
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

2014

Network Path Capacity Comparison without
Accurate Packet Time Information
Ertong Zhang
University of Nebraska-Lincoln, ezhang@cse.unl.edu

Lisong Xu
University of Nebraska-Lincoln, xu@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Zhang, Ertong and Xu, Lisong, "Network Path Capacity Comparison without Accurate Packet Time Information" (2014). CSE
Conference and Workshop Papers. 254.
http://digitalcommons.unl.edu/cseconfwork/254

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/254?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages

Network Path Capacity Comparison
without Accurate Packet Time Information

Ertong Zhang and Lisong Xu
Department of Computer Science and Engineering

University of Nebraska-Lincoln

Lincoln, NE 68588-0115

Email: {ezhang, xu}@cse.unl.edu

Abstract—A fundamental problem of current bandwidth esti-
mation methods is that they require accurate packet time infor-
mation. However, it is hard to accurately measure packet time
information in an increasing number of network environments,
such as widely deployed highspeed networks, and emerging cloud
computing networks. Motivated by the observation that many
applications only need the relative bandwidth information of
different paths instead of the actual bandwidth information of a
single path, we propose sequence-based bandwidth comparison.
Specifically, this paper proposes a capacity comparison method,
called PathComp, which can relatively compare the capacities
of the paths from two senders to the same receiver. PathComp
mainly uses the arrival sequence information of packets, and does
not require any accurate packet time information. Our testbed,
campus network, and EC2 experiments show that PathComp
can not only determine which path is faster but also accurately
determine how much faster in a variety of network environments.

Index Terms—Internet measurement; Bandwidth estimation;
Capacity estimation.

I. INTRODUCTION

A rich body of bandwidth estimation methods [20] have

been proposed and studied in the past two decades, due

to the wide range of applications of bandwidth estimation.

However, there is a fundamental problem with the current

bandwidth estimation methods. Most (if not all) of them need

to accurately measure certain time information of network

packets, such as the arrival time difference (ATD) between

two consecutive packets [6], the one-way or round-trip delay

of each packet [10], and the queueing delay of each packet [8].

However, it is hard and sometimes impossible to accurately

measure these time information in an increasing number of

network environments, such as widely deployed highspeed

networks, and emerging cloud computing networks.

There are two major reasons why it is sometimes hard

to accurately measure the packet time information. First, it

takes very short times to send or receive packets at very high

speeds. However, it is hard to measure such short times due

to the limited system capability [9], [17]. Second, various

software and hardware factors at the receiver of packets, such

as interrupt moderation [19], [9] (commonly used in highspeed

network cards) and virtual machine (VM) scheduling [21],

[4] (commonly used in cloud computing), greatly change the

original packet time information. As a result, the packet time

information measured by the packet receiver is not correct.

Our work is motivated by the observation that many ap-

plications only need to relatively compare the bandwidth

information of different paths. For example, in a peer-to-peer

(P2P) network, a new peer needs to select several fastest peers

as its neighbors from a set of existing peers. More motivating

examples will be discussed in Section II-A. In these cases,

we do not need to measure the actual bandwidth information

of each path, instead, we only need to relatively compare the

bandwidth information of different paths, and then rank them

according to their bandwidth information.

In this paper, we study how to relatively compare the

bandwidth information of multiple paths without requiring

accurate packet time information. There are several important

bandwidth metrics [20]. As the first step, this paper considers

only the capacity of a path that is the capacity of the narrow

link in the path, and the narrow link of a path is the link

with the smallest capacity among all links in a path. The

path capacity is a basic bandwidth metric and will provide

useful information for studying other bandwidth metrics, such

as available bandwidth and bulk TCP throughput, which will

be considered in our future work.

Specifically, this paper proposes a capacity comparison

method, called PathComp, which can relatively compare the

path capacities from two senders to the same receiver. Ba-

sically, PathComp actively sends probing packets from both

senders to the receiver, measures the arrival sequence of

these packets at the receiver, and then relatively compares the

capacities of the two paths.

PathComp is based on the fact that the inter-arrival gap

between two consecutive packets from the same sender is

related to the capacity of their path. This fact is also the

basis of the current capacity estimation methods [6], [10].

The uniqueness of PathComp is that it measures the packet

inter-arrival gap using the packet arrival sequence information,

whereas the current capacity estimation methods measure the

packet inter-arrival gap using the packet arrival time infor-

mation. Therefore, PathComp does not require any accurate

packet time information, and is fundamentally different from

the current capacity estimation methods.

The contributions of this paper are as follows. First, we

expand the design space of traditional time-based bandwidth

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.32

119

kasyma
Typewritten Text
Pages: 119 - 130, DOI: 10.1109/ICNP.2014.32

estimation methods by introducing a new class of sequence-

based bandwidth comparison methods. Note that bandwidth

comparison methods are inherently more scalable than tra-

ditional bandwidth estimation methods in terms of the mea-

surement time for a large number of paths. This is because

bandwidth comparison methods are designed to simultane-

ously measure multiple paths, whereas traditional bandwidth

estimation methods are designed to measure a single path and

are sensitive to the interference among multiple concurrent

measurements [5].

Second, we propose a capacity comparison method, called

PathComp, which can determine not only which path is faster

but also how much faster in terms of the path capacity. In

the paper, we thoroughly study the impact of various types

of cross traffic on capacity comparison, and we also discuss

some implementation challenge, such as Receiver Side Scal-

ing [14]. Our testbed, campus network, and Amazon EC2 [1]

experiments show that PathComp can accurately compare the

capacities of two paths in a variety of network environments.

The remainder of this paper is organized as follows: Sec-

tion II gives more detailed description of our motivations.

Section III summarizes the related work and discusses the

design space of bandwidth estimation methods. Section IV

describes the basic idea of sequence-based capacity compari-

son. Section V studies the impact of cross traffic. Section VI

presents our proposed PathComp. Section VII shows the

evaluation results. Finally, Section VIII concludes the paper.

II. MOTIVATION

A. Bandwidth Comparison Scenarios

Our work is motivated by the observation that many ap-

plications only need to relatively compare the bandwidth

information of different paths.

P2P neighbor selection: When a new peer joins a P2P

network [13], it usually needs to select its neighbors from a set

of existing peers. Typically, the new peer selects the existing

peers with fast network bandwidth as its neighbors so that

it can quickly download data from its neighbors. Bandwidth

comparison methods can be used to quickly select several

fastest peers from a set of existing peers.

Network-aware task placement [11]: Consider a bandwidth-

intensive cloud application with three tasks: T1, T2, and T3,

and a cloud consisting of three interconnected VMs: V1, V2,

and V3. Assume that tasks T1 and T2 communicate often with

task T3, but not much with each other. If we find that the

path between V1 and V2 is the slowest one using a bandwidth

comparison method, and network measurements show that the

latency between any two of these three VMs is the same, then

the application performance can be improved with the optimal

task placement that places task T3 on V3, and places the other

two tasks on the other two VMs.

B. Difficulties in Obtaining Accurate Packet Time Information

Another motivation of our work is that the current time-

based capacity measurement algorithms do not work well in

some network environments, such as highspeed networks and

cloud computing networks, where it is hard to accurately

measure the packet time information. There are two major

reasons.

First, it takes very short times to send or receive packets at

very high speeds. For example, it takes only 12 μs to send

or receive a 1500-byte packet at 1 Gbps, and only 1.2 μs at

10 Gbps. However, it is hard to accurately measure such short

times due to the limited system capability [9], [17], such as

clock time resolutions, clock frequency differences between

the sender and the receiver, and the system call overhead.

