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Construction of Explicit and Implicit 
Symmetric TVD Schemes and Their Applications* 

H. C. YEEt 

NASA Ames Research Center, Moffett Field, California, 94035 

Received July 31, 1985; revised April 16, 1986 

A one-parameter family of second-order explicit and implicit total variation diminishing 
(TVD) schemes is reformulated so that a simplier and wider group of limiters is included. The 
resulting scheme can be viewed as a symmetrical algorithm with a variety of numerical dis­
sipation terms that are designed for weak solutions of hyperbolic problems. This is a 
generalization of recent works of Roe and Davis to a wider class of symmetric schemes other 
than Lax-WendrofT. The main properties of the present class of schemes are that they can be 
implicit, and, when steady-state calculations are sought, the numerical solution is independent 
of the time step. Numerical experiments with two-dimensional unsteady and steady-state air­
foil calculations show that the proposed symmetric TVD schemes are quite robust and 
accurate. © 1987 Academic Press, Inc. 

1. INTRODUCTION 

The notion of total variation diminishing (TVD) schemes was introduced 
Harten [1,2]. He derived a set of sufficient conditions which is very useful 
checking or constructing second-order TVD schemes. The main mechanism tha 
currently in use for satisfying TVD sufficient conditions involves some kind 
limiting procedure. There are generally two types of limiters: namely slope limi 
[3] and flux limiters [4-6]. For a slope limiter one imposes constraints on 
gradients of the dependent variables. In contrast, for a flux limiter one imposes c 
straints on the gradients of the flux functions. For constant coefficients, the 
types of limiters are equivalent. The main property of a TVD scheme is that, un 
monotone schemes, it can be second-order accurate and is oscillation-free aCl 
discontinuities (when applied to nonlinear scalar hyperbolic conservation laws 
constant coefficient hyperbolic systems). Sweby [5] and Roe [6] constructe 
class of limiters as a function of the gradient ratio. Most of the current limiter 
use are equivalent to members of this class. 

* Part of the results were included in the proceedings of the IMA Workshop on "Oscillation Tht 
Computations, and Methods of Compensated Compactness," University of Minnesota, April 1-6, I 
and in the Proceedings of the 6th GAMM Conference on Numerical Methods in Fluid Mechanics, I 

tingen, West Germany, September 25-27, 1985. 
t Research Scientist, Computational Fluid Dynamics Branch. 
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Although TVD schemes are designed for transient applications, they also have 
been applied to steady-state problems [6-10]. It is well known that explicit 
methods are usually easier to program and often require less storage than implicit 
methods, but can suffer a loss of efficiency when the time step is restricted by 
stability rather than accuracy. It is also commonly known that it is not very useful 
to extend Lax-Wendroff-type schemes to implicit methods, since the resulting 
schemes are not suitable for steady-state calculations. This is due to the fact that the 
steady-state solution will depend on the time step. Roe has recently proposed a very 
enlightening generalized formulation of TVD Lax-Wendroff schemes [11]. Roe's 
result, in turn, is a generalization of Davis's work [12]. It was the investigation of 
these schemes which prompted the work of this paper. Their formulation has great 
potential for transient applications, but as it stands is not suitable for an extension 
to implicit methods. 

The aim of this paper is to incorporate the results of Roe [11] and Davis [12] 
with minor modification to a one-parameter family of explicit and implicit TVD 
schemes [2,8,9] so that a wider group of limiters can be represented in a general 
but rather simple form which is at the same time suitable for steady-state 
applications. The final scheme can be interpreted as a three-point, spatially central 
difference explicit or implicit scheme which has a whole variety of more rational 
numerical dissipation terms than the classical way of handling shock-capturing 
algorithms. In other words, it is a symmetric (or non-upwind) TVD scheme. It is 
emphasized here that the generic use of the notion upwind and symmetric TVD 
schemes here pertains to the schemes without the limiter present. With a limiter 
present, an upwind TVD scheme no longer has its traditional upwinding meaning. 
The same situation also applies to symmetric TVD scheme. Another way of dis­
tinguishing an upwind from a symmetric TVD scheme is that the numerical dis­
sipation term corresponding to an upwind TVD scheme is upwind weighted [1-3, 
5-10], as opposed to the numerical dissipation term corresponding to a symmetric 
TVD scheme which is centered [11, 12]. 

The proposed scheme can be used for time-accurate or steady-state calculations. 
Moreover, the formulations of Roe and Davis can be considered as a member of 
the explicit scheme. By writing the scheme in terms of numerical fluxes with two 
input parameters (one for the choice of the time-differencing method and one for 
the option of choosing the Lax-Wendroff flux), a single computer program can 
easily be coded to include all of the schemes under discussion. Various limiters can 
be considered as external functions inside the computer program. Extension of the 
schemes to nonlinear scalar and system of hyperbolic conservation laws is discussed 
in detail. Formulation and extension of the schemes in multidimensional curvilinear 
coordinates can be found in references [13, 14]. 

For problems containing shocks only, numerical experiments for steady-state 
calculations show that the implicit symmetric TVD schemes are just as accurate as 
an implicit upwind TVD scheme, originally developed by Harten [2] and modified 
by Yee [9], while requiring less computational effort. However, for problems con­
taining both shocks and contact discontinuities, numerical experiments show that 
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the explicit symmetric TVD schemes are slightly more diffusive than the explicit 
upwind TVD scheme especially at the contact surfaces. Numerical examples will be 
given in Section 5. The effort involved in modifying some existing central difference 
computer codes for systems of hyperbolic conservation laws is fairly simple and 
straightforward. The proposed algorithms should have the potential of improving 
the robustness and accuracy of many practical physical and engineering 
calculations. 

2. PRELIMINARIES 

In this section a class of explicit and implicit TVD schemes [2] is reviewed. Har­
ten's sufficient conditions for this class of schemes are also stated. This set of con­
ditions is then utilized in the subsequent sections to construct and reformulate the 
second-order explicit and implicit TVD schemes of Harten [1, 2]. 

Consider the scalar hyperbolic conservation law 

(2.1 ) 

where f is the flux and a( u) = afl au is the characteristic speed. Let uj' be the 
numerical solution of (2.1) at x = j Ax and t = nAt, with Ax the spatial mesh size 
and At the time step. Consider a one-parameter family of five-point difference 
schemes in conservation form 

where 0:::;0:::;1, A=AtIAx, hj'± 1/2 =h(u}+ I' uj', Uj'±I' Uj±2)' and hj;i/2 = h(uj'-ti, 
uj + I, uj; II, uj; d). The function hj + 1/2 is commonly called a numerical flux 
function. Let 

Ii; + 1/2 = (1 - 0) hj+ 1/2 + Ohj:i/2 (2.3 ) 

be another numerical flux function. Then (2.2) can be rewritten as 

n + I _ n l(h- h-) uj - u; - A j+ 1/2 - j-I/2' (2.4 ) 

This numerical flux is a function of eight variables, Ii; + 1/2 = Ii( uj _ I' uj, uj + I' uj + 2' 

Un + I Un + 1 Un + I Un + I) and is consistent with the conservation law (2 1) in the 
J-1' J ' J+ I' J+2' . 

following sense 

Ii(u, u, u, u, u, u, u, u)=f(u). (2.5) 

This one-parameter family of schemes contains implicit as well as explicit 
schemes. When 0 = 0, (2.2) is an explicit method. When 0 # 0, (2.2) is an implicit 
scheme. For example, if 0 = 1, the time-differencing is the trapezoidal formula, and, 
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if 0 = 1, the time-differencing is the backward Euler method. To simplify the 
notation, rewrite equation (2.2) as 

where Land R are the following finite-difference operators: 

