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• The  i-Tree  wildlife  tool  assesses  the  bird  habitat  potential  within  the urban  forest.
• The  i-Tree  wildlife  tool  evaluates  habitat  improvement  plans.
• The  i-Tree  wildlife  tool  provides  detailed  information  of  habitat  requirements.
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a  b  s  t  r  a  c  t

The  alteration  of forest  cover  and  the  replacement  of native  vegetation  with  buildings,  roads,  exotic
vegetation,  and  other  urban  features  pose one  of  the  greatest  threats  to  global  biodiversity.  As more
land  becomes  slated  for urban  development,  identifying  effective  urban  forest  wildlife  management
tools  becomes  paramount  to ensure  the  urban  forest  provides  habitat  to sustain  bird  and  other  wildlife
populations.  The  primary  goal of  this  study  was  to  integrate  wildlife  suitability  indices  to an existing
national  urban  forest  assessment  tool,  i-Tree.  We  quantified  available  habitat  characteristics  of  urban
forests  for  ten  northeastern  U.S.  cities, and  summarized  bird  habitat  relationships  from  the literature  in
terms  of variables  that  were  represented  in  the  i-Tree  datasets.  With  these  data,  we  generated  habitat
suitability  equations  for nine bird  species  representing  a range  of  life  history  traits  and  conservation  status
that predicts  the  habitat  suitability  based  on  i-Tree  data.  We  applied  these  equations  to the urban  forest
datasets  to  calculate  the  overall  habitat  suitability  for  each  city  and  the  habitat  suitability  for  different
types  of  land-use  (e.g.,  residential,  commercial,  parkland)  for  each  bird  species.  The  proposed  habitat
models  will  help  guide  wildlife  managers,  urban  planners,  and  landscape  designers  who  require  specific
information  such  as desirable  habitat  conditions  within  an  urban  management  project  to  help improve
the  suitability  of  urban  forests  for birds.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The modification and destruction of wildlife habitat within
urban areas via the replacement of forest cover and native
vegetation with lawns, buildings, roads, and other impervious sur-
faces poses one of the greatest threats to bird populations on a
global scale (Czech, Krausman, & Devers, 2000). Replacing native
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vegetation with ornamentals is one of the forms that habitat
alterations take in the urban environment, and these esthetically
pleasing landscapes are often at odds with ecological function
(Lerman, Turner, & Bang, 2012). Thus, wildlife management tools
aimed at assessing and improving urban habitat have an important
role to play in reversing the loss of urban biodiversity.

Urban and community areas in the conterminous United States
on average have 35% tree cover (Nowak & Greenfield, 2012), though
the resulting urban landscape is a mix  of contiguous (e.g., forest
stands in parks or vacant areas) and fragmented (e.g., isolated trees
along streets and in private yards) cover. Over the next 50 years, it
is estimated that 118,300 km2 of forested lands in the US will be
consumed by urbanization (Nowak & Walton, 2005). Nonetheless,
the urban forest provides essential ecosystem services that sus-
tain environmental quality and human health (Nowak & Walton,
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2005). In particular, trees and other urban vegetation help miti-
gate the urban heat island effect through evapotranspiration and
by providing shade, and they reduce air pollution through carbon
sequestration (Akbari, Pomerantz, & Taha, 2001). Furthermore, the
urban forest provides wildlife habitat resources including food, and
nest and roosting sites for birds, mammals, and insects. And finally,
the urban forest provides opportunities for urbanites to connect
with the natural world (Miller, 2005). Currently we lack meth-
ods for a rapid assessment of the habitat potential of the urban
forest (Shanahan, Possingham, & Martin, 2011). Therefore design-
ing effective urban habitat assessment tools that can assist with
the reconciliation between urban development and wildlife habi-
tat becomes paramount to ensure that conservation efforts and
plans for enhancing and protecting the urban forest will lead to
sustainable bird and other desirable wildlife populations.

Few North American federal and Non-governmental Organiza-
tion (NGO) programs have targeted improvement plans in urban
habitats. The North American Landbird Conservation Plan (NALCP;
Rich et al., 2004) aims to create and conserve landscapes that
sustain bird populations. The NALCP calls for a thorough exami-
nation into how birds respond to and tolerate different land uses,
including suburban areas, and recognizes the imminent threat
of urbanization to most of the primary bird habitats in North
America. Other than encouraging bird-friendly urban planning,
the NALCP primarily characterizes urban areas as a threat to bird
populations on a national scale without acknowledging the many
opportunities for promoting conservation initiatives in urban and
suburban landscapes (Goddard, Dougill, & Benton, 2010). The U.S.
Fish and Wildlife Service’s Urban Bird Treaty program (U.S. Fish
and Wildlife Service, 2012) provides competitive challenge grants
to individual cities for promoting education, hazard reduction, and
habitat improvement projects aimed at supporting native urban
bird populations. The National Wildlife Federation and the National
Audubon Society have programs aimed at creating and certify-
ing wildlife habitats in residential gardens and schoolyards with
their respective Certified Wildlife Habitat and Healthy Yards pro-
grams. Although effective and innovative at the site level, these
programs do not include management or monitoring programs
for urban bird populations at regional scales. Recently Partners in
Flight (PIF; an international cooperative effort that partners fed-
eral, state and local government agencies, NGOs, academia, and
private landowners to conserve species at risk) recognized the
extent of urban areas and the negative impact of urbanization on
bird populations (Berlanga et al., 2010), though currently, PIF does
not focus efforts toward conserving or enhancing urban habitats
(Watts, 1999).

Scientists have studied urban bird populations since the 1970s
(e.g., Emlen, 1974), however, our understanding of urban habitat
and bird relationships trails behind that of habitat relationships
in wildlands, thus hindering effective regional conservation plans
aimed at improving bird habitat within the urban forest. Studying
bird habitat relationships date back to the early 1900s (e.g., Adams,
1935; Grinnell, 1917; Lack, 1933). This research and other semi-
nal works provided the foundation for understanding the habitat
requirements for sustaining bird populations and have guided con-
servation planning, such as the NALCP (Fitzgerald et al., 2009). To
date, the majority of urban bird studies conduct a bird monitoring
protocol to document distribution patterns, measure habitat fea-
tures at local and landscape scales, and design statistical models
to identify the habitat features that relate to and influence pat-
terns of bird abundance (Chace & Walsh, 2006). In addition, many
urban bird studies correlate bird distribution with habitat features
measured along an urban to rural gradient, within different land-
use categories, or between urban and wildland sites (Beissinger
& Osborne, 1982; Blair, 1996; Clergeau, Savard, Mennechez, &
Falardeau, 1998; Croci, Butet, & Clergeau, 2008; Crooks, Suarez, &

Bolger, 2004; DeGraaf & Wentworth, 1986; Emlen, 1974; Gering &
Blair, 1999; Lerman & Warren, 2011; Melles, 2005). Additional vari-
ables identified as important in influencing urban bird populations
include household density, human activities, and socio-economics
(Fernandez-Juricic, 2000; Kinzig, Warren, Martin, Hope, & Katti,
2005; Lerman & Warren, 2011; Strohbach, Haase, & Kabisch,
2009).

Although these and other studies provide a solid foundation for
understanding how birds respond to conditions within a particular
city, they lack a means for non-specialists to apply these findings
to conservation planning and management. In an effort to provide
such tools, Tirpak and colleagues and Jones-Farrand and colleagues
modeled how patch and landscape habitat features influence suit-
ability for birds at an ecoregional scale (Tirpak, Jones-Farrand,
Thompson, Twedt, & Uihlein, 2009; Jones-Farrand et al., 2011).
Using the USDA Forest Service national forest census program For-
est Inventory and Analysis (FIA) datasets, they described the forest
structure and composition in the central and south-central U.S. and
constructed Habitat Suitability Index (HSI) models that quantita-
tively relate forest characteristics to the abundance of forty bird
species of conservation concern. They validated the models with
Breeding Bird Survey data by testing whether the predicted suit-
ability of landscapes based on the FIA and other data accorded with
presence and relative abundance of a particular species (Tirpak,
Jones-Farrand, Thompson, Twedt, Baxter, et al., 2009). These mod-
els have tremendous management potential in that they can assess
the suitability at an ecoregional scale by leveraging existing for-
est and bird monitoring programs. Further, they assess habitat in
terms of manageable characteristics such that they can be used to
guide management prescriptions and predict the response of birds
to various management scenarios.

Here we  introduce the approach of integrating two existing
bird habitat models (e.g., Tirpak, Jones-Farrand, Thompson, Twedt,
Baxter, et al., 2009) and developing seven new models using the
same model building procedure, and integrate these models into
an urban forest assessment tool to evaluate the potential of the
urban forest for supporting breeding bird populations, while also
providing a platform for generating habitat improvement plans.
This study aims to describe and validate the habitat models, and to
demonstrate their applicability for improving urban bird diversity.
Specifically we (1) identified the vegetation composition, config-
uration, and landscape features associated with the presence of a
suite of representative bird species based on an extensive litera-
ture review, (2) quantified the characteristics of urban forests in
ten northeastern cities using datasets from the i-Tree urban forest
assessment program (Nowak et al., 2008), (3) modeled the habitat
suitability for the representative bird species in urban forest moni-
toring plots, validated the models, and compared habitat suitability
among ten cities and different land uses, and (4) tested whether
habitat suitability changed over time for two  cities for which we
had habitat data for two points in time.

2. Methods

2.1. Study area

This study assesses the habitat potential for ten northeastern
U.S. cities (Baltimore, MD,  Boston, MA,  Jersey City, NJ, Moorestown,
NJ, New York, NY, Philadelphia, PA, Scranton, PA, Syracuse, NY,
Washington D.C., and Woodbridge, NJ). These cities were selected
because they had available urban forest data from i-Tree, and had
a wide range of population sizes (19,000 – 8.4 million). Cities
ranged from small municipalities such as Moorestown, NJ to large
metropolitan areas such as Boston and Philadelphia, and thus were
representative of urban areas in the region.
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Table 1
Bird species list with associated life history traits, conservation status, and eBird frequencies (mean, minimum and maximum) included in the i-Tree wildlife habitat models.
Forage  and nest guilds include primary foraging and nesting locations. A conservation status of PIF indicates a Partners In Flight species of conservation concern.

Species Summer frequency (ranges) Forage guild Nest guild Conservation

American Robin 0.64 (0.50–0.79) Lower canopy/ground Tree branch Flagship
Baltimore Oriole 0.25 (0.16–0.39) Lower/upper canopy Tree twig PIF
Black-capped Chickadee 0.24 (0.03–0.56) Lower canopy Tree cavity Flagship
Carolina Chickadee 0.28 (0.22–0.37) Lower canopy Tree cavity PIF
European Starling 0.53 (0.38–0.70) Ground Buildings/cavities Invasive
Northern Cardinal 0.49 (0.29–0.65) Ground Shrubs Flagship
Red-bellied Woodpecker 0.19 (0.03–0.33) Bark Tree cavity Flagship
Scarlet Tanager 0.08 (0.01–0.16) Upper canopy Tree twig PIF
Wood Thrush 0.14 (0.03–0.25) Ground Tree branch PIF

2.2. Bird species selection

In order to identify candidate bird species for this study, we
first generated bird lists and average frequencies for all species
recorded during the breeding season (mid-May through June in
the northeast region) from 1990 to 2000, in the ten cities (i.e.,
their associated counties) using the Cornell Lab of Ornithology
eBird database (eBird, 2012). The eBird database includes lists of
birds seen during outings by amateur participants, and vetted by
experts, and then uploaded with locality data, to an accessible inter-
active web-platform. Frequencies represented the percentage of
submitted eBird checklists that record a particular species. We then
identified the species recorded in all ten cities and calculated the
mean, minimum and maximum frequency for each species. A total
of 204 species were recorded in all ten cities, though only 57 species
had frequencies >0.05. Species with few records (i.e., frequencies)
are often not accurately placed in ecological space and hence we
did not include species with frequencies <0.05 (McCune & Grace,
2002). Furthermore, the majority of species with low frequencies
were forest interior species, species prone to local extinction within
small and isolated forest fragments (Sherry & Holmes, 1985), and
unlikely to penetrate the urban forest (Blair, 1996).

The urban forest could be important for birds in a number of
ways. For instance, some forest interior species might penetrate the
urban matrix when large tracts of forest exist. These rare species
might be of particular concern because their populations might
be vulnerable (Miller & Hobbs, 2002), and therefore we  included
species with differing levels of reporting frequencies (>0.05 fre-
quency). The characteristic strata or substrate a bird uses for
foraging or nesting could indicate the presence of resources needed
by other species (Simberloff & Dayan, 1991), so we included species
from a diversity of foraging and nesting guilds. Finally, species
differed in their conservation significance. We  included species rec-
ognized as high conservation priority, invasive or important for
cultural reasons. Four of the selected species had a Partners in Flight
(PIF) designation which ranks a species’ conservation vulnerabil-
ity based on “global measures, threats to breeding populations,
area importance, and population trend for specific physiographic
areas”, and conservation initiatives and plans are directed toward
species with high PIF scores (Rich et al., 2004). Invasive species
included exotic birds that exploit the urban landscape (Blair, 1996).
Urban flagship species were birds that urbanites recognize and
embrace, following Caro and O’Doherty (1999). We  ensured the
species selected represented different foraging and nesting guilds
with a focus on guilds reliant on forests (DeGraaf, Tilghman, &
Anderson, 1985). Our final list included nine bird species with vary-
ing abundances, life history traits, and conservation status (Table 1).

2.3. i-Tree data

We  used data from the above-mentioned 10 northeastern cities
that were analyzed using the i-Tree model (www.itreetools.org;

formerly known as the Urban Forest Effects [UFORE] model) for our
habitat modeling. The i-Tree program is a free suite of tools devel-
oped by the US Forest Service to assess the ecosystem services and
values provided by the urban forest. This program is designed to
aid in the understanding and management of urban forests to help
sustain environmental quality and human health in cities across
the nation. The tool integrates local field data (e.g., species, tree
height, canopy percentage) from either complete inventories or
plot-based samples of trees with local air pollution and meteoro-
logical data to quantify forest structure and calculate the ecosystem
services and values provided by the urban forest (Nowak et al.,
2008). Data from i-Tree has provided information on the value
of urban trees and their capacity to store carbon, mitigate energy
costs, and remove air pollution (e.g., Nowak, Crane, & Stevens, 2006;
Nowak, Greenfield, Hoehn, & Lapoint, 2013; Nowak, Hirabayshi,
Bodine, & Hoehn, 2013). Information gathered via i-Tree has helped
scientists to link urban forest management with environmental
quality, and has assisted managers with planning for the future
(Driscoll et al., 2012). Currently, the tool lacks the capacity to assess
the habitat potential, an additional ecosystem service of the urban
forest.

Each city included about 200 randomly selected plots (0.04 ha)
located among all land-use categories (e.g., residential, commercial,
parkland, and agricultural). Data collected at each plot included
tree characteristics, percent cover of buildings, grass, shrubs and
trees, the land use, and land cover. For each tree (woody plants
with a minimum diameter of 2.54 cm at 1.4 m)  numerous vari-
ables were collected including tree size, height, and condition
(Table 2).

Table 2
List of i-Tree variables included in the i-Tree wildlife habitat models.

Variable Description

PLOT ID i-Tree plot identification
LANDUSE Land-use category for each i-Tree plot
%BLDG Percent of plot (0.04 ha) with land cover classification

of building
%GRASS M Percent of plot (0.04 ha) with land cover classification

of lawn (maintained)
%SHRB Percent of plot (0.04 ha) with shrub cover
%TREE Percent of plot (0.04 ha) covered by tree canopy
TR DENS ALL Number of all trees within plot (0.04 ha)
SAP DENS Number of saplings (<10 cm dbh) within plot (0.04 ha)
23cm DENS Number of trees > 23 cm dbh within plot (0.04 ha)
DEAD DENS Number of trees within plot (0.04 ha) with fair, poor,

dying, dead classification
BA 6 cm Basal area of trees greater than 6 cm dbh per ha
MEAN TOT HT m Mean tree height (m) per plot (0.04 ha)
FOR AREAa Amount of contiguous forest area (ha) surrounding

i-Tree plot
FOR 1KMa Percent forest land cover within 1 km of i-Tree plot

a These variables not collected using i-Tree but will be analyzed using plot location,
forest cover maps and GIS analyses.

http://www.itreetools.org;/
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2.4. Bird habitat models

We  conducted extensive literature reviews for each bird species
using Web  of Science and other databases as well as the literature-
cited sections of papers. We  identified habitat variables that were
found to affect a species’ abundance (Jones-Farrand et al., 2011)
and also corresponded to measurements in the i-Tree datasets.
Although i-Tree data did not always align with habitat variables
representative of a particular species, we were able to extract this
information from i-Tree and include these important local habitat
variables. For example, basal area, a common forestry measure-
ment, was listed in a number of publications describing habitat
relationships but was not part of the i-Tree database. Thus we
calculated the basal area based on the i-Tree data, and included
this variable in two of our models. Similarly with dead wood, an
important resource for cavity-nesting species, we extracted the
tree condition data from i-Tree and assumed that trees with a
rating of fair, poor, dying or dead had dead wood present. We
assigned suitability index (SI) scores for each species, for each met-
ric. The SI ranged between 0 and 1 whereby a score of 0 indicated
unsuitable habitat conditions (i.e., strong likelihood the species
not present) whereas a score of 1 indicated the habitat conditions
have a strong likelihood of supporting the species. Often, pub-
lished data consisted of a single mean value for a habitat feature
(e.g., percent canopy cover) when the species was present, and we
used this data point when building the models. In instances when
published data were scant or not available, we estimated values
by supplementing with iterative values which improved the pre-
dictability of our habitat models (Tirpak, Jones-Farrand, Thompson,
Twedt, & Uihlein, 2009). These and the iterative values mentioned
above were reviewed by a panel of experts and revised accord-
ing to recommendations (Tirpak, Jones-Farrand, Thompson, Twedt,
& Uihlein, 2009). Each habitat variable per species included at
least three data points. We  used CurveExpert Professional software
(http://www.curveexpert.net/) to generate parameters for mathe-
matical equations to predict the probability of a species occurrence
for each habitat variable (e.g., percent canopy cover) based on the
value of that variable. We  selected the equation with the best fit to
the data (r2). We  identified between two and five habitat variables
that were associated with each species, and generated mathemat-
ical equations for each habitat variable. We  then calculated the
geometric mean for these two to five habitat variables used for
each species for a final SI score for each plot. This assumes that each
variable had equal weight in the model (Jones-Farrand et al., 2011).

