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The goal of this paper is to utilize the theory of nonlinear dynamics approach to investigate 
the possible sources of errors and slow convergence and nonconvergence of steady-state 
numerical solutions when using the time-dependent approach for nonlinear hyperbolic and 
parabolic partial differential equations terms. This interdisciplinary research belongs to a subset 
of a new field of study in numerical analysis sometimes referred to as "the dynamics of 
numerics and the numerics of dynamics." At the present time, this new interdisciplinary topic 
is still the property of an isolated discipline with all too little effort spent in pointing out an 
underlying generality that could make it adaptable to diverse fields of applications. This is the 
first of a series of research papers under the same topic. Our hope is to reach researchers in 
the fields of computational fluid dynamics (CFD) and, in particular, hypersonic and combustion 
related CFD. By simple examples (in which the exact solutions of the governing equations are 
known), the application of the apparently straightforward numerical technique to genuinely 
nonlinear problems can be shown to lead to incorrect or misleading results. One striking 
phenomenon is that with the same initial data, the continuum and its discretized counterpart 
can asymptotically approach different stable solutions. This behavior is especially important 
for employing a time-dependent approach to the steady state since the initial data are usually 
not known and a freest ream condition or an intelligent guess for the initial conditions is often 
used. With the unique property of the different dependence of the solution on initial data for 
the partial differential equation and the discretized counterpart, it is not easy to delineate the 

* An abbreviated version appeared in the "Proceedings of the 12th International Conference on 
Numerical Methods in Fluid Dynamics, Oxford, England, July 9-13, 1990." The full text was published 
as an internal report-NASA Technical Memorandum 102820, April 1990. 
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true physics from numerical artifacts when numerical methods are the sole source of solution 
procedure for the continuum. Part I concentrates on the dynamical behavior of time 
discretization for scalar nonlinear ordinary differential equations in order to motivate this 
new yet unconventional approach to algorithm development in CFD and to serve as an 
introduction for parts II and III of the same series of research papers. .:[) 1991 Academic Press, Inc. 

I. INTRODUCTION 

During the late eighties, computer power and numerical algorithm development 
in computational fluid dynamics (CFD) advanced to a stage that allowed applied 
computational fluid dynamicists to channel their energy toward the modelling of 
more realistic three-dimensional (3D) complex aerodynamic configurations [1]. 
With the increased emphasis in recent years in high speed transports and advanced 
spacecraft design, algorithm developers in CFD have been faced with a new 
challenge. This stems from the fact that the majority of widely used numerical 
algorithms in CFD were originally designed to solve fluid flow problems that do 
not contain stiff nonlinear source terms, e.g., for perfect gas and equilibrium 
real gas flows. New algorithm and/or modification and improvement to existing 
numerical methods to accomodate the stiff nonlinear source term of non­
homogeneous hyperbolic and parabolic partial differential equations (PDEs) are 
urgently needed since nonequilibrium, combustion related, and certain turbulent 
models in Navier-Stokes gas dynamics problems are usually governed by PDEs of 
this type. Although much attention has been directed to improve the efficiency of 
existing numerical techniques and to extend existing Riemann solvers for non­
equilibrium flows (cf. [2]), this comprises only a fraction of the required effort. The 
main difficulty lies in the basic understanding of genuinely nonlinear behavior of 
nonhomogeneous hyperbolic and parabolic PDEs and their discretized counter­
parts. The intent of this work is to gain some insight into the dynamics of numerics 
(the dynamical behavior of numerical schemes) for commonly used finite difference 
approximations in CFD. Here, to study the dynamical behavior of a numerical 
scheme means to study the local and global asymptotic behavior of the nonlinear 
difference equations resulting from finite discretizations of differential equations 
(DEs) subject to the variation of parameters such as the time step, grid spacing 
and numerical dissipation coefficient, etc. See Refs. [3-12] for an introduction to 
the theory of nonlinear dynamics and related subjects. Before presenting a brief 
background of the subject of nonlinear dynamics, a summary of our major findings 
induding the results from our related papers in preparation [13-18] will be given. 

Summary of Results 

Utilizing the mathematical tools of nonlinear dynamics to analyze model 
nonlinear problems and problems containing nonlinear source terms, the following 
phenomena have been observed: (a) Stable and unstable spurious steady-state 
numerical solutions (numerically irrelevant solutions) can be independently 
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introduced by commonly used spatial and temporal discretizations satisfying the 
same boundary condition and initial data (see Section IV and [16-18J). (b) Stable 
and unstable spurious steady-state numerical solutions can occur below as well as 
above the linearized stability limit of the schemes (see Section III and [13, 19, 20J). 
In other words, the result of operating with a time step below the linearized 
stability limit of the scheme does not necessarily result in a true approximation to 
the exact solution, and the result of operating with a time step above the linearized 
stability limit is not always a divergent solution. (c) There is a strong dependence 
of the numerical solution on initial data, analytical and numerical boundary 
conditions, and system parameters as well as the time step and grid spacing of the 
finite difference methods. It can be shown that with the same initial data, the 
continuum (PDEs or governing equations) and its discretized counterpart can 
asymptotically approach different stable solutions (see Section III). The unique 
property of the separate dependence of solutions on initial data for the individual 
continuum and its discretized counterparts is important for employing a time­
dependent approach to the steady state in fluid dynamics problems containing 
nonlinear source terms. In many CFD computations, the steady-state equations are 
PDEs of the mixed type and a time-dependent approach can avoid the complica­
tion of dealing with elliptic-parabolic or elliptic-hyperbolic types of PDEs. 
However, new uncertainty on the accuracy of the numerical solution arises. This 
uncertainty is due to the fact that the initial data are not known and a freestream 
condition or an intelligent guess for the initial conditions is often used. (d) The 
knowledge gained from the finite-difference method analysis for problems without 
nonlinear source terms does not carryover to the problems containing nonlinear 
source terms (see [17,18,21). (e) Spurious limit cycles can be generated by finite 
discretizations of nonlinear PDEs without source terms (see Section IV and [14J). 
(f) The existence of stable spurious limit cycles might be one of the contributing 
factors in nonconvergence of the time-dependent approach to the steady state (see 
Section III and [14 J). We can also explain through a simple model reaction-con­
vection boundary-value problem (BVP) the following phenomena. (g) The various 
ways of discretizing the reaction term can drastically affect the stability of the 
spurious as well as the exact steady-state solutions (see Section IV and [17, 18J). 
(h) The time discretization can destablize the stable spurious steady-state numerical 
solutions that are introduced by the spatial discretizations or vice versa (see 
Section IV and [16-18J). (i) The numerical phenomenon of incorrect propagation 
speeds of discontinuities [21 J may be linked to the existence of some stable 
spurious steady-state numerical solutions (see Section IV and [17, 18 J). 

Although more theoretical development and existensive numerical experimenta­
tion are needed, we believe that these findings could have important implications in 
the interpretation of numerical results from existing computer codes and widely used 
CFD algorithms in combustion, reacting flows, and certain turbulence models 
in compressible Navier-Stokes computations. See Sections 2.3, 3.3, 3.4, and V 
for details. 

At first glance, a few of these results might appear to have been discussed in some 
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of the earlier numerical analysis and applied mathematics literature [19, 20, 
22-30]. However, our in-depth global and topographical approach to the problem 
and the discussion of the underlying implication and impact to the field of 
algorithm development in hypersonic CFD and combustion related computations 
are new. Although inspired in part by [27], the work of this series and our NASA 
internal reports [31,13] was carried out independently from that of [29,30]. 

Nonlinear Dynamics and Chaotic Dynamics 

Before the birth of chaotic dynamical theory, traditional study of nonlinear 
dynamics belonged to the applied mechanics disciplines of mechanical engineering. 
Modern nonlinear dynamics (since the late seventies) includes chaotic dynamics. 
Strictly speaking, chaotic dynamics is a branch of nonlinear dynamics. But, for the 
purpose of the present discussion, unless otherwise stated, the term nonlinear 
dynamics and chaotic dynamics are used interchangeably. That is, nonlinear 
dynamics includes chaotic dynamics and vice versa. 

