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intersecting in y over R but fails to be primarily limit-intersecting in y over R. In
particular, the rings A and B constructed using r are equal, yet A and B are not
Noetherian. Wealso show in [HRW2, (2.12)] that if R is a semilocal Noetherian
domain, then r r. 6 yR* are primarily limit-intersecting in y over R if and
only if B is Noetherian. If this holds, we also have B A.

Wenow give criteria for elements to be residually limit-intersecting or primarily
limit-intersecting similar to those in [HRWI] for elements to be residually alge-
braically independent or primarily independent.

5.7 PROPOSITION.
are equivalent:

With the setting and notation of(4.1 and s 1, the following

(1) The.element r r is residually limit-intersecting in yover T.
(2) If P is a height-one prime ideal of T such that y q P and P fq T 5/: O, then

ht(P f3 T['t'](n,r)) 1.
(3) For every height-one...primej.deal...P of T such that y q P an..d for every min-

imal prime divisor P of PT in T, the image of r in T / P is algebraically
independent over the fraction field of T/ P.

(4) B T*. is L Fi and height-one preserving.

Proof For (1):= (2), suppo (2) fails; that is, there exists a prime ideal P of T
of height one such that y P, P f3 T - 0, but ht( N T[r]) > 2. Let 9 "= ..
Then Q := Qcl T[r](. has height greater than or equal to 22 But by the definition
of residually limit-intersecting in (5.1), the i..__njective morphism T[rltn.r) T,, is
LF and so by (3.1), (T[r](.)O (Ty)- is faithfully flat, a contradiction to

ht(Q) > ht(P) ht(Q).
For (2)=, (1), the argument of (1) = (2) can be reversed since (r[r],,,)o ---,

(Ty) is faithfully flat.
For (3)= (2), again sutpose (2) fails; that is,there exists a prime ideals. P of T of

height one such that y P,...P T - 0, but ht(P C r[rl) >_ 2. Nowht(P T) l,
since LF holds for T T. Thus, with P P T, we have PT[r] < P C T[r];
that is, there exists f(r) (P Cl T[r]) Pr[r], or_equivalentlythere is a nonzero
polynomial f(x) (T/(.))[x] so that f(f) 0 in r[rl/(P C r[rll, where f
denotes the image of r in T/P. This means that f is algebraic over the fraction field
of T/(P C T), a contradiction to (3).

For (2)=:, (3), let P be a height-one prime of R such that P Cl T P - 0. Since
ht(..fq T[r]) 1, ff f) T[r] PT[r] and T[r]/(PT[r]) canonically embeds in
TIP. Thus the image of r in T[r]/PT[r] is algebraically independent over TIP.

For e==, (4), we see by (5.3) that is equivalent to the embedding " B
T,.* being L F. Now(5.2.1) and (3.5.2) imply that when is L F, it is also height-one
preserving, r-1
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5.8 THEOREM. Assume the setting and notation of (4.1) and in addition that
(R, m) := (T, n) is excellent. Thefollowing are equivalent:

(1) The elements r rL are primarily limit-intersecting in y over R.
(2) For every prime ideal P of Bo := R[r "t’s](n,r, r.,) with y PR and

dim(B0/P) <_ s, the extension PR is primaryfor the maximal ideal of R.

Proof. For(l)=(2),letP Spec(B0)besuchthaty PR anddim(Bo/P) < s.

Suppose that PR is no,mR-primary. Then there., exists a minimal prime divisor Q
of PR such that y ’ Q. It follows that ht(Q) < d 1, where d dim(R). Put
Q := 9 f3 B0; now B0 ’. is LFd- and so the morphism

’" (Bo)o (Ry),.
is faithfully flat. Hence by going-down [M2, Theorem 4, page 33], ht(Q) < d 1.
But P c_ Q and B0 iscatenary, so...d > ht(Q) > ht(P) > d, a contradiction..

For(2)=(l), let P Spec(R) withht(P) < d- 1. Put P PCB0 and
p P C? R P Cl R. We show that the induced morphism

’" (Bo)p R"
is faithfully flat. By [M l, (1) e== (3) of Theorem 22.3] we have to verify two
conditions"

(a) The morphism q.- (Bo/pBo)p ---> (’/pR-is faithfully fiat.