(L' ut = uj + )'O(hi+ 1/2 - h i - I /2 ), 

(R' U)i = uj - ).(1- O)(hj + 1/2 - h j _ 1/2)' 

The total variation of a mesh function un is defined to be 

00 00 

TV(u n )= L luj+l-ujl = L lL1j+I/2Unl, 
j= - 00 j= - 00 

where L1 j + 1/2Un = uj + 1- uj . Here the general convention 

L1 j + I /2Z=Zj+I- Zi 

(2.6) 

(2.7a) 

(2.7b) 

(2.8) 

(2.9) 

for any mesh function Z is used. The numerical scheme (2.2) for an initial-value 
problem of (2.1) is said to be TVD if 

(2.1 0) 

The following sufficient conditions for (2.2) to be a TVD scheme are due to Har­
ten [2], 

(2.11a) 

and 

(2.11 b) 

Assume the numerical flux h in (2.2) is Lipschitz continuous and (2.2) can be writ­
ten as 

n + I 'O(C- - A C- + A )n + I 
Uj - II. j + 1/2 LJ j + 1/2 U - j _ 1/2 LJj _ 1/2 U 

= uj + ).(1- 0)( Cj-+ 1/2 L1 j + 1/2 U - Ct-I/2 L1 j _ I /2Ut, (2.12) 

h C- =+= ;-; =+= ( ) 'b'l C- =+= C- =+= ( ) were j±I/2=C Uj ,Uj ±I,Uj ±2 orposslly j±I/2= Uj =+=I,Uj ,Ui ±i>Uj ±2 are 
some bounded functions. Then Harten further showed that sufficient conditions for 
(2.11) are 

(a) iffor all j 

(2.13a) 

(2.13b) 
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and 

(b) if for all j 
(2.14 ) 

for some finite C. Conditions (2.13) and (2.14) are very useful in guiding the con­
struction of second-order-accurate TVD schemes which do not exhibit the spurious 
oscillation associated with the more classical second-order schemes. 

Harten [1,2], Yee et al. and Yee [7-10] investigated a particular form of C±. 
They have shown in a variety of numerical tests that the scheme is quite useful for 
gas-dynamic calculations. Recently, Davis [12] derived a TVD Lax-Wendroff 
scheme by first rewriting an upwind TVD scheme of Sweby [5] into two terms. 
One term consisted of the regular Lax-Wendroff method and the other a numerical 
dissipation term. He then simplified the method by eliminating the upwind 
weighting of the dissipation term. The resulting scheme is a symmetric TVD scheme 
which is slightly more diffusive than its upwind TVD counterpart. It is emphasized 
here that, in general, a second-order upwind TVD scheme can be written as a cen­
tral difference scheme plus a numerical dissipation term [2, 12, 15, 16]. However, in 
this case, the amount of numerical dissipation is a function of the sign of the 
characteristic speed [15]; i.e., it is upwind weighted. 

More recently, Roe [11] reformulated Davis's scheme in a way which is easier to 
analyze and included a class of TVD schemes not observed by Davis. The scheme 
by Davis becomes a special case of Roe's. The main feature of Roe's current work is 
that he suggested a wider class of flux limiters for the Lax-Wendroff-type of TVD 
schemes which with a minor modification is found to have an immediate 
application to scheme (2.2). The details will be discussed in the next two sections. 

3. A GENERALIZED FORMULATION OF A CLASS OF SYMMETRIC SCHEMES 

In this section, Roe's generalized formulation of Davis's TVD Lax-Wendroff 
scheme is reviewed. Then, with a minor modification, his numerical flux is shown to 
be applicable to a larger class of symmetric schemes. Sufficient conditions for this 
new class of schemes to be TVD are derived for both the constant coefficient and 
nonlinear scalar hyperbolic equations. 

3.1. Roe's Generalized TVD Lax-Wendroff Schemes 

Roe [11] has recently developed a generalized formulation of TVD Lax-Wen­
droff schemes. The form of the schemes is the usual Lax-Wendroff plus a general 
conservative dissipation term designed in such a way that the final scheme is TVD. 
For of/au = a = constant, his scheme is written as 

uj + 1 = uj - !v( 1 + v) A j _ 1/2 U - !v( 1 - v) A j + 1/2 U 

- !lvl(I-lvl )(1 - Qj-I/2) Aj _ I/2 U 

+ !Ivl(l-Ivl )(1 - Qj+ 1/2) Aj + 1/2 U. (3.1 ) 
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Here v = aA = a LlllLlx.The first two terms represent the usual Lax-WendrofT 
scheme, and the other two terms represent an additional conservative dissipation. 
The function Qi + 1/2 depends on three consecutive gradients LI i.- 1/2 u, Ll j + 1/2 u, and 
Llj + 3/2 U and is of the form 

where 

Qi+ 1/2 = Q(ri~ 1/2' rt+ 1/2)' 

_ Ll j _ 1/2 U 

ri + I / 2 =" ' . LJj+ 1/2U 

Llj+ 3/2U 

Llj + 1/2 U· 

(3.2a) 

(3.2b) 

Here r ± are not defined if Ll j + 1/2 U = 0. One way is to add a small number to both 
the numerator and denominator. To avoid the use of a small parameter, or the use 
of extra logic in computer implementation, an equivalent representation will be dis­
cussed in the appendix. If one assumes both Q and Qlr are always positive, then a 
set of sufficient conditions for (3.1) to be TVD is 

2 
Qi+I/2<~' 

2 
(Q)+ 1/2Iri~ 1/2) <10' 

+ 2 
(Qi+ 1/2Iri+ 1/2) <10' 

(3.3a) 

(3.3b) 

(3.3c) 

Some examples for the function Q here after called limiters (in a slightly different 
definition than references [5, 6]) are 

Q(r-, r+) = minmod(1, r-) + minmod(1, r+) - 1, 

Q(r-, r+) = minmod(1, r-, r+). 

Q(r-, r+)=minmod[2, 2r-, 2r+, 0.5(r- +r+)] 

Q(r-, r+) = max{O, min(2r-, 1), min(r-, 2)} 

+ max{O, min(2r+, 1), min(r+, 2)} -1, 

Q( _ +)_r-+1r- 1 r++lr+1 
r ,r - 1 - + 1 + 1. +r +r 

Normally the "minmod" function of two arguments is defined as 

minmod(x, y) = sgn(x)' max{O, min[lxl, y' sgn(x)]} 

but within this context 

. d( 1 +) {min(1, r±), mmmo r- = , 0, 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.5) 

(3.6 ) 
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Other forms of Q(r-, r+) are discussed in Roe [6]. Limiter (3.4d) due to Roe [6], 
nicknamed "superbee," is the most compressive among the above four Q functions. 
Limiter (3.4e), due to van Leer [3J is found to produce a slightly better shock 
resolution than (3.4a) [17, 5, 6]. Some study on how the various limiters affect the 
accuracy of numerical solutions for two-dimensional fluid dynamics applications 
can be found in references [17,18]. Here the bound on Ivl for limiters (3.4d, e) are 
more restrictive than (3.4a, b, c). 