Loosely speaking, the study of asymptotic behavior (and steady-state solutions) 
of nonlinear DEs and nonlinear discrete maps (difference equations) and how the 
asymptotes change as parameters of the system are varied is most often referred to 
as nonlinear dynamic analysis and chaotic dynamic theory. Topics in this area 
include bifurcation theory, period doubling cascades resulting in chaos, etc. Stable 
chaotic solutions (chaotic attractors) may be defined loosely and simply as stable 
asymptotes that have infinite period and yet are still bounded and are sensitive to 
initial data [3-11]. It is emphasized here that unless otherwise stated, all DEs and 
discrete maps are nonlinear and consist of system parameters, and the terms 
discrete maps and difference equations are used interchangeably. 

Types of Dynamical Systems 

Consider an ordinary differential equation (ODE) of the form 

du 
-=rl.S(u) 
dt ' 

(1.1 ) 

where rI. is a parameter and S is a nonlinear function of u which is independent of 
rI.. An ODE of this form in which t does not appear explicitly in S is called 
an autonomous dynamical system. One can also consider a function S which 
is nonlinear in u and depends explicitly on t. ODEs of this type are called 
nonautonomous dynamical systems and they are more difficult to analyze; see Refs. 
[6, 9] for a discussion. The analysis would be more complicated if S = S( u, rI.) 

is nonlinear in both u and rI.. In this case, the DE is not only nonlinear in the 
dependent variable u (and independent variable t), but it is also nonlinear in the 
parameter space rI.. One can also consider systems that depend on more than one 
parameter and/or systems of equations of the above type. 

A PDE counterpart of (1.1) might be 

i}u i}f(u) i} 2u 
at+--a;-=B i}x2+rl.S(u), (1.2) 
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where 8 is a parameter and the function f(u) can be linear or nonlinear in u. The 
source term Sin (1.2) can be a nonlinear function similar to that of the ODE (1.1), 
except that S can depend explicitly on x as well as t and a. 

Next consider nonlinear discrete maps (nonlinear difference equations) of 
the forms 

un+ t = u" + D(u", un- 1, r), (1.3) 

and 

ut:+ t = uj + G(uj, uj± t, r). (1.4 ) 

Here r is a parameter, and D is nonlinear in un and un - 1 and linear or nonlinear 
in the parameter space r. The situation is similar for the function G. One can also 
consider discrete systems that depend on more than one parameter. A typical exam­
ple is a discrete map arising from a finite-difference approximation of DEs such as 
(1.1) or (1.2). For the ODE, the resulting discrete maps might be nonlinear in a 
(even though the ODE is linear in a) as well as the time step At, depending on the 
ODE solvers. For the POE, again depending on the differencing scheme, the 
resulting discretized counterparts can be nonlinear in a, A t, the grid spacing Ax, 
and the numerical dissipation parameters even though the DEs consist of only one 
parameter or none. It is the introduction of new parameters due to the finite 
discretization that add a new dimension on the implication and interpretation of 
accuracy, stability, and convergence rate on asymptotic numerical solutions of DEs 
containing nonlinear source terms. 

One can also consider discrete maps (scalar or system) of the forms 

un+1 =un+D(u"+k, ... , un, ... , un-I, r1 , r2 , ..• , rm), (1.5 ) 

where k, I, m are positive integers and r 1, r 2, ... , r m are parameters, and 

" + 1 n + G( ,,+ k " n - I n + k " n - I ) Uj =Uj Uj ±l, ... ,Uj ±l, ... ,Uj ±t,Uj , ... ,Uj, ... ,Uj ,rt,r2,···,rm· (1.6) 

Again, (1.6) can depend on more than the three indices j, j ± 1. Systems (1.4) 
and (1.6) are sometimes referred to as partial-difference equations. Analysis of 
the dynamical behavior of (1.4) and (1.6) can be many orders of magnitude more 
difficult than that of (1.3) and (1.5). Any of the systems (1.1 )-( 1.6) are examples of 
dynamical systems. The discrete dynamical systems (discrete maps) (1.3)-(1.6) 
represent simple versions of what the CFD researchers are dealing with on a 
daily basis. 

Important Consideration 

It is emphasized here that discrete maps, regardless of their origin, are dynamical 
systems in their own right. It is also important to distinguish the following five 
types of discrete maps: 
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1. Discrete maps arise naturally in physical sciences. They commonly arise 
through the inability to measure populations at all points in space and time 
[6, 11,32] in population dynamics. They can also arise through the study of 
periodic excitation of dynamical systems [33, 34] in applied mechanics. 

2. Discrete maps arise from Poincare sections in ODEs [6, 9-11]. 

3. Discrete maps arise from discrete approximations of ODEs. 

4. Discrete maps (partial-difference equations) arise from temporal and 
spatial finite difference approximations of PDEs. 

5. Discrete models arise from the "inverse problems of nonlinear dynamics" 
in time series analysis of observable data or experiments [10]. 

Discrete maps of types 1 and 5 sometimes might not have any relationship with 
a specific DE. As a matter of fact, there might be no concrete associated governing 
equations (continuum or otherwise) to start with for type 5 except the surrogated 
discrete map arising from the time series analysis. Type 2 arises naturally from the 
study of dynamical behavior of nonlinear ODEs. However, types 3 and 4 have an 
intimate link (but with a different tie than type 2) between the original governing 
DEs and their discretized counterparts. 

Note that for discrete maps of types 3 and 4, even though the DEs might be 
linear in the parameter space, depending on the numerical methods, the discretized 
counterparts might be linear or nonlinear in that parameter space. In addition, 
extra parameters which may appear linearly or nonlinear in the resulting discrete 
maps can also be introduced by the scheme as noted in the paragraph after 
Eq. (1.4). Furthermore, it is important to distinguish the complexity involved in the 
analysis of types 3 and 4. Type 4 involves spatial as well as temporal dynamical 
behavior. That is, even though the PDE may not depend on any parameters at all, 
its discretized counterpart will depend (linearly or nonlinearly) on, e.g., the time 
step, grid spacing, and numerical dissipation coefficients in contrast to the ODE 
case, where fewer free parameters are involved. As can be seen in the subsequent 
sections, the nature of the dynamical behavior of these discrete maps is strongly 
influenced by properties of the numerical method and the types and forms of non­
linearity in the DEs. Moreover, when dealing with nonlinear conservation law 
PDEs, the dynamical behavior of the discretized counterparts is also strongly 
influenced by elements such as conservation and nonlinearity of the schemes and 
treatment of the source terms [2, 35-38, 17. 18]. These issues are very crucial 
for the existence of spurious steady-state numerical solutions which will be 
explained in a later section. Here the term "nonlinear scheme" refers to a case where 
the resulting discretized counterparts are nonlinear when the scheme is applied to 
scalar constant coefficient linear PDEs [2]. 

Objectives 

The study of the occurrence and the dynamical behavior of spurious steady-state 
numerical solutions for computational sciences applications is extremely difficult 
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and complex to analyze and often unfamiliar to computational scientists as well as 
researchers working in nonlinear dynamics and nonlinear physics. A summary of 
the difficulty involved was discussed in Yee [2J and will be elaborated on in 
Sections IV and V. At present few general results are known. Our approach is first 
to gain an understanding of the dynamics of time discretization and then link this 
knowledge to the study of both the temporal and spatial nonlinear dynamical 
behavior of finite-difference methods for nonlinear PDEs of the nonhomogeneous 
hyperbolic and parabolic types. 

This is the first of a series of research papers under the same topic. Yee and 
Sweby [14J, the second of this series, is devoted to the study of the dynamics of 
numerics for 2 x 2 systems of ODEs. Lafon and Yee [17, 18 J, the third and fourth 
of this series, are devoted to the study of the possible errors, slow convergence, and 
nonconvergence of steady-state numerical solutions when using the time-dependent 
approach for a model nonlinear reaction-convection BVPs. In our companion 
papers [13, 16J, we study the dynamical behavior of a class of explicit 
Runge-Kutta methods and related methods for PDEs. In another related paper 
[15J, we study the dynamics of discrete traveling wave solutions of a nonlinear 
reaction-convection problem. The intent of this paper is not only to present a study 
of the state-of-the-art of nonlinear dynamical behavior of ODE solvers, but more 
importantly to serve as an introduction and to present new results to motivate this 
new yet unconventional concept to researchers in the field of CFD. Thus the 
mission of this paper is not to provide the answer or theory or to illustrate the 
connection of dynamical behavior of practical PDEs to their discretized counter­
parts, but rather to gain insight into the nonlinear features unconventional to this 
type of study and concentrate on the fundamentals. In order to bring out the new 
features, the illustrations concentrate on simple scalar DEs examples in which the 
exact solutions of the DEs are known. 