These habitat models have various assumptions and limita-
tions associated with their use. First, relying on expert opinion on
the estimated values might have introduced observer bias (Jones-
Farrand et al., 2011). However, we solicited opinions from at least
three different wildlife biologists intimately familiar with our tar-
geted species. Furthermore, we valued expert opinion and have
confidence that the inclusion of the estimated values were more
informative than having models without these values (Beaudry
et al., 2010). We  assumed the species were limited in their dis-
tribution by the habitat variables selected for the models, and
the variables measured in i-Tree represented the suite of habitat
variables a particular species used in the selection process (Jones-
Farrand et al., 2011). We  assumed that behavioral interactions
(e.g., inter and intra-specific competition) were not the driving
force birds used for selecting habitat (Sherry & Holmes, 1985).
We assumed the models performed equally within the different
land-uses, for generalist and specialist bird species, and that we
built the models based on complete information on habitat rela-
tionships. In addition, since the majority of published habitat
relationship studies were conducted in wildlands (i.e., not in
urban land-uses), we assumed these relationships were applica-
ble to urban landscapes (Beaudry et al., 2010; Roloff & Kernohan,

1999). And finally, the habitat models do not fully account for
landscape variables that might indicate the permeability and con-
nectivity throughout the urban landscape, essential factors for
dispersal (Beaudry et al., 2010). We  included the full description
of habitat associations and subsequent models for the red-bellied
woodpecker (Melanerpes carolinus) to illustrate the habitat model
building process. See the online supplementary material for the
remaining species accounts and models.

2.5. Validating the models

To test the validity of our habitat models, we used bird moni-
toring data from 82 sites located at the Baltimore Ecosystem Study
Long-Term Ecological Research (BES LTER) project. To the best
of our knowledge, Baltimore was  the only city in the northeast
with an extensive bird monitoring program. In addition, the bird
monitoring sites coincided with the i-Tree collection sites and
thus enabled us to directly test how the habitat models predicted
species presence by comparing the HSI with the presence of a
particular species. Each site was  visited two  times per year (2002,
2004–2007) during the breeding season (mid May  to July) by a
trained observer. Visits occurred between sunrise and 09:30, and
all species heard and seen during the 5-min count were recorded
(Nilon, Warren, & Wolf, 2011). Using the point count data, we
calculated a mean abundance and categorized each species as
present or absent at each i-Tree location. Five of the nine species
were recorded at the BES LTER project: American robin (Turdus
migratorius), Carolina chickadee (Poecile carolinensis), European
starling (Sturnus vulgaris), northern cardinal (Cardinalis cardinalis),
and red-bellied woodpecker. We  compared the HSI scores with the
BES LTER bird abundance data using Spearman Rank correlations.
We assessed model sensitivity by removing one habitat variable at
a time, and recalculated the HSI score to test whether the omission
of the said variable altered the predictability of the model. For
example, the red-bellied woodpecker model included four habitat
variables: the number of large trees, basal area, percent canopy
cover and dead wood density. To test whether the model was
sensitive to the number of large trees, we generated a new HSI
score by calculating the geometric mean of the three other habitat
variables and then compared the new HSI score with the BES
LTER bird abundance data using Spearman Rank correlations.
Discrepancies between the two  analyses (i.e., significant with all
variables yet not significant with the omitted variable) suggested
the omitted habitat variable had a greater influence to the model.
Black-capped chickadee (Poecile atricapillus) range does not include
Baltimore though we used Carolina chickadee model for validation.
Tirpak, Jones-Farrand, Thompson, Twedt, and Uihlein (2009) used
Breeding Bird Survey (BBS) data to validate the wood thrush
(Hylocichla mustelina)  model in their publication using Breeding
Bird Survey (BBS) data. We  were unable to validate the Baltimore
oriole (Icterus galbula) and scarlet tanager (Piranga olivacea) model.

2.6. Illustrating applications

We  applied the habitat model to each i-Tree plot, calculated
an overall SI score (0–1) per species per i-Tree plot, calculated the
mean SI score per species per city, and then calculated the mean
SI score per land-use for each city. Although other land-uses were
included in the i-Tree data collection, we focused on land-uses
common for all ten cities: commercial, industrial, parks and forest,
and residential. We  also included vacant lots and transportation
corridors, which were recorded in nine and eight of the ten cities,
respectively. We  describe the patterns of SI scores, land-uses, and
management potential of i-Tree habitat models.

Although we  did not directly test the effectiveness of habitat
improvement plans, we  demonstrated the potential of the i-Tree

http://www.curveexpert.net/
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wildlife models to detect change in habitat conditions over time.
For two cities (Baltimore, MD  and Syracuse, NY), i-Tree data were
collected at the same plot in 2001 and 2009. We  used t-tests
to determine whether the suitability for each land-use per city
changed during the two  data collection periods.

3. Results

3.1. Suitability index summaries

We  developed 27 variable functions that were incorporated
to form habitat models for nine species (Table 3). Overall,
Moorestown, NJ had the highest quality habitat for birds (city-wide
score for all species combined: 0.28), Jersey City, NJ the lowest (city-
wide score: 0.14), and the remaining eight cities falling in between
these SI scores (Table 4). On average, Philadelphia, PA had the high-
est SI score for Carolina chickadee, red-bellied woodpecker, and
wood thrush while Jersey City had the lowest SI score for Bal-
timore oriole, Carolina chickadee, European starling, red-bellied
woodpecker, scarlet tanager, and wood thrush (Table 4). Suitability
within different land-uses varied for each species. Vacant lots, parks
and forested land-uses had high SI scores for wood thrush, scarlet
tanager, red-bellied woodpecker, and black-capped and Carolina
chickadee. American robin had high SI scores for a variety of dif-
ferent land-uses and we did not discern any clear land-use signals.
Industrial and commercial land-uses tended to score poorly with
most species (Table 4).

3.2. Habitat model example: red-bellied woodpecker

The habitat suitability index model for the red-bellied wood-
pecker included four variables: tree density per 0.04 ha, basal area
per ha, density of dead wood per 0.04 ha, and percent canopy cover

per 0.04 ha. The species relies on forested areas and we included
three variables to describe these habitat needs. Adkins Giese and
Cuthbert (2003) observed 24 trees per 0.04 ha and a basal area
of 34 m2/ha in oak forests of the Upper Midwest, while Conner
(1980) observed 30 trees/0.04 ha and a basal area of 14 m2/ha in
oak-hickory forests around Blacksburg, VA. However, these stud-
ies did not discern tree size. We wanted the model to reflect
the mean diameter of the cavity limb (21.6 cm;  Jackson, 1976)
so only included trees greater than 23 cm dbh and adjusted the
densities to reflect these conditions (Table 5). We  fit a rational
function (0 − 0.0035 + (0.1606 × tree density))/(1 + (−0.1417 × tree
density) + (0.0233 × tree density2)) where tree density represents
the density of trees greater than 23 cm dbh within a 0.04 ha
plot, through these data points to predict how habitat suit-
ability varied with large tree density (Fig. 1). We  assumed
suitability was the lowest when trees were absent. Our inclu-
sion of basal area for all trees greater than 6 cm dbh reflects
the propensity for this species to prefer relatively dense forests
(Shackelford, Brown, & Conner, 2000; Table 6). We  fit a logistic
function 0.9906/(1 + (47.9216 × exp(−0.9689 × basal area))) where
basal area is m2/ha and calculated for all trees greater than 6 cm
dbh, through these data points to quantify the relationship between
basal area and the SI score (Fig. 2).

Canopy coverage has the potential to predict habitat suit-
ability. DeGraaf, Yamasaki, Leak, and Lester (2006) suggested
that when canopy coverage exceeds 35%, the site provided
suitable conditions for red-bellied woodpeckers. We  based our
assumed values for canopy cover on qualitative accounts and
personal observations of the species in forested suburban and
riparian areas, with lack of observations in areas with little to no
canopy cover and areas with an extremely dense canopy cover
(Table 7). We  fit a rational function (−0.0371 + (0.0124 × percent
canopy))/(1 + (−0.0363 × percent canopy) + (0.0005 × percent

Table 3
Habitat suitability equations for nine bird species in northeastern cities. Species codes as follows: AMRO, American robin; BAOR, Baltimore oriole; BCCH, black-capped
chickadee; CACH, Carolina chickadee; EUST, European starling; NOCA, northern cardinal; RBWO, red-bellied woodpecker; SCTA, scarlet tanager; WOTH, wood thrush. Models
with  exp used base e.

Species Variable (x) Equation

AMRO %TREE (0.6439054 + (−0.0023519694 × x))/(1 + (−0.031238306 × x) + (0.00059471346 × x2))
AMRO %GRASS M 1/(4.19182 + (−0.083072 × x) + (0.000538 × x2))
BAOR %TREE 1.012735 × exp(0 − ((x − 35.4635207)2)/(2 × 15.35078892))
BAOR  23cm DENS (0.0377801 + (0.27942563 × x))/(1 + (−0.4470676 × x) + (0.13110269 × x))
BCCH %TREE 1.002 × exp((0 − ((x) − 63.568198)2)/1795)
BCCH DEAD DENS 1.007/(1 + (32.567 × exp(−1.403x)))
BCCH MEAN TOT HT m 0.97572/(1 + (11.742599 × exp(−0.48523169×)))
CACH %TREE 1.002 × exp((0 − ((x) − 63.568198)2)/1795)
CACH DEAD DENS 1.007/(1 + (32.567 × exp(−1.403x)))
CACH MEAN TOT HT m 0.97572/(1 + (11.742599 × exp(−0.48523169×)))
EUST %BLDG (−0.00035052 + (0.0148132 × x))/(1 + (−0.0378391 × x) + (0.00065325 × x2)) × −0.1
EUST  DEAD DENS 0.800547 × (1.2498289 − exp(−2.42900485 × x))
EUST %GRASS M 1.02247/(1 + (40.643183849 × exp(−0.104376 × x)))
EUST  TR DENS ALL (0.81293 + (−0.0879822662 × x))/(1 + (−0.3167288645 × x) + (0.0546857954 × x2))
NOCA  %TREE (0.63133686 + (−0.005359156 × x))/(1 + (−0.036974589 × x) + (0.0006728828 × x2))
NOCA  %SHRB (0.00949075 + (0.021340335 × x))/(1 + (−0.02120201 × x) + (0.000432969 × x2))
RBWO BA 6 cm 0.9906/(1 + (47.9216 × exp(−0.9689 × x)))
RBWO %TREE (−0.0371 + (0.0124 × x))/(1 + (−0.0335 × x) + (0.0005 × x2)) × −0.1
RBWO DEAD DENS 1/(1 + (15.67 × exp(−5.338 × x)))
RBWO 23cm DENS (0 − 0.00347415 + (0.160609 × x))/(1 + (−0.141679 × x) + (0.0233308 × x2)) × −0.1
SCTA  BA 6 cm 1.0363/(1 + (49.295 × exp(−0.1088 × x)))
SCTA %TREE 1.00545/(1 + (19,171.9801 × exp(−0.16936 × x)))
SCTAa FOR AREA ((−0.0009840608 × 4.3992415) + (1.6780139 × x0.25391))/(4.3992 + x0.2539122)
SCTA  23cm DENS 1.01622702/(1 + (24,569.22035 × exp(−0.6493929 × x)))
WOTHa FOR 1KM 1.003/(1 + (224.7853 × exp(−0.1081 × (x))))
WOTH %TREE 1.03163/(1 + (141,241.64 × exp(−0.1531 × x)))
WOTH SAP DENS (1.0401978/(1 + (65.800186 × exp(−0.758149 × (x)))))

a These models that used landscape variables were not included in the SI calculations but will be incorporated into the i-Tree program, and analyzed when spatial data is
available.
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Table 4
The suitability index (SI) scores for nine bird species in ten northeastern cities, for different urban land-uses. City SI score is the mean score per species and per city. Species
codes  as follows: AMRO, American robin; BAOR, Baltimore oriole; BCCH, black-capped chickadee; CACH, Carolina chickadee; EUST, European starling; NOCA, northern
cardinal; RBWO, red-bellied woodpecker; SCTA, scarlet tanager; WOTH, wood thrush.

Land use City n AMRO BAOR CACH EUST NOCA RBWO SCTA WOTH  MEAN

CITY SI SCORE Baltimore, MD 195 0.52 0.25 0.25 0.25 0.24 0.20 0.01 0.10 0.22
Commercial Baltimore, MD 41 0.43 0.08 0.11 0.18 0.10 0.06 0.00 0.01 0.12
Industrial Baltimore, MD 14 0.63 0.13 0.15 0.25 0.24 0.06 0.00 0.01 0.18
Park  Baltimore, MD 22 0.43 0.24 0.43 0.18 0.20 0.37 0.04 0.44 0.26
Residential Baltimore, MD 90 0.57 0.33 0.26 0.35 0.32 0.22 0.01 0.06 0.27
Transportation Baltimore, MD 16  0.45 0.23 0.32 0.09 0.16 0.29 0.03 0.15 0.20
Vacant Baltimore, MD 5 0.51 0.49 0.26 0.07 0.55 0.26 0.00 0.02 0.24

CITY  SI SCORE Boston, MA  220 0.49 0.29 0.27 0.19 0.21 0.26 0.01 0.06 0.21
Commercial Boston, MA  13 0.63 0.26 0.31 0.38 0.22 0.26 0.01 0.09 0.25
Industrial Boston, MA  23 0.51 0.26 0.21 0.25 0.20 0.16 0.01 0.02 0.20
Park  Boston, MA  35 0.60 0.28 0.25 0.27 0.14 0.27 0.01 0.06 0.22
Residential Boston, MA 62  0.47 0.41 0.36 0.13 0.30 0.41 0.01 0.09 0.26
Transportation Boston, MA  10 0.51 0.11 0.13 0.12 0.11 0.07 0.00 0.00 0.12
Vacant Boston, MA  28 0.34 0.24 0.50 0.01 0.21 0.49 0.03 0.22 0.23

CITY  SI SCORE Jersey City, NJ 230 0.47 0.11 0.15 0.18 0.16 0.04 0.00 0.01 0.14
Commercial Jersey City, NJ 29 0.43 0.06 0.07 0.09 0.10 0.01 0.00 0.00 0.09
Industrial Jersey City, NJ 4 0.39 0.05 0.06 0.01 0.08 0.01 0.00 0.00 0.07
Park  Jersey City, NJ 33 0.57 0.08 0.16 0.28 0.09 0.06 0.00 0.03 0.15
Residential Jersey City, NJ 64 0.47 0.17 0.21 0.26 0.29 0.07 0.00 0.02 0.19
Transportation Jersey City, NJ 25 0.46 0.08 0.16 0.06 0.10 0.02 0.00 0.00 0.10
Vacant Jersey City, NJ 13 0.42 0.09 0.17 0.01 0.10 0.02 0.00 0.00 0.09

CITY  SI SCORE Moorestown, NJ 206 0.49 0.17 0.33 0.21 0.47 0.32 0.03 0.17 0.28
Commercial Moorestown, NJ 31 0.50 0.18 0.20 0.20 0.66 0.14 0.01 0.03 0.25
Industrial Moorestown, NJ 4 0.56 0.09 0.11 0.17 0.66 0.02 0.00 0.00 0.22
Park  Moorestown, NJ 45 0.44 0.07 0.41 0.18 0.35 0.41 0.08 0.33 0.28
Residential Moorestown, NJ 103 0.56 0.25 0.34 0.28 0.50 0.33 0.02 0.10 0.31
Transportation Moorestown, NJ 1 0.81 0.05 0.06 0.41 0.63 0.01 0.00 0.00 0.28

CITY  SI SCORE New York City 214 0.46 0.20 0.20 0.20 0.21 0.17 0.01 0.06 0.18
Commercial New York City 6 0.84 0.20 0.13 0.42 0.22 0.05 0.00 0.00 0.21
Industrial New York City 12 0.48 0.22 0.18 0.24 0.15 0.13 0.00 0.03 0.18
Park  New York City 33 0.45 0.13 0.26 0.17 0.19 0.29 0.02 0.13 0.19
Residential New York City 76 0.50 0.35 0.25 0.32 0.28 0.27 0.01 0.03 0.26
Vacant New York City 53 0.38 0.10 0.20 0.03 0.17 0.19 0.02 0.10 0.13

CITY  SI SCORE Philadelphia, PA 213 0.42 0.19 0.48 0.25 0.22 0.39 0.03 0.21 0.26
Commercial Philadelphia, PA 3 0.75 0.41 0.30 0.54 0.20 0.29 0.00 0.00 0.29
Industrial Philadelphia, PA 19 0.49 0.14 0.25 0.34 0.14 0.17 0.00 0.05 0.19
Park  Philadelphia, PA 53 0.28 0.13 0.74 0.10 0.17 0.69 0.07 0.54 0.30
Residential Philadelphia, PA 62 0.57 0.33 0.40 0.52 0.26 0.30 0.00 0.02 0.31
Transportation Philadelphia, PA 10 0.44 0.17 0.20 0.08 0.24 0.09 0.00 0.00 0.14
Vacant Philadelphia, PA 50 0.31 0.10 0.54 0.03 0.26 0.42 0.03 0.29 0.22

CITY  SI SCORE Scranton, PA 191 0.50 0.20 0.25 0.23 0.23 0.22 0.01 0.16 0.22
Commercial Scranton, PA 32 0.47 0.15 0.10 0.16 0.20 0.05 0.00 0.01 0.14
Industrial Scranton, PA 11 0.49 0.15 0.10 0.19 0.15 0.04 0.00 0.00 0.14
Park  Scranton, PA 9 0.54 0.29 0.33 0.25 0.25 0.35 0.01 0.29 0.26
Residential Scranton, PA 94 0.56 0.18 0.19 0.44 0.22 0.13 0.01 0.06 0.23
Transportation Scranton, PA 13 0.44 0.16 0.16 0.05 0.18 0.10 0.00 0.03 0.13
Vacant Scranton, PA 29 0.26 0.10 0.53 0.02 0.17 0.48 0.03 0.61 0.25

CITY  SI SCORE Syracuse, NY 200 0.58 0.18 0.29 0.30 0.25 0.14 0.00 0.12 0.23
Commercial Syracuse, NY 15 0.45 0.11 0.14 0.22 0.18 0.07 0.00 0.00 0.15
Industrial Syracuse, NY 18 0.57 0.11 0.27 0.27 0.16 0.08 0.00 0.22 0.21
Park  Syracuse, NY 7 0.67 0.26 0.17 0.42 0.12 0.19 0.00 0.01 0.21
Residential Syracuse, NY 113 0.64 0.20 0.24 0.38 0.26 0.12 0.00 0.03 0.24
Transportation Syracuse, NY 9 0.50 0.13 0.22 0.07 0.51 0.04 0.00 0.01 0.17
Vacant Syracuse, NY 30 0.40 0.11 0.50 0.10 0.17 0.21 0.01 0.46 0.23

CITY  SI SCORE Washington, DC 201 0.50 0.31 0.26 0.23 0.22 0.31 0.07 0.06 0.23
Commercial Washington, DC 10 0.43 0.15 0.12 0.17 0.21 0.09 0.00 0.00 0.15
Industrial Washington, DC 7 0.46 0.19 0.10 0.16 0.21 0.08 0.00 0.00 0.15
Park  Washington, DC 53 0.46 0.24 0.33 0.15 0.24 0.41 0.17 0.15 0.24
Residential Washington, DC 91 0.50 0.44 0.27 0.20 0.30 0.36 0.03 0.03 0.26

CITY  SI SCORE Woodbridge, NJ 215 0.52 0.23 0.27 0.21 0.07 0.24 0.01 0.12 0.20
Commercial Woodbridge, NJ 20 0.45 0.19 0.16 0.14 0.08 0.14 0.01 0.06 0.15
Industrial Woodbridge, NJ 5 0.43 0.09 0.09 0.01 0.09 0.01 0.00 0.00 0.08
Park  Woodbridge, NJ 29 0.32 0.10 0.56 0.13 0.03 0.59 0.07 0.48 0.25
Residential Woodbridge, NJ 98 0.64 0.35 0.27 0.32 0.08 0.24 0.01 0.04 0.24
Transportation Woodbridge, NJ 22 0.50 0.11 0.13 0.13 0.08 0.04 0.00 0.05 0.12
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Table 5
Relationship between large tree density (trees larger than 23 cm dbh) per 0.04 ha
and suitability index (SI) for red-bellied woodpecker (RBWO) habitat, and associated
references.

