58],

the effects of ET on the atrogene components have not been

completely defined. The present finding that aerobic ET

performed during the transition from cardiac dysfunction to HF

prevents the overactivation of some proteasomal components is

similar to that of Gielen et al. [59] that observed a attenuation of

MuRF1 by exercise training and Campos et al. [6], who also

observed a reduction of ubiquitin-proteasome system activation in

response to ET. Campos et al. [6] also indicated that the possible

attenuation of the ubiquitin-proteasome system by ET may be due

to improvements in the redox balance driven by the increase in

antioxidant enzymes and reduced levels of inflammatory cyto-

kines, corroborating our finding of a decrease in TNF-a levels

[4,6,54].

The transforming growth factor-b-related protein myostatin, a

key regulator of muscle growth, has been considered an important

mediator of cardiac-induced skeletal muscle wasting and cachexia

in animal studies [5,60]. However, the effects of ET on myostatin

expression in skeletal muscle remain inconclusive. Studies using

swimming endurance training have shown a reduction in the
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myostatin mRNA content in skeletal muscle [61,62]. Lenk et al.

[17] observed an increase in myostatin levels in the myocardium

and the gastrocnemius muscle in a rat model of ischemic

cardiomyopathy, and ET on a treadmill led to a significant

reduction in myostatin protein expression in the skeletal muscle

and myocardium of HF animals. Our results support these

findings; we observed a significant increase in myostatin expression

in the soleus and plantaris muscles in the AS-UN group and

aerobic ET prevented the increase in myostatin expression in the

AS-ET group in both muscles evaluated. Similar to Lenk et al.

[17], we also demonstrated that aerobic ET decreased the

expression of TNF-a. The significant reduction in myostatin levels

in the soleus and plantaris muscles after ET could be linked to the

reduction in the levels of the TNF-a; however, further experiments

investigating TNF-a levels and myostatin should be performed to

confirm the findings of the present study.

In chronic HF, alterations in multiple anabolic and catabolic

systems result in progressive catabolism, which leads to cardiac

cachexia in advanced stages of the disease [3]. As a key regulator

of normal muscle growth and hypertrophy, the role of the IGF-I/

AKT/mTOR signaling pathway has recently received increased

attention as a potential means of suppressing protein breakdown

while promoting muscle growth [9]. In patients with chronic HF

[7,37] and in animal models of chronic left-ventricular dysfunction

[10,63], reduced skeletal muscle expression of IGF-I is associated

with muscle atrophy. In addition, in advanced stages of HF have

been described low serum levels of IGF-I due to a growth

hormone resistance and a loss of lean muscle mass [3]. In the

present study, we observed low serum levels of IGF-I in AS-UN

rats compared to Sham-UN, without difference in AS-ET vs.

Sham-ET animals. In contrast, the tissue concentration of IGF-I

was similar among the groups, indicating that AS-induced HF did

not downregulate the IGF-I/AKT/mTOR pathway locally, and

suggesting that the although aerobic ET counteracted muscle

catabolism, aerobic ET did not enhance the muscle anabolic state.

Although disease progression from mild-moderate to severe HF is

likely multifactorial and is poorly understood, the available data

suggest that GH/IGF-I may be implicated in this pathology. A

possible explanation for these findings was suggested by Arcopinto

et al. [64], who stated that during the gradual development of HF

the IGF-I values are normal or slightly elevated in the beginning;

in the intermediate stage, IGF-I levels tend to decrease or remain

unaltered; and in advanced stages, IGF-I reduces and a markedly

increase in GH circulating levels occur. Furthermore, the changes

in skeletal muscle hypertrophy and atrophy turnover do not always

proceed according to the balance between protein breakdown and

protein synthesis [65]. Analyses of rat muscle growth by Li et al.

[66] demonstrated that starvation causes decreased protein

synthesis and increased protein degradation in both fast and slow

rat muscles. However, in a model of muscle denervation, the

authors observed an increase in protein degradation and an

increase rather than decrease in protein synthesis [67]. Taken

together, it is possible that in our experiment, the stage of HF

greatly influenced the catabolic components without any change in

the anabolic pathway and that the prevention of skeletal muscle

atrophy by ET occurred independent of protein synthesis.

The members of the forkhead box O (FoxO) family are

transcription factors responsible for the cross-talk between protein

degradation and protein synthesis [9]. Similar to Reed et al. [68],

who demonstrated that FoxO transcriptional activity is increased

in skeletal muscles under 2 cachectic conditions, we also observed

that HF-induced muscle atrophy is associated with an increase in

the expression of FoxO in both muscles studied. By contrast,

aerobic ET attenuated this change in FoxO expression; specif-

ically, the effects of aerobic ET in phosphorylate FoxO1,

contributing, at least in part, to the prevention of skeletal muscle

atrophy. Here, we extend our findings to the preventive effect of

aerobic ET on FoxO inhibition. FoxO activity is modulated by

other intracellular signaling molecules, such as peroxisome

proliferator-activated receptor gamma coactivator 1 alpha

(PGC1a), a cofactor involved in mitochondrial biogenesis, fiber-

type switching, and angiogenesis [69,70]. Low levels of PGC1a
have been reported to contribute to muscle wasting during chronic

HF [71]. We observed a decrease in the PGC1a levels only in the

plantaris muscle, although HF-induced atrophy was observed in

the soleus and plantaris muscles of the AS-UN animals.