Outline 

The outline of the paper is as follows: First, a brief background, motivation, and 
basic ideas will be given. Then some typical characteristics of dynamical systems 
with genuinely nonlinear behavior will be discussed. Next, the dynamical behavior 
of discrete maps arising from time discretization of ODEs will be studied and the 
main results and their implications for computational sciences will be described. 
Studies on discrete maps arising from finite-difference approximations of PDEs will 
not be elaborated. Rather, the level of complexity involved and state-of-the-art 
study on this subject will be briefly described. Remarks will be given on the popular 
misconception of residual test for convergence in steady-state solution via the 
"time-dependent" approach and the popular misconception of the use of the 
"inverse problems of nonlinear dynamics" to analyze the dynamical behavior of 
time series data from. a computer code in an attempt to learn about the true 
behavior of the solution of the governing PDEs. This application of time series 
analysis can be misleading, and a wrong conclusion can be reached if the 
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practitioner does not know by other means the exact solution behavior of the PDEs 
other than that given by the numerical solutions. The paper will conclude with a 
few recommendations. 

II. MOTIVATION AND RELEVANCE 

As discussed in the introduction, dynamical systems occur in the form of DEs 
and discrete maps. In order to motivate why the study of numerical analysis will 
not be complete without the utilization of the nonlinear dynamics approach and to 
convey to practitioners in computational sciences the importance of distinguishing 
between weakly nonlinear problems and genuinely nonlinear problems, this section 
is devoted to a discussion of dynamical systems with genuinely nonlinear behavior 
and the basic difference in dynamical behavior between DEs and discrete maps. 
This discussion leads to the key elements of this paper, namely: (1) to establish the 
connection between the DEs and their discretized counterparts and (2) to convey 
to computational scientists how traditional ways of thinking and conventional 
practices must change when dealing with genuinely nonlinear problems. 

2.1. Typical Characteristics of Dynamical Systems with 
Genuinely Nonlinear Behavior 

The terms "nonlinear behavior" and "genuinely nonlinear behavior" are used 
quite often in the literature and there seems to be no unified exact definition or 
meaning [10]. Here these terms are used for nonlinear dynamical systems that 
exhibit mainly the following characteristics: 

(1) The study of nonlinear dynamics most often emphasizes the importance 
of obtaining a global qualitative understanding of the character of the system's 
dynamics, since local analysis is not sufficient to give the global behavior of 
genuinely nonlinear dynamical systems. As a matter of fact, this is one of the major 
reasons why sometimes the study of genuinely nonlinear dynamical systems 
required orders of magnitude more work than solving their linear counterparts. 

(2) Unlike the situation for linear or weakly nonlinear problems, the solu­
tions of genuinely nonlinear DEs and discrete maps are strongly dependent on 
system parameters, initial data, and boundary conditions. 

(3) Only genuinely nonlinear dynamical systems can have chaotic behavior 
and one of the striking characteristics of chaotic behavior is sensitivity of the solu­
tion to initial data. This characteristic is independent of whether the dynamical 
system is a continuum or a discrete map. 

2.2. Typical Difference in Dynamical Behavior of ODEs and Discrete Maps 

The study of discrete maps is the discrete analog to the study of ODEs, as the 
study of recursion formulas is a discrete analog to the study of series expansions of 
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functions. Much of the theory of ODEs can carryover to discrete maps with some 
slight modifications. However, there are new phenomena occurring in discrete maps 
which are absent in differential systems [39, 40, 33, 34]. 

With respect to the topographical behavior, there are new kinds of behaviors of 
trajectories in the neighborhood of fixed points (to be defined in Section III) of 
discrete maps. The behavior of separatrices associated with a saddle type of fixed 
point for a nonlinear difference system is far more complicated than the behavior of 
separatrices for the corresponding differential system. See Yee, Hsu, and Hsu et al. 
[33, 34, 41, 42J for details and examples. 

With respect to similar equation types, the minimum number of first-order non­
linear autonomous ODEs is three for the existence of chaotic phenomena. However, 
a simple scalar first-order difference equation like the logistic map [43-47J 

11 a parameter, (2.1 ) 

or its piecewise linear approximation [48 J, 

= 11, 

(2.2) 

possesses very rich dynamical behavior such as period-doubling cascades resulting 
in chaos. Equation (2.2) has the same behavior as (2.1) except that simple closed 
form asymptotic solutions of all periods can be obtained. These characteristic trait 
differences between ODEs and discrete maps are very general. The discrete maps 
can arise from any of the five types as discussed in the introduction. It is in 
this spirit that we say that discrete maps can exhibit a much richer range of 
dynamical behavior than DEs. The next two sections focus on the typical difference 
and connection between the dynamical behavior of ODEs and their discretized 
counterparts. 

2.3. Background and Motivation 

Spurious asymptotic numerical solutions such as chaos were observed by Ushiki 
[49 J and Brezzi et al. [50 J when they used the leapfrog method of discretization 
for the logistic ODE 

du 
dt = au(l - u). (2.3 ) 

In Ref. [22J, Schreiber and Keller discussed the existence of spurious asymptotic 
numerical solutions for a driven cavity problem described by an elliptic PDE. Some 
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related studies are reported in [23]. Newell [19 J gave a detailed account on the 
local behavior of finite amplitude instabilities of partial difference equations. 

Spurious solutions of Burgers' equation and channel flows have been studied and 
computed in [24-26]. Their main emphasis is on the dynamics of numerics for 
some steady-state PDEs. Many other investigators in the computational sciences 
(e.g., [51-55J) have observed some kind of strange or chaotic behavior introduced 
by the numerical methods, but were not able to explain precisely the overall 
connection and differences between the continuum and its discretized counterpart, 
or most of all the implication and impact in practical applications in computational 
sciences. 

In the early and mid eighties, it had been realized by numerical analysts that 
discrete maps resulting from finite discretization of ODEs and PDEs can be con­
sidered as dynamical systems. Several papers (see, e.g., [56, 57J) on numerical 
methods as dynamical systems have appeared in recent years. These investigators 
studied the dynamical behavior of the different ODE solvers per se without relating 
their close tie with the ODEs themselves. Although the study of chaotic dynamics 
for nonlinear differential equations and for discrete maps have independently 
flourished for the last decade, there are very few investigators addressing the issue 
of the connection between the nonlinear dynamical behavior of the continuous 
systems and the corresponding discrete map resulting from finite difference dis­
cretizations. This issue is especially vital for computational sciences since nonlinear 
differential equations in applied sciences can rarely be solved in closed form and it 
is often necessary to replace them by finite dimensional nonlinear discrete maps. 
Most often, typical applied scientists rely on numerical methods to give insight into 
the solution behavior of nonlinear DEs. It is not always clear how well a numerical 
solution can mimic the true physics of problems that possess genuinely nonlinear 
types of behavior. 

Why is there such a need to study the connection between the dynamical 
behavior of the continuum and its discretized counterparts for CFD applications? 
As indicated at the beginning of Section I, the major reason is that existing widely 
used numerical algorithms in CFD were originally designed to solve fluid flow 
problems that do not contain stiff nonlinear source terms. A straightforward 
application of these numerical methods to nonequilibrium flow or combustion 
related model problems can lead to wrong result, slow convergence, or even non­
convergent solutions. See later sections and [17, 18 J for details. Another necessity 
stems from the fact that current supercomputer power can perform numerical 
simulations on virtually any simple 3D aerodynamic configuration and, due to the 
limited available experimental data, some of the applied engineers are forced to rely 
on the numerical simulations to help design the next generation of aircraft and 
spacecraft. However, many of these applied scientists are still using linearized 
analysis as their guide to studying nonhomogeneous hyperbolic and parabolic 
PDEs with nonlinear source terms, and often they are not aware of the limitations 
and pitfalls of the numerical procedures. For example, it is a common practice in 
CFD that the exact linearized stability limit is usually not computed, but rather a 
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frozen coefficient procedure at each time step with a fixed grid spacing is used to 
estimate the stability limit of the algorithm. As can be seen later, the use of this 
type of linearized analysis guideline for genuinely nonlinear problems such as 
nonequilibrium flows can lead to misleading results. 