(b) p(Bo)p (R)(B(,)p R’’ pR-

Proofof (a). We observe that the ring (Bo/pBo)p is a localization of the poly-
nomial rin (R.p./pRp)[r r,]. Hence the ring (Bo/pBo)pBo i reg.ular and so is
the ring (R/pR)-, since R is excellent. In particular, the ring (R/pR)-F is Cohen-
Macaulay, and [M l, Theorem 23.1] applies. Therefore we need only show the fol-
lowing dimension formula:

dim(R/pR)- dim(Bo/pBo)p + dim(R/PR)-.
Since PR is contained in P and ht(P) < d 1, our hypothesis implies that
dim(Bo/P) > s. (If dim(Bo/P) < s, then PR is mR-primary.)

Claim. ht(P) in B0 i...s equal to ht(P R) in R; if W Spec(R) is a minimal prime
divisor of PR, then ht(W) ht(P).

Proofofclaim. Let t t. be indeterminates over R, let S :=
R[t ts](m.t t.,.) and consider the commutative diagram

S "= R[t ts](m.t, t.,) S

B0"= R[r r.l(m.r, r.,) R,R
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where ,k is the surjection with kernel (t r t. r,), and ot is the restriction,
which is an isomorphism. Let Q Spec(S) correspond to P Spec(B0) (that is,
Q := oe -! (P) and let .-i (W). Then V is minimal over (Q, Iti ri I) in S,. We
have that ht(Q) ht(P) < d, y Q and dim(S/ Q) > s. Leth d-ht(P); thatis,
ht(P) ht(Q) d-handdim(S/Q) s+h. Nowchooses s S suchthat
I (Q, s s)ShashehtdinS. Nowdim(Bo/(P, o(s) c(s))B0)) s.
Thus (P, o(s) o(s,))R is primary for the maximal ideal of R by the hypothesis.
Thus J -I(p, ot(Sl) Ot(Sh)) (Q, s sh,.{ti ’i}) is2rimar for the
maximal ideal of S. Therefore ht(J) s + d. But (V, s sh)S D_ JS, and so
ht(V) > s + d h. Also ht(V) < ht(Q) + s d h + s. That is, ht(V) s + d h.
Now ht(W) d h ht(P), so ht(P) ht(P R).
We proceed with.the proof of (5.8) as follows. Let W Spec(R) be a minimal

prime divisor of PR contained in P. Then

dim(R/P.R) dim(R-) ht(PR-)
dim(R-) ht(W)

dim(R-) ht(P(B0),)

dim(e-) ht(pe) (ht(P(B0),) ht(p(B0)e))

dim((R/pR)) -dim((Bo/Bo)e).

Proofof (b). Since Rp -----+ (R p)- (B0) is a flat extension we have that

p(Bo)e pRp (R)Rp (Bo)t,.

Therefore

p(B0), (R)(B,,)p R"= (pRp (R)Rp (Bo)p) (R)(Bo)e RF pRp (R)Rp R’= pR"

where the last isomorphism is implied by the flatness of the canonical morphism
Rp---+ R’. E]

5.9 Remark. It would be interesting to know if a similar statement to that given in
(5.8) also holds without the hypothesis that T R is an excellent normal Noetherian
domain, i.e., if T is a quasilocal Krull domain as in (4.1) does condition (1) in (5.8)
imply condition (2)?
We have the following transitive property of limit-intersecting elements.

5. |0 PROPOSITION. Assume the setting and notation of (4.1). Also assume that
s > andfor all j {1 s}, set A(j) := F(r "gj) N T. Then the following
statements are equivalent:

(1) r r, are limit-intersecting, respectively, residually limit-intersecting, re-
spectively, primarily limit-intersecting in y over T.
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(2) For all j E {1 s}, the elements rl rj are limit-intersecting, respec-
tively, residually limit-intersecting, respectively, primarily limit-intersecting
in y over T and the elements rj+ r, are limit-intersecting, respectively,
residually limit-intersecting, respectively, primarily limit-intersecting in y over
a(j).

(3) There exists a j {1 s}, such that the elements r rj are limit-
intersecting, respectively, residually limit-intersecting, respectively, primar-
ily limit-intersecting in y over T and the elements rj+ r are limit-
intersecting, respectively, residually limit-intersecting, respectively, primarily
limit-intersecting in y over A(j).