Scheme (3.1) is a reformulation of Davis's work [12] in a way which is easier to 
analyze and includes a class of TVD schemes not observed by Davis. Davis only 
analyzed the specific scheme (3.1) with Q(r-, r+) defined in (3.4a). The numerical 
flux denoted by hf~/2 for (3.1) is 

hf~/2 = H a(u;+ 1+ u) - [J,.a2Qj+ 1/2 + lal (1 - Qj+ 1/2)] Llj + 1/2U}. (3.7) 

Scheme (3.1) is second-order accurate in time and space. Observe that by setting 
e = ° in (2.2) and by using (3.7) as the numerical flux, the resulting scheme is (3.1 ). 

3.2. Schemes for Linear Scalar Hyperbolic Equations 

If one is to use (3.7) as the numerical flux for (2.2) with e;6 0, then the resulting 
scheme is only useful for transient calculations. For steady-state applications, either 
one has to restrict the time step in a manner similar to the explicit method or the 
steady-state solution will depend on the time step. It is emphasized here that the 
dependence on the time step in steady-state solutions occurs even though the value 
of Ll t is similar to an explicit method. In this case Ll t is most often of the same order 
as Llx; thus the dependence on Llt is less severe. The term that causes this 
undesirable property is the one with coefficient A in Eq. (3.7). Therefore, besides 
considering the use of (3.7) as the numerical flux for (2.2) when e = 0, the numerical 
flux (3.7) with Aa2Qi+ 1/2 = ° and ° ~ e ~ 1 is also considered; i.e., the numerical flux 
is of the form 

hj+ 1/2 = ![a(ui+ 1+ u) -lal(1- Qi+ 1/2) Ll j+ 1/2U]. (3.8 ) 

Now the question is, will the new numerical flux (3.8) satisfy the sufficient con­
ditions (2.11)? The answer is yes. It turns out that some of the Q functions that are 
suitable for the generalized TVD Lax-Wendroff scheme are also suitable for (3.8). 
The implication is that if one chose the proper Q function, the resulting scheme 
(2.2) together with (3.8) can be viewed as a symmetrical algorithm with a wide 
variety of numerical dissipation terms that satisfy the TVD property. 

Now with the choice of (3.8), the corresponding C± of Eq. (2.12) are 

Ct-I/2 = a[l- !Qj-I/2 + !(Qj+ 1/2/rj-+ 1/2)], 

Ci-+ 1/2 = lal [1 - !Qi+ 1/2 + !(Qj-I/2/r/_1/2)]' 

a>O, 

a<O. 

(3.9a) 

(3.9b) 

Therefore, sufficient conditions for this specific numerical flux function (3.8) to be 
TVD are 
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0< A(I- 0) a[l- !Qj-I/2 + !(Qj+ I/z/rj-+ 1/2)] < 1, 

0< A(1 - O)lal [1 - !Qj+ 1/2 + !(Qj_ 1/2/r/_ 1/2)] < 1, 

, 
For ° ~ 0 ~ 1 and v # 0, condition (3.10a) is satisfied if 

Qj-I/2 - (Qj+ 1/2/rj-+ 1/2) < 2, 

2 
(Qj+ 1/2/r i-+ 1/2) - Qj-I/2 < A(1 _ 0) a 2, 

1 
Aa < 1- 0' 

and condition (3. lOb ) is satisfied if 

Qi+ 1/2 - (Qi-I/z/r/- 1/2) < 2, 

(Qi-I/2/r/-1/2) - Qi+ 1/2 < A(1_20) lal - 2, 

1 
Alai < 1-0' 

a>O, 

a<O, 

(3.10a) 

(3. lOb ) 

(3.11) 

(3.12a) 

(3.12b) 

(3.12c) 

(3.l2d) 

(3.l2e) 

( 3.12f) 

Since Alai ~ 1/( 1 - 0), the term 2/[A(1 - O)lal] - 2 is always positive. Therefore the 
same assumption as Roe can be made; i.e., assume both Q and Q/r are always 
positive. Then all one has to do is devise a function Q such that 

Qj+ 1/2 < 2, 

2 
.. (Qi+ 1/2/r)+ 1/2) < ).( 1 _ O)lal 2, 

(Qj+ 1/2/r/+ 1/2) < A( 1: O)lal 2, 

1 
Alai < 1- O' 

(3.l3a) 

(3.13b) 

(3.13c) 

(3.13d) 

With the above choice of Q, the last sufficient condition (3.11) is immediately 
satisfied. Some readily available Qj + 1/2 functions can be found in reference [11]. 
For instance, the examples given in equations (3.4aH3.4c) satisfy condition (3.13). 
The Q functions in (3.4) all are designed such that Q(I, 1) = 1; i.e., for the scheme 
to be second-order accurate on a smooth region. In this case, one further restricts 
condition (3.13d) as follows: 

2 
Alai < 3(1 - 0) (3.13e) 
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For e=~, scheme (2.2) together with (3.8) and (3.13) is second-order accurate in 
both space and time. The CFL-like restriction for (2.2) together with (3.13e) to be 
TVD in this case is 1- When e= 1, scheme (2.2) together with (3.8) and (3.13) is 
unconditionally TVD, but the resulting scheme is first-order in time and second­
order in space. When e = 0, the scheme is explicit, and unlike Roe's schemes, is only 
first-order in time but second-order in space. As a side remark, when e = ° and 
Q= 1, (3.8) is forward Euler in time and central difference in space and hence is 
unconditionally unstable. However, with a proper choice of Q =1= 1 and e = 0, the 
explicit scheme is TVD. 

As noted before, the value rj-+ 1/2 (or rt+ 1/2) is not defined if Ll j _ 1/2 U (or Ll j + 3/2 u) 
is finite and Ll j + 1/2 = 0. For computer implementation purposes, it might be more 
convenient to define Q; + 1/2 Ll j + 1/2 U = Qj + 1/2' where Qj + 1/2 is a function of Ll j _ 1/2 U, 

A j+ 1/2 u, and Ll j + 3/2 U, but not a ratio of those gradients. For this formulation, see 
the Appendix. 

3.3. Linearized Version of the Proposed Scheme for Constant Coefficient Equations 

For e =1= 0, scheme (2.2) is implicit. Moreover, this is a genuinely nonlinear 
scheme in the sense that the final algorithm is nonlinear even for the constant coef­
ficient case. The value of un + I is obtained as the solution of a system of nonlinear 
algebraic equations. To solve this set of nonlinear equations noniteratively, a 
linearized version of (2.2) together with (3.8) is considered. Substituting (3.8) in 
(2.2), one obtains 

uJ+ 1+ A: [auj + I -Ial(l- Q;+ 1/2) Llj + 1/2U]n+ I 

- A: [auj _ 1 -lal(1 - Qj-I/2) Ll j _ I/2U]n+ 1= Lh.s. of (2.2), (3.14 ) 

with hJ+ 1/2 defined in (3.8). Locally linearizing the coefficients of (Llj± 1/2Ut+ 1 in 
(3.14) by dropping the time index from (n + 1) to n, one gets 

(3.15 ) 

Letting dj = ur 1_ u'l (the "delta" notation), Eq. (3.15) can be written as 

(3.16a) 

where 

(3.16b) 
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e2 = 1 + ~ [lal(l- Qj-I/2) + lal(1- Qj+ 1/2)]n 

Ae 
e3 ='2 [a-l al(I-Qj+I/2)r. 

(3.16c) 

(3.16d) 

The linearized form (3.16) is a spatially five-point scheme and yet it is a tridiagonal 
system of linear equations. This is because at the (n + 1 )th time level only three 
points are involved; i.e., uj!l, uj+ I, and u/:l- Although the coefficients ej involve 
five points, they are at the nth time level. 