Second, there are various software and hardward factors at

the receiver of packets, such as interrupt coalescence, context

switching, and virtual machine scheduling, which change the

original packet time information, and thus the packet time

information measured by the packet receiver is not correct.

Interrupt coalescence (IC, also called interrupt modera-

tion) [9], [19] is commonly used in high-speed network inter-

face cards (NIC), and it reduces the CPU load by generating

an interrupt for a group of packets instead of each packet.

As a result, the packet time information, such as the ATD of

two consecutive packets, is changed (could be enlarged or be

reduced). Figure 1 shows the measured arrival times of 200

packets from a 10Gbps NIC with IC enabled, and we can see

that these packets are handled by 6 interrupts.

 0

 300

 600

 900

 1200

 0 50 100 150 200

A
rr

iv
al

 ti
m

e
(μ

s)

Packet ID

Fig. 1. Impact of interrupt coalescence on packet arrival times and ATDs.

VM scheduling [21], [4] is commonly used in cloud com-

puting, and it enables multiple VMs to share the same pool

of CPUs on a physical machine. However, it interferes with

packet timestamping of VMs. For example, when a VM is not

running, all packets arriving at the VM must wait until the

VM is scheduled to run again. As a result, the packet delays

and ATDs measured by the VM may be drastically different

from the actual values.

III. DESIGN SPACE AND RELATED WORK

We discuss the design space of capacity estimation methods

in Figure 2, which helps us to understand the relation between

the current capacity estimation methods and our proposed

capacity comparison method. Some methods measure the

capacity information of the path from a computer to another

computer, and we refer to the first computer as the sender

and the second computer as the receiver. Some other methods

measure the capacity information of the round-trip path from

a computer to another computer and then back to the first one.

For these methods, we refer to the first computer as both the

sender and receiver.

120

pbprobe

less
seq. no

capacity
relative

less

es
tim

at
io

n
re

su
lt

capacity
path

capacity
link

more

difference difference
arrival
time

moretime

required packet information at the receiver

pathcomp

tailgater
pathchar

pbm
bprobe

pathrate

capprobe

Fig. 2. The design space of capacity estimation methods.

The design space shown in Figure 2 is based on the required

information of probing packets at the receiver. PathChar [7]

and TailGater [12] estimate the capacity of each individual

link in the path using the packet arrival times at the receiver.

CapProbe [10] and PBProbe [3] estimate the path capacity

using the packet arrival times. BProbe [2], PBM [16], and

PathRate [6] estimate the path capacity using the packet

arrival time differences at the receiver (defined in Section IV).

Our proposed PathComp relatively compares the path capac-

ities from two senders to the same receiver using the packet

arrival sequence number differences at the receiver (defined

in Section IV).

Note that if we know the capacity of each individual link

of a path, we can infer the capacity of the path. If we know

the capacities of two paths, we can infer their relative capacity

ratio. Also note that the arrival times can be used to calculate

the arrival time differences, and the arrival time differences

can be used to infer the arrival sequence number differences.

Therefore, we can see that the less the estimated capacity

information, the less the required packet information.

Further more, the arrival time differences are relatively

easier to accurately measure than the arrival times. For exam-

ple, they are not sensitive to clock time differences between

the sender and the receiver. The arrival sequence number

differences can be more accurately measured than the arrival

time differences. For example, they are not sensitive to the

interrupt moderation at the receiver. Overall, we can see

that the less the estimated capacity information, the less the

required packet information, and the more robust the method.

IV. CAPACITY COMPARISON

In this section, we explain the difference between the tradi-

tional capacity estimation problem and our proposed capacity

comparison problem, and explain the difference between the

traditional time-based capacity estimation methods and our

proposed sequence-based capacity comparison method.

A. Capacity Estimation and Comparison Problems

We use an example illustrated in Figure 3 to describe the

difference between the traditional capacity estimation problem

and our proposed capacity comparison problem. There are two

paths in Figure 3: path a is from sender SNDa to receiver RCV,

and path b is from sender SNDb to the same receiver RCV.

Both paths merge with each other at router R5. Network 5 in

the figure represents everything between R5 (including R5) and

RCV. Network 1 represents everything between SNDa and the

narrow link of path a (called narrow link a), and network 2 for

everything between narrow link a and R5. Similarly networks

3 and 4 for path b. Let Ca denote the capacity of path a that is

the capacity of narrow link a, and let Cb denote the capacity

of path b that is the capacity of narrow link b.

SNDb

SNDa network network

network network

1 2

3 4

path a

path b

narrow link a

narrow link b

network
5

RCV
router

R5

Fig. 3. Two paths: path a is from sender SNDa to receiver RCV, and path
b is from sender SNDb to the same receiver RCV.

The traditional capacity estimation problem considers the

capacity of the narrow link of a single path. For example, for

the two paths in Figure 3, the traditional capacity estimation

problem separately estimates Ca and Cb.

Our proposed capacity comparison problem considers the

capacity ratio of the narrow links of two paths. For example,

for paths a and b in Figure 3, the capacity comparison problem

estimates the capacity ratio of Ca and Cb. That is, it relatively

compares the link capacities of these two narrow links. The

capacity ratio γ of two paths a and b is defined as follows.

Note that γ is a real number at least 1.

γ =

{
Ca/Cb, if Ca ≥ Cb

Cb/Ca, otherwise.
(1)

We also define the rounded capacity ratio as follows, which

is an integer at least 1.

Γ = round(γ) (2)

Note that Figure 3 assumes that paths a and b do not have

a shared narrow link (i.e., if the narrow link is located in

network 5). This is a reasonable assumption for a variety of

scenarios. For example, consider the P2P neighbor selection

problem described in Section II-A. The narrow link of the path

from a neighbor to a peer is usually the upload link of the

neighbor, and thus different neighbors usually do not have a

shared narrow link. As another example, consider the network-

aware task placement problem in Section II-A. The narrow

link of the path from a sender VM to another receiver VM is

usually located near the sender VM due to the rate limiting of

the sender VM, and thus the paths from different sender VMs

usually do not have a shared narrow link.

In cases where two paths have a shared narrow link, there

are two options. First, capacity comparison reports the capacity

ratio of the narrow links of the distinct segments of the two

paths. Second, capacity comparison does not report anything,

if a shared narrow link is detected. However, the method to

121

detect a shared narrow link is out of the scope of this paper.

We choose the first option in this paper.

B. Traditional Time-based Capacity Estimation

The traditional capacity estimation methods, such as

PathRate [6], and CapProbe [10], are usually based on packet

arrival time differences (also called inter-arrival times, and

dispersion times). The packet arrival time difference (ATD,

denoted by τ) of two packets is the time difference between

their arrival times. For example, Figure 4 shows two SNDa

packets, a1 and a2, on the link from network 5 to receiver

RCV, and the time difference τ is their ATD at RCV.

RCV

a1

network 5

a2

τ (seconds)

Fig. 4. The ATD τ at RCV between two SNDa packets (a1 and a2) is their
arrival time difference at RCV.

Assuming that there is no cross traffic on path a, and

assuming that RCV can accurately measure the ATD, the

capacity Ca can be obtained as follows [6], [10], where S
is the packet size and τ is the ATD.

Ca = S/τ (3)

The traditional capacity estimation methods mainly differ in

how to accurately estimate Ca in the presence of cross traffic.

However, if RCV cannot accurately measure the ATD, none

of these methods works.

C. Proposed Sequence-based Capacity Comparison

1) ASND Definition: We propose to tackle the capacity

comparison problem using packet arrival sequence number

differences instead of packet arrival time differences, so that

our method does not require accurate packet time information.

Below we use an example to explain the concept of the packet

arrival sequence number differences.