Proof. Set B(j) := [,.J.__l T[r. rj.l(n,, r,,,). It is clear that (2) == (3).
For (3) == (1), items (5.5) and (5.2.1) imply that A(j) = B(j) under each

of the conditions on r rj. The definitions of rj+ r,, limit-intersecting,
respectively, residually limit-intersecting, respectively, primarily limit-intersecting
in y over A(j) together with (5.2.4) imply the equivalence of the stated flatness
properties for each of the morphisms

o" A(j)[rj+ r,]_) A(j), T**,
2" ’(A(j)[rj+I rs]-))y T,,*
o3" (B(j)[rj+ r,]_))y ----+ T,*

4: (T[r r]<_))y Ty*
o5: T[r rs]n,r, r,,.) T**,.

The respective flatness properties for o5 are equivalent to the conditions that r
be limit-intersecting, respectively, residually limit-intersecting, respectively, primar-
ily limit-intersecting in y over T. Thus (3) = (1).

For (1) = (2), we go backwards. The statement of (1) for r r is equiv-
alent to the respective flatness property for t#5. This is equivalent to 4 and thus
having the respective flatness property. By (5.2.4), B(j)[rj+ rs]_) T,*
has the appropriate flatness property. Also B(j) B(j)[rj+ r,]_) is flat,
and so B(j) T**, has the appropriate flatness property. Thus r rj are
limit-intersecting, respectively, residually limit-intersecting, respectively, primarily
limit-intersecting in y over T. Therefore A (j) B(j), and so A (j) T,,* has
the appropriate flatness property. It follows that rj+ r, are limit-intersecting,
respectively, residually limit-intersecting, respectively, primarily limit-intersecting in
y over A (j). I"!

6. Some examples

Let R Q[x, Y](x,y), the localized polynomial ring in two variables x and y
over the field Q of rational numbers. Then R Q[[x, y]], the formal power series
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ring in x and y, i the m (x, y)R-adic completion of R. in [HRWI], an element
r (x, y)R is defined to be residually algebraically independent over R if r is

al,gebraically independent over the fraction field of R and for each height-one prime
P of R such that P fq R - (0), the image of r in R/P is algebraically independent
over the fraction field of R/(P N R). It is shown in [HRWI, Theorem 4.4], that if
r is residually algebraically independent over R and L is the fraction field of R[r],
then L f3 R is the localized polynomial ring R[r](m,r).

In this section we present several examples of residually algebraically independent
elements.

6.1 THEOREM. Let r xQ[[x]] and p yQ[[y]] be such that thefollowing two
conditions are satisfied:

(i) cr is algebraically independent over Q(x) and p is algebraically independent
overQ(y).

"P },r) > trdegQQ(x, 0-U(ii) trdegQQ(y, ox,,--7

Then r cr + p is residually algebraically independent over Q[x, Y](x,y).

Before proving Theorem 6.1, we establish the existence of elements tr and p
satisfying properties (i) and (ii) of Theorem 6.t. Let tr ex 6 Q[[x]] and
choose for p a hypertranscendental element in Q[[y]]. Recall that a power series
p Yi=o biyi Q[[y]] is called hypertranscendental over Q[y] if the set of all

0’,p is infinite and algebraically independent over Q(y). (Twopartial derivatives
examples of hypertrnscendental elements are the Gamma function and the Riemann
Zeta function.5) Thus or, p satisfy the conditions of Theorem 6.1

Alternatively, let (r ex and p e(e’-l) 1. The conditions of Theorem 6.1
follow from [Ax].

In either case, Theorem 6.1 implies that r := tr -t- r is residually algebraically
independent, and we have the following corollary.

6.2 COROLLARY. There exists an explicitly defined element r (x, y)Q[[x, y]]
such that r is residually algebraically independent over Q[x, y](x,y). Thefore the
localized polynomial ring Q[x, y, r](x,y,r) is the intersection Q(x, y, r) fq R.

Proofof6.1. To show that the element r cr -I- p is residually algebraically
independent over R Q[x, y]x,.,), we introduce the intermediate ring

D Q(x, or) fq [[x]].

Then D is an excellent discrete valuation domain with completion D Q[[x]],
and D has transcendence degree 2 over . There is a convenient way to de-
scribe D as a directed union of polynomial rings in two variables over Q: Set

5The exponential function is, of course, far from being hypertranscendentai.
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t7 := y aixi where ai Q. Then the nth-endpiece for (r, defined as in (2.3),
satisfies (r. x (cr.+l + a.+l) and D can be obtained as

D lim Q[x, tr](x.,,)= UQ[x cr,,](x.,,,).
rt-- rt----

The displayed statement follows by (5.4.1): Every element of Q[[x]] which is alge-
braically independent over Q(x) is also primarily limit-intersecting over the discrete
valuation domain Q[x](x.