Large tree density (per 0.04 ha) SI score (RBWO) Reference

0 0 Assumed value
3  0.6 Assumed value
6  1 Adkins Giese and

Cuthbert (2003)
8 0.9 Conner (1980)

11 0.8 Assumed value

Fig. 1. Relationship between large tree density (trees larger than 23 cm dbh) per
0.04 ha and suitability index (SI) for red-bellied woodpecker (RBWO) habitat, and
associated references.

Table 6
Relationship between basal area (trees > 6 cm dbh) per ha and suitability index (SI)
for  red-bellied woodpecker (RBWO) habitat, and associated references.

Basal area (per ha) SI score (RBWO) Reference

0 0 Assumed value
4  0.5 Assumed value
8  0.95 Conner, 1980 (based on SD)

14  1 Conner, 1980
34 1 Adkins Giese and Cuthbert (2003)

canopy2)), where percent canopy represents the percent of a
0.04 ha plot with tree canopy cover, through these data points
to predict how habitat suitability varied with canopy coverage
(Fig. 3). We  assumed suitability was the lowest when trees were
absent.

Table 7
Relationship between canopy percent per 0.04 ha and suitability index (SI) for red-
bellied woodpecker (RBWO) habitat, and associated references.

Canopy percent (per 0.04 ha) SI score (RBWO) Reference

0 0 Assumed value
15 0.1 Assumed value
20 0.3 Assumed value
25 0.5 Assumed value
35 0.9 DeGraaf et al. (2006)
62 1 Straus et al. (2011)

Fig. 2. Relationship between basal area (trees > 6 cm dbh) per ha and suitability
index (SI) for red-bellied woodpecker (RBWO) habitat, and associated references.

Although dead wood is necessary for foraging and nesting, it is
not essential for detecting red-bellied woodpeckers. Of 42 nests in
southwest Ontario, Straus, Bavrlic, Nol, Burke, and Elliott (2011)
observed 93% of the nests in dead and declining trees and 6% of
nests in healthy trees. Adkins Giese and Cuthbert (2003) observed
three dead or declining trees per 0.04 ha in the Midwest (Table 8).
We  fit a logistic function 1/(1 + (15.67 × exp(−5.338 × dead wood
density per 0.04 ha))) (where dead wood is recorded as trees with
a condition of fair, poor, dying or dead) through these data points
to quantify the relationship between trees with dead wood and the
SI score (Fig. 4). We calculated the geometric mean of these habitat
models to generate a final SI score for this species.

Fig. 3. Relationship between canopy percent per 0.004 ha and suitability index (SI)
for red-bellied woodpecker (RBWO) habitat, and associated references.
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Table 8
Relationship between dead wood density per ha and suitability index (SI) for red-
bellied woodpecker (RBWO) habitat, and associated references.

Dead wood density
(per 0.04 ha)

SI score
(RBWO)

Reference

0 0.06 Straus et al. (2011)
1 0.93 Straus et al. (2011)
3 1 Adkins Giese and Cuthbert (2003)

3.3. Model validations

At the BES LTER sites, the American robin was recorded in
72 of the 83 bird monitoring/i-Tree locations, Carolina chick-
adee in 19 of the 83 locations, European starling in 62 of the 83
locations, northern cardinal in 60 of the 83 locations, and red-
bellied woodpecker in 12 of the 83 locations. Spearman rank
correlation identified a significant and positive relationship
between the HSI score and mean bird abundance at the BES LTER
i-Tree locations for American robin (P = 0.0043, rs = 0.31), Carolina
chickadee (P = 0.0011, rs = 0.3515), northern cardinal (P = 0.0022,
rs = 0.3311), red-bellied woodpecker (P = 0.0008, rs = 0.3596), and
European starling (P = 0.0349, rs = 0.2333). When testing the sensi-
tivity of the models by subsequently removing individual variables
from whole models, we found no discrepancies between these par-
tial and full models in their ability to predict mean bird abundance
better than chance for Carolina chickadee, European starling and
red-bellied woodpecker. The spearman rank correlation did not
detect a significant relationship between the HSI score and mean
bird abundance in the American robin model when lawn percent
was omitted (P = 0.5976, rs = 0.0593). However, when the model
omitted canopy cover and included lawn percent, we  found a sig-
nificant relationship between the HSI score and mean abundance
(P = 0.0071, rs = 0.2950). Similarly, when the percent shrub cover
was removed from the northern cardinal model, the model failed to
predict presence when this species was recorded, though a model
with just percent shrubs was significant (P = 0.0140, rs = 0.2705).

Fig. 4. Relationship between deadwood density per ha and suitability index (SI) for
red-bellied woodpecker (RBWO) habitat, and associated references.

3.4. Illustrating applications

For the most part, habitat suitability in Baltimore and Syracuse
declined from 2001 to 2009 (Table 9). Important resources such
as canopy cover in Baltimore declined by 33.8% in vacant lots, and
large tree density in Syracuse declined by 0.8 and 3.4 trees in resi-
dential and vacant lots between the two  time periods (unpublished
i-Tree dataset). Habitat suitability scores significantly decreased for
Baltimore oriole, northern cardinal, and red-bellied woodpecker
between 2001 and 2009 in Syracuse residential areas and vacant
lots, and for scarlet tanagers in vacant lots only. Habitat suitability
also differed for red-bellied woodpecker in Baltimore residential
areas and for Carolina chickadee, red-bellied woodpecker, and
wood thrush in Baltimore vacant lots. In contrast, habitat suitabil-
ity increased for wood thrushes (Syracuse) and northern cardinals
(Baltimore) in residential areas during this time period (Table 9).
We failed to find a significant change in commercial, cemetery, golf
course or institutional land-use plots in Baltimore and Syracuse.

4. Discussion

Integrating validated bird habitat suitability models into i-Tree
can provide a more comprehensive assessment of the ecosys-
tem services provided by the urban forest. Essentially, our models
translate the i-Tree raw data’s detailed information on the for-
est composition and structure into relative assessments of habitat
value for birds. The bird habitat models suggest which species
specifically, and guilds broadly, can be supported by an urban for-
est. By selecting which bird models to focus on (e.g., native or rare
species), other societal values can be included in this assessment
and guide general forest planning in urban areas. In addition, the
bird habitat models have the capacity to provide specific targets
(i.e., canopy percent or dead wood density) geared toward urban
foresters and planners when determining how to manage the urban
forest for wildlife.

Our validation efforts support the efficacy of using the habitat
models to predict the habitat quality of urban areas for a variety of
species. Although we were unable to validate the Baltimore oriole
and scarlet tanager model at this time, we agree with Brooks (1997)
that these untested models still have greater value than no infor-
mation about these species’ habitat relationships. In several cases,
sensitivity analyses helped to identify particularly influential habi-
tat parameters. For example, percent lawn for American robin and
percent shrub cover for northern cardinal have strong influences on
the habitat suitability for the respective species. Although the mod-
els with insignificant results highlight the unequal effect of these
particular variables, the models that included all the habitat vari-
ables had a higher rank scores, suggesting the model had stronger
predictive power when these variables were included.

The i-Tree habitat models link habitat features with an SI score
reflecting the suitability of a site for that species. Each habitat vari-
able has an optimal value for a particular species (i.e., when the
suitability index score is 1.0, the site has the greatest potential to
support said species). Less than optimal values result in lower SI
scores and provide a baseline for habitat improvement recommen-
dations. Compared with the other cities, Jersey City had the lowest
mean SI scores for all but one species (Table 3). The i-Tree program
assessed canopy coverage at 13%, well below the national average
of 35.1% (Nowak & Greenfield, 2012). Eight species included canopy
percent as an important limiting variable with optimal values ran-
ging between 25% and 100% (Supplementary material).

Urban parks, vacant lots, and residential land-uses had high SI
scores for most of the species modeled (Table 3), and species of con-
servation concern in particular (Dettmers & Rosenberg, 2000). For
example, urban parks and vacant lots had the highest SI score for
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Table 9
A comparison of suitability index (SI) scores for six bird species and mean values for two  habitat variables at the same i-Tree monitoring plot in 2001 and 2009 in Syracuse,
NY  and Baltimore, MD for residential and vacant lot land-uses. The SI scores for American robin and European starling did not exhibit any significant changes. Species habitat
models in commercial and institutional land-uses, and golf courses failed to show significant relationships.

Residential Vacant lot

2001 2009 F P 2001 2009 F P

BALTIMORE n = 87 n = 90 n = 18 n = 5
American robin 0.54 0.57 1.22 0.27 0.39 0.51 1.62 0.22
Baltimore oriole 0.35 0.33 0.09 0.75 0.35 0.49 0.58 0.45
Carolina chickadee 0.3 0.26 1.34 0.25 0.65 0.26 5.28 0.032
European starling 0.34 0.3 0.88 0.35 0.07 0.04 0.24 0.63
Northern cardinala 0.35 0.33 0.47 0.49 0.22 0.55 16.71 0.0005
Red-bellied woodpecker 0.34 0.24 4.28 0.04 0.66 0.26 5.53 0.029
Scarlet tanager 0.01 0.01 0.97 0.33 0.1 0.01 2.05 0.17
Wood  thrush 0.03 0.06 2.19 0.14 0.3 0.14 3.30 0.084
Tree  canopy 25.31 24.74 0.02 0.88 52.22 18.4 5.50 0.03

SYRACUSE n = 117 n = 113 n = 33 n = 30
American robin 0.61 0.64 1.24 0.27 0.37 0.4 0.27 0.6
Baltimore oriole 0.46 0.22 46.37 <0.001 0.22 0.11 3.62 0.06
Black-capped chickadee 0.23 0.27 2.64 0.11 0.48 0.5 0.03 0.86
European starling 0.28 0.32 2.38 0.12 0.05 0.02 1.05 0.31
Northern cardinal 0.39 0.29 11.92 0.0007 0.32 0.17 6.81 0.01
Red-bellied woodpecker 0.24 0.16 7.57 0.0064 0.5 0.21 14.53 0.0003
Scarlet tanager 0.01 0 0.42 0.52 0.07 0.01 5.24 0.026
Wood  thrusha 0.01 0.04 6.01 0.015 0.36 0.46 0.83 0.37
Large  tree density 1.16 0.39 24.88 <0.0001 3.85 0.4 22.46 <0.0001

a An increase in suitability.

scarlet tanager and wood thrush, suggesting that when managed
for wildlife, these urban land-uses have the potential to support
rare species. Residential land-uses had the highest SI score for Bal-
timore oriole (Table 3) and although this land-use scored low for
wood thrush, the patterns suggest the existence of potential habitat
and the conservation value of residential areas (Lerman & Warren,
2011).

The active management of dead wood in urban areas has the
potential to stabilize populations for a guild that often adapts
well to cities (Chace & Walsh, 2006). Urban parks in Boston, MA
and New York City had low SI scores compared to urban parks
in Philadelphia, PA for red-bellied woodpecker, an obligate cavity
nester. Boston and New York also had low densities of dead wood,
an important nesting resource for the species (Shackelford et al.,
2000). On average, Boston had 0.66 trees with dead wood (Dead
Dens) per plot (6% of trees had some dead wood; unpublished i-
Tree dataset) and New York City had 0.85 trees with dead wood
per plot (6% of trees had some dead wood; Nowak, Hoehn, Crane,
Stevens, & Walton, 2007). The model for dead wood density calcu-
lated an SI score of 1 (i.e., most suitable) when at least three trees
with dead wood were present in a 0.04 ha plot. The model calcu-
lated an SI score of 0.93 with at least one tree with dead wood. Based
on the dead wood present, these two cities failed to reach a suit-
ability threshold that had a high likelihood of supporting species
requiring dead wood (i.e., areas with at least one tree with dead
wood) whereas Philadelphia, with an average nine trees per plot
with dead wood (57% of all trees; unpublished i-Tree dataset), had
a greater potential to support this species because of the presence
of an important resource for cavity nesting species. Black-capped
chickadee, an additional species belonging to this nesting guild, had
similar patterns.

The differences in dead wood densities might be the result
of different management regimes for these cities. Perhaps the
former two cities have a more active urban forestry department
and remove a greater degree of dead wood due to the hazards and
esthetics associated with dead and dying limbs (Harris, Clark, &
Matheny, 2004). Alternatively, the differences could also be due
to different tree population structures (e.g., age or size distribu-
tion) among cities. By delineating a threshold of suitability for each

habitat variable, the models provide specific targets for improving
the habitat conditions for a particular species, which is neces-
sary for identifying management goals (Kroll & Haufler, 2006). For
example, the city of New York had low scores for red-bellied wood-
pecker, particularly in commercial and industrial land-uses. Based
on the habitat model description for this species (see model exam-
ple), the optimal values for key habitat features are as follows: six
large trees (> 23 cm dbh) per 0.04 ha, 14 m2/ha basal area, 35–62%
canopy coverage per 0.04 ha, and at least three trees with dead
wood within 0.04 ha (Tables 1–4, respectively). Managers can then
review the i-Tree data and assess how well the actual habitat val-
ues accord with the optimal values. In New York City forest patches,
the canopy percentage reached optimal values though the amount
of deadwood fell below the threshold (unpublished i-Tree dataset).
Thus incorporating management initiatives that encourage dead
wood would improve the habitat conditions for this and other cav-
ity nesting species. In sum, when cities or land-uses have low SI
scores, the manager can pinpoint the sub-optimal variables and
develop management plans that target these low scoring habitat
features.

Our example of how the i-Tree habitat module can document
SI changes over time demonstrated the potential for assessing the
effectiveness of management plans (or lack thereof). For example,
in the Baltimore i-Tree dataset, we noted a sharp decline of trees
with dead wood between 2001 (3.59 trees per i-Tree plot) and
2009 (0.73 trees per i-Tree plot). The deadwood density threshold
for a suitable site for red-bellied woodpecker was three. There-
fore this loss of deadwood might explain why the suitability index
for species that rely on this resource also declined. An effective
management strategy would include more selective criteria for
removing dead wood (e.g., only when posing a strong hazard risk),
or perhaps encouraging the development and retention of snags in
areas not frequented by people.

The models provide a substantial initial assessment of the habi-
tat potential in the urban forest, while assisting decision makers
with the ultimate goal of improving urban bird habitat (Beaudry
et al., 2010). Although the number of studies focusing on urban
birds has increased over the past 20 years (Ramalho & Hobbs, 2012),
and many of these studies included recommendations on how to
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improve urban habitat, the recommendations are often for a spe-
cific city (Lerman & Warren, 2011), and not necessarily accessible
to managers. The i-Tree tool was designed for urban managers and
thus the wildlife component expands the capacity of the tool to
allow for a more comprehensive assessment of the ecosystem ser-
vices provided by the urban forest. With rapid habitat suitability
assessment capabilities and ease of use for non-professional scien-
tists, the wildlife component of i-Tree delivers a valuable tool that
is applicable on a regional scale.

We  recognize the importance of local and landscape fea-
tures in limiting urban bird distribution (Chamberlain, Cannon, &
Toms, 2004; McCaffrey & Mannan, 2012). We  did not have spa-
tial locations available for the majority of the i-Tree plots and
thus did not incorporate these landscape variables into the SI
calculations. However, landscape variables are known to influ-
ence the distribution for two of our modeled species: scarlet
tanager and wood thrush (Hoover & Brittingham, 1998; Robinson,
Thompson, Donovan, Whitehead, & Faaborg, 1995). We  describe
these models based on landscape features (e.g., percent forest
cover within 1 km radius of i-Tree plot; Table 3), and will include
the models in the i-Tree program when spatial data are avail-
able.

Although currently limited to the local scale, the i-Tree habitat
models have the advantage of calculating SI for specific land-uses, a
known feature that influences urban bird distribution (Blair, 1996),
and thus enabling managers to target low-scoring land-uses inde-
pendently. By discriminating among the land-use differences, the
tool recognizes the different jurisdictions and land ownership, and
the associated management strategies. For example, the strategy
for increasing canopy coverage in city-owned open space might
differ from residential lands, since the latter might require par-
ticipation from private households and the former might require
public support for urban forestry programs (Warren, Ryan, Lerman,
& Tooke, 2011). This local scale also provides greater opportunities
for intervention. For example, mangers can affect canopy percent-
age through tree planting efforts but have little opportunity to
significantly increase the area of forest tracts embedded within the
urban matrix. Thus, although protecting large tracts of contiguous
forest is essential for forest interior species (Robinson et al., 1995),
once the land becomes developed, there is little chance to effec-
tively manage and incorporate management improvement plans
at this scale.