Each of the two senders, SNDa and SNDb, sends a train

of L = 5 packets of the same packet size S to the receiver

RCV at approximately the same time. These packets are sent

back-to-back by their senders (i.e., at their maximum rates).

In this example, we assume that there is no cross traffic in all

5 networks in Figure 3.

The top line of Figure 5 shows the 5 SNDa packets on

the link from network 2 to router R5. Since there is no cross

traffic, the ATD between every two consecutive SNDa packets

at router R5 is inversely proportional to the capacity Ca of

narrow link a. The bottom line of Figure 5 shows the 5 SNDb

packets on the link from network 4 to router R5, and the ATD

between every two consecutive SNDb packets at the router is

inversely proportional to the capacity Cb of narrow link b. In

this example, we set Ca = Cb/2, and thus the ATD between

two consecutive SNDa packets is twice the ATD between two

consecutive SNDb packets as illustrated in Figure 5.

These 10 packets merge with one another at router R5. In

this example, we assume that these packets arrive at RCV in

the order of their arrival times at router R5. For example,

Figure 5 shows that packet b1 arrives at R5 earlier than packet

a1, and thus packet b1 arrives at RCV earlier than packet a1.

In Section VI-C, we will discuss cases where this assumption

does not hold and describe our solution. RCV assigns the first

received packet an arrival sequence number of 1, and the next

received packet an arrival sequence number of 2, and so on.

Figure 6 shows the arrival order of these 10 packets at RCV,

and their corresponding arrival sequence numbers.

R5

b5 b3b4 b2 b1

a2 a1a3a4a5

network 2

network 4

R5

Fig. 5. 5 SNDa packets on the link from network 2 to router R5 (top line),
and at the same time 5 SNDb packets on the link from network 4 to R5

(bottom line).

seq no

a5 a4 a2b3b4 b2a1b1b5a3

10 9 8 7 6 3 2 145
(packets)δ

RCVR5

Fig. 6. The arrival sequence numbers of all 10 packets at RCV. The ASND
δ between packets a1 and a2 is the difference between their packet arrival
sequence numbers minus one.

The packet arrival sequence number difference (ASND,

denoted by δ) of two packets is defined to be the difference be-

tween their arrival sequence numbers minus one. For example,

the arrival sequence number of packet a1 is 2 in Figure 6, and

that of packet a2 is 5, thus their ASND is δ = (5−2)−1 = 2
packets. Intuitively, this means that there are two other packets

between packets a1 and a2.

2) ASND Histograms: We can infer the capacity ratio γ of

paths a and b by analyzing their ASND histograms. In this

subsection, we present the concept of ASND histograms, and

in Section V, we will thoroughly study the impact of cross

traffic on the ASND histograms.

Let Ha(i) (respectively, Hb(i)) denote the total number

of pairs of two consecutive packets that are sent by SNDa

(respectively, SNDb) and separated by δ = i packets at RCV.

For example, Ha(0) = 2 pairs in Figure 6, because the ASND

between packets a3 and a4 is 0 and that between packets

a4 and a5 is also 0. As another example, Ha(2) = 2 pairs,

because the ASND between packets a1 and a2 is 2 and that

between packets a2 and a3 is also 2.

The ASND histogram of the SNDa train is vector Ha =
(Ha(0), Ha(1), Ha(2), ...), and that of the SNDb train is

vector Hb = (Hb(0), Hb(1), Hb(2), ...). For example, Figure 7

shows ASND histograms Ha and Hb for SNDa and SNDb

trains, respectively.

We have the following theorem to simplify our analysis of

ASND histograms.

Theorem 1: |Ha(0) − Hb(0)| ≤ 1, if two trains have the

same number L of packets.

Proof: Let symbols a and b (without the subscripts) to

122

 0

 1

 2

 3

 0 1 2

of

 p
ai

rs

ASND δ (packets)

SNDa

(a) Histogram Ha

 0

 1

 2

 3

 0 1 2

of

 p
ai

rs

ASND δ (packets)

SNDb

(b) Histogram Hb

Fig. 7. The ASND histograms of the two trains in Figure 6.

denote a packet of SNDa and SNDb, respectively. The arrival

order of the 2L packets can be described by a string consisting

of L symbol a’s and L symbol b’s. For example, if L = 5, the

arrival order of the 10 packets in Figure 6 can be described

by string aaabbabbab, where the rightmost symbol (i.e., b) is

the first packet received by RCV (i.e., b1), and the leftmost

symbol (i.e., a) is the last packet received by RCV (i.e., a5).

A string of L symbol a’s and L symbol b’s can be classified

into the following four cases, according to the leftmost and

rightmost symbols. We will prove only cases 1 and 2, and the

other two cases can be proved very similarly.

• Case 1: The leftmost one: a, and the rightmost one: a.

• Case 2: The leftmost one: a, and the rightmost one: b.
• Case 3: The leftmost one: b, and the rightmost one: a.

• Case 4: The leftmost one: b, and the rightmost one: b.

Case 1: For a string with 2L symbols, there are a total of

2L − 1 pairs of two consecutive symbols. Let n(aa), n(ab),
n(ba), and n(bb) denote the number of pairs aa, ab, ba, and bb,
respectively. Let n(∗a) and n(∗b) denote the number of pairs

whose right symbol is a and b, respectively. By definition, we

have n(∗a) = n(ba) + n(aa), and n(∗b) = n(ab) + n(bb).
We have n(∗a) = L− 1, because the leftmost a cannot be

the right symbol of a pair. We also have n(∗b) = L. Therefore,

we have n(∗a) = n(∗b)− 1.

Since both the leftmost and the rightmost symbols are a, we

have n(ab) = n(ba). Therefore, Ha(0) = n(aa) = n(∗a) −
n(ba) = (n(∗b)− 1)− n(ab) = n(bb)− 1 = Hb(0)− 1.

Case 2: We have n(∗a) = L − 1, because the leftmost a
cannot be the right symbol of a pair. We also have n(∗b) = L.

Therefore, we have n(∗a) = n(∗b)− 1.

Since the leftmost symbol is a and the rightmost one is b,
we have n(ab) = n(ba) + 1. Therefore, Ha(0) = n(aa) =
n(∗a)−n(ba) = (n(∗b)−1)− (n(ab)−1) = n(bb) = Hb(0).

For example, Ha(0)−Hb(0) = 2−2 = 0 in Figure 7. Note

that, Theorem 1 holds no matter whether there is cross traffic

or not and no matter how long the train size L is.

We will not show and will not use Ha(0) and Hb(0) in

the rest of the paper for the following two reasons. First,

usually the SNDa and SNDb trains only partially overlap with

each other, and thus Ha(0) and Hb(0) are mainly due to the

non-overlapping packets of the two trains. Second, Theorem 1

shows that Ha(0) and Hb(0) are very close to each other, and

thus do not provide much useful information.

A peak (also called a mode) in a histogram is a local

maximum that is higher than its right neighbors and no less

than its left neighbor (if exists). For example, histogram Ha

in Figure 7 has a peak at 2 packets, and histogram Hb has a

peak at 1 packet (note that it does not have the left neighbor,

since we do not consider Hb(0)).
We introduce the second theorem about the peaks in ASND

histograms. Without loss of generality, this theorem considers

only case Ca ≤ Cb.

Theorem 2: In the absence of cross traffic, if Ca ≤ Cb,

histogram Ha has only one peak and the peak is located at Γ
packets, and histogram Hb has only one peak and the peak is

located at 1 packet. The capacity ratio γ can be obtained as

follow, where Ha(Γ− 1) should be set to 0 if Γ = 1.