Since cr Dx, the maximal ideal of D is (x). The structure morphism

Q[X, O’n](x.cr.) ([X,

is defined by the relation cr - x (cr,+ + a,,+).
The ring T "= D[y](x.y is between R and its completion R and has completion

T=R:

R Q[x, Y]x.y) ---+ T D[y]x.y) R T [[x, y]]

The rings of the example

To show that r := cr + p is residually algebraically.independent over R, leQ be
a height-one prime ideal of R and assume that P "= Q N R 0. Let W "= Q c T.
It is easy to see for P (x) or P (y) that the image f of r in R Q[[x, yll/Q
remains algebraically independent over/ Q[x, yl(.y)/P. We show"

6.3. PROPOSITION. Let P e Spec(R) and Q e Spec(R) be height-one primes as
in the paragraph above with P =/= (x) and P =/: (y). Then is transcendental over
T "= T/W, and the set {6, f3} is algebraically independent over R. In particular
r cr + p is residually algebraically independent over R.
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Consider the commutative diagram

All morphisms in the diagram are injective and we obtain:

(a) The ring/ is algebraic over the rings Q[x]tx) and Q[y]ty) since trdegQ(/) 1.

(b) The ring R is finite over both rings Q[[x]] and Q[[y]].

To complete the proof of (6.3) we prove the following claim:

6.4 Claim. trdegQ() 2, and thus trdegk(7) 1.

Proofof(6.4). Let W0 W f’l Q[x, y, or]. Since D[ 1/x] is a localization of
[x, r]x,), we see that ]?[1/2] is a localization of [x, y, r]/W0. Now W0 has
height one because x Wo. This shows that trdegQ() 2.

Proofof(6.3) continued. We have seen that the element 6 is algebraically inde-
pendent over R. Now 6 6 T, and trdeg[T ] 1+ trdeg[D Q] 3, whereas
trdeg[R Q] 2. Also trdeg[ Q] < 2, and trdeg[/ ] < 1. Thus to show that
f is transcendental over is equivalent to showing that the set {6, 5} is algebraically
independent over R. In order to show this we make use of the differential properties
of the functions a and p. We first pass to the embeddings of the fraction fields:



INTERMEDIATE RINGS 41

We have Q(/) Q(y, 2) and Q() Q(y, 6,2) where 2 is algebraic over
Q(), and and 6 are algebraically independent over Q. Let d, respectively d,
denote the partial derivative map on Q((y)), respectively on Q(y). Note that d

is the restriction of d to Q(). Since all the horizontal field extensions are separable
algebraic, d and d_ extend uniquely to derivations dl and d of Q(R) "= Q(Q[[2, y]]),
respectively Q(R) := Q(2, y). Again dl is the restriction of d to Q(2, y). Suppose
that the height-one prime ideal P in R Q[x, y](x.y) is generated by the prime
element p(x) given by

m

p(x) :-- y ai(y)x Q[x, y], where ai(y) Q[y].
i=0

Then p(2) 0. We assign the notation p’(2)"

p’(2) "= 0-- Z iai(y)2i-I O,
i=1

because 2 is separable over Q[]. Also (since 0 d (p(2)))

mOp(2) y[Oai(f;) 2i + ai(;)i(2)i_d(2)d(p(2))
Oy i=o Oy

m0ai()
2 d(2) y iai(f;)(2)i-I

"= i=0

d (2) p’(2) d (2) p’(2).

Thus, we have shown that p’(2)d (2) R.

Next we show:

6.5 Claim. For every element ,k 6 R we have that p’(2)d ()) R.

Proofof(6.5). Let ’(x, y) Q[[x, y]] be a prime element generating Q. Since
x and y are not contained in P, the element ’(x, y) is regular in x (in the sense of
Zariski-Samuel [ZS, p.145]). Thus by [ZS, Corollary 1, p. 145] the element ’(x, y)
can be written as

"(x, y) (x, y)(xn + b_ (y)xn- +... + ’o(Y)),
for some unit (x, y) Q[[x, y]], where each bi(y) c= Q[[y]]. Now Q is also

generateci igy e-I, and thus ’ [[x, yll/Q is a finite free Q[[ll-module with

basis l, 2 2’- Thus every element . " can be written as

,k ’n- (Y)2"- +"" + ’ (y)2 + ’o(Y), where / e Q[[y]].
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This implies

n-I
dq()) d (Y)((’n l)’n_, ()n-2 --...-- ’1 ()) -’[- !! (//())-i.

i-o

Now the sum expression on the right is in . But also, by the earlier argument,
p’(Y)d (2) R and so p’(Y)d (,k) R. I"q

Note. For convenience we drop the bars on x, y, or, p. For the remainder of this

proof, x, y are considered in R. Thus we rewrite the last result as: p’(x)dO)6 R.