Considering that glycolytic muscles are more vulnerable to

catabolic muscle wasting than are oxidative muscles [51,72] this

result demonstrates the distinct responses to HF stimuli in the

soleus and plantaris muscles, which in this case might be explained

by 2 main factors. The first is a decrease in blood supply, which

was likely more pronounced in the plantaris muscle than in the

soleus muscle. This difference could occur because the plantaris

muscle contains glycolytic fiber types, which receive less blood

and, consequently, reduced antioxidant defense [71]. The second

factor could be related to fiber-type modulation. The decrease in

the percentage of type IIA and increase in the IID fibers in the

plantaris muscle of AS-UN animals in our study, in association

with a decrease in the PGC1a content, supports previous findings

of Russell et al. [73], who showed that PGC-1 protein levels were

higher in the type IIA fibers, lower in the type I fibers, and lowest

in the type IID/X fibers in human skeletal muscle, thereby

suggesting the idea that the increase in the IID fiber types in

plantaris muscle in our experiment possibly induced the reduction

in the PGC1a content of AS-UN animals. By contrast, the absence

of changes in PGC1a levels in the soleus muscle could be related

to the Type I-to-IIA fiber conversion, which occurred within fiber

population in which PGC1a levels is already high [71,73]. In

addition, although our ET did not altered PGC1a levels in Sham-

ET group, moderate and intense aerobic ET is known to promote

an oxidative phenotype, stimulates PGC1a expression in skeletal

muscle [74], and by PGC1a overexpression prevents muscle

atrophy through the inhibition of the transcriptional activity of the

FoxO3, NFkB, and myostatin signaling pathways [9,75]. In the

current study, we observed that aerobic ET during the transition

from cardiac dysfunction to HF prevented the reduction in

PGC1a expression levels in the plantaris muscle. Of particular

interest, the expression levels of PGC1a and FoxO1 in this muscle

were negatively correlated (mRNA, r=20.69, p = 0.003; protein,

r=20.90, p,0.0001). Although these results do not demonstrate

a causal relationship between the anti-proteolytic component

PGC1a and the atrophic factor FoxO1 in AS-induced HF, they

confirm previous reports demonstrating a strong negative corre-

lation between these proteins and provide insights into the

functional role of PGC1a in the skeletal muscle in protection

against catabolic muscle wasting [14,71,75].

Although much has already been achieved, there is a great deal

more that we need to learn about ET applied during HF. Aerobic

exercise training is now an integral part of the recommended

treatment for stable New York Heart Association (NYHA) class I–

III HF patients [76]. Nevertheless, the understanding of the

molecular differences between beneficial vs. ‘maladaptive’ eccen-

tric cardiac growth will instruct potential future therapy. Also, the

precise definition of the molecular and cellular mechanisms

mediating the beneficial effects of ET during HF should be

elucidated to devise optimal treatment strategies that could in

theory beneficially impact cardiovascular diseases and HF.
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Limitations

Although the ascending AS is one of the more widely used

surgical methods to induce pressure overload in rats [22,47,77,78]

a limitation of this model is the evaluation of the grade of AS that

could be done by the analyze of the aorta flow velocity. As this

measurement is not reproducible technically in supravalvar AS in

rats, this issue can be partially solved by using the left ventricular

systolic pressure data [79] or by echocardiography parameters

[18], as we used in the present study.

The beneficial effects of aerobic ET protocol attenuating the

progression of the disease were evidenced in cardiac structure and

function parameters. However, we cannot conclude whether the

aerobic ET affected the skeletal muscles directly, or indirectly

preventing the deterioration from cardiac dysfunction to HF. In

addition, although we measured the degree of exercise tolerance

and performance, we did not make a direct assessment of skeletal

muscle force.

Finally, we used NFkB (p65) from nuclear and cytosolic fraction

for assessment of ubiquitin proteosomal system activity (PDU).

This protein does not allow us to verify the correct activity of the

NFkB, but taken together with others downstream protein

expression, this assay provides an important indicator of the

PDU involvement in skeletal muscle during the transition from

cardiac dysfunction to HF.

Conclusions

Collectively, our data provide evidence that aerobic ET

performed during the transition from cardiac dysfunction to HF

has beneficial effects on cardiac structure and function. Our results

also show that muscle atrophy observed in HF due to an increase

in catabolic pathways, was prevented by aerobic ET not via an

increase in anabolic factors but by counteracting the catabolic

activity, presumably by PGC1a expression.
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4. Gielen S, Adams V, Möbius-Winkler S, Linke A, Erbs S, et al. (2003) Anti-

inflammatory effects of exercise training in the skeletal muscle of patients with
chronic heart failure. J Am Coll Cardiol 42: 861–868.

5. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, et al. (2010) Genetic

deletion of myostatin from the heart prevents skeletal muscle atrophy in heart
failure. Circulation 121: 419–425.

6. Cunha TF, Bacurau AVN, Moreira JBN, Paixão NA, Campos JC, et al. (2012)

Exercise training prevents oxidative stress and ubiquitin-proteasome system
overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One 7:

e41701.

7. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating
levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:

236–241.

8. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, et al. (1997) Wasting as
independent risk factor for mortality in chronic heart failure. Lancet 349: 1050–

1053.

9. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle
atrophy. Dis Model Mech 6: 25–39.

10. Schulze PC, Gielen S, Adams V, Linke A, Möbius-Winkler S, et al. (2003)
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