γ =
(Γ− 1)Ha(Γ− 1) + ΓHa(Γ) + (Γ + 1)Ha(Γ + 1)

Ha(Γ− 1) +Ha(Γ) +Ha(Γ + 1)
(4)

Proof: When there is no cross traffic, the ATD of a pair of

two consecutive SNDa packets is S/Ca. The average number

of SNDb packets that can be transmitted during an S/Ca

interval is (S/Ca)×(Cb/S) = Cb/Ca. Therefore, the average

number of SNDb packets between a pair of two consecutive

SNDa packets is Cb/Ca. We consider the following three

possible cases:
Case 1: Cb/Ca is a positive integer. That is, Γ = γ =

Cb/Ca. In this case, there are exactly Γ SNDb packets between

a pair of two consecutive SNDa packets. Therefore, the peak

of Ha is at Γ packets. In this case, there are either 0 or 1

SNDa packet between a pair of two consecutive SNDb packets.

Therefore, the peak of Hb is at 1 packet. Note that, Ha(Γ −
1) = Ha(Γ + 1) = 0, and thus Equation (4) can be proved.

Case 2: Cb/Ca is a decimal greater than 1, and Γ =
�Cb/Ca� and Γ + 1 = �Cb/Ca�. In this case, there are

either �Cb/Ca� or �Cb/Ca� SNDb packets between a pair

of two consecutive SNDa packets. Because Γ = round(γ) =
�Cb/Ca�, we have Ha(Γ) > Ha(Γ + 1) > 0. Therefore, the

peak of Ha is at Γ packets. In this case, there are either 0

or 1 SNDa packet between a pair of two consecutive SNDb

packets. Therefore, the peak of Hb is at 1 packet. Note that,

Ha(Γ− 1) = 0, and thus Equation (4) can be proved.
Case 3: Cb/Ca is a decimal greater than 1, and Γ − 1 =

�Cb/Ca� and Γ = �Cb/Ca�. This case can be proved in a

similar way to case 2.

For example, in Figure 7, because Ca < Cb, histogram Ha

has a peak at Γ = round(Cb/Ca) = 2 packets, and histogram

Hb has a peak at 1 packet.
3) ASND-based Capacity Comparison: Theorem 2 pro-

vides the foundation of our proposed capacity comparison

method in the absence of cross traffic. Given the histogram

H of the slower path, algorithm EST-RATIO can estimate the

capacity ratio γ using Theorem 2. Since initially we do not

know which path is slower, algorithm COMPARE calculates

two ratio estimates: γa assuming path a is slower, and γb
assuming path b is slower. Then it selects the bigger ratio as

the final result.

123

Algorithm 1 Estimate the capacity ratio from histogram H
using Theorem 2 in the absence of cross traffic

1: function EST-RATIO(H)

2: Γ ← max(H(1), H(2), H(3), ...) � Find the peak

3: γ ← (Γ−1)H(Γ−1)+ΓH(Γ)+(Γ+1)H(Γ+1)
H(Γ−1)+H(Γ)+H(Γ+1)

4: return γ
5: end function

Algorithm 2 Compare the capacities of two paths using their

histograms Ha and Hb in the absence of cross traffic

1: function COMPARE(Ha, Hb)

2: γa ← EST-RATIO(Ha) � Assuming a is slower

3: γb ← EST-RATIO(Hb) � Assuming b is slower

4: if γa == γb then

5: print Path a is as fast as path b.

6: else if γa > γb then

7: print Path a is slower than path b.

8: print Cb/Ca = γa
9: else

10: print Path a is faster than path b.

11: print Ca/Cb = γb
12: end if

13: end function

V. IMPACT OF CROSS TRAFFIC

In this section, we study the impact of various types of cross

traffic on the ASND histograms using our lab testbed.

We study five possible types of cross traffic as illustrated in

Figure 8, which is very similar to Figure 3 and just simplifies

each network to a single router. The capacity of each link is

chosen to demonstrate the impact of the cross traffic on that

link. We emulate this network using our 10Gbps testbed, and

each link is emulated by a Linux token bucket filter (tbf).

C45=1200

R3

R1 R2

R4

SNDa

SNDb

R5 RCV

cross traffic

cross traffic

cross traffic

cross traffic

cross tr
affic

10000

Cb3=1000

Ca1=500 C12=200

C34=800

C25=400

Fig. 8. Five possible sources of cross traffic. Link capacity unit: Mbps.

The narrow link of path a from SNDa to RCV is the link

between routers R1 and R2, and thus the capacity of path a is

Ca = 200Mbps. The narrow link of path b from SNDb to RCV

is the link between routers R3 and R4, and thus the capacity

of path b is Cb = 800Mbps. Therefore, we have Γ = γ = 4.

In each of the following experiments, each sender sends a

train of L = 500 packets at approximately the same time, and

RCV measures the ASND histograms. Because path b is the

faster one, all SNDb histograms concentrate at 0 and 1 packet

(similar to Figure 7(b)), and thus we do not show the SNDb

SNDa

δ=4δ=4

R1 R5

R3 R5
R5 RCVSNDb

Fig. 9. No cross traffic. Each box indicates a packet on the link, but the
width of a box does not represent its transmission time.

cross

δ=8

R1 R2

R3 R4
R5 RCVSNDb

SNDa

Fig. 10. Cross traffic between R1 and R2.

SNDa

δ=3 δ=5

R2 R5

R4 R5
R5 RCVSNDb

Fig. 11. Cross traffic between R2 and R5.

RCV
δ=2δ=3R3 R4

R2R1
SNDa

SNDb R5

Fig. 12. Cross traffic between R3 and R4.

R5
δ=1δ=6

R2

R5

R5

R4
SNDb

SNDa

RCV

Fig. 13. Cross traffic between R4 and R5.

histograms. For the SNDa histograms, we do not show the

result for 0 packet, as explained in Section IV.

1) No Cross Traffic: As a reference case, first we do not

generate any cross traffic. Since γ = 4, there should be 4 SNDb

packets between a pair of two consecutive SNDa packets,

as illustrated in Figure 9. The SNDa histogram is shown in

Figure 14. As we expect, the ASND of most SNDa pairs is

4 packets. But there are a small number of SNDa pairs with

other ASNDs, which are mainly caused by the randomness

of the routers that are emulated using our lab computers and

Linux tbf.

2) Cross Traffic between R1 and R2: This experiment

shows the impact of cross traffic before or on the narrow link

of path a (i.e., the slower path). Random cross traffic is gener-

ated using MGEN [15] at an average rate of 200∗50% = 100
Mbps between R1 and R2.

Let’s consider the example shown in Figure 10. There are

still the same 8 SNDb packets passing the link between R3 and

R4 as in Figure 9. But during this time interval, a cross traffic

packet is inserted between the first (i.e., the rightmost one)

and second SNDa packets (the third SNDa packet is further

delayed, and not shown in the figure). As a result, the ASND

between the first and second SNDa packets is doubled and

becomes 8 packets.

This is why the SNDa histogram in Figure 15 has a non-

negligible number of SNDa pairs with δ = 8 packets. Further

more, the numbers of SNDa pairs with δ = γi = 4i packets

approximately follow a Geometric distribution described by

Equation (5), where N is the total number of pairs with δ = 4i
packets, and p is the occurrence probability of a cross traffic

124

 0

 20

 40

 60

 80

1 2 3 4 5 6 7 1011

of

 p
ai

rs

ASND δ (packets)

Actual Ratio
see Fig 9

SNDa

Fig. 14. No cross traffic.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 5 6 7 8 9 1213

of

 p
ai

rs

ASND δ (packets)

see Fig 10

SNDa
Geometric

Fig. 15. 50% cross traffic between R1 and R2.