2.4. Connection between the Dynamical Behavior of 
the Continuum and Its Discretized Counterpart 

Aside from truncation error and machine round-off error, a more fundamental 
distinction between the continuum and its discretized counterparts is new behavior 
in the form of stable and unstable spurious asymptotes created by the numerical 
methods. This is due to the fact that nonlinear discrete maps can exhibit a much 
richer range of dynamical behavior than their continuum counterparts as discussed 
in Section 2.2. Some instructive examples will be given in Section III. These new 
phenomena were partially explored by the University of Dundee group [58-66J, 
Sanz Serna and Vadillo [67J, Iserles [27-29J and Stuart [20,68-71]. Their main 
emphasis was on phenomena beyond the linearized stability limit. Study of the local 
existence of unstable spurious steady-state numerical solutions and stable spurious 
asymptotes of higher than period 1 below the linearized stability limit was observed 
by Newell [19J and Stuart [20]. Adams et al. [72J discussed spurious chaotic 
phenomena in astrophysics and celestial mechanics. Adams [73, 74 J also discussed 
the use of interval arithmatics (interval mathematics or enclosure methods) to 
approach the dynamics of numerics. Moore et at. [75J discussed the reliability of 
numerical experiments in thermosolutal convection. Keener [76J discussed the uses 
and abuses of numerical methods in cardiology. The main contributions of our 
current study (including our related papers [13-18J) are (1) the detailed global and 
topographical approach to the occurrence of stable and unstable spurious steady­
state numerical solutions below as well as above the linearized stability limit of the 
scheme for genuinely nonlinear problems, (2) the link of the strong dependence of 
numerical solutions on the time step, grid spacing, initial data, analytical and 
numerical boundary conditions, numerical dissipation terms, and basins of attrac­
tion to the time dependent approach to steady-state numerical solutions, and (3) 
the implications for practical computations in combustion and hypersonic CFD. 

Before the numerical examples are discussed, an overall summary of our curent 
findings (integrated with other relevant recent results) will be given in the next two 
subsections. The discussion is devoted first to steady-state solutions and asymptotes 
of any period, and second to transient solutions. 

2.4.1. Steady-State Solutions and Asymptotes of Period Higher than One 

Table I shows a comparison of the possible stable asymptotic solution behavior 
between DEs (ODEs or PDEs) and their discretized counterparts. Some of the 
phenomena will be supported by simple examples in Section III and our companion 
papers [13-18]. The main connection between the DEs and their discretized coun­
terparts is that steady-state solutions of the continuum are usually solutions of the 
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TABLE I 

Possible Stable Asymptotic Solution Behavior for DEs and Their Discretized Counterparts 

Solution 
type 

Steady-state solutions 

Periodic solutions 

Chaos 

ODEs or PDEs 

Single 
Single 

Multiple 
Multiple 

No 
Yes 

No 
Yes 

Discretized 
Counterparts 

Single 
Multiple 

Same no. of multiple 
Additional no. of multiple 

Yes 
Yes ( + extra) 

Yes 
Yes ( + extra) 

discretized counterparts (assume the schemes are consistent) but not the reverse. 
Their main difference is that new phenomena can be introduced by the numerical 
methods in the form of stable and unstable spurious asymptotic solutions of any 
period. This stems from the fact that even though, e.g., we start with a scalar first­
order nonlinear autonomous ODE (and thus the dynamics of a lD autonomous 
ODE behavior), its discretized counterpart can have the dynamics of up to an 
infinite dimensional dynamical system behavior (due to the discrete recursive rela­
tionship of the nonlinear map). The situation is more complicated for multi-stage 
methods such as the Runge-Kutta method of order higher than one. As oppose to 
linear multistep methods (LMMs), the Runge-Kutta type of methods can introduce 
nonlinearity (in the parameter space L1 t) to the resulting discretized equation (for 
DEs containing nonlinear source terms). 

In the past, phenomena of spurious asymptotes were observed largely beyond the 
linearized stability limit of the scheme. Some numerical analysts and applied 
computational scientists rather than being alarmed were skeptical about these 
phenomena since, theoretically, one is always guided by the linearized stability limit 
of the scheme. However, this reasoning is only valid if one is solving a scalar non­
linear ODE using a variable step size control and known initial data. Another 
important concept is that the result of operating with time steps beyond the 
linearized stability limit is not always a divergent solution; spurious steady-state 
solutions and spurious asymptotes of higher period can occur. 

Additionally, our current study indicated that, depending on the form of the 
nonlinear DEs, all ODE solvers can introduce stable and unstable spurious 
asymptotic solutions of some period or all periods. But, the most striking result is 
that for certain schemes, and depending on the form of the nonlinear DEs, stable 
spurious steady states can occur below the linearized stability limit. See Section III 
and our companion paper [13 ] for more details. 

Another important concept is the interplay between initial data, spurious 
asymptotes, basins of attraction, and the time dependent approach to the steady-
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FIG. 2.1. Phase portrait and basins of attraction of the damped pendulum equation (this figure is 
taken from Ref. [9]). 

state numerical solutions. Here the basin of attraction of a dynamical system is the 
domain of the set of initial conditions whose solution curves (trajectories) all 
approach the same asymptotic state. Figures 2.1 and 2.2 show the basins of attrac­
tion of two popular ODE dynamical systems. Figure 2.1 shows the multiple stable 
steady states and their basins of attraction for the damped pendulum equation 

0.25 

du 
-=V 
dt ' 

dv . ( ) -= -ev-sm u 
dt 

1.50 
U 

(2Aa) 

(2Ab) 

2.75 4.00 

FIG. 2.2. Phase portrait and basins of attraction of the predator-prey equation (this figure is taken 
from Ref. [9]). 
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for e = 0.4. Figure 2.2 shows the multiple steady states and their basins of attraction 
for the simple predator-prey equation 

du 2 3 
-= -3u+4u -uv/2-u, 
dt 

dv 
-= -21v+uv dt . , 

(2.5a) 

(2.5b) 

where u is the population of the prey and v is the population of the predator. These 
figures are taken from Parker and Chua [9] and were generated by the use of a 
variable time step Runge-Kutta-Fehlberg method with a built-in accuracy check 
(roughly speaking, a check whether the numerical asymptote satisfies the right­
hand side of (2.4) or (2.5)). See Ref. [9] for details. Although generated numeri­
cally, nevertheless the basins of attraction and fixed points of these figures coincide 
with those of exact solutions of the ODEs, owing to the built-in accuracy check. 
The stable fixed points of the damped pendulum equation are 2mr, n = 0, 1, .... The 
unstable fixed points (saddles) are (2n + 1 )n. The separatrices of the saddle points 
divide the phase plane into the different basins of attraction for the corresponding 
stable fixed points. The fixed points of the predator and prey equation are slightly 
less regular than those for the damped pendulum equation. Figure 2.2 shows two 
saddle points at u = 1, v = ° and u = 3, v = 0, one stable focal point at u = 2.1, 
v = 1.98, and one stable nodal point at u = 0, v = 0. Again the separatrices of the 
saddle points divide the phase plane into the basins of attraction for the corre­
sponding stable fixed points. 

Contrary to the Runge-Kutta-Fehlberg method with a built-in accuracy check, 
some explicit Runge-Kutta methods with fixed time steps can produce spurious 
limit cycles (isolated periodic orbits [6]). See our companion paper [14] for a 
discussion. One can visualize the difference in the basins of attraction between 
Figs. 2.1 and 2.2 and the corresponding ones that are generated by some of the 
explicit Runge-Kutta methods. Intuitively, in the presence of spurious asymptotes 
(introduced by the numerical methods), the basin of the true stable steady states 
(steady states of the DEs) can be separated by the basins of attraction of the stable 
spurious asymptotes and interwoven by unstable asymptotes, whether due to the 
physics (i.e., present in both the DEs and the discretized counterparts) or spurious 
in nature (i.e., introduced by the numerical methods). That is, associated with the 
same (common) steady-state solution, the basin of attraction (domain of attraction) 
of the continuum might be very different from the discretized counterparts. This is 
due entirely to the different dependence on and sensitivity to initial and boundary 
conditions for the individual system. The situation is compounded by the existence 
of spurious steady states and asymptotes of period higher than one, and possibly 
chaotic attractors. 