Similar to other habitat models, the i-Tree habitat models were
not as robust for generalist species compared with habitat special-
ists (Tirpak, Jones-Farrand, Thompson, Twedt, Baxter, et al., 2009).
For example, the European starling, an urban exploiter (Blair, 1996),
scored lower than expected for each city in all the urban land-uses
(Table 4), indicating that the ten cities used in the habitat model
demonstration supported few starlings. Based on personal observa-
tions and the numerous studies documenting starlings as one of the
most abundant urban birds (Chace & Walsh, 2006), we can assume
that the model did not accurately reflect starling habitat suitabil-
ity. This was further supported during the validation process. The
results from our models also suggested that variables other than
those measured using i-Tree might better explain the habitat suit-
ability of this ubiquitous species. Habitat specialists by their very
nature are more restricted to a few key habitat features (Kilgo et al.,
2002). The i-Tree habitat models also had the tendency to overes-
timate the suitability of potential habitat. The model calculated a
high likelihood of occupancy (>0.5) for more sites than will be occu-
pied since the models did not account for interspecific competition,
an additional factor that limits distribution (Fielding & Bell, 1997;
Shochat et al., 2010).

Future directions include integrating these models into the i-
Tree program which involves coding the equations in i-Tree Eco.
We  plan to generate GIS range maps for each species to identify

the regions these equations should be activated (based on Breed-
ing Bird Survey data). We plan to model additional species in other
regions, identify additional variables for the i-Tree data collection
protocol that will help improve the estimation of the SI, and collect
bird abundance data at i-Tree plots to further validate the models.
We also urge future urban bird studies to adapt a habitat assess-
ment protocol that includes the i-Tree variables and data collection
at the same spatial scale (0.04 ha). These studies will enable us
to further model validation efforts as well as compare urban bird
habitats among cities.

The i-Tree habitat models provide a tool for local or regional
initial assessments of the current state of the urban forest for pro-
viding bird habitat. The assessment can be the basis for an extensive
and comprehensive conservation plan specifically geared toward
urban land-uses. Results from this study will help guide urban
foresters, planners, and landscape designers who  require specific
information such as how many trees and shrubs are necessary
within an urban greening project to reach conservation goals tar-
geted at improving the suitability of urban bird habitat. Given that
more than 80% of Americans live in urban environments (US Census,
2012), it becomes imperative that urban forests provide opportu-
nities for urban dwellers to connect with nature. This connection
can improve and enhance health and well-being (Fuller, Irvine,
Devine-Wright, Warren, & Gaston, 2007) while generating inter-
est and support for conservation initiatives that aim to improve
urban biodiversity (Miller, 2005).
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Supplementary Material 

Species Accounts and Models 

 

American Robin  

Status 

The American Robin Turdus migratorius is one of North America’s most abundant, widespread 

and recognizable birds. This familiar migratory species thrives in both suburban and wildland 

settings, and has been deemed “America’s favorite songbird” (Sharp, 1990). American Robin 

populations are either stable or increasing throughout the range; deforestation, urbanization and 

agricultural development often create habitat for the species (Sallabanks & James, 1999). Due to 

its ability to thrive in a variety of habitat conditions, the American Robin does not have a 

conservation status. However, it is used as a bioindicator for chemical pollution. The species has 

enjoyed a 1.9 percent increase between 1966-1996 (Sallabanks & James, 1999). 

 

Natural History 

A lower canopy, shrub forager, the American robin’s diet varies seasonally between earthworms 

and other soft invertebrates in spring and summer, and fruit in fall and winter (Sallabanks & 

James, 1999). Foraging substrates include lawns, loamy soil, and fruit bearing trees, shrubs and 

vines. Breeding habitat ranges from open woodlands and woodland edges and clearings, fields, 

orchards, and shade trees in residential areas. Residential areas and parks with lawns interspersed 

with shrubs and trees are ideal. Nesting sites vary and include horizontal branches or forks of a 

tree, shrubs and ledges of buildings. The sky blue eggs and speckled nestlings are familiar to 

many suburbanites. Territory sizes vary with population density, ranging between 0.04 and 0.84 

ha (Pitts, 1984; Young, 1950). Winter territorial behavior focuses around the defense of fruit 

(Young, 1950). 

 

Model Description 

The habitat suitability index (HSI) model for the American robin includes two plot variables: 

percent canopy cover and percent lawn cover as estimated for a 0.04 ha plot. Although forest 

area has been shown to limit robin populations (Keller, Robbins, & Hatfield, 1993; Robbins, 

Dawson, & Dowell, 1989), we believe that local features are better predictors for this species.  

 

We based our assumed values for canopy percent on qualitative accounts of the species requiring 

some trees yet not requiring extensive woodlands (Table 1). We fit a rational function (0.6439+(-

0.0024*Canopy Percent))/(1+(-0.0312*Canopy Percent)+(0.0005*Canopy Percent^2)) through 

these data points to quantify the relationship between canopy coverage and the suitability index 

(SI score; Fig. 1). 

 

We based our assumed values for lawn percent on qualitative accounts and personal observations 

of the species extracting earthworms and other soft invertebrates from manicured lawns in 

wooded parks and residential yards (Table 2). Since the robin primarily nests in trees and shrubs, 

an area with 100 % lawn cover would not be suitable. The relationship reflects the inverse of 

percent canopy. We fit a reciprocal quadratic function (1/(4.1918+(-0.0831*Lawn 
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Percent)+(0.00051* Lawn Percent ^2)) through these data points to quantify the relationship 

between lawn coverage and the suitability index (SI score; Fig. 2). We calculated the geometric 

mean of these habitat models to generate a final SI score for this species. 

 

 

Baltimore Oriole  

Status 

The Baltimore oriole (Icterus galbula) is a long-distance neotropical migrant found throughout 

north eastern and central United States, and the plains of Canada. This species has adapted well 

to suburbia and urban parks, and thus, is another of America’s most familiar songsters. The 

management of treed parks in urban and suburban areas will assist with the broadening of the 

breeding distribution (Ickes, 1992). The species has a Partners in Flight (PIF) score of 17 (a score 

of 30 being the highest for this region and thus having the highest level of conservation concern) 

in the mid-Atlantic region and a 3.2 percent decline between 1966-1996 (Watts, 1999). The PIF 

score in southern New England is 23 (Dettmers & Rosenberg, 2000).  

 

Natural History 

This canopy-gleaning passerine is found in a variety of habitats, favoring deciduous woodland 

edges, especially along riparian corridors, and suburban areas with tall and scattered shade trees, 

groves, orchards and parks. Also found in open woodlands with well-spaced trees (Salt & Salt, 

1976); avoids closed-canopy forests (Palmer-Ball, 1996), and prefers large trees (e.g. dbh  > 23 

cm; Perkins, Johnson, & Blankenship, 2003). The species nests in deciduous trees, and builds 

their pendulant nest in the upper canopy, near the tip or outer branch of a tree (Rising & Flood, 

1988). The familiar pendulant nest droops down from the upper branches. Territory sizes range 

from 0.15 ha to 1.86 ha. 

 

Model Description 

The HSI for Baltimore oriole includes one plot variable: canopy percent within a 0.04 ha plot 

and one tree variable: tree density for trees greater than 23 cm diameter at breast height. These 

variables address the relationship between a moderate canopy cover that consists of primarily 

large, open-grown trees.  

 

We based our assumed values for canopy percent on qualitative accounts of the species requiring 

some trees yet not requiring extensive woodlands (Table 3). We fit a gausian function 

1.0127*exp(0-((Canopy Percent-35.4635)^2)/(2*15.3508^2)) through these data points to 

quantify the relationship between canopy coverage and the suitability index (SI score; Fig. 3). 

 

We based our assumed values for the upper limits of large tree density (>23 cm dbh) per 0.04 ha 

plot on i-Tree data sets: four of the ten cities had plots with at least 11 large trees present (Table 

4). In addition, a higher density of large trees would increase the canopy coverage for the plot. 

The tree size also positively correlates with tree height and therefore larger trees are taller and 

thus more suitable for this high-canopy nester. We fit a rational function (0.0378+(0.2794*large 

tree density))/(1+(-0.4471* large tree density)+(0.1311* large tree density ^2))through these data 



3 
 

points to quantify the relationship between large tree density and the suitability index (SI score; 

Fig. 4). We calculated the geometric mean of these habitat models to generate a final SI score for 

this species. 

 

Black-capped Chickadee  

Carolina Chickadee  

Status 

The black-capped chickadee (Parus atricapillus) is one of America’s most widespread and 

familiar species. This non-migratory species can be found throughout the northern half of the 

United States and much of Canada. Based on Breeding Bird Surveys, eastern populations are 

thought to be increasing, though the range expansion of tufted titmouse (Baeolophus bicolor) 

might negatively impact chickadee populations (Loery & Nichols, 1985; Smith, 1991). Although 

urbanization has a negative effect on black-capped chickadees, suburban areas with large natural 

snags seem to partially mitigate the impacts of urban development (Blewett & Marzluff, 2005; 

Donnelly & Marzluff, 2006). The species has a PIF score of 15 in the mid-Atlantic region 

(Watts, 1999). No PIF scores reported for southern New England (Dettmers & Rosenberg, 2000).  

 

The Carolina chickadee (Parus carolinensis) is the southeastern counterpart of black-cappped 

chickadee, with western limits in Kansas and eastern Texas and northern reaches into New 

Jersey and Pennsylvania. Similar to black-capped chickadees, the Carolina chickadee has 

adapted to suburbanization due to the presence of bird feeders and nest boxes (Doherty & Grubb 

2002a; Hadidian, Sauer, Swarth, Handly, Droege, Williams, Huff, & Didden, 1997; Ringler, 

1996). However, suburban areas highly prone to habitat fragmentation and areas with strong, 

negative interactions with house wrens (Troglodytes aedon) might lead to negative population 

trends (Doherty & Grubb, 2002b; Foote, Mennill, Ratcliffe, & Smith, 2010; Mostrom, Curry, & 

Lohr, 2002). Carolina chickadee has a PIF score of 21 and a 2.2 percent decline between 1966 

and 1996 in the mid Atlantic region (Watts, 1999). 

 

Natural History 

A lower canopy, shrub gleaner, both the black-capped and Carolina chickadee diet consists 

mainly of insects during the breeding season and a mixture of seeds and berries, and insects and 

spiders during the winter (Smith, 1991; 1993). Breeding habitat includes deciduous, coniferous, 

or mixed woodlands (mixed preferred for black-capped, deciduous preferred for Carolina; 

Morse, 1970), and both species can be found in heavily forested and residential areas, with 

optimal conditions of an open understory and mature subcanopy (Anderson & Shugart, 1974). 

Wintering habitat includes city parks and residential areas with feeding stations adjacent to 

breeding habitat. Specific habitat requirements include dead standing trees or stubs (minimum 

dbh 10 cm; Holmes, 2002) for excavating cavities or trees with existing cavities for nesting 

(Mostrom, Curry, & Lohr, 2002). The chickadees will also use nest boxes.  

 

Model Description 

The US Fish and Wildlife Service developed an HSI model for black-capped chickadee which 

included percent canopy cover (i-Tree plot variable), tree height and dead wood density (i-Tree 
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tree variable; Holmes, 2002; Schroeder, 1982). We used the revised models published by Holmes 

(2002) for the i-Tree datasets. Due to the similarities in habitat requirement (Mostrom, Curry, & 

Lohr, 2002), we assumed that the variables thought to limit population abundances of black-

capped chickadee was applicable to Carolina Chickadee and therefore present one model for 

both species.  

 

Sturman (1968) proposed that tree foliage volume was a strong predictor of arthropod 

abundance, a major food resource for chickadees. However, this is time consuming to measure, 

and therefore Schroeder (1983) suggested that canopy cover and mean tree height per 0.04 ha 

plot were suitable alternative variables to address food resources (Table 5, 6). Although these 

data are available in i-Tree, we stuck with Schroeder’s models. We fit a gausian function 

(1.002*exp((0-((Canopy Percent)-63.5682)^2)/1795) through these data points to quantify the 

relationship between canopy coverage and the suitability index (SI score; Fig. 5). We fit a 

logistic function (0.9757/(1+(11.7426*exp(-0.4852*Mean Tree Ht(m)))) through the data points 

to quantify the relationship between mean tree height (m) per 0.04 ha plot and the suitability 

index (SI score; Fig. 6). 

 

To address nesting resources we calculated the number of trees within a 0.04 ha plot with 

deadwood. To calculate the density of dead wood per i-Tree plot, we assumed all trees with a 

condition classification of “fair”, “poor”, “dying” and “dead” potentially harbored wood that 

could be excavated for cavities. In addition to Holmes’ (2002) values, we included Sedgwick and 

Knopf (1990) data that sites with at least six trees with dead wood were most suitable (Table 7). 

We fit a logistic function (1.007/(1+(32.567*exp(-1.403*density of trees with dead wood))) 

through the data points to quantify the relationship between density of trees with deadwood per 

0.04 ha plot and the suitability index (SI score; Fig. 7). We calculated the geometric mean of 

these habitat models to generate a final SI score for this species. 

 

European Starling  

Status 

From humble beginnings of about 100 individuals released in Central Park, NY, the European 

Starling (Sturnus vulgaris) is one of the most successful introductions to North America with a 

population hovering around 200 million (Cabe, 1993). Although declining in Europe (Newton, 

2004), this species continues to thrive throughout North American cities, towns and agricultural 

areas. Due to its overabundance, this species is considered a nuisance and efforts to control 

populations are common, though often ineffective. Starlings often compete with native species 

for cavity sites and thus their increasing presence has detrimental impacts on other cavity-nesting 

species (Cabe, 1993). The species has a PIF score of 11 and a 2.7 decline between 1966-1996 in 

the mid-Atlantic region (Watts, 1999). No conservation status provided for southern New 

England (Dettmers & Rosenberg, 2000). 

  

Natural History 

A ground-foraging omnivorous passerine, the European starling is one of North America’s most 

synanthropic species. Urban (e.g. lawns) and cultivated fields and hayfields, orchards, and parks 
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provide ideal conditions for this species and can often be seen foraging for insects, grains, fruit 

and seeds in these areas. They appear to avoid pristine wilderness areas including non-

grasslands, forests, deserts and arid chaparral (Cabe, 1993). They form massive winter roosts in 

dense vegetation, with numbers exceeding a million individuals. The shimmering flight pattern 

of a tight flock is a common spectacle over fields and cities alike. This cavity nester will use a 

variety of holes including crevices in buildings, cliffs, nest boxes and previously occupied 

woodpecker cavities. The territories are focused within the immediate vicinity of the cavity 

entrance (ca. 50 cm; Kessel, 1957).  

 

Model Description  

The habitat suitability index (HSI) model for the European starling includes two plot variables: 

percent lawn cover and percent building cover as estimated for a 0.04 ha plot, and two tree 

variables: tree density and density of deadwood present within a 0.04 ha plot. Although forest 

area has been shown to limit starling populations (Keller, Robbins, & Hatfield, 1993; Robbins, 

Dawson, & Dowell, 1989), we believe that local features are better predictors for this species.  

 

We based our assumed values for lawn percent on qualitative accounts and personal observations 

of the species extracting insects and seed from manicured lawns in wooded parks and residential 

yards to areas with extensive amounts of lawn and turf (Table 8).  We fit a logistic function 

(1.02247436719/(1+(40.643183849*exp(-0.1043766533*lawn percent per 0.04 ha))) through 

these data points to quantify the relationship between lawn coverage and the suitability index (SI 

score; Fig. 8). 

 

We based our assumed values for building percent on qualitative accounts and personal 

observations of this species nesting in rain gutters, eaves, and other building cavities.  Since the 

starling is extremely synanthropic, we assumed that plots with 100% building cover were 

suitable despite the presence of lawn (Table 9). We fit a rational function (-

0.0004+(0.0148*building percent per 0.04 ha))/(1+(-0.0379* building percent per 0.04 

ha)+(0.0007* building percent per 0.04 ha ^2)) through these data points to quantify the 

relationship between building coverage and the suitability index (SI score; Fig. 9). 

 

We based our assumed values for tree density per 0.04 ha to reflect a gradient from field to 

forest, with areas of low tree density (all size classes) being more suitable (Table 10). In 

addition, tree density reflects the inverse relationship with lawn percent. We fit a rational 

function (0.8129+(-0.088*tree density per 0.04 ha))/(1+(-0.3167* tree density per 0.04 

ha)+(0.0547* tree density per 0.04 ha ^2)) through these data points to quantify the relationship 

between tree density and the suitability index (SI score; Fig. 10). 

 

European starling also nests in cavities and we assumed some conditions suitable for 

woodpeckers (e.g. red-bellied woodpecker) would also apply for starlings. Straus, Bavrlic, Nol, 

Burke, and Elliott, (2011) found that when at least one tree with deadwood was present within a 

0.04 ha plot, red-bellied woodpeckers were also present. Adkins, Giese, and Cuthbert (2003) 

found slightly higher densities of deadwood to be more suitable. Due to starlings’ ability to nest 
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in artificial cavities (i.e. not tree cavities), we assumed that sites without deadwood present were 

still suitable (Table 11). We fit an exponential function (0.8005*(1.2498-exp(-2.4290*density of 

trees with deadwood)) through these data points to quantify the relationship between deadwood 

density within 0.04 ha and the suitability index (SI score; Fig. 11). We then calculated the 

geometric mean of these habitat models to generate a final SI score for this species. 

 

Northern Cardinal Cardinalis cardinalis 

Status 

The Northern Cardinal (Cardinalis cardinalis) is resident found throughout eastern and central 

United States and Mexico. Northward movements of its range have been attributed to the urban 

heat island effect and provisions at bird feeders. The brilliantly red male is one of America’s 

most familiar birds and is the state bird for seven states (Halkin & Linville, 1999). Alteration of 

habitat (converting forests to agriculture and suburbs) has benefited cardinals by increasing 

nesting habitat (Halkin & Linville, 1999). Based on Breeding Bird Survey data, the species has 

experienced 1 percent decline between 1966-1996 and has a PIF score of 14 in the Mid-Atlantic 

region. The species has experienced a 3.3 percent increase between 1966 and 1996 (Watts, 

1999), and no PIF score for southern New England (Dettmers & Rosenberg, 2000). 