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9 10

of

 p
ai

rs

ASND δ (packets)

see Fig 11

SNDa

Fig. 16. 80% cross traffic between R2 and R5.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 1011

of

 p
ai

rs

ASND δ (packets)

see Fig 12

SNDa
Binomial

Fig. 17. 50% cross traffic between R3 and R4.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 1112

of

 p
ai

rs

ASND δ (packets)

see Fig 13

SNDa

Fig. 18. 50% cross traffic between R4 and R5.

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 9 10 1213

of

 p
ai

rs

ASND δ (packets)

SNDa

Fig. 19. 50% cross traffic on all 5 links.

packet. For example, the dotted line in Figure 15 is obtained

using Equation (5) with the corresponding N and p.

Ha(i ∗ 4) = Npi−1(1− p) 1 ≤ i (5)

3) Cross Traffic between R2 and R5: This experiment

shows the impact of cross traffic beyond the narrow link of

path a but still before the shared segment. Random cross traffic

is generated at an average rate of 400 ∗ 80% = 320 Mbps

between R2 and R5.

In the example shown in Figure 11, there are still the same

8 SNDb packets passing the link between R4 and R5 as in

Figure 9. But a cross traffic packet is inserted between the

first and second SNDa packets. Because the link capacity

between R2 and R5 is twice that between R1 and R2, the

third SNDa packet can still be transmitted at the original time

as in Figure 9. As a result, the ASND between the first and

second SNDa packets increases to 5 packets, but the ASND

between the next two SNDa packets decreases to 3 packets.

This is why the SNDa histogram shown in Figure 16 has a

non-negligible number of SNDa pairs with ASNDs around 4

packets, such as 3 and 5 packets.

4) Cross Traffic between R3 and R4: This experiment

shows the impact of cross traffic before or on the narrow

link of path b (i.e., the faster path). Random cross traffic is

generated at an average rate of 800∗50% = 400 Mbps between

R3 and R4.

In the example shown in Figure 12, there are still the same

3 SNDa packets passing the link between R1 and R2 as in

Figure 9. But three cross traffic packets are inserted between

these SNDb packets (the rightmost three SNDb packets in

Figure 9 are further delayed, and not shown in Figure 12).

As a result, the ASND between the first and second SNDa

packets decreases to 2 packets, and the ASND between the

next two SNDa packets decreases to 3 packets.

This is why the SNDa histogram in Figure 17 has a large

number of SNDa pairs with ASND less than 4 packets. The

numbers of SNDa pairs with ASNDs between 1 and 4 packets

follow a Binomial distribution described by Equation (6),

where N is the total number of SNDa pairs with ASNDs

between 1 and 4 packets, and p is the occurrence probability of

a cross traffic packet. The dotted line in Figure 17 is obtained

using Equation (6) with the corresponding N and p.

Ha(i) = N

(
4

i

)
(1−p)ip4−i/(1−p4) 1 ≤ i ≤ 4 (6)

5) Cross Traffic between R4 and R5: This experiment

studies the impact of cross traffic beyond the narrow link of

path b but still before the shared segment. Random cross traffic

is generated at an average rate of 1200 ∗ 50% = 600 Mbps

between R4 and R5.

In the example shown in Figure 13, there are still the

same 3 SNDa packets passing the link between R2 and R5

as in Figure 9. But during this time interval, several cross

traffic packets are inserted between the first and second SNDb

packets. Because the link capacity between R4 and R5 is

higher than that between R3 and R4, the remaining SNDa

packets are only slightly delayed than in Figure 9. As a

result, the ASND between the first and second SNDa packets

decreases to 1 packet, and the ASND between the next two

SNDa packets becomes 6 packets, which is the capacity ratio

of the link between R4 and R5 to the link between R1 and R2

(i.e., 1200/200=6).

This is why the SNDa histogram shown in Figure 18 has

a large number of SNDa pairs with ASND not equal to 4

packets, such as 1 and 6 packets.

125

6) Cross Traffic between R5 and RCV: This experiment

shows the impact of cross traffic in the shared segment of

both paths. As we expect, this type of cross traffic does not

have any impact on the histograms.

7) Cross Traffic on All Five Links: Finally, we generate all

five types of cross traffic. The SNDa histogram is shown in

Figure 19, and it shows the combination of the impact of all

five types of cross traffic.

8) Summary: We have the following observations about the

ASND histogram of the slower path.

Observation 1: In practice, the ASND histogram could have

a small number of ASND values caused by the randomness of

the end-systems and the networks. These ASND values should

be treated as noises and be discarded.

Observation 2: With little or no cross traffic, there is only

one peak and the peak is located at the rounded capacity ratio

Γ (e.g., Figure 14). This is consistent with Theorem 2.

Observation 3: In the presence of cross traffic, it is possible

that there are multiple peaks (also called multi-mode), and

Γ may or may not be the location of a peak. For example,

Figure 18 has peaks at 1 and 6 packets, but no peak at 4

packets. We observe that multiple peaks are usually caused

by the cross traffic on the faster path. More specifically, they

are usually caused by the cross traffic beyond the narrow link

of the faster path, e.g., in Figures 18 and 19.

Observation 4: In the presence of cross traffic, if there is

only one peak, the peak location tends to be a lower bound of

Γ (e.g., Figure 16 has a single peak at 4 packets, and Figure 17

has a single peak at 3 packets). Intuitively, this is because an

ASND value greater than Γ usually leads to another ASND

value smaller than Γ (e.g., Figures 11 and 13). Therefore, if

there is a peak to the right of Γ, then there is usually another

peak to the left of Γ. That is, there will be multiple peaks.

Observation 5: We have calculated and verified that the

average of all ASND values of a histogram could be higher

than or lower than γ (i.e., neither an upper bound nor a lower

bound), depending on the amounts and locations of cross

traffic on both paths.

VI. PATHCOMP

In this section, we present our proposed PathComp to

relative compare the capacity ratio of two paths to the same

receiver without requiring accurate packet time information.

A. The PathComp Method

PathComp follows the basic idea of algorithms EST-RATIO

and COMPARE as described in Section IV-C3. However, there

are two problems with algorithm EST-RATIO in the presence

of cross traffic. 1) It is possible to have multiple peaks in a

histogram mainly due to the cross traffic on the faster path (i.e.,

Observation 3 in Section V-8), however EST-RATIO assumes

only one peak in a histogram. To tackle this problem, we divide

the long packet train on the faster path into multiple short

packet blocks, in order to reduce the impact of cross traffic.

2) If there is a single peak in the histogram of the slower

path, the peak location tends to be a lower bound of Γ (i.e.,

timetime

RTTΔ

Preliminary
Phase

RTTΔ

Phase 1

L packets
a train of

a train of
L packets

SNDbRCVSNDa

RTTΔ
Optional
Phase 2

L packets
a train of

a block of
B packets interval

Δ t

time

Tf

Fig. 20. PathComp has three phrases.

Observation 4 in Section V-8). To tackle this problem, we

estimate Γ by the peak of the weighted histogram.

PathComp consists of three phases as shown in Figure 20.

• 1) Preliminary phase measures some basic network in-

formation, such as the round-trip times (RTTs).

• 2) Phase I measures the histograms of the two paths. If

there is a single peak in the histogram of the slower path,

PathComp estimates γ using algorithms COMPARE and

EST-RATIO2; otherwise, it starts Phase II.

• 3) Phase II re-measures the histograms using multiple

packet blocks on the faster path, and then estimates γ
using algorithm EST-RATIO2.

Figure 20 still considers the two paths shown in Figure 3.

But to simplify the figure, Figure 20 assumes that there is only

one link between SNDa and R5 that is the narrow link of path

a, and there is only one link between SNDb and R5 that is the

narrow link of path b.