This unique dynamical property of the different dependence of solutions on initial 
data for the individual nonlinear DE and its discretized counterpart is especially 
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important for employing a "time-dependent" approach to the steady state with 
given initial data in hypersonic CFD. In many CFD computations, the steady-state 
equations are PDEs of the mixed type and a time-dependent approach to the steady 
state can avoid the complication of dealing with elliptic-parabolic or elliptic-hyper­
bolic types of PDEs. However, this time-dependent approach has created a new 
dimension of uncertainty. This uncertainty stems from the fact that in practical 
computations, the initial data are not known and a freestream condition or an 
intelligent guess for the initial conditions is used. In particular, the controversy of 
the "existence of multiple steady-state solutions" through numerical experiments 
[77] will not be resolved until there is a better understanding of the different 
dependence on initial data for both the PDEs and the discretized equations. 

For PDEs, there is an additional difficulty in that even with the same time 
discretization but different spatial discretizations or vice versa, the basins of attrac­
tion can also be extremely different. However, mapping out the basins of attraction 
for any nonlinear continuum dynamical system other than the very simple scalar 
equations relies on numerical methods. The type of nonlinear behavior and the 
dependence and sensitivity to initial conditions for both the PDEs and their 
discretized counterparts make the understanding of the true physics extremely 
difficult when numerical methods are the sole source. Under this situation, how 
can one delineate the numerical solutions that approximate the true physics from 
the numerical solutions that are spurious in nature? Hopefully, with our simple 
illustrations in Section III, we can demonstrate the importance of the subject 
and, most of all, the importance of knowing the general dynamical behavior of 
asymptotes of the schemes for genuinely nonlinear scalar DEs before applying these 
schemes in practical computations. 

Due to the popularity of searching for chaotic phenomena, it is very trendy to 
relate inaccuracy in numerical methods with the onset of "numerical chaos." It is 
emphasized here that unless one is searching for chaotic phenomena, inaccuracy in 
long time integration of discrete maps resulting from finite discretization of non­
linear DEs comes in other forms prior to the onset of numerical chaos. Stable and 
unstable spurious steady states and spurious periodic numerical solutions set in 
before numerical chaos occurs. These spurious asymptotes of finite period are just 
as inaccurate as numerical chaos as far as numerical integration is concerned. In 
other words, the prelude to numerical chaos is the key element that we want to 
stress (i.e., before the the onset of chaos or a divergent solution). As can be seen 
in a later section, this behavior is more difficult to detect than numerical chaos in 
practical computations. 

2.4.2. Transient or Time-Accurate Solutions 

It is a common misconception .that inaccuracy in long-time behavior poses no 
consequences on transient or time-accurate solutions. This is not the case when one 
is dealing with genuinely nonlinear DEs. For genuinely nonlinear problems, due to 
the possible existence of spurious solutions, larger numerical errors can be intro­
duced by the numerical methods than one can expect from local linearized analysis 

581/97/2-2 



264 YEE, SWEBY, AND GRIFFITHS 

or weakly nonlinear behavior. The situation will get more intensified if the initial 
data of the DE is in the basin of attraction of a chaotic transient [78-80] of the 
discretized counterpart. This is due to the fact that existence of spurious asymptotes 
and/or chaotic transient transact the wrong behavior in finite time. In fact, it is 
possible the whole solution trajectory is erroneous. 

III. THE NUMERICAL ODE CONNECTION 

In this section, we review some of the fundamentals and available theory and 
discuss our major results. The discussion will have some overlap with Our 
companion paper [13]. 

3.1. Preliminaries 

Consider an autonomous nonlinear ODE of the form 

du 
dt = LiS(U), (3.1 ) 

where Li is a parameter and S(u) is nonlinear in u. For simplicity of discussion, we 
consider only autonomous ODEs, where Li is linear in (3.1); i.e., Li does not appear 
explicitly in S. 

A fixed point u* of an autonomous system (3.1) is a constant solution of (3.1); 
that is, 

S(u*) = O. (3.2) 

Note that the terms "equilibrium points," "critical points," "singular points," 
"stationary points," "asymptotic solutions" (we are excluding periodic solutions for 
the current definition), "steady-state solutions," and "fixed points" are sometimes 
used with slightly different meanings in the literature, e.g., in bifurcation theory. For 
the current discussion and for the majority of the nonlinear dynamics literature, 
these terms are used interchangeably. Note that certain researchers reserve the term 
"fixed point" for discrete maps only. 

Consider a nonlinear discrete map from finite discretization of (3.1), 

(3.3 ) 

where r = Li Llt and D(un , r) is linear or nonlinear in r depending on the ODE solver. 
Here the analysis is similar if D is a nonlinear function of un + P, p = 0, 1, ... , m. 
Examples to illustrate the dependence on the numerical schemes for cases where D 
is linear or nonlinear in the parameter space will be given in the subsequent section. 

A fixed point u* of (3.3) (or fixed point of period 1) is defined by un + 1 = Un, or 

u* = u* + D(u*, r) (3.4a) 



STUDY OF SPURIOUS NUMERICAL SOLUTIONS 265 

or 

D(u*, r) = O. (3.4b) 

One can also define a fixed point of period p, where p is a positive integer by 
requiring that un+ p = un and 

u* = EP(u*, r) but u* =f= Ek(U*, r) for 0 < k < p. (3.5) 

Here, EP(u*, r) means that we apply the difference operator E p times, where 
E(un, r) = un + D(un, r). For example, a fixed point of period 2 means un+ 2 = un or 

u* = E(E(u*, r)). (3.6) 

In the context of discrete systems, the term "fixed point" without indicating the 
period means "fixed point of period 1" or the steady-state solution of (3.3). 

Note that Eq. (3.6) is equivalent to a 2 x 2 first-order nonlinear discrete map and 
Eq. (3.5) is equivalent to a p xp first-order nonlinear discrete map. Although the 
continuum has the behavior of a first-order ODE, due to the the nature of the 
recursive relationship and the type and order of the ODE solvers, the various 
asymptotes of the discretized counterpart have the dynamics of higher and even 
infinite dimensional dynamical system behavior. It is this crucial factor that induces 
richness into the dynamics of numerics and the numerics of dynamics. 

In order to illustrate the basic idea, the simplest form of the Ricatti ODE, i.e., the 
logistic ODE (2.3) with 

S( u ) = u( 1 - u) (3.7) 

is considered. For this ODE, the exact solution is 

UO 
u(t) = UO + (1- uO)e-~t' (3.8) 

where UO is the initial condition. The fixed points of the logistic equation are roots 
of u*( 1 - u*) = 0; it has two fixed points u* = 1 and u* = O. 

To study the stability of these fixed points, we perturb the fixed point with a 
disturbance ¢ and obtain the perturbed equation 

d¢ 
-= as(u* + ¢). 
dt 

Next, S(u* + 0 can be expanded in a Taylor series around u*, so that 

(3.9) 

(3.1 0) 
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where Su(u*)=dSjdul u'. Stability can be detected by exammmg a small 
neighborhood of the fixed point provided if, for a given a, u* is not a hyperbolic 
point [3-6, 8-11 ] (i.e., if the real part of as u( u*) # 0). Under this condition ~ can 
be assumed small, its successive powers ~2, ~3, ... can normally be neglected, and the 
following linear perturbed equation is obtained: 

(3.11) 

The fixed point u* is asymptotically stable if aSu(u*) < 0, whereas u* is unstable if 
aSu(u*) > 0. If aSu(u*) = 0, a higher order perturbation is necessary. 

If we perturb the logistic equation around the fixed point with a> 0, we find that 
u* = 1 is stable and u* = ° is unstable. It is well known that the global asymptotic 
solution behavior of the logistic ODE is that for any UO > 0, the solution will 
eventually tend to u* = 1. Figure 3.1 shows the asymptotic solution behavior of 
the logistic ODE. 