6.6 Claim. d (or) dl (x) o, and for all n > 1, d n (or) is a linear combination
oiofTr over (x, y)= Q(k), where <i < n. (Note that " Q(R) Q()

and that its restriction d IQ(k) Q(k) Q(k) is a derivation of Q(k).)

Proofof (6.6). For all m 6 11 we have

m

cr aix 21- Xm+

i=l

where ,k [] aix
i-(m+l) and ai Q.

i=m+l

Therefore

m

p’(x)d (o) p’(x)d (x) Z iaixi- -t- p’ (x)d (x)xmk + xm+ p’(x) (,k).
i=1

By Claim 6.5,

p’(x)d(cr)- p’(x)d(x)-x (xm)R for all m 6 1.

Since we are in a domain, it follows that d’ (or) d (x) 0, as desired. The second
statment of (6.6) follows by induction.

Completion ofproofof (6.3). The field -U }nr) Q(Y, or, x, ).1)
is closed under d and has the same transcendence degree over Q as the field Q(x,

},). Now extends to the algebraic closure of Q(y, a, x, ],) uniquely.
If r is algebraic over Q(T), then the set },n is contained in the algebraic closure

of the field Q(, {" },n). But this is impossible, since the transcendence degree
of (y, "" },n) is too large.

An alternative way of saying this is as follows" The fraction field of
Q(, 6, y) is generated by , 6, and Y, which are all mapped into Q() under d.
This shows that the field Q() is closed under the derivation d. Moreover, since
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the rationals are contained in Q(]?), this derivation extends uniquely to the algebraic
closure. If t5 is algebraic over Q() all its partial derivatives are algebraic over the
same field, a contradiction to our assumption that is an algebraically independent

set of elements over Q. Now Q((9)) Q(R) and d is the partial derivative:
Q((9)) -- Q(()). This shows that t5 is transcendental over Q(T) and hence ? is
transcendental over R.

This completes the proof of Proposition 6.3 and Theorem 6.1.

6.7 Example. The element r cr + p is residually algebraically independent
over R Q[x, Y](x.y). Thus by [HRW 1, Theorem 4.4], we have

Q(x, y, r) N R Q[x, y, r]x.y.r.

Since dim(R) 2, by Theorem 5.6 [HRWI], the element r is also primarily
independent over R Q[x, y]x.:.) in the sense of [HRWI, Definition 3.1], that is,
for every prime ideal P of S R[r rn]m., ,,) such that dim(S/P) < n the
ideal PR is mR-primary.

6.8 Example. For S := Q[x, y,.z]x,.z), the construction of (6.3) yields an ex-
ample of a height-one prime ideal P of S Q[[x, y, z]] in the generic formal fiber
of S such that

Q(S) fq (S/ P) S.

Proof. Let P ".= (- r) c_ Q[[x, y, z]], where r is the element of Theorem 6.1.
Then Q(x, y, z) (q S/P can be identified with the intersection Q(x, y, r) fq Q[[x, y]]
of (6.1). Therefore

Q(x, y, z) fq (S/P) S Q[x, y, Z](x.y,z).

The prime ideal P is not maximal in the generic fOrmal fiberof S Q[x, y, z](,y,z),
since every prime ideal maximal in the generic formal fiber of a polynomial ring in
one variable over a two-dimensional ring has height 2. UI

Example 6.8 demonstrates that the strong connection between the maximal ideals
of the generic formal fiber of a localized polynomial ring and certain birational exten-
sions of this localized polynomial ring does not extend to prime ideals nonmaximal
in the generic formal fiber of this ring. (See [HRS] for more details.)

6.9.Example. Again let S Q[x.,y, z]....z. With a slight modification of
Example 6.8, we exhibit a prime ideal P in the generic formal fiber of S which does
correspond to a nontrivial birational extension; that is, the intersection ring

A := Q(S) fq S/P

is a spot over S.
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Proof. Let r be the element from Theorem 6.1. LetP (z-xr) c_ Q[[x, y,z]].
Since r is transcendental over Q(x, y, z), the prime ideal P is in the generic formal
fiber of S. The ring S can be identified with a subring of SIP - Q[[x, y]] by
considering S Q[x, y, x’r](x.y,xr). By reasoning similar to that of Example 6.8,

Q(S) n Q[[x, y]] Q(x, y, r) n Q[[x, y]] Q[x, y, r]<x,y,r).