 

Natural History 

This omnivorous ground gleaner’s diet consists of seeds, fruit, and insects (Halkin & Linville, 

1999). Bird feeding during winter assists with survival in the colder parts of its range. Cardinals 

can be found along forest edges, open woodlands, suburban yards, urban parks and other areas 

with thickets and shrubs. In an extensive study of a breeding bird community in east Tennessee, 

Anderson and Shugart (1974) found that cardinals preferred sites with a thick subcanopy and 

relatively open canopy. Nest sites are located in dense, low vegetation including shrubs and 

small trees (deciduous and coniferous), vines, thickets and briars (Conner, Anderson, & Dickson, 

1986; Ehrhart & Conner, 1986), and with prominent song posts in close proximity (Dow, 1969). 

Territory size ranges from 0.21 to 2.60 ha (Halkin & Linville, 1999). 

 

Model Description  

The habitat suitability model (HSI) for northern cardinal includes two plot variables: canopy 

percent and shrub percent, both within a 0.04 ha plot. These variables address the relationship 

between a moderate to open canopy cover which can encourage an extensive shrub layer.  

 

We based our assumed values for canopy cover on qualitative accounts and personal 

observations of the species in edge habitats, residential yards with little to no canopy cover and 

lack of observations in thick, extensive woodlands (Table 12). We fit a rational function 

(0.6313+(-0.0054* Canopy Percent))/(1+(-0.0370* Canopy Percent)+(0.0007* Canopy Percent 

^2)) through the data points to quantify the relationship between percent canopy cover per 0.04 

ha plot and the suitability index (SI score; Fig. 12). 

 

We based our assumed values for shrub cover on qualitative accounts and personal observations 

of the species nesting in dense shrubs, privets, thickets and other low vegetation in residential 
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yards and urban parks (Table 13). We fit a rational function (0.0095+(0.0213*Shrub 

Percent))/(1+(-0.0212*Shrub Percent)+(0.0004*Shrub Percent ^2)) through the data points to 

quantify the relationship between percent shrub cover per 0.04 ha plot and the suitability index 

(SI score; Fig. 13). 

 

Red-bellied Woodpecker  

Status 

The red-bellied woodpecker (Melanerpes carolinus) has a broad distribution throughout the 

eastern half of the United States. The species is resident throughout the eastern part of its range 

though northern birds move south during cold winters (Winkler, Christie, & Nurney, 1995). The 

red-bellied woodpecker is a familiar site to feeder watchers and easily recognized. The species is 

commonly reported throughout the eleven i-Tree cities and not of conservation concern largely 

in part to its preference for a wide range of forest types (Shackelford, Brown, & Conner, 2000). 

Based on Breeding Bird Survey data, the nationwide population is either stable or increasing 

(Price, Droege, Price, & Beadle, 1995) and appears to thrive in urban and suburban areas. 

However, similar to other woodpeckers, the red-bellied is heavily dependent on snags and dead 

wood for nesting and roosting and therefore urban forest management plans that encourage dead 

wood have the potential to support this species. For the mid-Atlantic region, the species has a 

PIF score of 15 (Watts, 1999), and in southern New England, the species has increased 21.1 

percent between 1966 and 1996 (Dettmers & Rosenberg, 2000).  

 

Natural History 

The red-bellied woodpecker is a vocal and conspicuous cavity-nester found in mature pine 

forests, hardwood forests or a mixture of the two. The species excavates cavities in snags on 

dead trees or dead limbs on live trees. An opportunistic forager, this species’ diet consists of 

fruit, beech and acorn masts and arboreal arthropods. Red-bellied woodpeckers are sedentary, 

remaining on breeding grounds year-round. Average territory size ranges from 1.8 to 2.5 ha 

based on studies from upland forests and virgin floodplain forest in Illinois (Shackelford, Brown, 

& Conner, 2000).  

 

Model Description 

The habitat suitability index model for the red-bellied woodpecker includes four plot variables: 

tree density per 0.04 ha, basal area per ha, density of dead wood (i.e. trees classified as fair, poor, 

dying or dead) per 0.04 ha, and percent canopy cover per 0.04 ha. 

 

The species relies on forested areas and we included three variables to describe these habitat 

needs. Adkins, Giese, and Cuthbert (2003) observed 24 trees per 0.04 ha and a basal area of 34 

m
2
 per ha in oak forests of the Upper Midwest, while Conner (1980) observed 30 trees per 0.04 

ha and a basal area of 14 m
2
 per ha in oak-hickory forests around Blacksburg, VA. However, 

these studies didn’t discern tree size. We wanted the model to reflect the mean diameter of the 

cavity limb (21.6 cm; Jackson, 1976) so only included trees greater than 23 cm dbh and adjusted 

the densities to reflect these conditions (Table 14). We fit a rational function (0-

0.0035+(0.1606*Tree Density))/(1+(-0.1417*Tree Density)+(0.0233* Tree Density ^2)) where 
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Tree Density is the density of trees greater than 23 cm dbh within a 0.04 ha plot, through these 

data points to predict how habitat suitability varied with large tree density (Fig. 14). We assumed 

suitability was the lowest when trees were absent. Our inclusion of basal area for all trees greater 

than 6 cm dbh reflects the propensity for this species to prefer relatively dense forests 

(Shackelford, Brown, & Conner, 2000; Table 15). We fit a logistic function 

0.9906/(1+(47.9216*exp(-0.9689*basal area))) where basal area is m
2
/ha and calculated for all 

trees greater than 6 cm dbh, through these data points to quantify the relationship between basal 

area and the suitability index (SI score; Fig. 15). 

 

Canopy coverage also predicts habitat suitability. DeGraaf, Yamasaki, Leak, and Lester, (2006) 

suggested that when canopy coverage exceeding 35%, the site provided suitable conditions for 

red-bellied woodpeckers. We based our assumed values for canopy cover on qualitative accounts 

and personal observations of the species in forested suburban and riparian areas, with lack of 

observations in areas with little to no canopy cover and areas with an extremely dense canopy 

cover (Table 16). We fit a rational function (-0.0371+(0.0124*Percent Canopy))/(1+(-0.0363* 

Percent Canopy)+(0.0005* Percent Canopy ^2)), where Percent Canopy is the percent of a 0.04 

ha plot with tree canopy cover, through these data points to predict how habitat suitability varied 

with canopy coverage (Fig. 16). We assumed suitability was the lowest when trees were absent. 

 

Although dead wood is necessary for foraging and nesting, they are not essential for detecting 

red-bellied woodpeckers. Of 42 nests in southwest Ontario, Strauss et al. (2011) observed 93% 

of the nests in dead and declining trees and 6% of nests in healthy trees. Adkins, Giesse, and 

Cuthbert (2003) observed 3 dead or declining trees per 0.04 ha in the Midwest (Table 17). We fit 

a logistic function 1/(1+(15.67*exp(-5.338*Dead Wood density per 0.04 ha))), (where dead 

wood is recorded as trees with a condition of fair, poor, dying or dead) through these data points 

to quantify the relationship between trees with dead wood and the suitability index (SI score; Fig. 

17). We calculated the geometric mean of these habitat models to generate a final SI score for 

this species. 

 

Scarlet Tanager  

Status 

The scarlet tanager (Piranga olivacea) is a long-distance neotropical migrant, found in deciduous 

forests throughout the northeastern United States and southern Canada. This forest interior 

species is highly sensitive to forest fragmentation (Roberts & Norment, 1999). In a study from 

New Jersey, scarlet tanagers were present only in forest fragments greater than 3 ha, though 

forest areas greater than 10 ha were required to sustain a viable population (Galli, Leck, & 

Forman, 1976; Robbins, Dawson, & Dowell, 1989; Roberts & Norment, 1999). As fragment size 

decreases, nest predation and parasitism rates increase (Robinson, Thompson III, Donovan, 

Whitehead, & Faaborg, 1995). According to the Breeding Bird Survey, the species has 

experienced a1.6 percent decline between 1966 and1996, and has a PIF score of 21 in the mid-

Atlantic region (Watts, 1999). The species has experienced a 1 percent decline and has a PIF 

score of 22 in southern New England (Dettmers & Rosenberg, 2000). 
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Natural History 

Scarlet tanagers spend most of their time in the mid to upper canopy, hovering and gleaning 

insects from flowers, fruit, leaves and bark (Mowbray, 1999). They are associated with mature 

deciduous and mixed forests but occasionally found in dense shade trees in suburban areas, 

cemeteries and parks (Mowbray, 1999). They prefer trees greater than 22.4 cm dbh, and 

primarily in oak-hickory woods (Mowbray, 1999). Territory size varies according to vegetation 

type but ranges from 0.8 – 5.0 ha (Robbins, 1980; Zumeta & Holmes, 1978).  

 

Model Description 

The HSI model for the scarlet tanager includes three plot variables: large tree (> 23 cm dbh) 

density per 0.04 ha, basal area per ha, and percent canopy cover per 0.04 ha. The model also 

includes one landscape variable: extent of forest patches (ha).  

 

Three separate studies found that when a forested 0.04 ha plot had at least 20 large trees, the area 

would support scarlet tanagers (Shy, 1984; Roberts & Norment, 1999; Rivera, McShea, & 

Rappole, 2003; Table 18). We fit a logistic function (1.01622702/(1+(24569.22035*EXP(-

0.6493929*Tree Density))) where Tree Density is the density of trees greater than 23 cm dbh 

within a 0.04 ha plot, through these data points to predict how habitat suitability varied with 

large tree density (Fig. 18). We assumed suitability was the lowest in plots with fewer than ten 

trees. In addition to mature forests (i.e. those with large trees), scarlet tanagers also prefer dense 

forests. Based on Roberts and Norment (1999) we calculated a mean basal area of 62 m
2
/ha and 

assumed this density to be most suitable for tanagers (Table 19). We fit a logistic function 

(1.0363/(1+(49.295*EXP(-0.1088*Basal Area))) where basal area is m
2
/ha and calculated for all 

trees greater than 6 cm dbh, through these data points to quantify the relationship between basal 

area and the suitability index (SI score; Fig. 19).  

 

Scarlet tanagers prefer territories in forested areas with dense canopy cover (Ambuel & Temple, 

1983). Roberts and Norment (1999) and Shy (1984) suggest that a canopy coverage of 89% 

represented the most suitable conditions for this species, with forested patches having 75% 

canopy coverage highly suitable (Shy, 1984; Table 20). We fit a logistic function 

(1.0363/(1+(49.295*EXP(-0.1088*Percent Canopy))) where Percent Canopy is the percent of a 

0.04 ha plot with tree canopy cover, through these data points to predict how habitat suitability 

varied with canopy coverage (Fig. 20). We assumed suitability declined significantly when 

canopy coverage was less than 50%. 

 

We included one landscape variable to account for the extreme sensitivity this species exhibits to 

forest fragmentation (Robinson et al., 1995; Table 21). We fit a multiple multiplicative factor 

(MMF) function ((-0.0009*4.3992)+(1.6780*Forest Area ^0.2539))/(4.3992+ Forest Area 

^0.2539) where Forest Area is forest patch size (ha) through these data points to predict how 

habitat suitability varied with the extent of forested areas (Fig. 21). Although a low suitability, 

forest patches 1 ha have the potential to harbor scarlet tanagers, thus suggesting the possibility of 

urban remnant patches to have some conservation value for this species. We calculated the 

geometric mean of these habitat models to generate a final SI score for this species. 
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Wood Thrush  

Status 

The wood thrush (Hylocichla mustelina) is a long-distance neotropical migrant found throughout 

eastern North America (Roth, Johnson, & Underwood, 1996). This species is a symbol of 

threatened and declining songbirds and it has become increasingly rare throughout its range since 

the 1970s (Evans, Gow, Roth, Johnson, & Underwood, 2011). Habitat loss and fragmentation in 

the breeding and wintering grounds have had detrimental effects on populations, and thus 

exacerbating the impacts of cowbird parasitism (Thompson III, Robinson, Donovan, Faaborg, 

Whitehead, & Larsen, 2000). The wood thrush is a species of conservation concern, with a 2.3 

percent decline between 1966 and 1996, and a Partners in Flight score of 24 for the mid Atlantic 

(Watts, 1999). The species has experienced a 2.2 percent decline between 1966 and 1996, and 

PIF score of 24 for southern New England (Dettmers & Rosenberg, 2000). 

 

Natural History 

A ground-foraging passerine, the wood thrush is associated with mature upland forests (mainly 

deciduous or mixed but largely avoids evergreen stands) with closed overstory canopies (Bell & 

Whitmore, 2000; Evans et al., 2011). Additional conditions include forest patches with trees 

taller than  >16 m, moderate subcanopy, sapling density and shrubs for nesting, cool and moist 

soil conditions, and a somewhat open forest floor with decaying leaf litter for foraging (Evans et 

al., 2011). The species is thought to be highly sensitive to forest fragmentation with regards to its 

productivity but has nested in small forest fragments (0.3 ha; e.g. remnant patches in residential 

areas and parks) at low densities (Tilghman, 1987; Weinberg & Roth, 1998). 

 

The wood thrush’s diet mainly consists of soil invertebrates and fruits, and occasionally feeds on 

arboreal insects, snails and small salamanders (Evans et al., 2011). The nest is typically located 

on a horizontal branch or crotch within a sapling or tree (Evans et al., 2011). Hoover and 

Brittingham (1998) suggested that nest success was better predicted by the amount of forest in 

the landscape rather than the microhabitat structural features surrounds nests. Territory size 

ranges between 0.08 and 4.0 ha (Evans, Stutchbury, & Woolfenden, 2008; Twomey, 1945).  

 

Habitat Model 

The HSI model for the wood thrush includes two plot variables: percent canopy cover per 0.04 

ha and sapling density per 0.04 ha plot. The model also includes one landscape variable: percent 

forest landcover within a 1 km radius.  

 

The wood thrush associates with dense canopied forests (Table 22) and we fit a logistic function 

1.03163/(1+(141241.64*EXP(-0.1531*Percent Canopy))) where Percent is the percent of a 0.04 

ha plot with tree canopy cover to data from Annand and Thompson (1997) and Hoover and 

Brittingham (1998) to predict SI scores from percent canopy coverage scores (Fig. 22). Tirpak et 

al. (2009) devised a model that incorporated small stem densities (< 2.5 cm) based on Hoover 

and Brittingham (1998) assertion that 1,988 stems per ha represented optimal habitat. These stem 

densities within the i-Tree datasets were far from this abundance, even when we included shrub 



11 
 

densities into the equation. We therefore used sapling density (<10 cm) as a proxy to assess the 

midstory cover. We based our assumed values on existing i-Tree datasets and balanced the 

relationship between a dense canopy cover and the sapling density whereby at least 10 saplings 

were recorded in i-Tree plots with 90% canopy coverage (Table 23). We fit a logistic function 

(1.0401978/(1+(65.800186*EXP(-0.758149*(Sapling Density))))), where sapling density is the 

number of trees <10 cm in diameter within a 0.04 ha plot, through these data points to quantify 

the relationship between sapling density and the suitability index (Fig. 23).  

 

Although studies have demonstrated the importance of forest area as a predictor of nest success 

for wood thrush (e.g. Robbins, Dawson, & Dowell, 1989; Kilgo et al., 1998), we chose a variable 

that reflected the amount of forest patches within the greater landscape matrix to address the 

suitability of urban parks and remnant patches within residential landscapes (Table 24). 

Following Tirpak et al. (2008), we fit a logistic function 1.003/(1+(224.7853*EXP(-

0.1081*(1KM % Forest)))) where 1KM % Forest is the percent of a 1 km plot around an i-Tree 

monitoring plot classified as forest landcover to data based on Donovan, Jones, Annand, and 

Thompson (1997; Fig. 24). In this study, the predator and brood parasite communities were 

related to fragmentation size: highly fragmented (< 15 percent), moderately fragmented (45 to 50 

percent), and lightly fragmented (> 90 percent forest) landscapes. We followed logic from Tirpak 

et al. (2008), and also assumed the midpoints between 30 and 70 percent represented the 

thresholds for low suitability (SI score ≤ 0.10) and excellent suitability (SI score ≥ 0.90) habitats. 

We calculated the geometric mean of these habitat models to generate a final SI score for this 

species. 



12 
 

Literature Cited 

Adkins Giese, C. L., & Cuthbert, F. J. (2005). Woodpecker nest tree characteristics in upper 

midwestern oak forests. The Canadian Field-Naturalist, 119(3), 367–376. 

Ambuel, B., & Temple, S. A. (1983). Area-Dependent Changes in the Bird Communities and 

Vegetation of Southern Wisconsin Forests. Ecology, 64(5), 1057–1068. doi:10.2307/1937814 

Anderson, S., & Shugart, H. (1974). Habitat selection of breeding birds in an east Tennessee 

deciduous forest. Ecology, 55(4), 828–837. doi:10.2307/1934418 

Annand, E. M., & Thompson, F. R. (1997). Forest Bird Response to Regeneration Practices in 

Central Hardwood Forests. The Journal of Wildlife Management, 61(1), 159–171. 

doi:10.2307/3802425 

Bell, J. L., & Whitmore, R. C. (2000). Bird Nesting Ecology in a Forest Defoliated by Gypsy 

Moths. The Wilson Bulletin, 112(4), 524–531. 

Blewett, C. M., & Marzluff, J. M. (2005). Effects of Urban Sprawl on Snags and the Abundance 

and Productivity of Cavity-Nesting Birds. The Condor, 107(3), 678–693. 

Cabe, P. R. (1993). European Starling (Sturnus vulgaris). (A. Poole, Ed.). The Birds of North 

America Online. Retrieved from http://bna.birds.cornell.edu/bna/species/048 doi:10.2173/bna.48 

Conner, R. (1980). Foraging habits of woodpeckers in southwestern Virginia. Journal of Field 

Ornithology, 51(2), 119–127. 

Conner, R. N., Anderson, M. E., & Dickson, J. G. (1986). Relationships among Territory Size, 

Habitat, Song, and Nesting Success of Northern Cardinals. The Auk, 103(1), 23–31. 

DeGraaf, R. M., Yamasaki, M., Leak, W. B., & Lester, A. M. (2006). Technical guide to forest 

wildlife habitat management in New England. Burlington, Vermont: University of Vermont 

Press. 

Dettmers, R., & Rosenberg K.V. (2000). Partners In Flight landbird conservation plan:  

physiographic area 9: Southern New England. Retrieved from 

http://www.partnersinflight.org/bcps/plan/pl_09_10.pdf.  