Now, let us look at three of the well-known ODE solvers. These are explicit 
Euler (Euler, forward Euler), leapfrog, and Adam-Bashforth. For the ODE (3.1) 
with S(u) = u(1- u), the dynamical behavior of their corresponding discrete maps 
is well established. The explicit Euler method is given by 

un + 1 = u" + rS(u"), (3.12) 

and after a linear transformation, it is the well known logistic map [43-47]. The 
leapfrog method can be written as 

u"+ 1 = U,,-I + 2rS(un), (3.13 ) 

and it is a form of the Henon map [49]. The Adam-Bashforth method yields 

(3.14 ) 

u' = 0 -------------_ .. 
(0:> 0) 

FIG. 3.1. Asymptotic solution behavior of the logistic ODE du/dt = exu( 1 - u) for ex> o. 
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which is again a variant of the Henon map that has been discussed by Pruffer [56] 
in detail. 

We can determine fixed points of the discrete maps (3.12)-(3.14) and their 
stability properties in a manner similar to that for the ODE. It turns out that all 
three of the discrete maps have the same fixed points as the ODE (3.1 )-a desired 
property which is important for obtaining asymptotes of nonlinear DEs numeri­
cally. Here we use the term asymptote to mean a fixed point of any period. 

The corresponding linear perturbed equation for the discrete map (3.3), found by 
substituting un = u* + ~n in (3.3) and ignoring terms higher than ~n, is 

(3.15) 

Here the parameter a of the ODE has been absorbed in the parameter L1t based on 
the assumption that a does not appear explicitly in S(u). Depending on the ODE 
solvers, D( un, L1 t) might be nonlinear in L1 t. The possibility of nonlinearity in the 
parameter space L1 t being introduced into the discretized counterpart makes the 
dynamics of numerics deviate from the dynamics of the continuum. See Section 3.4 
for details. For stability we require 

11 +L1t Du(u*, L1t)1 < 1. (3.16) 

Again, for 11 + L1t DJu*, L1t)1 = 1, higher order perturbation is necessary. For a 
fixed point of period p the corresponding linear perturbed equation and stability 
criterion [3-6] are 

~n+p = ~nE~(u*, L1t) (3.17) 

and 

IE~(u*, L1t)1 < 1, (3.1Sa) 

with 

d d 
EP(un L1t)=-E(un+p- 1 L1t)··.-E(un L1t) 
U' du ' du ' . 

(3.1Sb) 

For S(u) = u(1 - u), the stability of the stable fixed points of periods 1 and 2 for 
discrete maps (3.12}-(3.14) with r = a L1t are 

Explicit Euler. 

Leapfrog. 

u* = 1 

u* = 1 

period 2 

stable if 0 < r < 2 

stable if 2 < r < )6. 

unstable for all r :;?; 0 

chaotic solutions exist for all r no matter how small. 
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Adam-Bashforth. 
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u* = 1 

period 2 

stable if 0 < r < 1. 

stable if 1 < r < )2. 

Figure 3.2a shows the stable fixed point diagram of periods 1, 2, 4, 8 obtained 
for the explicit Euler scheme by solving numerically the roots of (3.12) (by setting 
un+ 1 =un) for S(u)=u(1-u). The r axis is divided into 1000 equal intervals. The 
numeric labelling of the branches denotes their period. The subscript E on the 
period 1 branch indicates the stable fixed point of the DE. 

Two of these three examples serve to illustrate that the result of operating with 
a time step beyond the linearized stability limit of the stable fixed points of the non­
linear ODEs is not always a divergent solution; spurious asymptotes of higher 
period can occur. This is in contrast to the ODE solution, where only a single 
stable asymptotic value u* = 1 exists for any rL > 0 and any initial data UO > O. It is 
emphasized here that these spurious asymptotes, regardless of the period, stable or 
unstable, are solutions in their own right of the discrete maps resulting from a finite 
discretization of the ODE. 

3.2. Spurious Steady-State Numerical Solutions 

For the previous three ODE solvers, we purposely picked the type of schemes 
that do not exhibit spurious fixed points [27] but allow spurious fixed points of 
period higher than 1. In this section, we discuss the existence of spurious steady­
state numerical solutions. Again, it is emphasized here that these spurious steady 
states, stable or unstable, are solutions in their own right of the resulting discrete 
maps. Consider two second-order Runge-Kutta schemes, namely, the modified 
Euler (R-K 2) and the improved Euler (R-K 2), the fourth-order Runge-Kutta 
method (R-K 4), and the second and third-order predictor-corrector method 
[81-83] of the forms: 

Modified Euler (R-K 2) method, 

(3.19) 

Improved Euler (R-K 2) method, 

un+ I = un +~ [sn + S(un + rsn)]. (3.20) 

FIG. 3.2. Stable fixed points of periods 1, 2, 4, 8 for the logistic ODE du/dt = ()(u(l- u). 
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R-K 4 method, 

un+ 1 = un + ~ ( k, + 2k2 + 2k3 + k4) 

k, =sn 

k2 = S ( un + ~ k I) 
k3 = S (un + ~ k2) 

k4 = S(un + rk3)' 

Predictor-corrector method of order m, 

U(k+ I) = un +~ [ sn + S(k)], 

un+l=un+~[ sn+s(m-l)]. 

k=O, 1, ... , m-1 

(3.21 ) 

(3.22) 

Using the same procedures, one can obtain the fixed points for each of the above 
schemes (3.19)-(3.22). Figures 3.2b-3.2f show the stable fixed point diagrams of 
period 1, 2, 4, and 8 for these five schemes for S(u) = u(1- u). Some of the fixed 
points of lower period were obtained by closed form analytic soution and/or by a 
symbolic manipulator such as MAPLE [84] to check against the computed fixed 
point. The majority were computed numerically [3,9]. The stability of these fixed 
points was examined by checking the discretized form of the appropriate stability 
conditions. Again the axis is divided into 1000 equal intervals. The numeric 
labelling of the branches denotes their period,' although some labels for period 4 
and 8 are omitted due to the size of the labelling areas. The subscript E on the main 
period one branch indicates the stable fixed point of the DE while the subscript S 
indicates the stable spurious fixed points introduced by the numerical scheme. 
Spurious fixed points of period higher than one are obvious (since the ODEs under 
discussion only possess steady-state solutions) and are not labelled except for 
special cases. Note that these diagrams, which for the most part appear to consist 
of solid lines, actually consist of points, which are only apparent in areas with 
high gradients. 

To contrast the results, similar stable fixed point diagrams were also computed 
for S(u) = u(l- u)(b - u), 0 < b < 1. See Fig. 3.3. The stable fixed point for the ODE 

FIG. 3.3. Stable fixed points of periods 1, :1, 4, 8 for the ODE du/dt = lXu(l- u)(O.5 - u). 
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in this case is u* = b and the unstable ones are u*= 0 and u* = 1. For any 
0< UO < 1 and any a> 0, the solution will asymptotically approach the only stable 
asymptote of the ODE u*= b. 

In contrast to the asymptotic behavior of the ODEs, the maximum number of 
stable and unstable fixed points (real and complex) for each scheme varied from 4 
to 16 for S(u) = u(l- u) and 9 to 81 for S(u) = u(1 - u)(b - u), depending on the 
numerical method and the r value. In other words, besides the exact fixed points, 
the extra fixed points are numerical artifacts of the underlying scheme. The domains 
of all of the fixed point diagrams are chosen so that they cover the most interesting 
part of the scheme and ODE combinations. Notice that spurious asymptotes might 
occur in other parts of the domain as well. 