1) Preliminary Phase: This phase measures the RTT dif-

ference
RTT between SNDa-RCV and SNDb-RCV as il-

lustrated in Figure 20, so that in the next two phases the

packets of SNDa and SNDb can overlap with each other.

PathComp measures
RTT multiple times, and calculates the

mean (denoted by
RTT) and standard deviation (denoted by

σ(
RTT)) of measured
RTT values.

2) Phase I: RCV first tells the sender with a longer RTT

(i.e., SNDb in Figure 20) to start its packet transmission, and

after a delay of
RTT , RCV then tells the sender with a

shorter RTT (i.e., SNDa) to start its packet transmission. Each

sender sends a train of L consecutive packets with the same

packet size S. In Figure 20, the capacity Ca of path a is lower

126

than the capacity Cb of path b, so SNDa takes a longer time

to transmit the same number L of packets than SNDb.

After RCV receives these two trains, PathComp measures

ASND histograms Ha and Hb of the two paths, and uses Algo-

rithms EST-RATIO2 and COMPARE2 to estimate the capacity

ratio. The difference between EST-RATIO and EST-RATIO2

is that the former selects the peak from the original histogram

H = (H(1), H(2), H(3), ...), whereas the latter selects the

peak from the weighted histogram (H(1), 2H(2), 3H(3), ...).
This is motivated by Observation 4 in Section V-8. Note that

the peak location of the weighted histogram is greater than

or the same as that of the original histogram. The difference

between COMPARE and COMPARE2 is that the former

calls EST-RATIO whereas the latter called EST-RATO2. In

addition, if multiple peaks are detected in the histogram of

the slower path, Algorithm COMPARE2 starts phase II.

Algorithm 3 Estimate the capacity ratio from histogram H in

the presence of cross traffic

1: function EST-RATIO2(H)

2: Remove measurement noises from H
3: Γ ← max(H(1), 2H(2), 3H(3), ...) � Weighted

4: γ ← (Γ−1)H(Γ−1)+ΓH(Γ)+(Γ+1)H(Γ+1)
H(Γ−1)+H(Γ)+H(Γ+1)

5: return γ
6: end function

Algorithm 4 Compare the capacities of two paths using their

histograms Ha and Hb in the presence of cross traffic

1: function COMPARE2(Ha, Hb)

2: γa ← EST-RATIO2(Ha) � Assuming a is slower

3: γb ← EST-RATIO2(Hb) � Assuming b is slower

4: if γa == γb then

5: print Path a is as fast as path b.

6: else if γa > γb then

7: print Path a is slower than path b.

8: if Ha has multiple peaks then

9: starts Phase II

10: else

11: print Cb/Ca = γa
12: end if

13: else

14: print Path a is faster than path b.

15: if Hb has multiple peaks then

16: starts Phase II

17: else

18: print Ca/Cb = γb
19: end if

20: end if

21: end function

Parameter Setting: If σ(
RTT) = 0, the two trains should

arrive at RCV at the same time as illustrated in Figure 20.

In practice, σ(
RTT) > 0, and the train size L should be

sufficiently long so that the two trains can still overlap with

each other. For example, consider a cloud computing network

in a data center with σ(
RTT)=1 ms and with the capacity=1

Gbps, L should be at least 83 packets longer to compensate

for the RTT variance if packet size S is 1500 Byte. By default,

PathComp sets the train size L to 500 packets.

If the two trains could not overlap with each other, or

overlap for only a small portion of each train, PathComp

increases the train size and re-sends the two trains. However,

if excessive packet loss is detected at RCV, PathComp quits

the estimation.

By default, PathComp sets the packet size S to 1500 bytes.

This is because our experiments show that ASND histograms

become hard to predict and analyze when the packet size is

small. Intuitively, this is because the randomness of the end-

systems and networks have a big impact on small packets, and

thus there are much more noises in the ASND histograms.

3) Phase II: PathComp enters this phase, if there are mul-

tiple peaks in the histogram of the slower path. As observed

in Section V-8, this is usually due to the high cross traffic load

on the faster path. Therefore, we divide the long packet train

on the faster path into multiple short packet blocks, in order

to reduce the impact of cross traffic.

Specifically, PathComp still sends a train of L packets back-

to-back on the slower path. But on the faster path, PathComp

sends a block of B packets back-to-back every Δt time

interval, until all L packets have been sent out, as illustrated

in Figure 20. After RCV receives these two trains, PathComp

measures only the ASND histogram of the slower path, and

uses Algorithm EST-RATIO2 to estimate the capacity ratio.

Parameter Setting: The block size B should be much larger

than the capacity ratio γ, because B limits the maximum

ASND between two consecutive packets on the slower path.

By default, PathComp sets B to 20 packets, which is larger

than most typical ratios, such as 2 and 10.

The interval Δt should be long enough in order to suf-

ficiently separate different packet blocks, but should not be

too long so that most packets on the faster path can still

overlap with the packets on the slower path. By default,

PathComp sets Δt to 2Tf/(L/B) = 2BTf/L, so that the

average transmission rate of all packets is approximately

reduced by half and the total transmission time of all packets

is approximately doubled. Tf is the time for RCV to receive

the packet train from the faster path in Phase I.

PathComp checks whether Δt is too long or too short as

follows. If less than half of the packet blocks on the faster

path overlap with the packet train on the slower path, it is

likely that Δt is too big. If the ASND histogram of the faster

path contains very few large ASND values (e.g. δ ≥ 5), it is

likely that Δt is too short. In these cases, PathComp adjusts

the interval Δt and re-sends the packets.

As an example, Figure 19 shows the original SNDa his-

togram with multiple peaks obtained using the packet train on

the faster path, and Figure 21 shows the new SNDa histogram

obtained using packet blocks on the faster path. We can see

that in the new histogram, there are still multiple peaks, but

there is a peak at Γ = 4, and it is the highest peak.

127

 0

 10

 20

 30

 40

1 2 3 4 5 6 7 8 9 12 13

of

 p
ai

rs

ASND δ (packets)

SNDa

Fig. 21. The difference between this figure and Figure 19 shows the
effectiveness of Phase II in the presence of cross traffic.

B. Packet Time Information used in PathComp

PathComp uses only two types of coarse packet time

information: the
RTT between two paths, and the time Tf

for RCV to receive the packet train from the faster path in

Phase I. None of them needs to be accurately measured.

RTT is used in both Phases I and II so that the packets

on both paths will arrive at RCV at approximately the same

time. The inaccuracy in measuring
RTT can be mitigated

by using longer packet trains.

Tf is used in Phase II to calculate block interval Δt. Note

that time Tf is the time for receiving a train of L packets, not

a single packet. Therefore, due to the relatively large value

of L (e.g., 500), Tf is a relatively long time (e.g., 0.6 ms at

10Gbps). In addition, too large or too small interval Δt due to

the inaccuracy in measuring Tf will be detected and adjusted

by PathComp in Phase II.

C. An Implementation Challenge: RSS and IC

Two features of high-speed NICs may interfere with Path-

Comp: Receiver Side Scaling (RSS) and Interrupt Coalescence

(IC). Each of them alone doe not affect PathComp, but

when both of them are enabled, they greatly interfere with

PathComp. Below we explain the reasons and our solution.

RSS [14] is a relatively new NIC feature to allow a NIC to

balance interrupts among multiple CPUs in a computer. RSS

distributes incoming packets into different NIC Rx queues

according to their hash values calculated using the packet

information, such as source IP. As a result, the probing packets

from two different senders are placed into different NIC Rx

queues and handled by different CPUs on RCV. IC [9] is a

NIC feature to reduce the CPU load by generating an interrupt

for a group of packets instead of each packet.