The form of CA 1/2 for (3.15) is the same as (3.9) except the time index for the 
Qj± 1/2 and r/+ 1/2 is dropped from (n + 1) to n for the implicit operator. One would 
expect that the linearized form (3.16) is still TVD. Numerical study on one and 
two-dimensional gas dynamics problems supported this hypothesis. It was found in 
reference [7] that when time-accurate TVD schemes are used as a relaxation 
method for steady-state calculations, the convergence rate is degraded if limiters are 
present on the implicit operator. For steady-state applications, one can obtain 
another linearized form by setting Qj± 1/2 = 0 in (3.16); i.e., by redefining (3.16) by 

Ae 
e l ='2 (-a-Ial), (3.17a) 

e2 = 1 + AO lal, (3.17b) 

Ae 
e3 ='2 (a-Ial). (3.17c) 

Scheme (3.16a) together with (3.17) is spatially first-order accurate for the implicit 
operator and spatially second-order accurate for the explicit operator. 
Equation (3.17) is considered because no limiter is present for the implicit operator. 

3.4. Scheme for Nonlinear Scalar Hyperbolic Conservation Laws 

To extend the scheme to nonlinear scalar problems, one simply defines a local 
characteristic speed 

and redefines the rA 1/2 in (3.2b) as 

Aj+ 1/2U,o: 0 
Aj+ 1/2U = 0 (3.18 ) 

(3.19 ) 

Unlike the constant coefficient case, aj + 1/2 and aj _ I / 2 are not always of the same 
sign. After considering all the possible combinations of the signs of the aj + 1/2 and 
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aj~ 1/2' a set of sufficient conditions on Q still can be of a form similar to (3.13) and 
is 

Qj+ 1/2 < 2, (3.20a) 

(3.20b) 

(3.20c) 

(3.20d) 

It is remark that the different in indices on a in equations (3.20b) and (3.20c) is not 
important since for () # 1, the CFL-like restriction is limited by (3.20d). For () = 1, 
the scheme is unconditionally stable. The numerical flux for the nonlinear case is 

(3.21 ) 

Observe that when a j + 1/2 = 0, the scheme has zero dissipation. One way is to 
approximate la j + 1/21 by a Lipschitz continuous function [2]. For example, instead 
of using (3.21), one can use 

Here ljJ is a function of aj + 1/2 and is of the form 

or 

ljJ(z) = {IZI, 
e, 

where e is a positive small number [9]. 

Izl ?e 

Izl <e 

Izl ?e 

Izl <e, 

3.5. Alternate Scheme for the Nonlinear Scalar Hyperbolic Problem 

(3.22 ) 

(3.23 ) 

(3.24 ) 

A simpler way of extending the constant coefficient case to the nonlinear case is 
to define a local characteristic speed aj + 1/2 and keep the restriction on Q the same 
as in (3.20), but use the rA 1/2 in (3.2b) instead of (3.19). In other words, one 
imposes constraints on the gradients of the dependent variables instead of the flux 
function. The alternate form requires less computation than the previous approach. 
The relative advantages and disadvantages between these two forms remain to be 
shown. However, numerical experiments with two-dimensional Euler equations of 
gas dynamics [17] show that the alternate form gives a better shock resolution 
than the former one (3.18)--(3.22). 
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As a side remark, a case of Harten's second-order explicit TVD scheme is con­
tained in the class of limiters of Sweby [5J and Roe [6J and is equivalent to a case 
of Roe's second-order scheme of reference [6]. See Sweby's original manuscript 
[19J instead of the published version [5J for details. The numerical experiments of 
Vee et al. and Vee [7-9J with Harten's type of second-order TVD scheme indicate 
that the alternate form is favored over the approach (3.18}-{3.22). This indication is 
further endorsed by Davis's numerical experiments [12J with similar examples. 

3.6. Linearized Version of the Proposed Implicit Scheme for Nonlinear Equations 

For the nonlinear case, the situation is slightly more complicated since the 
characteristic speed af/au is no longer a constant. Substituting (3.22) in (2.2), one 
obtains 

Unlike the constant coefficient case, one also has to linearize f;;l, l/!(a;;l/2),and 
Q;tl/2' Following the same procedure as in [9J, two linearized versions of (3.25) 
are considered. 

Linearized Nonconservative Implicit Form. Adding and substracting f7 + 1 on the 
left-hand side of (3.25) and using the relation (3.18), one can rewrite (3.25) as 

By dropping the time index of the coefficients of Aj ± 1/2un + 1 from (n + 1) to n (3.26) 
becomes 

where 

and 

el = )'()B-

e2 = 1- )'()(B- + B+), 

e3 = )'()B+, 

(3.27a) 

(3.27b) 

(3.27c) 

(3.27d) 

(3.27e) 
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Again Eq. (3.27) is a five-point scheme, and yet the coefficient matrix associated 
with the dis is tridiagonal. With this linearization, the method is no longer conser­
vative. Therefore (3.27) is only applicable for steady-state calculations. Again, a 
spatially first-order-accurate implicit operator similar to (3.17) can be obtained for 
(3.27) by setting B± =![±a}±I/2-I/I(a}±I/2)Y. Since the limiter does not appear 
on the left-hand side, improvement in efficiency over (3.17) might be possible 
[7,9]. This reduced form is especially useful for multidimensional, nonlinear, 
hyperbolic conservation laws. 

Linearized Conservative Implicit Form. One can obtain a linearized conservative 
implicit form by using a local Taylor expansion about un and expressing r + I - r 
in the following form 

(3.28) 

where aj = (ojlou)j. Applying the first-order approximation of (3.28) and locally 
linearizing the coefficients of (L1j ± 1/2 U r + I in (3.25) by dropping the time index 
from (n + 1) to n, one gets 

+ I/I(aj_I/2)(1 - Qj-I/2) L1 j _ I/2Un + I] = r.h.s. of (2.2). (3.29) 

Letting dj = uj + 1_ uj, Eq. (3.29) can be written as 

(3.30a) 

where 

)J} 
el = 2 [ -aj _ 1 - I/I(aj - I /2)(1 - Q;_1/2)]n, (3.30b) 

)J} 
e2 = 1 + 2 [I/I(aj - 1/2)( I - Q;- 1/2) + I/I(aj + 1/2)( 1 - Qi + 1/2) y, (3.30c) 

)J) 
e3 =2 [aj+ 1- I/I(ai + 1/2)(1- Qi+ 1/2)Y- (3.30d) 

The linearized form (3.30) is conservative and is a spatially five-point scheme with a 
tridiagonal system of linear equations. Scheme (3.30) is applicable to transient as 
well as steady-state calculations. But the form of CA 1/2 for (3.30) is no longer the 
same as its nonlinear counterpart. As of this writing, the conservative linearlized 
form (3.30) has not been proven to be TVD. Yet numerical study shows that for 
moderate eFL numbers, (3.30) produces high-resolution shocks and nonoscillatory 
solutions. 
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For steady-state application, one can use a spatially first-order implicit operator 
for (3.30) by simply setting all the Qj± 1/2 = 0; i.e., redefine (3.30b )-(3.30d) as 

(3.31a) 

},J) 
e2 = 1 +2 [l/t(aj - I / 2 ) + l/t(a j + 1/2)Y, (3.31b) 

}"tl 
e3 =2 [aj + I -l/t(aj + 1/2)Y' (3.31c) 

For an upwind TVD scheme, the analogue of the first-order linearized conser­
vative (3.31) alternating direction implicit (ADI) form [9], numerical experiments 
with two-dimensional steady-state airfoil calculations show that this form is the 
most efficient (in terms of CPU time) among the various proposed linearized 
methods for the case of tl = 1. No comparison has been made for time-accurate 
calculations or for any other values of tl. 