Doherty, P. F., & Grubb, T. C. (2002a). Survivorship of Permanent-Resident Birds in a 

Fragmented Forested Landscape. Ecology, 83(3), 844–857. doi:10.1890/0012-

9658(2002)083[0844:SOPRBI]2.0.CO;2 

Doherty, P. F., & Grubb, T. C. (2002b). Nest usurpation is an “edge effect” for Carolina 

chickadees Poecile carolinensis. Journal of Avian Biology, 33(1), 77–82. doi:10.1034/j.1600-

048X.2002.330112.x 

http://bna.birds.cornell.edu/bna/species/048
http://dx.doi.org/10.2173/bna.48
http://www.partnersinflight.org/bcps/plan/pl_09_10.pdf


13 
 

Donnelly, R., & Marzluff, J. (2006). Relative importance of habitat quantity, structure, and 

spatial pattern to birds in urbanizing environments. Urban Ecosystems, 9(2), 99–117. 

doi:10.1007/s11252-006-7904-2 

Donovan, T. M., Jones, P. W., Annand, E. M., & Thompson, F. R. (1997). Variation in Local-

Scale Edge Effects: Mechanisms and Landscape Context. Ecology, 78(7), 2064–2075.  

Dow, D. D. (1969). Habitat utilization by cardinals in central and peripheral breeding 

populations. Canadian Journal of Zoology, 47(3), 409–417. doi:10.1139/z69-075 

Ehrhart, R. L., & Conner, R. N. (1986). Habitat selection by the Northern Cardinal in three 

eastern Texas forest stands. The Southwestern Naturalist, 31(2),191–199. 

Evans, M. L., Stutchbury, B. J. M., & Woolfenden, B. E. (2008). Off-territory forays and genetic 

mating system of the Wood Thrush (Hylocichla mustelina). The Auk, 125(1), 67–75. 

 Evans, M., Gow, E., Roth, R.R., Johnson, M.S., & Underwood, T.J. (2011). Wood Thrush 

(Hylocichla mustelina). (A. Poole, Ed.). The Birds of North America Online. Retrieved from 

http://bna.birds.cornell.edu/bna/species/246 doi:10.2173/bna.246 

 Foote, J. R., Mennill, D.J.,  Ratcliffe, L.M. & Smith, S.M. (2010). Black-capped Chickadee 

(Poecile atricapillus). (A. Poole, Ed.). The Birds of North America Online. Retrieved from 

http://bna.birds.cornell.edu/bna/species/039 doi:10.2173/bna.39 

Galli, A. E., Leck, C. F., & Forman, R. T. T. (1976). Avian Distribution Patterns in Forest 

Islands of Different Sizes in Central New Jersey. The Auk, 93(2), 356–364. 

Hadidian, J., Sauer, J., Swarth, C., Handly, P., Droege, S., Williams, C., Huff, J., et al. (1997). A 

citywide breeding bird survey for Washington, D.C. Urban Ecosystems, 1(2), 87–102. 

doi:10.1023/A:1018563125184 

Halkin, S. L., & Linville, S. U. (1999). Northern Cardinal (Cardinalis cardinalis). (A. Poole, Ed). 

The Birds of North America Online. Retrieved from http://bns.birds.cornell.edu/bna/species/440   

doi:10.2173/bna.440 

Holmes, D. (2002). Habitat evaluation procedures (HEP) report; Pend Oreille Wetlands Wildlife 

II project. Technical Report, Project No. 199106000. Retrieved from 

https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=00004008-2  

Hoover, J. P., & Brittingham, M. C. (1998). Nest-Site Selection and Nesting Success of Wood 

Thrushes. The Wilson Bulletin, 110(3), 375–383. 

Ickes, R. (1992). Northern Oriole, Icterus galbula. In Brauning, D.W. (Ed.), Atlas of the breeding 

birds in Pennsylvania (pp. 410–411). Pittsburgh, PA: University of Pittsburgh Press. 

http://bna.birds.cornell.edu/bna/species/246
http://dx.doi.org/10.2173/bna.246
http://bna.birds.cornell.edu/bna/species/039
http://dx.doi.org/10.2173/bna.39
http://bns.birds.cornell.edu/bna/species/440
https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=00004008-2


14 
 

Jackson, J. A. (1976). A Comparison of Some Aspects of the Breeding Ecology of Red-Headed 

and Red-Bellied Woodpeckers in Kansas. The Condor, 78(1), 67–76. doi:10.2307/1366917 

Keller, C. M. E., Robbins, C. S., & Hatfield, J. S. (1993). Avian communities in riparian forests 

of different widths in Maryland and Delaware. Wetlands, 13(2), 137–144. 

Kessel, B. (1957). A Study of the Breeding Biology of the European Starling (Sturnus vulgaris 

L.) in North America. American Midland Naturalist, 58(2), 257–331. doi:10.2307/2422615 

Kilgo, J. C., Sargent, R. A., Chapman, B. R., & Miller, K. V. (1998). Effect of stand width and 

adjacent habitat on breeding bird communities in bottomland hardwoods. The Journal of wildlife 

management, 62(1), 72–83. 

Loery, G., & Nichols, J. D. (1985). Dynamics of a Black-capped Chickadee Population, 1958-

1983. Ecology, 66(4), 1195–1203. doi:10.2307/1939172 

Morse, D. H. (1970). Ecological Aspects of Some Mixed-Species Foraging Flocks of Birds. 

Ecological Monographs, 40(1), 119–168. doi:10.2307/1942443 

Mostrom, A. M., Curry, R. L., & Lohr, B. (2002). Carolina Chickadee (Poecile carolinensis). (A. 

Poole, Ed). The Birds of North America Online. Retrieved from 

http://bna.birds.cornell.edu/bna/species/636  doi:10.2173/bna.636 

Mowbray, T. B. (1999). Scarlet Tanager (Piranga olivacea). (A. Poole, Ed.). The Birds of North 

America Online. Retrieved from http://bna.birds.cornell.edu/bna/species/479  

doi:10.2173/bna.479 

Newton, I. (2004). The recent declines of farmland bird populations in Britain: an appraisal of 

causal factors and conservation actions. Ibis, 146(4), 579–600. doi:10.1111/j.1474-

919X.2004.00375.x 

 Palmer-Ball Jr, B. L. (1996). The Kentucky breeding bird atlas. University Press of Kentucky.  

Perkins, M. W., Ron J. Johnson, & Blankenship, E. E. (2003). Response of Riparian Avifauna to 

Percentage and Pattern of Woody Cover in an Agricultural Landscape. Wildlife Society Bulletin, 

31(3), 642–660. 

Pitts, T. D. (1984). Description of American Robin territories in northwest Tennessee. Migrant, 

55, 1–6. 

Price, J., Droege, S., Price, A., & Beadle, D. D. (1995). The summer atlas of North American 

birds. Academic Press San Diego.  

Ringler, R. F. (1996). Carolina Chickadee. In C. S. Robbins (Ed.), Atlas of the Breeding Birds of 

Maryland and the District of Columbia (pp. 256–257). University of Pittsburgh Press. 

http://bna.birds.cornell.edu/bna/species/636
http://bna.birds.cornell.edu/bna/species/479


15 
 

Rising, J.D. & Flood, N. J. (1998). Baltimore Oriole (Icterus galbula), (A. Poole, Ed.). The Birds 

of North America Online.  Retrieved from http://bna.birds.cornell.edu/bna/species/384 

doi:10.2173/bna.384 

Rivera, J. H. V., McShea, W. J., & Rappole, J. H. (2003). Comparison of breeding and 

postbreeding movements and habitat requirements for the Scarlet Tanager (Piranga olivacea) in 

Virginia. Auk, 120(3), 632–644. 

Robbins, C. S. (1980). Effect of forest fragmentation on breeding bird populations in the 

piedmont of the mid-Atlantic region. Atlantic Naturalist, 33(1), 31–36. 

Robbins, C. S., Dawson, D. K., & Dowell, B. A. (1989). Habitat area requirements of breeding 

forest birds of the middle Atlantic states. Wildlife Monographs, 3–34. 

Roberts, C., & Norment, C. J. (1999). Effects of plot size and habitat characteristics on breeding 

success of Scarlet Tanagers. The Auk, 116(1), 73–82. 

Robinson, S. K., Thompson III, F. R., Donovan, T. M., Whitehead, D. R., & Faaborg, J. (1995). 

Regional forest fragmentation and the nesting success of migratory birds. Science, 

267(5206),1987–1987. 

Roth, R. R., Johnson, M. S., & Underwood, T. J. (1996). Wood Thrush (Hylocichla mustelina). 

(A. Poole, Ed.). The Birds of North America Online. Retrieved from 

http://bna.birds.cornell.edu/bna/species/246 doi:10.2173/bna.246 

Sallabanks, R. & James, F.C. (1999). American Robin (Turdus migratorius), The Birds of North 

America Online. (A. Poole, Ed.). Retrieved from http://bna.birds.cornell.edu/bna/species/462 

doi:10.2173/bna.462 

Salt, W. R., & Salt, J. R. (1976). The birds of Alberta: with their ranges in Saskatchewan & 

Manitoba. Hurtig.  

Schroeder, R.L. (1983). Habitat suitability index models: Black-capped chickadee. U.S. 

Department of the Interior, Division of Biological Services, Research and Development, Fish 

and Wildlife Service, Washington, DC. Retrieved from 

http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-037.pdf  

Sedgwick, J. A., & Knopf, F. L. (1990). Habitat Relationships and Nest Site Characteristics of 

Cavity-Nesting Birds in Cottonwood Floodplains. The Journal of Wildlife Management, 54(1), 

112–124. doi:10.2307/3808910 

Shackelford, C. E., Brown, R. E., & Conner, R. N. (2000). Red-bellied Woodpecker (Melanerpes 

carolinus). (A. Poole, Ed.). The Birds of North America Online. (Retrieved from 

http://bna.birds.cornell.edu/bna/species/500 doi:10.2173/bna.500 

Sharp, M. H. (1990). America’s songbird-species profile: American Robin (Turdus migratorius). 

Wildbird, 4, 22–27. 

http://bna.birds.cornell.edu/bna/species/384
http://dx.doi.org/10.2173/bna.384
http://bna.birds.cornell.edu/bna/species/246
http://bna.birds.cornell.edu/bna/species/462
http://dx.doi.org/10.2173/bna.462
http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-037.pdf
http://bna.birds.cornell.edu/bna/species/500
http://dx.doi.org/10.2173/bna.500


16 
 

Shy, E. (1984). Habitat shift and geographical variation in North American tanagers 

(Thraupinae: Piranga). Oecologia, 63(2), 281–285. 

Smith, S. M. (1991). The Black-capped Chickadee: behavioral ecology and natural history. 

Comstock Pub Assoc. 

Smith, S. M. (1993). Black-capped Chickadee (Poecile atricapillus). (A. Poole, Ed.). The Birds of 

North America Online. Retrieved from http://bna.birds.cornell.edu/bna/species/039 

doi:10.2173/bna.39  

Straus, M. A., Bavrlic, K., Nol, E., Burke, D. M., & Elliott, K. A. (2011). Reproductive success 

of cavity-nesting birds in partially harvested  woodlots. Canadian Journal of Forest Research, 

41(5), 1004–1017. doi:10.1139/X11-012 

Sturman, W. A. (1968). Description and analysis of breeding habitats of the chickadees, Parus 

atricapillus and P. rufescens. Ecology, 49(3), 418–431. 

Thompson III, F. R., Robinson, S. K., Donovan, T. M., Faaborg, J. R., Whitehead, D. R., & 

Larsen, D. R. (2000). Biogeographic, landscape, and local factors affecting cowbîrd abundance 

and host parasitism levels. In Smith, J. N. M., Cook, T. L., Rothstein, S. I., Robinson, S. K., 

Sealy, S. G. (Eds.), Ecology and Management of Cowbirds and Their Hosts: Studies in the 

Conservation of North American Passerine Birds  (pp. 271-279). Austin, TX- University of 

Texas. 

Tirpak, J. M., Jones-Farrand, D. T., Thompson III, F. R., Twedt, D. J., & Uihlein III, W. B. 

(2009). Multiscale habitat suitability index models for priority landbirds in the Central 

Hardwoods and West Gulf Coastal Plain/Ouachitas Bird Conservation Regions (General 

Technical Report NRS-49). Newtown Square, PA, U.S. Department of Agriculture, Forest 

Service, Northern Research Station, USA. Retrieved from http://www.nrs.fs.fed.us/pubs/9723i  

Tilghman, N. G. (1987). Characteristics of urban woodlands affecting breeding bird diversity and 

abundance. Landscape and Urban Planning, 14, 481–495. 

Twomey, A. C. (1945). The bird population of an elm-maple forest with special reference to 

aspection, territorialism, and coactions. Ecological Monographs, 15(2), 173–205. 

Watts, B.D. (1999). Partners in Flight: Mid-Atlantic Coastal Plain bird conservation plan: 

physiographic Area #44. Retrieved from 

http://www.partnersinflight.org/bcps/plan/pl_44_10.pdf.  

Weinberg, H. J., & Roth, R. R. (1998). Forest area and habitat quality for nesting Wood 

Thrushes. The Auk, 115(4),879–889. 

Winkler, H., Christie, D. A., & Nurney, D. (1995). Woodpeckers: an identification guide to the 

woodpeckers of the world. Houghton Mifflin Company, New York. 

http://bna.birds.cornell.edu/bna/species/039
http://dx.doi.org/10.2173/bna.39
http://www.nrs.fs.fed.us/pubs/9723i


17 
 

Young, H. F. (1950). Territorial behavior in the eastern robin. University of Wisconsin–

Madison. 

Zumeta, D. C., & Holmes, R. T. (1978). Habitat shift and roadside mortality of Scarlet Tanagers 

during a cold wet New England spring. The Wilson Bulletin, 90(4), 575–586. 

 

 

 

  
   
   
   
   
   
   
   
   
   
   

   
   



18 
 

Table 1. Relationship between canopy percent per 0.04 ha and suitability index (SI) for 

American robin (AMRO) habitat, and associated references. 

 

 

 

 

Table 2. Relationship between lawn percent per 0.04 ha and suitability index (SI) for American 

robin (AMRO) habitat, and associated references. 
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Table 3. Relationship between canopy percent per 0.04 ha and suitability index (SI) for 

Baltimore oriole (BAOR) habitat, and associated references. 

 

 

 

Table 4. Relationship between large tree density (dbh >23cm) and suitability index (SI) for 

Baltimore oriole (BAOR) habitat, and associated references. 
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Table 5. Relationship between canopy percent per 0.04 ha and suitability index (SI) for black-

capped chickadee (BCCH) habitat, and associated references. Carolina chickadee habitat models 

mimic black-capped chickadee. 

 

Table 6. Relationship between tree height (m) and suitability index (SI) for black-capped 

chickadee (BCCH) habitat, and associated references. 

 

Table 7. Relationship between dead wood density per ha and suitability index (SI) for black-

capped chickadee (BCCH) habitat, and associated references. 
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Table 8. Relationship between lawn percent per 0.04 ha and suitability index (SI) for European 

starling (EUST) habitat, and associated references. 

 

 

Table 9. Relationship between percent building and suitability index (SI) for European starling 

(EUST) habitat, and associated references. 

 

Table 10. Relationship between total tree density per 0.04 ha and suitability index (SI) for 

European starling (EUST) habitat, and associated references. 

 

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

EUST

lawn %

s
u

it
a

b
il
it
y
 i
n

d
e

x

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

EUST

building %

s
u

it
a

b
il
it
y
 i
n

d
e

x

0 5 10 15

0
.0

0
.4

0
.8

EUST

tree density

s
u

it
a

b
il
it
y
 i
n

d
e

x

Lawn Percent 

(per 0.04 ha) 

SI Score 

(EUST) Reference 

0 0 assumed value 

20 0.2 assumed value 

40 0.6 assumed value 

60 1 assumed value 

80 1 assumed value 

100 1 assumed value 

Building 

Percent (per 

0.04 ha) 

SI 

Score 

(EUST) Reference 

0 0 assumed value 

25 0.8 assumed value 

50 1 assumed value 

75 0.6 assumed value 

100 0.4 assumed value 

Tree Density 

(per 0.04 ha) 

SI Score 

(EUST) Reference  

0 0.8 assumed value 

1 1 assumed value 

3 1 assumed value 

5 0.5 assumed value 

7 0.1 assumed value 

10 0 assumed value 

   



22 
 

Table 11. Relationship between dead wood density per ha and suitability index (SI) for European 

starling (EUST) habitat, and associated references. 

 

 

Table 12. Relationship between canopy percent per 0.04 ha and suitability index (SI) for northern 

cardinal (NOCA) habitat, and associated references. 
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Table 13. Relationship between shrub percent and suitability index (SI) for northern cardinal 

(NOCA) habitat, and associated references. 

 

Table 14. Relationship between large tree density (trees larger than 23 cm dbh) per 0.04 ha and 

suitability index (SI) for red-bellied woodpecker (RBWO) habitat, and associated references. 

 

 

Table 15. Relationship between basal area (trees > 6 cm dbh) per ha and suitability index (SI) for 

red-bellied woodpecker (RBWO) habitat, and associated references. 
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Table 16. Relationship between canopy percent per 0.04 ha and suitability index (SI) for red-

bellied woodpecker (RBWO) habitat, and associated references. 

 

 

 

Table 17. Relationship between dead wood density per ha and suitability index (SI) for red-

bellied woodpecker (RBWO) habitat, and associated references. 
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Table 18. Relationship between large tree density (trees larger than 23 cm dbh per 0.04 ha) and 

suitability index (SI) for scarlet tanager (SCTA) habitat, and associated references. 

 

 

Table 19. Relationship between basal area (trees >6 cm dbh) per ha and suitability index (SI) for 

scarlet tanager (SCTA) habitat, and associated references. 
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Table 20. Relationship between canopy percent per 0.04 ha and suitability index (SI) for scarlet 

tanager (SCTA) habitat, and associated references. 

 

Table 21. Relationship between contiguous forest area (ha) surrounding the i-Tree plot and 

suitability index (SI) for scarlet tanager (SCTA) habitat, and associated references. 

 

 

Table 22. Relationship between canopy percent per 0.04 ha and suitability index (SI) for wood 

thrush (WOTH) habitat, and associated references. 
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Table 23. Relationship between sapling density and suitability index (SI) for wood thrush 

(WOTH) habitat, and associated references. 