When an interrupt is generated as each packet arrives (i.e.,

IC disabled), RSS alone does not affect PathComp because

the interrupt sequence follows the packet arrival sequence.

When there is only a single NIC Rx queue (i.e., RSS disabled),

IC along does not affect PathComp because IC changes only

the packet arrival times but not the packet arrival sequence.

However, when both RSS and IC are enabled, they greatly

interfere with PathComp as illustrated in Figure 22. Packets

from different senders are placed into different NIC Rx queues,

and an interrupt is generated only for a group of packets

from a Rx queue. As a result, the packet arrival sequence

measured by PathComp is different from the original packet

arrival sequence at the NIC.

NIC incoming packets

Rx1

Rx2 Arrival sequence to PathComp

Fig. 22. Impact of RSS and IC on the packet arrival sequence.

A simple solution is IP address spoofing. We modify the

packet source IP address of one sender to the same as that

of the other sender, in order to conceal RCV that all packets

are from the same sender. RCV therefore places all packets

to the same Rx queue. Although packets with a forged source

IP address may be filtered by some firewall, this is a more

practical solution compared with disabling either RSS or IC on

RCV. We have successfully tested this solution on our campus

network, Amazon EC2 [1], and PlanetLab [18].

Figure 23 shows the SNDa histogram when both RSS and

IC are enabled. It is obtained with exactly the same testbed

setting (including cross traffic, RSS, and IC) as Figure 14,

except that the latter uses IP address spoofing. We can see

that Figure 23 is greatly different from Figure 14. That is,

without IP address spoofing, RSS and IC greatly change the

packet arrival sequence.

 0

 4

 8

 12

 16

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13

of

 p
ai

rs

ASND δ (packets)

SNDa

Fig. 23. The difference between this figure and Figure 14 shows the impact
of RSS and IC on the histogram.

VII. EVALUATION

In this section, we evaluate PathComp using our lab testbed,

our campus network, and Amazon EC2.

A. Testbed Results

We conduct the following three groups of testbed experi-

ments to evaluate PathComp with default parameters. For each

experiment, we run it for 50 times, and report the average with

a 95% confidence interval. The emulated network topology is

the same as the one shown in Figure 8 but with different link

capacities. We use Linux tbf with the minimum token burst

size to emulate a link capacity, except 100 Mbps, 1 Gbps, and

10 Gbps. We notice that Linux tbf on our testbed can only

emulate up to 1.6 Gbps links due to limited system capability.

Thus, the maximum link capacity in our testbed experiments

is 1.6 Gbps, except 10 Gbps.

Group 1 - Impact of Large Capacity Ratios: This group

of experiments study the accuracy of PathComp when two

paths have a capacity ratio at least 2. For path a in Figure 8,

we set Ca1 = 500 Mbps, C12 = 200 Mbps, C25 = 1 Gbps,

and thus the capacity of path a is Ca = C12 = 200 Mbps. For

path b, we set Cb3 = 1.6 Gbps, C34 = 400 Mbps to 1.6 Gbps,

128

C45 = 10 Gbps, and thus the capacity of path b is Cb = C34.

Therefore, the capacity ratio γ = Cb/Ca varies from 2 to 8.

The estimated capacity ratios are shown in Figure 24(a),

where each link marked in Figure 8 has 30% cross traffic. We

can see that PathComp can accurately measure these large

capacity ratios. The large confidence interval at γ = 8 is

partially because that Linux tbf has almost reached its max

performance limit on our testbed.

Group 2 - Impact of Small Capacity Ratios: This group of

experiments study the accuracy of PathComp when two paths

have a capacity ratio no more than 2. Path a has the same link

capacities as in group 1, and thus the capacity of path a is still

Ca = C12 = 200 Mbps. For path b, we set Cb3 = 1 Gbps,

C34 = 200 Mbps to 400 Mbps, C45 = 1 Gbps, and thus the

capacity of path b is Cb = C34. Therefore, the capacity ratio

γ = Cb/Ca varies from 1 to 2.

The estimated capacity ratios are shown in Figure 24(b),

where each link marked in Figure 8 has 30% cross traffic. We

can see that PathComp can accurately measure these small

capacity ratios. Even when γ = 2, the average estimated ratio

is 1.88, and is very close to the actual ratio. Note that results

with γ = 2 in Figures 24(a) and 24(b) are obtained using

different link capacities (e.g., C45) and then different amounts

of cross traffic. In the latter, C45 is smaller, and thus its link is

more congested. This is why the estimation error with γ = 2
in the latter is larger than that in the former.

 2

 4

 6

 8

 2 4 6 8

E
st

im
at

ed
 C

ap
ac

ity
 R

at
io

Actual Capacity Ratio γ

Estimated ratio
Actual ratio

(a) Capacity ratio in range (2, 8)

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2

E
st

im
at

ed
 C

ap
ac

ity
 R

at
io

Actual Capacity Ratio γ

Estimated ratio
Actual ratio

(b) Capacity ratio in range (1, 2)

Fig. 24. Impact of large and small capacity ratios.

Group 3 - Impact of Cross Traffic: This group of

experiments study the accuracy of PathComp under different

amounts of cross traffic. We use the same link capacities as

in group 2, except that we set C34 to 400 Mbps. Therefore,

γ = Cb/Ca is fixed to 2.

Figure 25(a) shows the estimated capacity ratios when the

cross traffic on path a varies from 10% to 60% and that on path

b is fixed to 30%. Figure 25(b) shows the estimated capacity

ratios when the cross traffic on path a is fixed to 30%, and

that on path b varies from 10% to 60%.

We can see that cross traffic on path b (i.e., the faster path)

has a bigger impact than that on past a (i.e., the slower path).

The reason is the probing traffic on path b is sent at a higher

rate. With the same percentage of crossing traffic, path b is

more congested than path a. For example, with 60% crossing

traffic, the link utilization between R4 and R5 on path b can

reach up to 0.6 + 400/1000 = 100%, but only up to 0.6 +
200/1000 = 80% for the link between R2 and R5 on path

a. This is consistent with our observation in Section V, and

this is also the motivation why PathComp in Phase II divides

a long packet train into multiple short packet blocks on the

faster path.

 1

 1.2

 1.4

 1.6

 1.8

 2

10% 20% 30% 40% 50% 60%

E
st

im
at

ed
 C

ap
ac

ity
 R

at
io

Amount of cross traffic

Estimated ratio
Actual ratio

(a) Varying cross traffic on path a

 1

 1.2

 1.4

 1.6

 1.8

 2

10% 20% 30% 40% 50% 60%

E
st

im
at

ed
 C

ap
ac

ity
 R

at
io

Amount of cross traffic

Estimated ratio
Actual ratio

(b) Varying cross traffic on path b

Fig. 25. Impact of cross traffic.

Remarks: We also run PathRate [6] on our testbed, which

is one of the most well studied and widely used capacity

estimation methods. However, it could not accurately estimate

the capacity of a path on our testbed. For example, in Group

1, it reports a capacity of 1100∼1400 Mbps (results of

multiple runs) for path a, and reports an insufficient number

of packet dispersion estimates for path b. This is partially due

to interference of IC and Linux tbf.

B. Campus Network Results

We also evaluate PathComp using some servers in our

campus network, where we know the network and server

information.

Intra-Department Network: We choose three servers, de-

noted by SNDa, SNDb, and RCV, in our department. SNDa is

connected to the department 1 Gbps network through a 100

Mbps switch, and both SNDb and RCV are connected to the

department network through 1 Gbps Ethernet. Figure 26(a)

shows the ASND histograms of SNDa and SNDb, and note

that there are some ASND values at 9 and 11 packets which

are caused by cross traffic. PathComp correctly estimates that

the capacity ratio is 10 (corresponding to the peak at δ = 10
packets). We also run PathRate, and it correctly estimates

the capacity between SNDa and RCV as 100 Mbps, but it

mistakenly reports the capacity between SNDb and RCV as

1900∼2100 Mbps.