The ring Q[x, y, "C]tx,y,r) is then the essentially finitely generated birational extension
of S defined as S[z/x]x,y,z/x). I--I

Example 6.9 is of interest in connection with [HRS], where it is shown that if
the prime ideal P of O[[x, y, z]] is maximal in the generic formal fiber of S
Q[x, y, z]x.y.z.), then the intersection ring (x,y, z) n Q[[x, y, z]]/P is well under-
stood; whereas the last two examples show if P is not maximal in the generic formal
fiber, then the intersection ring can be almost anything.

6.10 Example. Let tr 6 xQ[[x]] and p 6 yQ[[y]] be as in Theorem 6.1. If D "=

x ) Q[[x] I,.J,=! Q[x, trn]x,,,,)and T "= D[y]x,y), so T is regular local
with completion T [[x, y]], then the element p is primarily limit-intersecting in
y over T.

Proof We show that the morphism Cky" T[p] ---> Q[[x, y]]y is LF; that is,
the induced map 4-" T[]’nrt Q[[x, y]]-is flat for every height-one prime
ideal P of Q[[x, yl] with y P. It is equivalent to show for every height-one
prime P of Q[[x, y]] that P n T[O] has height < 1. If P (x), the statement is
immediate, since is algebraically independent over Q(y). Next we consider the case
P n Q[x, y, o1 (0). Since Q(x, y.,r) Q(x, y, n) for every positive integer n,
P n Q[x, y, cr] (0) if and only if P Q[x, y, o’n] (0). Moreover, if this is true,
then since the fraction field of T[O] has transcendence degree one over Q(x, y, r),
then PnT] has height _< 1. The remaining case is where P_’= PnQ.[x, y, r] (0)
and xy P. By Proposition 6.3, ,8 is transcendental over T T/(P n T), and this
is equivalent to ht(P r[rlt 1. (For an alternative proof see [HRW2], (3.5).) r’l

Still referring to p, or, tr as in (6.1) and (6.10) and using the fact that tr is primarily
limit-intersecting in y over T, we have

A "= Q(T)(p) n Q[[x, y]] li__+m T[pn](x,y,p,,) Q[x, y, r,, Pn](x,y,cr,,,p,,)

yiwhere the endpieces p. are defined as in (2.3); viz., p := -.=1 bi and p.
_,i=+ biyi-". The philosophy here is that sufficient "independence" of the alge-
braically independent elements cr and p allows us to explicitly describe the intersection
ring A.

The previous examples have been over localized polynomial rings, where we are
free to exchange variables. The next example shows, over a different regular local
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domain, that an element in the completion with respect to one regular parameterx may
be residually limit-intersecting with respect to x whereas the corresponding element
in the completion with respect to another regular parameter y may be transcendental
but fail to be residually limit-intersecting.

6.11 Example. There exists a regular local ring R with R [[x, y]] such that
cr ex is residually limit-intersecting in x over R, whereas F eY fails to
be limit-intersecting in y over R.

Proof Let {0) }iEl be a transcendence basis of Q[[x]] over (x) such that

{ex’’ },,I c_ {wi }it.

Let D be the discrete valuation ring

O (x, {wi }i6l,wie’ N ([[X]].

Obviously, Q[[x]] has transcendence degree over D. The set {ex is a transcendence
basis of [[x]] over D. Let R D[y]x...). By (5.4.1), the element cr ex

is residually limit-intersecting in x over D. Moreover, by [HRW2, (3.3)], cr is also
residually limit-intersecting over R := D[y]x,y). However, the element y ey

is not residually limitTintersecting in y over R. To see this, consider the height-one
prime ideal P := (y x2)([[x, y]]. The prime ideal W := P R[r]x,y,r) contains
the element ?, ex2 ey ex2 Therefore W has height greater than one and y
is not residually limit-intersecting in y over R. I’q

Note that the intersection ring Q(R)(r) Q[[x, y]] is a regular local ring with
completion Q[[x, y]] by Valabrega [V].

Added in Proof. Since completing this article, the authors have obtained addi-
tional results related to [HRW2, (2.12)] cited in (5.6.3); these new results will appear
in Noetherian domains inside a homomorphic image ofa completion, J. Algebra.
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