Aside from the striking difference in topography in the stable fixed point 
diagrams of the various methods and ODE combinations, all of these diagrams 
have one common feature: they all exhibit stable spurious fixed points, as well as 
stable spurious fixed points of period higher than one. In the majority of cases, 
these occur for values of r above the linearized stability limit. But this is not always 
the case as in demonstrated in the modified Euler scheme applied to the logistic 
ODE and du/dt = au(l- u)(b - u), 0 < b < 0.5, and the R-K 4 applied to the logistic 
ODE. For these two methods and ODE combinations, stable spurious fixed points 
occur below the linearized stability limit. In some of the instances, these spurious 
fixed points are outside the interval of the stable and unstable fixed points of the 
ODEs. Others not only lie below the linearized stability limit but also in the region 
between the fixed points of the DEs and so could be very easily achieved in prac­
tice. For example, in Fig. 3.2b, the modified Euler scheme for the logistic ODE, the 
linearized stability limit of period 1 E is r = 2. But depending on the value of r, two 
stable fixed points of period 1 (one is spurious) can exist at the same time for r 
between (approximately) the interval (0.0, 1.45). For the R-K 4 method applied to 
the logistic DE, one can see from Fig. 3.2d that spurious steady states which exist 
for 2.75 < r < 2.785 are below the linearized stability limit of the IE branch. For the 
modified Euler method applied to du/dt = au,(l- u)(b - u), it is interesting to see 
the changing behavior of stable spurious steady states as the stable fixed point 
u* = b is varied between 0 and 0.5. See Fig. 3.4 for details. 

One might argue that for the ODEs that we are considering, it is trivial to check 
whether an asymptote is spurious or not. For example, if u is a spurious asymptote 
of period one, then S(u) # O. The main purpose of the illustration is to set the 
baseline dynamical behavior of the scheme so that one can use it wisely in other 
more complicated settings such as when nonlinear PDEs are encountered in which 
the exact solutions are not known. Under this situation, spurious asymptotes could 
be computed and mistaken for the correct steady-state solutions. 

Note that for the modified Euler method, spurious fixed points of higher periods 
and chaotic attractors as well as spurious steady states occur below the linearized 
stability limit. Let Q be the basin of attraction of the fixed point of the ODE and 
let r* be the corresponding linearized stability limit value of the scheme. Then there 
exists a portion of the basin Q denoted by QC in which QC c Q and an interval of 
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FIG. 3.4. Stable fixed points of periods 1, 2, 4, 8 of the modified Euler (R-K 2) scheme for the ODE 
du/dt = lXu(l- u)(b - u), b = 0.1, 0.2, 0.3, 0.4. 

r within [0, r*) which actually belongs to the basin of attraction of the chaotic 
attract or of the discretized counterparts. There also exist some other QP c Q and an 
interval of r within [0, r*] and p ~ 1 an integer, which actually belongs to the basin 
of attraction of a stable asymptote of period p of the corresponding discrete map. 
This leads to the issue of the dependence of solutions on initial data which will be 
the subject of the next subsection. 

3.3. Strong Dependence of Solutions on Initial Data 

For simple nonlinear ODEs that we are considering, the fixed point diagram is 
extremely useful for the understanding of the dynamics of the DEs and their dis-
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cretized counterparts. However, when fixed points of higher period and/or complex 
nonlinear DEs are sought, searching for the roots and testing for stability of 
highly complicated nonlinear algebraic equations can be expensive and might lead 
to inaccuracy. 

Equally useful for the understanding the dynamics are the bifurcation diagram 
and basin of attraction of fixed points for both the DEs and the difference schemes. 
The bifurcation diagram for the one-dimensional discrete map displays the iterated 
solution un Vs r after iterating the discrete map for a given number of iterations 
with a chosen initial condition (or multiple initial conditions) for each of the r 
parameter values. 

The term bifurcation is broadly used to describe significant qualitative changes 
that occur in the orbit structure of a dynamical system as the system parameters are 
varied. In general, bifurcation theory can be divided into two classes, local and 
global. Local bifurcation theory is concerned with the bifurcation of fixed points of 
nonlinear equations and discrete maps. Global bifurcation theory is concerned with 
phenomena away from the fixed points. It studies the interaction between different 
type of fixed points. A fixed point is structurally stable if nearby solutions have 
qualitatively the same dynamics. The linearized stability limit of a fixed point of a 
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FIG. 3.5. Bifurcation diagram of the explicit Euler scheme for the logistic ODE dujdt = au(l- u). 
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scheme is the same as the bifurcation point in the corresponding bifurcation 
diagram of the resulting discrete map. 

For the numerical computations of the bifurcation diagrams with a given interval 
of r and a chosen initial condition (or multiple initial conditions), the r axis is 
divided into 500 equal spaces. In each of the computations, the discrete maps were 
iterated with 600 preiterations and the next 200 iterations were plotted for each of 
the 500 r values. The domains of the r and un axes are chosen to coincide with the 
stable fixed point diagrams shown previously. For our current interest, it is not 
necessary to distinguish the difference between a stable fixed point of period 200 
and a chaotic attract or. 

Figure 3.5 shows the bifurcation diagram of the Euler scheme applied to the 
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logistic DE with an initial condition UO > O. It is of interest to know that in this case 
the bifurcation diagram looks practically the same for any UO > O. This is due to the 
fact that no spurious fixed points or spurious asymptotes of low period exist for 
r < 2.627. Comparing the bifurcation diagram with Fig. 3.2a, one can see that if we 
had computed all of the fixed points of period up to 200 for Fig. 3.2a, the resulting 
fixed point diagram would look the same as the corresponding bifurcation diagram 
(assuming 800 iterations of the logistic map are sufficient to obtain the converged 
stable asymptotes of period up to 200 and a proper set of initial data are chosen 
to cover the basins of all of the periods in question). The numeric labellings of the 
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branches in the bifurcation diagram denote their period, with only the essential 
ones labelled for identification purposes. 

The noise appearing on the 1£ branch near the bifurcation point r = 2 of the 
linearized stability limit of the fixed point u* = 1 indicates that 800 iterations of the 
logistic map is not sufficient to obtained the converged stable asymptotes. This 
phenomenon is common to other bifurcation points of higher periods as well as the 
rest of the bifurcation diagrams (Figs. 3.6-3.12) to be discussed shortly. 

In order to interpret the bifurcation diagram for other ODE and scheme com­
binations, some knowledge of the fixed point diagram is necessary, at least for the 
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lower order periods. Otherwise, one cannot identify the exact periodicity of the 
asymptotes easily. As can be seen later, a "full" bifurcation diagram· cannot be 
obtained efficiently without the aid of the stable and unstable fixed point diagram 
for schemes that exhibit spurious fixed points of any period, especially lower 
periods. In most cases, the unstable asymptotes divide the domain into the proper 
basins of attraction for the stable asymptotes (spurious or otherwise), and at least 
one initial data point is used from each of the basin.s of attraction before a full 
bifurcation diagram can be obtained. 

FIG. 3.10. "Full" bifurcation diagrams for the logistic ODE du/dt = otu(l- u). 
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In all of the fixed point diagrams 3.2-3.4, the bifurcation phenomena can be 
divided into three kinds. For the first kind, the paths (spurious or otherwise) resem­
ble period doubling bifurcations (flip bifurcation) [3-6] similar to the logistic map. 
See Figs. 3.2a, 3.2e, 3.3a, and 3.3e for examples. The second kind occurs, most often, 
at the main branch 1 E, with the spurious paths branching from the correct fixed 
point as it reaches the linearized stability limit, and quite often even bifurcating 
more than once (pitchfork bifurcation or supercritical bifurcation [85, 8]), as r 
increases still further before the onset of period doubling bifurcations. See Figs. 3.2c, 
3.2f, 3.3b-3.3d, and 3.3f for examples. The third kind again occurs most often at the 
main branch 1 E' The spurious paths near the linearized stability limit of 1 E 

experience a transcritical bifurcation [4, 8, 10, 85]. See Figs. 3.2b, 3.2d, 3.2f, and 3.4 
for examples. Notice that the occurrence of transcritical and supercritical bifurca­
tions is not limited to the main branch IE' See Figs. 3.3d-3.3f and 3.4 for examples. 
The other commonly occurring bifurcation phenomenon is the subcritical bifurca­
tion which was not observed in our two chosen S(u) functions. With a slight change 
in the form of our cubic function S(u), a subcritical bifurcation can be achieved 
[85, 4, 8, 10]. The consequence of the latter three bifurcation behaviors is that 
bifurcation diagrams calculated from a single initial condition UO will appear to 
have missing sections of spurious branches, or even seem to jump between 
branches. This is entirely due to the existence of spurious asymptotes of some 
period or more than one period, and its dependence on the initial data. This occurs 
even for the Euler scheme as depicted in Fig. 3.3a. See Section 3.4 for further discus­
sion of these four types of bifurcation phenomena. 