 

 

Table 24. Relationship between percent forest within a1km radius of the i-Tree plot and 

suitability index (SI) for wood thrush (WOTH) habitat, and associated references. 
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Supplementary Material 

Species Accounts and Models 

 

American Robin  

Status 

The American Robin Turdus migratorius is one of North America’s most abundant, widespread 

and recognizable birds. This familiar migratory species thrives in both suburban and wildland 

settings, and has been deemed “America’s favorite songbird” (Sharp, 1990). American Robin 

populations are either stable or increasing throughout the range; deforestation, urbanization and 

agricultural development often create habitat for the species (Sallabanks & James, 1999). Due to 

its ability to thrive in a variety of habitat conditions, the American Robin does not have a 

conservation status. However, it is used as a bioindicator for chemical pollution. The species has 

enjoyed a 1.9 percent increase between 1966-1996 (Sallabanks & James, 1999). 

 

Natural History 

A lower canopy, shrub forager, the American robin’s diet varies seasonally between earthworms 

and other soft invertebrates in spring and summer, and fruit in fall and winter (Sallabanks & 

James, 1999). Foraging substrates include lawns, loamy soil, and fruit bearing trees, shrubs and 

vines. Breeding habitat ranges from open woodlands and woodland edges and clearings, fields, 

orchards, and shade trees in residential areas. Residential areas and parks with lawns interspersed 

with shrubs and trees are ideal. Nesting sites vary and include horizontal branches or forks of a 

tree, shrubs and ledges of buildings. The sky blue eggs and speckled nestlings are familiar to 

many suburbanites. Territory sizes vary with population density, ranging between 0.04 and 0.84 

ha (Pitts, 1984; Young, 1950). Winter territorial behavior focuses around the defense of fruit 

(Young, 1950). 

 

Model Description 

The habitat suitability index (HSI) model for the American robin includes two plot variables: 

percent canopy cover and percent lawn cover as estimated for a 0.04 ha plot. Although forest 

area has been shown to limit robin populations (Keller, Robbins, & Hatfield, 1993; Robbins, 

Dawson, & Dowell, 1989), we believe that local features are better predictors for this species.  

 

We based our assumed values for canopy percent on qualitative accounts of the species requiring 

some trees yet not requiring extensive woodlands (Table 1). We fit a rational function (0.6439+(-

0.0024*Canopy Percent))/(1+(-0.0312*Canopy Percent)+(0.0005*Canopy Percent^2)) through 

these data points to quantify the relationship between canopy coverage and the suitability index 

(SI score; Fig. 1). 

 

We based our assumed values for lawn percent on qualitative accounts and personal observations 

of the species extracting earthworms and other soft invertebrates from manicured lawns in 

wooded parks and residential yards (Table 2). Since the robin primarily nests in trees and shrubs, 

an area with 100 % lawn cover would not be suitable. The relationship reflects the inverse of 

percent canopy. We fit a reciprocal quadratic function (1/(4.1918+(-0.0831*Lawn 
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Percent)+(0.00051* Lawn Percent ^2)) through these data points to quantify the relationship 

between lawn coverage and the suitability index (SI score; Fig. 2). We calculated the geometric 

mean of these habitat models to generate a final SI score for this species. 

 

 

Baltimore Oriole  

Status 

The Baltimore oriole (Icterus galbula) is a long-distance neotropical migrant found throughout 

north eastern and central United States, and the plains of Canada. This species has adapted well 

to suburbia and urban parks, and thus, is another of America’s most familiar songsters. The 

management of treed parks in urban and suburban areas will assist with the broadening of the 

breeding distribution (Ickes, 1992). The species has a Partners in Flight (PIF) score of 17 (a score 

of 30 being the highest for this region and thus having the highest level of conservation concern) 

in the mid-Atlantic region and a 3.2 percent decline between 1966-1996 (Watts, 1999). The PIF 

score in southern New England is 23 (Dettmers & Rosenberg, 2000).  

 

Natural History 

This canopy-gleaning passerine is found in a variety of habitats, favoring deciduous woodland 

edges, especially along riparian corridors, and suburban areas with tall and scattered shade trees, 

groves, orchards and parks. Also found in open woodlands with well-spaced trees (Salt & Salt, 

1976); avoids closed-canopy forests (Palmer-Ball, 1996), and prefers large trees (e.g. dbh  > 23 

cm; Perkins, Johnson, & Blankenship, 2003). The species nests in deciduous trees, and builds 

their pendulant nest in the upper canopy, near the tip or outer branch of a tree (Rising & Flood, 

1988). The familiar pendulant nest droops down from the upper branches. Territory sizes range 

from 0.15 ha to 1.86 ha. 

 

Model Description 

The HSI for Baltimore oriole includes one plot variable: canopy percent within a 0.04 ha plot 

and one tree variable: tree density for trees greater than 23 cm diameter at breast height. These 

variables address the relationship between a moderate canopy cover that consists of primarily 

large, open-grown trees.  

 

We based our assumed values for canopy percent on qualitative accounts of the species requiring 

some trees yet not requiring extensive woodlands (Table 3). We fit a gausian function 

1.0127*exp(0-((Canopy Percent-35.4635)^2)/(2*15.3508^2)) through these data points to 

quantify the relationship between canopy coverage and the suitability index (SI score; Fig. 3). 

 

We based our assumed values for the upper limits of large tree density (>23 cm dbh) per 0.04 ha 

plot on i-Tree data sets: four of the ten cities had plots with at least 11 large trees present (Table 

4). In addition, a higher density of large trees would increase the canopy coverage for the plot. 

The tree size also positively correlates with tree height and therefore larger trees are taller and 

thus more suitable for this high-canopy nester. We fit a rational function (0.0378+(0.2794*large 

tree density))/(1+(-0.4471* large tree density)+(0.1311* large tree density ^2))through these data 
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points to quantify the relationship between large tree density and the suitability index (SI score; 

Fig. 4). We calculated the geometric mean of these habitat models to generate a final SI score for 

this species. 

 

Black-capped Chickadee  

Carolina Chickadee  

Status 

The black-capped chickadee (Parus atricapillus) is one of America’s most widespread and 

familiar species. This non-migratory species can be found throughout the northern half of the 

United States and much of Canada. Based on Breeding Bird Surveys, eastern populations are 

thought to be increasing, though the range expansion of tufted titmouse (Baeolophus bicolor) 

might negatively impact chickadee populations (Loery & Nichols, 1985; Smith, 1991). Although 

urbanization has a negative effect on black-capped chickadees, suburban areas with large natural 

snags seem to partially mitigate the impacts of urban development (Blewett & Marzluff, 2005; 

Donnelly & Marzluff, 2006). The species has a PIF score of 15 in the mid-Atlantic region 

(Watts, 1999). No PIF scores reported for southern New England (Dettmers & Rosenberg, 2000).  

 

The Carolina chickadee (Parus carolinensis) is the southeastern counterpart of black-cappped 

chickadee, with western limits in Kansas and eastern Texas and northern reaches into New 

Jersey and Pennsylvania. Similar to black-capped chickadees, the Carolina chickadee has 

adapted to suburbanization due to the presence of bird feeders and nest boxes (Doherty & Grubb 

2002a; Hadidian, Sauer, Swarth, Handly, Droege, Williams, Huff, & Didden, 1997; Ringler, 

1996). However, suburban areas highly prone to habitat fragmentation and areas with strong, 

negative interactions with house wrens (Troglodytes aedon) might lead to negative population 

trends (Doherty & Grubb, 2002b; Foote, Mennill, Ratcliffe, & Smith, 2010; Mostrom, Curry, & 

Lohr, 2002). Carolina chickadee has a PIF score of 21 and a 2.2 percent decline between 1966 

and 1996 in the mid Atlantic region (Watts, 1999). 

 

Natural History 

A lower canopy, shrub gleaner, both the black-capped and Carolina chickadee diet consists 

mainly of insects during the breeding season and a mixture of seeds and berries, and insects and 

spiders during the winter (Smith, 1991; 1993). Breeding habitat includes deciduous, coniferous, 

or mixed woodlands (mixed preferred for black-capped, deciduous preferred for Carolina; 

Morse, 1970), and both species can be found in heavily forested and residential areas, with 

optimal conditions of an open understory and mature subcanopy (Anderson & Shugart, 1974). 

Wintering habitat includes city parks and residential areas with feeding stations adjacent to 

breeding habitat. Specific habitat requirements include dead standing trees or stubs (minimum 

dbh 10 cm; Holmes, 2002) for excavating cavities or trees with existing cavities for nesting 

(Mostrom, Curry, & Lohr, 2002). The chickadees will also use nest boxes.  

 

Model Description 

The US Fish and Wildlife Service developed an HSI model for black-capped chickadee which 

included percent canopy cover (i-Tree plot variable), tree height and dead wood density (i-Tree 
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tree variable; Holmes, 2002; Schroeder, 1982). We used the revised models published by Holmes 

(2002) for the i-Tree datasets. Due to the similarities in habitat requirement (Mostrom, Curry, & 

Lohr, 2002), we assumed that the variables thought to limit population abundances of black-

capped chickadee was applicable to Carolina Chickadee and therefore present one model for 

both species.  

 

Sturman (1968) proposed that tree foliage volume was a strong predictor of arthropod 

abundance, a major food resource for chickadees. However, this is time consuming to measure, 

and therefore Schroeder (1983) suggested that canopy cover and mean tree height per 0.04 ha 

plot were suitable alternative variables to address food resources (Table 5, 6). Although these 

data are available in i-Tree, we stuck with Schroeder’s models. We fit a gausian function 

(1.002*exp((0-((Canopy Percent)-63.5682)^2)/1795) through these data points to quantify the 

relationship between canopy coverage and the suitability index (SI score; Fig. 5). We fit a 

logistic function (0.9757/(1+(11.7426*exp(-0.4852*Mean Tree Ht(m)))) through the data points 

to quantify the relationship between mean tree height (m) per 0.04 ha plot and the suitability 

index (SI score; Fig. 6). 

 

To address nesting resources we calculated the number of trees within a 0.04 ha plot with 

deadwood. To calculate the density of dead wood per i-Tree plot, we assumed all trees with a 

condition classification of “fair”, “poor”, “dying” and “dead” potentially harbored wood that 

could be excavated for cavities. In addition to Holmes’ (2002) values, we included Sedgwick and 

Knopf (1990) data that sites with at least six trees with dead wood were most suitable (Table 7). 

We fit a logistic function (1.007/(1+(32.567*exp(-1.403*density of trees with dead wood))) 

through the data points to quantify the relationship between density of trees with deadwood per 

0.04 ha plot and the suitability index (SI score; Fig. 7). We calculated the geometric mean of 

these habitat models to generate a final SI score for this species. 

 

European Starling  

Status 

From humble beginnings of about 100 individuals released in Central Park, NY, the European 

Starling (Sturnus vulgaris) is one of the most successful introductions to North America with a 

population hovering around 200 million (Cabe, 1993). Although declining in Europe (Newton, 

2004), this species continues to thrive throughout North American cities, towns and agricultural 

areas. Due to its overabundance, this species is considered a nuisance and efforts to control 

populations are common, though often ineffective. Starlings often compete with native species 

for cavity sites and thus their increasing presence has detrimental impacts on other cavity-nesting 

species (Cabe, 1993). The species has a PIF score of 11 and a 2.7 decline between 1966-1996 in 

the mid-Atlantic region (Watts, 1999). No conservation status provided for southern New 

England (Dettmers & Rosenberg, 2000). 

  

Natural History 

A ground-foraging omnivorous passerine, the European starling is one of North America’s most 

synanthropic species. Urban (e.g. lawns) and cultivated fields and hayfields, orchards, and parks 
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provide ideal conditions for this species and can often be seen foraging for insects, grains, fruit 

and seeds in these areas. They appear to avoid pristine wilderness areas including non-

grasslands, forests, deserts and arid chaparral (Cabe, 1993). They form massive winter roosts in 

dense vegetation, with numbers exceeding a million individuals. The shimmering flight pattern 

of a tight flock is a common spectacle over fields and cities alike. This cavity nester will use a 

variety of holes including crevices in buildings, cliffs, nest boxes and previously occupied 

woodpecker cavities. The territories are focused within the immediate vicinity of the cavity 

entrance (ca. 50 cm; Kessel, 1957).  

 

Model Description  

The habitat suitability index (HSI) model for the European starling includes two plot variables: 

percent lawn cover and percent building cover as estimated for a 0.04 ha plot, and two tree 

variables: tree density and density of deadwood present within a 0.04 ha plot. Although forest 

area has been shown to limit starling populations (Keller, Robbins, & Hatfield, 1993; Robbins, 

Dawson, & Dowell, 1989), we believe that local features are better predictors for this species.  

 

We based our assumed values for lawn percent on qualitative accounts and personal observations 

of the species extracting insects and seed from manicured lawns in wooded parks and residential 

yards to areas with extensive amounts of lawn and turf (Table 8).  We fit a logistic function 

(1.02247436719/(1+(40.643183849*exp(-0.1043766533*lawn percent per 0.04 ha))) through 

these data points to quantify the relationship between lawn coverage and the suitability index (SI 

score; Fig. 8). 

 

We based our assumed values for building percent on qualitative accounts and personal 

observations of this species nesting in rain gutters, eaves, and other building cavities.  Since the 

starling is extremely synanthropic, we assumed that plots with 100% building cover were 

suitable despite the presence of lawn (Table 9). We fit a rational function (-

0.0004+(0.0148*building percent per 0.04 ha))/(1+(-0.0379* building percent per 0.04 

ha)+(0.0007* building percent per 0.04 ha ^2)) through these data points to quantify the 

relationship between building coverage and the suitability index (SI score; Fig. 9). 

 

We based our assumed values for tree density per 0.04 ha to reflect a gradient from field to 

forest, with areas of low tree density (all size classes) being more suitable (Table 10). In 

addition, tree density reflects the inverse relationship with lawn percent. We fit a rational 

function (0.8129+(-0.088*tree density per 0.04 ha))/(1+(-0.3167* tree density per 0.04 

ha)+(0.0547* tree density per 0.04 ha ^2)) through these data points to quantify the relationship 

between tree density and the suitability index (SI score; Fig. 10). 

 

European starling also nests in cavities and we assumed some conditions suitable for 

woodpeckers (e.g. red-bellied woodpecker) would also apply for starlings. Straus, Bavrlic, Nol, 

Burke, and Elliott, (2011) found that when at least one tree with deadwood was present within a 

0.04 ha plot, red-bellied woodpeckers were also present. Adkins, Giese, and Cuthbert (2003) 

found slightly higher densities of deadwood to be more suitable. Due to starlings’ ability to nest 
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in artificial cavities (i.e. not tree cavities), we assumed that sites without deadwood present were 

still suitable (Table 11). We fit an exponential function (0.8005*(1.2498-exp(-2.4290*density of 

trees with deadwood)) through these data points to quantify the relationship between deadwood 

density within 0.04 ha and the suitability index (SI score; Fig. 11). We then calculated the 

geometric mean of these habitat models to generate a final SI score for this species. 

 

Northern Cardinal Cardinalis cardinalis 

Status 

The Northern Cardinal (Cardinalis cardinalis) is resident found throughout eastern and central 

United States and Mexico. Northward movements of its range have been attributed to the urban 

heat island effect and provisions at bird feeders. The brilliantly red male is one of America’s 

most familiar birds and is the state bird for seven states (Halkin & Linville, 1999). Alteration of 

habitat (converting forests to agriculture and suburbs) has benefited cardinals by increasing 

nesting habitat (Halkin & Linville, 1999). Based on Breeding Bird Survey data, the species has 

experienced 1 percent decline between 1966-1996 and has a PIF score of 14 in the Mid-Atlantic 

region. The species has experienced a 3.3 percent increase between 1966 and 1996 (Watts, 

1999), and no PIF score for southern New England (Dettmers & Rosenberg, 2000). 

 

Natural History 

This omnivorous ground gleaner’s diet consists of seeds, fruit, and insects (Halkin & Linville, 

1999). Bird feeding during winter assists with survival in the colder parts of its range. Cardinals 

can be found along forest edges, open woodlands, suburban yards, urban parks and other areas 

with thickets and shrubs. In an extensive study of a breeding bird community in east Tennessee, 

Anderson and Shugart (1974) found that cardinals preferred sites with a thick subcanopy and 

relatively open canopy. Nest sites are located in dense, low vegetation including shrubs and 

small trees (deciduous and coniferous), vines, thickets and briars (Conner, Anderson, & Dickson, 

1986; Ehrhart & Conner, 1986), and with prominent song posts in close proximity (Dow, 1969). 

Territory size ranges from 0.21 to 2.60 ha (Halkin & Linville, 1999). 

 

Model Description  

The habitat suitability model (HSI) for northern cardinal includes two plot variables: canopy 

percent and shrub percent, both within a 0.04 ha plot. These variables address the relationship 

between a moderate to open canopy cover which can encourage an extensive shrub layer.  

 

We based our assumed values for canopy cover on qualitative accounts and personal 

observations of the species in edge habitats, residential yards with little to no canopy cover and 

lack of observations in thick, extensive woodlands (Table 12). We fit a rational function 

(0.6313+(-0.0054* Canopy Percent))/(1+(-0.0370* Canopy Percent)+(0.0007* Canopy Percent 

^2)) through the data points to quantify the relationship between percent canopy cover per 0.04 

ha plot and the suitability index (SI score; Fig. 12). 

 

We based our assumed values for shrub cover on qualitative accounts and personal observations 

of the species nesting in dense shrubs, privets, thickets and other low vegetation in residential 
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yards and urban parks (Table 13). We fit a rational function (0.0095+(0.0213*Shrub 

Percent))/(1+(-0.0212*Shrub Percent)+(0.0004*Shrub Percent ^2)) through the data points to 

quantify the relationship between percent shrub cover per 0.04 ha plot and the suitability index 

(SI score; Fig. 13). 

 

Red-bellied Woodpecker  

Status 

The red-bellied woodpecker (Melanerpes carolinus) has a broad distribution throughout the 

eastern half of the United States. The species is resident throughout the eastern part of its range 

though northern birds move south during cold winters (Winkler, Christie, & Nurney, 1995). The 

red-bellied woodpecker is a familiar site to feeder watchers and easily recognized. The species is 

commonly reported throughout the eleven i-Tree cities and not of conservation concern largely 

in part to its preference for a wide range of forest types (Shackelford, Brown, & Conner, 2000). 