4. EXTENSION TO HYPERBOLIC SYSTEM OF CONSERVATION LAWS 

Extension of the scalar scheme (3.14), (3.27), or (3.30) to systems of conservation 
laws can be accomplished by defining at each point a "local" system of charac­
teristic fields, and then applying the scheme to each of the m scalar characteristic 
equations. Here m is the dimension of the hyperbolic system. Extension of the scalar 
implicit scheme to higher than one-dimensional systems of conservation laws (for 
practical calculations) can be accomplished by an alternating direction implicit 
(ADI) method similar to the one described in Yee et al. and Yee [7,9]. Only the 
one-dimensional case will be described here. 

Formal Extension. Consider a system of hyperbolic conservation laws 

au aF(U)_o 
at + ax - . (4.1 ) 

Here U and F( U) are column vectors of m components. Let A = aF/aU and the 
eigenvalues of A be (ai, a2, ... , am). Denote R (R- ' ) as the matrices whose columns 
are right (left) eigenvectors of A (A -I). Let Uj + 1/2 denote some symmetric average 
of Uj and Uj + 1 (see [1,7,9] for a formula). Let a)+1/2' Rj+I/2' Rj~\/2 denote the 
quantities ai, R, R- ' evaluated at Uj + I / 2 • Define 

( 4.2) 

as the forward difference (or the jump) of the local characteristic variables. With the 
above notation, a one-parameter family of TVD schemes (2.2) in the system case 
can be written as 

(4.3a) 
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The numerical flux function Hj + 1/2 is expressed as 

where the elements of the cPj+ 1/2 denoted by ¢JJ+ 1/2' 1= 1, ... , mare 

¢Jj+ 1/2 = ljJ(aj+ 1/2)(1- Qj+ 1/2) rx}+ 1/2' 

with ljJ(z) defined in (3.23), and 

or 

Qj+ 1/2 = Q[(rj-+ 1/2)', (r/+ 1/2)'], 

(r- )' - la5- 1/21 rx5- 1/2 
j + 1/2 - I' I' ' ai + 1/2 rxj + 1/2 

(r+ ),_laj+3/21 rx5+3/2 
i+ 1/2 - I' I' ' ai+l/2IXJ+I/2 

, 
( _ )' IXj - 1/2 
rJ+ 1/2 = -,--, 

IXJ + 1/2 , 
(r+ ),=IXj+3/2 

i + 1/2 , . 
IXi + 1/2 
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(4.3b) 

(4.3c) 

(4.3d) 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

Here IXi + 1/2 are the elements of (4.2). The corresponding conservative linearized 
form (3.30) for the system case can be expressed as 

where 

with 

and 

)J) ( K)n 
El =2" -Ai - 1 - J-l/2 

E2 = 1+ A; (Ki - 1/2 + K j + 1/2t, 

E3 = A; (Ai+ 1 - Kj + 1/2t, 

Qj± 1/2 = diag[ljJ(a5± 1/2)(1 - Q5± 1/2)]' 

or for the first-order left-hand side 

Qj± 1/2 = diag[ljJ(a5± 1/2)]. 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

( 4.5f) 

(4.5g) 
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Here diag(z/) denotes a diagonal matrix with diagonal elements Zl. Aside from com­
puting the right-hand side, the rest of the arithmetic involved for Eq. (4.5) is two 
matrix multiplications and a block tridiagonal inversion. The value of Qj+ 1/2 in 
(4.5f) or (4.5g) can be saved while calculating the right-hand side. Similarly, one 
can express the nonconservative linearized form (3.27) for the system case. 

As a side remark, with the same procedure Roe's numerical flux in the system 
case can be written as 

where the elements of the <Pf~/2 denoted by (~5+ 1/2)LW, 1= 1, ... , m, are 

(~5 + 1/2)LW = [A(a~ + 1/2)2Q; + 1/2 + la~ + 1/21 (1 - Q~ + 1/2)] C(~ + 1/2' 

(4.6a) 

(4.6b) 

Simplified Version. As one can see, the main work for scheme (4.3a) with 
numerical flux function (4.3b) or (4.6) is the term Rj + 1/2 <Pj+ 1/2' A similar situation 
is also true for the corresponding conservative or nonconservative linearized form. 
Since 

Rj + 1/2<Pj + 1/2 = Rj + 1/2Qj + 1/2C(j+ 1/2 = Rj + 1/2Qj + 1/2 Rj-+\/2 Aj+ 1/2 U 

= Rj + 1/2 diag [1jJ (a; + 1/2)(1 - Q;+ 1/2)] Rj-+\/2 J j + 1/2 U, (4.7) 

if somehow one can simplify RQR -I to be a diagonal matrix, then the current 
implicit scheme should be competitive in terms of operation count with the widely 
distributed codes such as ARC2D (version 150) of Pulliam and Steger [20] and 
FL052R of Jameson et al. [21]. Both ARC2D and FL052R use a spatially three­
point central differencing scheme with identical numerical dissipation terms, but 
they use different time-stepping methods for steady-state calculations. 

Two possible ways of simplifying (4.7) are one suggested by Davis [12], and one 
suggested by Roe [11]. Davis suggested approximating (4.7) with 

( 4.8) 

where Wj + 1/2 = w( r j-+ 1/2' r/+ 1/2) is a scalar function of r j -+ 1/2' rt+ 1/2 and a~ + 1/2' The 
symbol I is a m x m identity matrix. Adapted to the current scheme, wj + 1/2 can be 
expressed as 

(4.9) 

where 

( 4.10) 

In order to not have to compute Rand R - I, r ± have to be redefined such that they 
are functions of gradients of the original variables U instead of C(j+ 1/2' Davis 
suggested using 
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_ (A j _ 1/2 U, A j + 1/2 U) 2:1 (A j _ 1/2 ul)(A j + 1/2 Ul) 
ri + 1/2 = ( A U A U) = '" (A I)' , 

. LJ j + 1/2 ,LJ j + 1/2 £...1 LJ j + 1/2 U ~ 
(4.11 a) 

+ _ (A j + 3/2 U, Aj+ 1/2 U) _ 2:1 (A j + 3/2ul)(Aj + 1/2 U l) 
rj + 1/2 - ( A U A U) - '" (A 1)2 ' 

LJj + 1/2 ,LJ j + 1/2 £...1 LJj + 1/2 U 
(4.11 b) 

where (".) denotes the usual inner product on the real m-dimensional vector 
space Rm. 