 0

 10

 20

 30

 40

 50

 60

1 3 8 9 10 11

of

 p
ai

rs

ASND δ (packets)

SNDa
SNDb

(a) Intra-Department Network

 0

 10

 20

 30

 40

 50

 60

1 5 7 8 9 10

of

 p
ai

rs

ASND δ (packets)

SNDa
SNDb

(b) Inter-Department Network

Fig. 26. Campus network experiments.

Inter-Department Network: We choose three servers, de-

noted by SNDa, SNDb, and RCV, in three different depart-

ments in our campus network. SNDa has a 100 Mbps NIC,

and both SNDb and RCV have a 1 Gbps NIC. All three servers

are connected to the campus 1 Gbps network. Each of the two

paths passes four routers, and they share only the last router

129

just before RCV. Figure 26(b) shows the ASND histograms of

SNDa and SNDb, and PathComp correctly estimates that the

capacity ratio is 10. We also run PathRate, and it correctly

estimates the capacities of both paths: SNDa: 100 Mbps, and

SNDb: 970∼990 Mbps.

C. Amazon EC2 Results

We also evaluate PathComp using VMs on Amazon Elastic

Compute Cloud (EC2) [1], which is a very popular public

cloud computing platform. The EC2 facilities are located at

multiple locations, and we choose the one in the US West

(Oregon) region that includes three zones. We select three

micro instances from different zones as three senders denoted

by SNDa, SNDb, and SNDc, and we select one medium

instance as the receiver RCV.

We relatively compare the path capacities from the three

senders to the receiver for 100 times, and Figure 27 shows

the cumulative distribution function (CDF) of the estimated

capacity ratios. PathComp reports that SNDa is slightly faster

than SNDb, SNDb is about 2.2∼2.4 times faster than SNDc,

and SNDa is about 2.4∼2.7 times faster than SNDc. We can

also see that the results are highly consistent. For example,

among estimated ratios between SNDc and SNDa, most of

them are about 2.4∼2.7, and about 10% of them are smaller

than 2.4. This is possibly due to the interference of VM

scheduling, as micro instances are scheduled much more

frequently than other types of instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

C
D

F

Estimated Capacity Ratio

SNDa / SNDb
SNDb / SNDc
SNDa / SNDc

Fig. 27. Amazon EC2 Results.

In order to verify our estimated capacity ratios, we also

run PathRate and iperf on EC2. PathRate reports that IC

is detected and there is an insufficient number of packet

dispersion estimates. Since this paper considers the capacity

of a path that indicates the short-term peak rate of the path,

we use the iperf/tcp highest 1-second throughput in its first

ten seconds. For SNDa, the iperf results are 540∼980 Mbps.

For SNDb, the iperf results are 530∼760 Mbps. For SNDc,

the iperf results are 280∼290 Mbps. The iperf results are

consistent with our estimated capacity ratios. We guess that

the SNDa capacity is possibly 1 Gbps, and the SNDb and

SNDc capacities are limited possibly by the virtual machine

capability and by rate limiters (e.g., a token bucket shaper).

Note that PathComp sends out much less traffic than iperf.

For example, PathComp sends less than 1 MBytes from SNDa,

whereas iperf sends 65∼117 MBytes just in the first second.

VIII. CONCLUSIONS

In this paper, we proposed a method called PathComp

to relatively compare the capacities of two paths using the

packet arrival sequence information instead of packet time

information. In the future, we plan to extend PathComp to

simultaneously compare more than two paths, and plan to

relatively compare the available bandwidths of different paths.

ACKNOWLEDGMENT

The work reported in this paper is supported in part by NSF

CNS-1017561.

REFERENCES

[1] Amazon Web Services, Inc. Amazon Elastic Compute Cloud. http:
//aws.amazon.com/ec2/.

[2] R. Carter and M. Crovella. Measuring bottleneck link speed in packet-
switched networks. Performance evaluation, 27:297–318, October 1996.

[3] L. Chen, T. Sun, B. Wang, M. Sanadidi, and M. Gerla. PBProbe: A
capacity estimation tool for high speed networks. Computer Communi-

cations, 31(17):pp. 3883–3893, November 2008.
[4] L. Cheng and C. Wang. Defeating network jitter for virtual machines.

In Proceedings of IEEE Conference on Utility and Cloud Computing

(UCC), Melbourne, Australia, December 2011.
[5] D. Croce, E. Leonardi, and M. Mellia. Large scale available bandwidth

measuremens: interference in current techniques. IEEE Transactions on

Network and Service Management, 8(4):pp 361–374, December 2011.
[6] C. Dovrolis, P. Ramanathan, and D. Moore. Packet-dispersion techniques

and a capacity-estimation methodology. IEEE/ACM Transactions on

Networking, 12(6):963–977, December 2004.
[7] A. Downey. Using pathchar to estimate Internet link characteristics.

In Proceedings of ACM SIGCOMM, pages 241–250, Cambridge, MA,
August 1999.

[8] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement
methodology, dynamics, and relation with TCP throughput. IEEE/ACM

Transactions on Networking, 11(4):537–549, August 2003.
[9] G. Jin and B. Tierney. System capability effects on algorithms for

network bandwidth measurement. In Proceedings of ACM IMC, Miami
Beach, FL, October 2003.

[10] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi. CapProbe:
a simple and accurate capacity estimation technique. In Proceedings of

ACM SIGCOMM, Portland, Oregon, August 2004.
[11] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan. Choreo: Network-

aware task placement for cloud applications. In Proceedings of ACM

IMC, Barcelona, Spain, October 2013.
[12] K. Lai and M. Baker. Measuring link bandwidths using a deterministic

model of packet delay. In Proceedings of ACM SIGCOMM, New York,
NY, August 2000.

[13] Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer video streaming
systems. Journal of Peer-to-Peer Networking and Applications, 1(1):18–
28, March 2008.

[14] Microsoft. Introduction to receive side scaling. http://msdn.microsoft.
com/en-us/library/windows/hardware/ff556942%28v=vs.85%29.aspx.

[15] Naval Research Laboratory. Multi-Generator (MGEN). http://www.nrl.
navy.mil/itd/ncs/products/mgen.

[16] V. Paxson. End-to-end internet packet dynamics. In Proceedings of

ACM SIGCOMM, France, September 1997.
[17] V. Paxson. On calibrating measurements of packet transit times. ACM

SIGMETRICS Performance Evaluation Review, 26(1):pp 11–21, June
1998.

[18] PlanetLab. An open platform for developing, deploying, and accessing
planetary-scale service, 2002. http://www.planet-lab.org/.

[19] R. Prasad, M. Jain, and C. Dovrolis. Effects of interrupt coalescence on
network measurements. In Proceedings of PAM, France, April 2004.

[20] R. Prasad, M. Murray, C. Dovrolis, and K. Claffy. Bandwidth estimation:
metrics, measurement techniques, and tools. IEEE Network, 17(6):27–
35, November-December 2003.

[21] J. Whiteaker, F. Schneider, and R. Teixeira. Explaining packet delays un-
der virtualization. ACM SIGCOMM Computer Communication Review,
41(1):pp 39–44, January 2011.

130

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2014

	Network Path Capacity Comparison without Accurate Packet Time Information
	Ertong Zhang
	Lisong Xu

	Network Path Capacity Comparison without Accurate Packet Time Information