Based on Breeding Bird Survey data, the nationwide population is either stable or increasing 

(Price, Droege, Price, & Beadle, 1995) and appears to thrive in urban and suburban areas. 

However, similar to other woodpeckers, the red-bellied is heavily dependent on snags and dead 

wood for nesting and roosting and therefore urban forest management plans that encourage dead 

wood have the potential to support this species. For the mid-Atlantic region, the species has a 

PIF score of 15 (Watts, 1999), and in southern New England, the species has increased 21.1 

percent between 1966 and 1996 (Dettmers & Rosenberg, 2000).  

 

Natural History 

The red-bellied woodpecker is a vocal and conspicuous cavity-nester found in mature pine 

forests, hardwood forests or a mixture of the two. The species excavates cavities in snags on 

dead trees or dead limbs on live trees. An opportunistic forager, this species’ diet consists of 

fruit, beech and acorn masts and arboreal arthropods. Red-bellied woodpeckers are sedentary, 

remaining on breeding grounds year-round. Average territory size ranges from 1.8 to 2.5 ha 

based on studies from upland forests and virgin floodplain forest in Illinois (Shackelford, Brown, 

& Conner, 2000).  

 

Model Description 

The habitat suitability index model for the red-bellied woodpecker includes four plot variables: 

tree density per 0.04 ha, basal area per ha, density of dead wood (i.e. trees classified as fair, poor, 

dying or dead) per 0.04 ha, and percent canopy cover per 0.04 ha. 

 

The species relies on forested areas and we included three variables to describe these habitat 

needs. Adkins, Giese, and Cuthbert (2003) observed 24 trees per 0.04 ha and a basal area of 34 

m
2
 per ha in oak forests of the Upper Midwest, while Conner (1980) observed 30 trees per 0.04 

ha and a basal area of 14 m
2
 per ha in oak-hickory forests around Blacksburg, VA. However, 

these studies didn’t discern tree size. We wanted the model to reflect the mean diameter of the 

cavity limb (21.6 cm; Jackson, 1976) so only included trees greater than 23 cm dbh and adjusted 

the densities to reflect these conditions (Table 14). We fit a rational function (0-

0.0035+(0.1606*Tree Density))/(1+(-0.1417*Tree Density)+(0.0233* Tree Density ^2)) where 
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Tree Density is the density of trees greater than 23 cm dbh within a 0.04 ha plot, through these 

data points to predict how habitat suitability varied with large tree density (Fig. 14). We assumed 

suitability was the lowest when trees were absent. Our inclusion of basal area for all trees greater 

than 6 cm dbh reflects the propensity for this species to prefer relatively dense forests 

(Shackelford, Brown, & Conner, 2000; Table 15). We fit a logistic function 

0.9906/(1+(47.9216*exp(-0.9689*basal area))) where basal area is m
2
/ha and calculated for all 

trees greater than 6 cm dbh, through these data points to quantify the relationship between basal 

area and the suitability index (SI score; Fig. 15). 

 

Canopy coverage also predicts habitat suitability. DeGraaf, Yamasaki, Leak, and Lester, (2006) 

suggested that when canopy coverage exceeding 35%, the site provided suitable conditions for 

red-bellied woodpeckers. We based our assumed values for canopy cover on qualitative accounts 

and personal observations of the species in forested suburban and riparian areas, with lack of 

observations in areas with little to no canopy cover and areas with an extremely dense canopy 

cover (Table 16). We fit a rational function (-0.0371+(0.0124*Percent Canopy))/(1+(-0.0363* 

Percent Canopy)+(0.0005* Percent Canopy ^2)), where Percent Canopy is the percent of a 0.04 

ha plot with tree canopy cover, through these data points to predict how habitat suitability varied 

with canopy coverage (Fig. 16). We assumed suitability was the lowest when trees were absent. 

 

Although dead wood is necessary for foraging and nesting, they are not essential for detecting 

red-bellied woodpeckers. Of 42 nests in southwest Ontario, Strauss et al. (2011) observed 93% 

of the nests in dead and declining trees and 6% of nests in healthy trees. Adkins, Giesse, and 

Cuthbert (2003) observed 3 dead or declining trees per 0.04 ha in the Midwest (Table 17). We fit 

a logistic function 1/(1+(15.67*exp(-5.338*Dead Wood density per 0.04 ha))), (where dead 

wood is recorded as trees with a condition of fair, poor, dying or dead) through these data points 

to quantify the relationship between trees with dead wood and the suitability index (SI score; Fig. 

17). We calculated the geometric mean of these habitat models to generate a final SI score for 

this species. 

 

Scarlet Tanager  

Status 

The scarlet tanager (Piranga olivacea) is a long-distance neotropical migrant, found in deciduous 

forests throughout the northeastern United States and southern Canada. This forest interior 

species is highly sensitive to forest fragmentation (Roberts & Norment, 1999). In a study from 

New Jersey, scarlet tanagers were present only in forest fragments greater than 3 ha, though 

forest areas greater than 10 ha were required to sustain a viable population (Galli, Leck, & 

Forman, 1976; Robbins, Dawson, & Dowell, 1989; Roberts & Norment, 1999). As fragment size 

decreases, nest predation and parasitism rates increase (Robinson, Thompson III, Donovan, 

Whitehead, & Faaborg, 1995). According to the Breeding Bird Survey, the species has 

experienced a1.6 percent decline between 1966 and1996, and has a PIF score of 21 in the mid-

Atlantic region (Watts, 1999). The species has experienced a 1 percent decline and has a PIF 

score of 22 in southern New England (Dettmers & Rosenberg, 2000). 

 



9 
 

Natural History 

Scarlet tanagers spend most of their time in the mid to upper canopy, hovering and gleaning 

insects from flowers, fruit, leaves and bark (Mowbray, 1999). They are associated with mature 

deciduous and mixed forests but occasionally found in dense shade trees in suburban areas, 

cemeteries and parks (Mowbray, 1999). They prefer trees greater than 22.4 cm dbh, and 

primarily in oak-hickory woods (Mowbray, 1999). Territory size varies according to vegetation 

type but ranges from 0.8 – 5.0 ha (Robbins, 1980; Zumeta & Holmes, 1978).  

 

Model Description 

The HSI model for the scarlet tanager includes three plot variables: large tree (> 23 cm dbh) 

density per 0.04 ha, basal area per ha, and percent canopy cover per 0.04 ha. The model also 

includes one landscape variable: extent of forest patches (ha).  

 

Three separate studies found that when a forested 0.04 ha plot had at least 20 large trees, the area 

would support scarlet tanagers (Shy, 1984; Roberts & Norment, 1999; Rivera, McShea, & 

Rappole, 2003; Table 18). We fit a logistic function (1.01622702/(1+(24569.22035*EXP(-

0.6493929*Tree Density))) where Tree Density is the density of trees greater than 23 cm dbh 

within a 0.04 ha plot, through these data points to predict how habitat suitability varied with 

large tree density (Fig. 18). We assumed suitability was the lowest in plots with fewer than ten 

trees. In addition to mature forests (i.e. those with large trees), scarlet tanagers also prefer dense 

forests. Based on Roberts and Norment (1999) we calculated a mean basal area of 62 m
2
/ha and 

assumed this density to be most suitable for tanagers (Table 19). We fit a logistic function 

(1.0363/(1+(49.295*EXP(-0.1088*Basal Area))) where basal area is m
2
/ha and calculated for all 

trees greater than 6 cm dbh, through these data points to quantify the relationship between basal 

area and the suitability index (SI score; Fig. 19).  

 

Scarlet tanagers prefer territories in forested areas with dense canopy cover (Ambuel & Temple, 

1983). Roberts and Norment (1999) and Shy (1984) suggest that a canopy coverage of 89% 

represented the most suitable conditions for this species, with forested patches having 75% 

canopy coverage highly suitable (Shy, 1984; Table 20). We fit a logistic function 

(1.0363/(1+(49.295*EXP(-0.1088*Percent Canopy))) where Percent Canopy is the percent of a 

0.04 ha plot with tree canopy cover, through these data points to predict how habitat suitability 

varied with canopy coverage (Fig. 20). We assumed suitability declined significantly when 

canopy coverage was less than 50%. 

 

We included one landscape variable to account for the extreme sensitivity this species exhibits to 

forest fragmentation (Robinson et al., 1995; Table 21). We fit a multiple multiplicative factor 

(MMF) function ((-0.0009*4.3992)+(1.6780*Forest Area ^0.2539))/(4.3992+ Forest Area 

^0.2539) where Forest Area is forest patch size (ha) through these data points to predict how 

habitat suitability varied with the extent of forested areas (Fig. 21). Although a low suitability, 

forest patches 1 ha have the potential to harbor scarlet tanagers, thus suggesting the possibility of 

urban remnant patches to have some conservation value for this species. We calculated the 

geometric mean of these habitat models to generate a final SI score for this species. 



10 
 

 

Wood Thrush  

Status 

The wood thrush (Hylocichla mustelina) is a long-distance neotropical migrant found throughout 

eastern North America (Roth, Johnson, & Underwood, 1996). This species is a symbol of 

threatened and declining songbirds and it has become increasingly rare throughout its range since 

the 1970s (Evans, Gow, Roth, Johnson, & Underwood, 2011). Habitat loss and fragmentation in 

the breeding and wintering grounds have had detrimental effects on populations, and thus 

exacerbating the impacts of cowbird parasitism (Thompson III, Robinson, Donovan, Faaborg, 

Whitehead, & Larsen, 2000). The wood thrush is a species of conservation concern, with a 2.3 

percent decline between 1966 and 1996, and a Partners in Flight score of 24 for the mid Atlantic 

(Watts, 1999). The species has experienced a 2.2 percent decline between 1966 and 1996, and 

PIF score of 24 for southern New England (Dettmers & Rosenberg, 2000). 

 

Natural History 

A ground-foraging passerine, the wood thrush is associated with mature upland forests (mainly 

deciduous or mixed but largely avoids evergreen stands) with closed overstory canopies (Bell & 

Whitmore, 2000; Evans et al., 2011). Additional conditions include forest patches with trees 

taller than  >16 m, moderate subcanopy, sapling density and shrubs for nesting, cool and moist 

soil conditions, and a somewhat open forest floor with decaying leaf litter for foraging (Evans et 

al., 2011). The species is thought to be highly sensitive to forest fragmentation with regards to its 

productivity but has nested in small forest fragments (0.3 ha; e.g. remnant patches in residential 

areas and parks) at low densities (Tilghman, 1987; Weinberg & Roth, 1998). 

 

The wood thrush’s diet mainly consists of soil invertebrates and fruits, and occasionally feeds on 

arboreal insects, snails and small salamanders (Evans et al., 2011). The nest is typically located 

on a horizontal branch or crotch within a sapling or tree (Evans et al., 2011). Hoover and 

Brittingham (1998) suggested that nest success was better predicted by the amount of forest in 

the landscape rather than the microhabitat structural features surrounds nests. Territory size 

ranges between 0.08 and 4.0 ha (Evans, Stutchbury, & Woolfenden, 2008; Twomey, 1945).  

 

Habitat Model 

The HSI model for the wood thrush includes two plot variables: percent canopy cover per 0.04 

ha and sapling density per 0.04 ha plot. The model also includes one landscape variable: percent 

forest landcover within a 1 km radius.  

 

The wood thrush associates with dense canopied forests (Table 22) and we fit a logistic function 

1.03163/(1+(141241.64*EXP(-0.1531*Percent Canopy))) where Percent is the percent of a 0.04 

ha plot with tree canopy cover to data from Annand and Thompson (1997) and Hoover and 

Brittingham (1998) to predict SI scores from percent canopy coverage scores (Fig. 22). Tirpak et 

al. (2009) devised a model that incorporated small stem densities (< 2.5 cm) based on Hoover 

and Brittingham (1998) assertion that 1,988 stems per ha represented optimal habitat. These stem 

densities within the i-Tree datasets were far from this abundance, even when we included shrub 
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densities into the equation. We therefore used sapling density (<10 cm) as a proxy to assess the 

midstory cover. We based our assumed values on existing i-Tree datasets and balanced the 

relationship between a dense canopy cover and the sapling density whereby at least 10 saplings 

were recorded in i-Tree plots with 90% canopy coverage (Table 23). We fit a logistic function 

(1.0401978/(1+(65.800186*EXP(-0.758149*(Sapling Density))))), where sapling density is the 

number of trees <10 cm in diameter within a 0.04 ha plot, through these data points to quantify 

the relationship between sapling density and the suitability index (Fig. 23).  

 

Although studies have demonstrated the importance of forest area as a predictor of nest success 

for wood thrush (e.g. Robbins, Dawson, & Dowell, 1989; Kilgo et al., 1998), we chose a variable 

that reflected the amount of forest patches within the greater landscape matrix to address the 

suitability of urban parks and remnant patches within residential landscapes (Table 24). 

Following Tirpak et al. (2008), we fit a logistic function 1.003/(1+(224.7853*EXP(-

0.1081*(1KM % Forest)))) where 1KM % Forest is the percent of a 1 km plot around an i-Tree 

monitoring plot classified as forest landcover to data based on Donovan, Jones, Annand, and 

Thompson (1997; Fig. 24). In this study, the predator and brood parasite communities were 

related to fragmentation size: highly fragmented (< 15 percent), moderately fragmented (45 to 50 

percent), and lightly fragmented (> 90 percent forest) landscapes. We followed logic from Tirpak 

et al. (2008), and also assumed the midpoints between 30 and 70 percent represented the 

thresholds for low suitability (SI score ≤ 0.10) and excellent suitability (SI score ≥ 0.90) habitats. 

We calculated the geometric mean of these habitat models to generate a final SI score for this 

species. 
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Table 1. Relationship between canopy percent per 0.04 ha and suitability index (SI) for 

American robin (AMRO) habitat, and associated references. 

 

 

 

 

Table 2. Relationship between lawn percent per 0.04 ha and suitability index (SI) for American 

robin (AMRO) habitat, and associated references. 
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Table 3. Relationship between canopy percent per 0.04 ha and suitability index (SI) for 

Baltimore oriole (BAOR) habitat, and associated references. 

 

 

 

Table 4. Relationship between large tree density (dbh >23cm) and suitability index (SI) for 

Baltimore oriole (BAOR) habitat, and associated references. 
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Table 5. Relationship between canopy percent per 0.04 ha and suitability index (SI) for black-

capped chickadee (BCCH) habitat, and associated references. Carolina chickadee habitat models 

mimic black-capped chickadee. 

 

Table 6. Relationship between tree height (m) and suitability index (SI) for black-capped 

chickadee (BCCH) habitat, and associated references. 

 

Table 7. Relationship between dead wood density per ha and suitability index (SI) for black-

capped chickadee (BCCH) habitat, and associated references. 
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Table 8. Relationship between lawn percent per 0.04 ha and suitability index (SI) for European 

starling (EUST) habitat, and associated references. 

 

 

Table 9. Relationship between percent building and suitability index (SI) for European starling 

(EUST) habitat, and associated references. 

 

Table 10. Relationship between total tree density per 0.04 ha and suitability index (SI) for 

European starling (EUST) habitat, and associated references. 
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Table 11. Relationship between dead wood density per ha and suitability index (SI) for European 

starling (EUST) habitat, and associated references. 

 

 

Table 12. Relationship between canopy percent per 0.04 ha and suitability index (SI) for northern 

cardinal (NOCA) habitat, and associated references. 
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Table 13. Relationship between shrub percent and suitability index (SI) for northern cardinal 

(NOCA) habitat, and associated references. 

 

Table 14. Relationship between large tree density (trees larger than 23 cm dbh) per 0.04 ha and 

suitability index (SI) for red-bellied woodpecker (RBWO) habitat, and associated references. 

 

 

Table 15. Relationship between basal area (trees > 6 cm dbh) per ha and suitability index (SI) for 

red-bellied woodpecker (RBWO) habitat, and associated references. 
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Table 16. Relationship between canopy percent per 0.04 ha and suitability index (SI) for red-

bellied woodpecker (RBWO) habitat, and associated references. 

 

 

 

Table 17. Relationship between dead wood density per ha and suitability index (SI) for red-

bellied woodpecker (RBWO) habitat, and associated references. 
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Table 18. Relationship between large tree density (trees larger than 23 cm dbh per 0.04 ha) and 

suitability index (SI) for scarlet tanager (SCTA) habitat, and associated references. 

 

 

Table 19. Relationship between basal area (trees >6 cm dbh) per ha and suitability index (SI) for 

scarlet tanager (SCTA) habitat, and associated references. 
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Table 20. Relationship between canopy percent per 0.04 ha and suitability index (SI) for scarlet 

tanager (SCTA) habitat, and associated references. 

 

Table 21. Relationship between contiguous forest area (ha) surrounding the i-Tree plot and 

suitability index (SI) for scarlet tanager (SCTA) habitat, and associated references. 

 

 

Table 22. Relationship between canopy percent per 0.04 ha and suitability index (SI) for wood 

thrush (WOTH) habitat, and associated references. 

 

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SCTA

canopy %

s
u

it
a

b
il
it
y
 i
n

d
e

x

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

SCTA

forest area (ha)

s
u

it
a

b
il
it
y
 i
n

d
e

x

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

WOTH

canopy %

s
u

it
a

b
il
it
y
 i
n

d
e

x

Canopy Percent  

(per 0.04 ha) 

SI Score 

(SCTA) Reference 

0 0 assumed value 

50 0.2 assumed value 

75 0.95 Shy, 1984 

89 1 

Shy 1984, Roberts and 

Norment, 1999 

Forest Area 

(ha) 

SI Score 

(SCTA) Reference 

0 0 assumed value 

1 0.3 Robbins et al., 1989 

10 0.5 Robbins et al., 1989 

32 0.6 Robbins et al., 1989 

100 0.7 Robbins et al., 1989 

300 0.8 Robbins et al., 1989 

500 0.9 Robbins et al., 1989 

Canopy Percent 

(per 0.04 ha) 

SI Score 

(WOTH) Reference 

25 0 Hoover & Brittingham, 1998 

70 0.25 Annand & Thompson, 1997 

90 0.9 Annand & Thompson, 1997 

100 1 Annand & Thompson, 1997 



27 
 

Table 23. Relationship between sapling density and suitability index (SI) for wood thrush 

(WOTH) habitat, and associated references. 

 

 

Table 24. Relationship between percent forest within a1km radius of the i-Tree plot and 

suitability index (SI) for wood thrush (WOTH) habitat, and associated references. 
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