Roe suggested that instead of using the fastest wave (4.10), one might consider 
the use of the strongest wave in the following sense 

_ 2:7'= 1 a l( r/)21 
aj + 1/2 = "'m (r/)2 

£"'1= 1 j+ 1/2 

(4.12a) 

_ 2 2:7'= I (a l(/)21 
(aj + 1/ 2 ) = ",m (1)2 

£"'1= 1 a j+ 1/2 

(4.12b) 

For the one-dimensional Euler equation of gas dynamics (perfect gas), the a l are 
simply 

a l =u-c, a3 = u+ c, 

and formulae for the al are 

I 1 
aj + 1/2 = -2-2-- (Aj + 1/2 P - Pj+ 1/2 Ci+ 1/2 Aj+ 1/2 U ), 

Cj + 1/2 

2 1 2 
aj + 1/2 = -2-- (Cj + 1/2 Aj + 1/2P - Aj+ 1/2 p), 

Ci + 1/2 

3 1 
aj + 1/2 = ~ (A j + 1/2 P + Pj+ 1/2 Ci+ 1/2 Aj + 1/2 U ). 

j+ 1/2 

(4.13 ) 

(4.14a) 

(4.14b) 

(4.14c) 

Here u is the velocity, C is the sound speed, P is the pressure, and P is the density. 
As for the r ±, Roe suggested the use of a j ± 1/2 instead of A j ± 1/2 U in (4.11). In this 

case, the operation count between the local characteristic variable approach (4.5) 
and Roe's suggestion might be very competitive, since in Roe's suggestion one has 
to compute all the a5+ 1/2 anyway. Therefore, the main difference is between com­
puting Rj+I/2.Qj+I/2=Rj+I/2diag[ljJ(a5±1/2)(1-Q5±1/2)] together with (4.4), or 
computing equations (4.8 H 4.9) and Eq. (4.12a) or (4.12b) together with 

(4.15a) 

(4.15b) 
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In summary, three approaches are suggested for the system case: (a) the more 
systematic approach (4.5) (from here on referred to as the local characteristic 
approach), (b) Davis's approach, and (c) Roe's approach. Davis's suggestion is by 
far the simpliest to implement and requires the least operation count. In numerical 
experiments with a two-dimensional shock reflection problem and a circular arc air­
foil problem, Davis's approach showed good potential. Roe's suggestion, in the 
author's opinion, is a compromise between the local characteristic approach and 
Davis's approach, but requires an operation count similar to the local characteristic 
approach. An advantage of the current approach over the other two approaches is 
that (4.5) collapses into the exact scalar scheme for a constant coefficient system. 
The implication is that if one locally freezes the coefficients in (4.5), then the 
resulting constant coefficient system is TVD and convergent subject to the CFL 
restriction of 2j[3( 1 - 8)]. The proof of this statement is readily available in 
reference [2]. The total variation definition for a vector grid function for the system 
case is 

m 

TV( U) = L L l(l~+ 1/21 ( 4.16) 
j 1= 1 

In other words, the local characteristic approach (4.5) in effect uses scalar 
schemes on each characteristic field. For the one-dimensional Euler equation of gas 
dynamics, the characteristic fields consists of two nonlinear fields u ± c and a linear 
field u. The limiter used need not be the same for each field. One can even use dif­
ferent schemes for different fields. This leads to the following suggestion for 
problems containing contact discontinuities as well as shocks (e.g., complex Mach 
reflections problems in two dimensions): 

For nonlinear fields, use a less compressive limiter such as (3.4a), (3.4b), (3.4c). For 
the linear fields, use a more compressive limiter such as (3.4d) to capture contact dis­
continuities. 

Numerical experiments on two-dimensional blast wave calculations [17, 18] sup­
port the above statement. The result in [17] also suggests that one should not use 
(3.4d) for all characteristic fields. The result also shows that (3.4d) can enhance the 
resolution of contact surfaces but not shocks. In certain cases, (3.4d) is too com­
pressive and might produce unphysical solutions. 

5. NUMERICAL RESULTS 

The numerical experiments were mainly performed on the NACA0012 and 
NACA0018 airfoils using the local characteristic approach and r± as defined in 
(4.4c, d). Implementation of the present implicit symmetric TVD scheme for two­
dimensional steady-state calculations is described in reference [13]. Extension of 
the second-order explicit symmetric TVD schemes (4.6) is by the local characteristic 
approach and by locally one-dimensional time splitting [14,17] to preserve the 
second-order time accuracy. 



EXPLICIT AND IMPLICIT TVD SCHEMES 169 

Steady-State Calculations. Generally, for inviscid steady-state calculations, 
upwind TVD schemes produce sharper shocks than symmetric TVD schemes [12]. 
For the current implicit symmetric TVD scheme with limiter (3.4a) or (3.4b), this 
seems to be not the case. The symmetric method appeared to produce almost iden­
tical results as an upwind TVD scheme which was originally developed by Harten 
[2] and modified by Vee [9]. Here the corresponding ¢>J + 1/2 of (4.3c) for the 
upwind scheme is 

with 

g) = minmod( IX) _ 1/2' IX) + 1/2)' 

( I ) _ 1./,( I ) {(g)+ 1 - g;)/IX)+ 1/2' 
y aj + 1/2 - 2'1' aj + 1/2 0 , 

IX) + 1/2 # 0 
IXJ+ 1/2 = O. 

(5.1 a) 

(5.1 b) 

(5.1 c) 

Numerical studies also show that there is no difference in resolution in using 
limiter (3.4a) or (3.4b) for the symmetric TVD scheme. Limiter (3.4c) produces 
slightly sharper shocks than (3.4a) and (3.4b). This conclusion was based on the 
numerical study for flow field conditions ranging from subcritical to transonic and 
supersonic for the NACA0012 airfoil. Also, since these test cases consist of shock 
waves only, the same limiter was used for all characteristic fields. Figures 1 and 2 
show a comparison of the current method using limiter (3.4a) with the upwind 
scheme (5.1) for two inviscid steady-state airfoil calculations. The two solutions are 
almost indistinguishable. The advantages of symmetric TVD schemes are that they 
require less computational effort and provide a more natural way of extending the 
scheme to two and three-dimensional problems. For the current calculations, the 
upwind TVD scheme requires approximately 35 % more CPU time than the sym­
metric TVD scheme on the CRAY-XMP computer. 
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FIG. 1. Comparison of a symmetric TVD (SYMTVD) scheme with an upwind TVD (UPTVD) 
scheme for the NACA0012 airfoil with Moo = 0.8, IX = 1.25° using a 163 x 49 C grid. 
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FIG. 2. Comparison of a symmetric TVD (SYMTVD) scheme with an upwind TVD (UPTVD) 
scheme for the RAE2822 airfoil with Moo = 0.75, C( = 3° using a 163 x 64 C grid. 

Figures 3 and 4 show an inviscid comparison of the symmetric TVD scheme with 
the widely distributed computer code ARC2D, version 150 [20]. The freestream 
Mach numbers are AI 00 = 1.2 and 1.8, and the angle of attack is Or: = 7°. The 
pressure coefficient distributions (not shown) are identical between the two 
methods and yet the flow field appears very different. The symmetric TVD scheme 
gives a very well-ordered flow structure and can still capture the shocks with a 
coarse grid, especially near the trailing edge of the airfoil. On the other hand, the 
ARC2D code did rather poorly. The ARC2D, version 150 computer code is based 
on the Beam and Warming ADI algorithm [22] but uses a mixture of second and 
fourth-order numerical dissipation terms. These numerical dissipation terms contain 
adjustable parameters. The values of the parameters in Figs. 3 and 4 are the same 
value as suggested in reference [20]. Other values of the parameters besides the one 
used in reference [20] were also studied. What is shown here is representative of 
the performance of ARC2D for this range of Mach numbers and angles of attack. 
For subsonic and transonic flow regimes the main advantage of TVD schemes over 
ARC2D is that one can capture the shock in 1-2 grid points as oppose to 3-4 grids. 
The flow away from the shock looks very much like ARC2D. 

The same problem was studied for the upwind TVD scheme and the results and 
convergence rates were found to be almost identical to those for the symmetric 
TVD scheme. For Figs. 3 and 4, a residual of 10 - 12 can be reached at around 
400-600 steps. ARC2D, however, required only 200--300 steps to converge to the 
same residual. 

Time-Accurate Calculations: For the time-accurate calculations, the explicit 
scheme was applied to solve a planar moving shock wave at an angle of attack 30° 
and an incident shock Mach number Ms = 2 striking a stationary NACA0018 air­
foil. Figure 5 shows the 299 x 79 "C' grid used for this problem. The domain of 
computation is - 2 ~ x ~ 3, - 2.2 ~ Y ~ 2.2. A detailed description of the problem, 
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FIG. 3. Comparison of a symmetric TVD (SYMTVD) scheme with ARC2D (version 150) for the 
Mach contours, pressure contours and entropy contours of the NACAOO12 airfoil with Moo = 1.2, ct = r 
using a 163 x 49 C grid as shown in Fig. 1. 
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FIG. 4. Comparison of a symmetric TVD (SYMTVDj scheme with ARC2D (version 150) for the 
Mach contours, pressure contours and entropy contours of the NACAOO12 airfoil with Moo = 1.8, oc = r 
using a 163 x 49 C grid as shown in Fig. 1. 
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FIG. 5. The 299 x 79 "C' grid for the NACAOO18 airfoil. 
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fine grid solution, comparison of numerical solutions with experiments, and com­
parative study of flux limiters for various types of shock-diffraction problems are 
reported in references [23, 17]. Here a comparison of the explicit symmetric TVD 
scheme using (4.6) with an improved form of the explicit upwind numerical flux 
(S.1) is illustrated. The <fo)+ 1/2 for the improved second-order in time upwind scheme 
[14, 17J is 

where 

O'(z) = I/I(z) - .A.Z2, 

with 

for the nonlinear fields, and 

g) = S· max {O, min(2Ioc)+ 1/2 1, S· OC)_1/2)' min( loc)+ 1/21, 2S' OC)_ 1/2)}, 

S = sgn(oc)+ 1/2) 

(S.2a) 

(S.2b) 

(S.2c) 

(S.2d) 
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FIG. 6. The pressure contours computed by a symmetric TVD scheme (left) and an upwind TVD 
scheme (right) for the NACAOO18 airfoil with Ms=2, 0(=30°. 
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FIG. 7. The density contours computed by a symmetric TVD scheme (left) and an upwind TVD 
scheme (right) for the NACAOO18 airfoil with Ms=2, 0(=30°. 
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for the linear fields, and 

( / ) -1 (/ ) {(g5+ 1 - g5)/11.5+ 1/2' 
y aj + 1/2 - 2(J aj + 1/2 0 , 

11.5+ 1/2'= 0 
11.5+ 1/2 = O. 

(S.2e) 

Scheme (5.2) is the same as (5.1) except with different gj and a second-order in time 
term added. The results in the form of pressure and density contour plots are shown 
in Figs. 6 and 7 at three different time instances and at approximately the same 
total time. Both methods used the same limiters and ran at a CFL number of 0.99. 
That is, (S.2c) and (S.2d) was used for the upwind method, and (3.4e) for the non­
linear fields and (3.4d) for the linear fields for the symmetric TVD scheme. It can be 
seen that the symmetric TVD scheme results in a slightly more diffusive pressure 
flow field and cannot capture the contact surface as well as the upwind TVD 
scheme. However, the over all agreement is quite good. The present illustration 
shows only the global shock-diffraction pattern. In order to capture the finer struc­
ture of the shock-diffraction pattern, a moving grid with local grid refinement is 
needed. Aside from CPU time difference, one advantage of the symmetric TVD 
schemes over the upwind TVD scheme is that symmetric TVD scheme are less sen­
sitive to the numerical boundary condition treatment; see references [17,18] for 
more detail. 

6. CONCLUDING REMARKS 

The present paper was inspired by the work of Roe [11] and Davis [12], and is 
based on the work of Harten [1,2] and of Harten and the author [7-10]. A one­
parameter family of explicit and implicit TVD schemes is reformulated so that a 
wider group of limiters is included. The current class of schemes as well as Roe and 
Davis's can be classified as symmetric (or non-upwind) TVD schemes. The main 
advantages of the present class of schemes over the ones suggested by Osher and 
Chakravarthy [24], Roe, or Davis are that (a) a wider class of time-differencing is 
included, (b) the implicit scheme allows a natural linearized procedure for a non­
iterative implicit procedure, and thus might have a greater potential for practical 
applications, especially for "stiff' problems, and (c) when applied to steady-state 
calculations, the numerical solution is independent of the time step. Furthermore, 
Roe and Davis's formulations can be considered as a member of this family by 
simply setting 0 = 0 and using the numerical fluxes (3.7). Extension of this class of 
schemes and Roe and Davis's schemes to a system of equations is straightforward. 
One can define a general numerical flux function 

( 6.1a) 

G (,,/,/ G I where the elements of the f/>j+ 1/2 denoted by 'I'j+ 1/2)' = 1, ... , m, are 

(tfo5+ 1/2)G = [A.p(a5+ 1/2)2Q5+ 1/2 + t/I(a5+ 1/2)(1 - Q5+ 1/2)] 11.:+ 1/2' (6.1 b) 

with P = 1 or 0 for transient calculations, and P = 0 for steady-state calculations. 
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Here when f3 = 0, (6.1) is (4.3b), and when f3 = 1, (6.1) is the Roe's Lax-Wendroff 
numerical flux (4.6). 

The results of Roe, Davis, and the present formulation provide a more rational 
way of supplying additional numerical dissipation terms to the commonly known 
schemes such as the Lax-Wendroff type and some spatially symmetrical explicit 
and implicit types of schemes. Here the amount of work required to modify existing 
computer codes with the suggested numerical dissipation terms varies from very 
minor changes to moderate yet straightforward computer programming. The poten­
tial of improving the robustness and accuracy of a wide variety of physical 
applications is worth the effort of further pursuing the implementation of these 
ideas into the many existing computer codes. Numerical experiments with f3 = 0 and 
() = 1 for two-dimensional steady-state airfoil calculations, and with f3 = 1, () = 0 for 
two-dimensional blast-wave calculations show the versatility of these schemes. 

ApPENDIX 

Equivalent Representation for the Conservative Dissipation Term 

The terms rA 1/2 in (3.2b) are not defined if ,1 j _ 1/2 U and ,1 j + 3/2 U are finite and 
Aj + 1/2 U = O. To avoid the use of extra logic in a computer implementation, it might 
be better to rewrite the terms Qj + 1/2 ,1 j + 1/2 U in Eqs. (3.1), (3.8), and thereafter in 
the form 

Qj+ 1/2 ,1j+ 1/2 U = Qj+ 1/2· (A.l ) 

Linear Scalar Hyperbolic Equations. The form Q/+ 1/2 is a function of Aj __ 1/2U, 

Aj + 1/2 u, and ,1 j + 3/2 U, but not r ±; i.e., 

The numerical flux hj + 1/2 in (3.8) can be rewritten as 

I A 

hj + 1/2 = 2[a(uj + 1+ Uj ) -l a l(,1j+ 1/2 U - Qj+ 1/2)]. 

Expression (3.4) now becomes 

Q(,1j_1/2U, ,1j+ 1/2U, ,1j+3/2u) = minmod(,1j+ 1/2U, ,1j_1/2U) 

+ minmod(,1 j + 1/2 U, ,1j + 3/2 u) -,1 j + 1/2 U, 

Q(,1j_ 1/2 U, ,1j + 1/2 U, ,1 j + 3/2 u) = minmod(,1 j_ 1/2 U, ,1j + 1/2 U, ,1 j + 3/2 u). 

Q(,1 j _ 1/2 U, ,1 j + 1/2 U, ,1 j + 3/2 u) = minmod [2,1j _ 1/2 u, 2,1 j + 1/2 u, 2,1 j + 3/2 U, 

X !(,1j_I/2U + ,1j+ 3/2U)] 

Q(,1j_I/2U, ,1j+ 1/2U, ,1j+3/2U) = supb(,1j+ 1/2U, ,1j_I/2U) 

+ supb(,1j+ 1/2U, ,1j+3/2U) - ,1j+ 1/2U, 

(A.2) 

(A.3) 

(A.4a) 

(A.4b) 

(A.4c) 

(A.4d) 
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and 

Q(Ll j _ I/2U, Ll j + 1/2U, Ll j + 3/2 U) = vl(Llj + 1/2U, Llj _ I/2U) 

+ vl(Ll j + 1/2U, Ll j + 3/2U) - Ll j + 1/2U, (AAe) 

In general, the "min mod" function of a list of arguments is equal to the smallest 
number in absolute value if the list of arguments is of the same sign, or is equal to 
zero if any argument is of the opposite sign. The function supb( " . ) and vl(', . ) are 
defined as follows: 

supb(x, y) = sgn(x)' max{O, min[2ixi, y' sgn(x)], min[ixi, 2y' sgn(x)]}, (A.S) 

l( ) _ xy + ixyi 
v x,y - . 

x+y 
(A.6) 

Nonlinear Scalar Hyperbolic Conservation Laws. For nonlinear problems, one 
way is to replace all the a's in equation (A.3) by aj ± 1j2 accordingly. The value of 
aj + 1/2 is defined in (3.14). For rl+ 1/2 defined in (3.19), Q should also be redefined as 

(A.7) 

and Lli±I/2U should be replaced by iai ±I/2i Llj±I/2U wherever they appear in 
equations (AA)-(A.6). Similarly, the system case can be rewritten in terms of the 
Q"s. 

REFERENCES 

I. A. HARTEN, A High Resolution Scheme for the Computation of Weak Solutions of Hyperbolic Con­
servation Laws," NYU Report, October 1981; J. Comput. Phys. 49, 357 (1983). 

2. A. HARTEN, On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes, NYU 
Report, October, 1982; SIAM J. Numer. Anal. 21, 1 (1984). 

3. B. VAN LEER, J. Comput. Phys. 14, 361 (1974). 
4. J. P. BORIS AND D. L. BOOK, J. Comput. Phys. 11, 38 (1973). 
5. P. K. SWEBY, SIAM J. Numer. Anal. 21, 995 (1984). 
6. P. L. ROE, in Proceedings of tbe AMS-SIAM Summer Seminar on 'Large-Scale Computation in Fluid 

Mechanics, 1983, edited by B. E. Engquist et al. Lectures in Applied Mathematics, Vol. 22 (Amer. 
Math. Soc., Providence, R. I., 1985), p. 163. 

7. H. C. YEE, R. F. WARMING, AND A. HARTEN, Implicit Total Variation Diminishing (TVD) Schemes 
for Steady-State Calculations, AIAA Paper No. 83-1902, Proc. of the AIAA 6th Computational 
Fluid Dynamics Conference, Danvers, Mass., July, 1983; J. Comput. Phys. 57, 327 (1985). 

8. H. C. YEE, R. F. WARMING, AND A. HARTEN, in Proceedings of the AMS-SIAM Summer Seminar on 
Large-Scale Computation in Fluid Mechanics, 1983, edited by B. E. Engquist et al. Lectures in 
Applied Mathematics, Vol. 22 (Amer. Math. Soc., Providence, R.I., 1985), p.357. 

9. H. C. YEE, Advances in Hyperbolic Partial Differential Equations, a special issue of Int. J. Comput. 
Math. Appl. 12 A, 413-432 (1986). 

10. H. C. YEE AND A. HARTEN, Implicit TVD Schemes for Hyperbolic Conservation Laws in Curvilinear 
Coordinates, AIAA Paper No. 85-1513-CP, Proc. of the AIAA 7th Computational Fluid Dynamics 
Conference, Cinn., Ohio, July 15-17, 1985; AIAA J., in press. 



EXPLICIT AND IMPLICIT TVD SCHEMES 179 

11. P. L. ROE, Generalized Formulation of TVD Lax-Wendroff Schemes, ICASE Report No. 84-53, 
October 1984 (unpublished). 

12. S. F. DAVIS, TVD Finite Difference Schemes and Artificial Viscosity, ICASE Report No. 84-20, 
June 1984 (unpublished). 

13. H. C. YEE, in Proceedings of the 6th GAMM conference on Numerical Methods in Fluid Mechanics, 
Gottingen, West Germany, September 25-27, 1985; Notes on Numerical Fluid Mechanics, Vol. 13, 
Veiweg, West Germany. 

14. H. C. YEE, Improved Explicit and Implicit TVD schemes for Multidimensional Compressible Gas 
Dynamics Equation, in preparation. 

15. H. C. YEE, On the Implementation of a Class of Upwind Schemes for System of Hyperbolic Conser­
vation Laws, NASA-TM-86839, September 1985. 

16. A. TADMOR, Math. Comput. 43,369 (1984). 
17. H. C. YEE, A Comparative Study of Flux Limiters for Two-Dimensional Time-Accurate 

Calculations, in preparation. 
18. H. C. YEE, in Proceedings of the 10th International Conference on Numerical Methods in Fluid 

Dynamics, June 23-27, 1986, Beijing, China. 
19. P. K. SWEBY, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, 

U.C.L.A. Report, June 1983, Los Angeles, Calif. (unpublished). 
20. T. H. PuLLIAM AND J. STEGER, Recent Improvements in Efficiency, Accuracy and Convergence for 

Implicit Approximate Factorization Algorithms, AIAA Paper No. 85-0360, 1985 (unpublished). 
21. A. JAMESON, W. SCHMIDT, AND E. TURKEL, Numerical Solutions of the Euler Equations by Finite 

Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA Paper No. 81-1259, 1981 
(unpublished ). 

22. R. M. BEAM AND R. F. WARMING, J. Comput. Phys. 22, 87 (1976). 
23. Y. J. MOON AND H. C. YEE, Numerical Simulation by TVD Schemes of Complex Shock Reflections 

from Airfoils at High Angle of Attack, AIAA 25th Aerospace Science Meeting, January 12-\5, 1987, 
Reno, Nevada. 

24. S. OSHER AND S. CHAKRAVARTHY, SIAM J. Numer. Anal. 21, 955 (1984). 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1987

	Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications
	Helen C. Yee

	Yee 001a
	Yee 002
	Yee 002a
	Yee 003
	Yee 003a
	Yee 004
	Yee 004a
	Yee 005
	Yee 005a
	Yee 006
	Yee 006a
	Yee 007
	Yee 007a
	Yee 008
	Yee 008a
	Yee 009
	Yee 009a
	Yee 010
	Yee 010a
	Yee 011
	Yee 011a
	Yee 012
	Yee 012a
	Yee 013
	Yee 013a
	Yee 014
	Yee 014a
	Yee 015
	Yee 015a