Figures 3.6a-3.6c show the bifurcation diagram by the modified Euler method for 
the logistic ODE with three different starting initial conditions. In contrast to the 
explicit Euler method as shown in Fig. 3.5 none of these diagrams look alike. One 
can see the influence and the strong dependence of the asymptotic solutions on the 
initial data. Thus in a situation where there is no prior information about the exact 
steady-state solution and where a time-dependent approach is used to obtain the 
steady-state numerical solution when initial data are not known, stable spurious 
steady-state could be computed and mistaken for the correct steady-state solution. 
Figure 3.6d shows the corresponding "full" bifurcation diagram, their earlier stages 
resembling the fixed point diagram 3.2b. Figure 3.7 illustrates similar bifurcation 
behavior for the corresponding R-K 4 method. Figure 3.7b serves as' an example to 
illustrate that the effect of overplotting a number of initial data, but not the 
appropriate ones, would not be sufficient to cover all of the essential spurious 
branches. In Fig.3.7b, I.e. stands for initial condition. Figures 3.8-3.9 show a 
similar illustration for S(u) = u(l- u)(0.5 - u) by the improved Euler and the 
R-K 4 methods. The strong dependence of solutions on initial data is evident from 
the various examples in which this type of behavior is very common for genuinely 
nonlinear problems. 

FIG. 3.1 1. "Full" bifurcation diagrams for the ODE dujdt = lXu(l - u)(O.5 - u). 
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In order to compute a "full" bifurcation diagram, we must overplot a number of 
diagrams obtained by the guide of the stable and unstable fixed point diagram as 
an appropriate set of starting initial data. In the case where the fixed point 
diagrams are extremely difficult to compute, a brute force method of simply 
dividing the domain of interest of the un axis into equal increments and using these 
un values as initial data is employed. The "full" bifurcation diagram is obtained by 
simply overplotting all of these individual diagrams on one. 

For completeness, Figs. 3.10-3.12 show the "full" bifurcation diagrams for the 
corresponding fixed point diagrams shown previously. Figures 3.13-3.15 shows the 
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stable and unstable fixed point diagrams used as a guide to pick the appropriate 
initial data to obtain the full bifurcation diagrams 3.10-3.12. The number of initial 
data points used in each of the "full" bifurcation diagrams ranges from 4 to as high 
as 20. Notice that the exact values of the initial data are immaterial as long as these 
values cover all of the basins of attraction of the essential lower order periods. That 
is, at least one initial data point is used from each of the basins of the essential 
lower order periods (using the stable and unstable fixed point diagrams as a guide). 
See Section 3.4 for additional details and their connection with the basins of attrac­
tion. Here, we use the term "full bifurcation diagram" to mean "bifurcation diagram 
with sufficient initial data to cover the essential lower order periods." No attempt 
has been made to compute the true full bifurcation diagram since this is very 
costly and involves a complete picture of the basins of attraction for the domain of 
interest in question. 

3.4. Classification of ODE Solvers 
(According to the Existence of Spurious Fixed Points) 

In Ref. [27J, IserIes studied the stability of ODE solvers for nonlinear 
autonomous ODE via the dynamical approach. He proved that LMM [81-83J 
that give bounded values at infinity always produce correct asymptotic behavior. 
However, this is not the case with Runge-Kutta methods and some predictor­
corrector methods. He demonstrated that the Runge-Kutta and predictor methods 
may lead to false asymptotes, but did not discuss the possibility of these spurious 
asymptotes existing below the linearized stability limit. 

For implicit LMM, he assumed the resulting nonlinear algebraic equations are 
solved exactly. He also showed the influence of nonlinear algebraic solvers on the 
size of stability regions for implicit LMM. His conclusion was that the standard 
nonlinear algebraic solver-the modified Newton-Raphson method (for the 
trapezoidal rule) 

(k+l)_ (k) unl-un-(r/2)[S(un)+S(u~kldJ 
Un+1 -Un+l- 1-(r/2)S)un) (3.23 ) 

can drastically degrade the region of stability limit as compared to the Newton­
Raphson method 

(3.24) 

On the other hand, the direct iteration method 

(3.25) 
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converges only if the step size is of the same order of magnitude as that required 
for an explicit method. Thus the advantage of using an implicit method (3.25) to 
enhance stability is lost. Here for clarity of notation, when iteration procedures are 
involved, Un is used in place of un of the previous section. 

The implications of behavior detailed in Iserles' work [27] range far beyond pure 
ODEs. For most CFD applications, the use of implicit time discretization to "time" 
march the solution to steady state is very common. The resulting nonlinear 
algebraic systems are solved by either noniterative linearization [86, 2] or by some 
kind of iterative or relaxation procedure. Very often, applied computational fluid 
dynamicists experience a non-convergent solution where the residual will decrease 
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only so far before reaching a plateau with a time step larger than the explicit 
method. The behavior observed in Iserles' work could explain the degradation in 
the stability of the implicit scheme in practice. Indeed, even though the mechanisms 
involved are far more complicated than those studied here, elements such as spatial 
discretization dynamical behavior and nonlinear coupling effect for systems, could 
well be an explanation. 

More recently, Iserles and Sanz-Sema [28] established conditions for using a 
variable step size analysis to avoid spurious fixed points in a class of Runge-Kutta 
methods. A more up-to-date unified discussion on LMM, Runge-Kutta methods, 
and predictor-corrector methods has appeared in Refs. [29,30]. 
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Looking at the problem from another perspective, it is very useful to find the 
cause of the existence of spurious asymptotes by looking at the form and properties 
of the resulting discrete maps, regardless of the methods. We have the following 
two observations: 

(1) Assume that the only parameter that was introduced by a numerical 
method is A t. Then from Iserles' results and our current investigation, one necessary 
condition for the existence of spurious steady states of ODE solvers for (3.1) is the 
introduction of nonlinearity in the parameter space At. This is evident from our 
examples and general analysis. For example, if At (or r) is linear in (3.3), then (3.3) 
can be written as 

c a constant of the scheme. (3.26) 

Therefore, any fixed point of (3.3) is a fixed point of (3.1). Without loss of 
generality, a similar proof applies to the resulting difference operator D from a p 
time level LMM scheme. 

(2) One can classify the types of spurious steady states in the form of bifurca­
tion theory near a bifurcation point or a bifurcation limit point. Figures 3.16 and 
3.17 show the definition of the various types of branching points and the stability 
of solutions in the neighborhood of branch points. In other words, for bifurcation 
of the same period, the classification is according to the onset of spurious 
asymptotes of subcritical, supercritical, or transcritical bifurcations. See Fig. 3.18 
for the definition of the three types of phenomena. We refer the reader to Refs. 
[4,6,8,10] for details of the various definitions. 
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Assume an ODE solver introduces nonlinearity in the parameter space At for 
(3.1). We hypothesize that a necessary and sufficient condition for the occurrence 
of spurious steady states below the linearized stability limit on the main branch 1 E 

(stable fixed points of the DE) is that a transcritical or subcritical bifurcation of the 
types shown in Fig. 3.19 exists at the bifurcation point or near a bifurcation limit 
point It is emphasized here that the existence of spurious fixed points of higher 
period can be independent of the existence of spurious steady states (fixed points of 
period 1) attached to (or bifurcated from) the main branch 1 E' 

A detailed analytical study on the existence of transcritical, subcritical, and 
supercritical bifurcations for the class of Runge-Kutta methods can be found in our 
companion paper [13]. Figures 3.13-3.15 illustrate the onset of different types of 
spurious steady-states, by showing the stable and unstable fixed points of periods 
1 and 2, and the types of bifurcation phenomena for the modified Euler, improved 
Euler, and R-K 4, and the predictor-corrector schemes of orders 2 and 3 for S(u) = 
u(l- u) and S(u) = u(l- u)(b - u), 0 < b ~ 0.5. In order to illustrate the different 
behavior in an uncluttered fashion, not all of the periods 1 and 2 and branching 
points are labelled. It is interesting to see the manner in which the onset of the dif­
ferent types of bifurcations occur, in particular, the birth of the different types of 
bifurcations away from the 1 E branches. With the aid of the stable and unstable 
fixed point diagrams, one can identify the typ~ of bifurcation phenomena easily. 

3.5. Basins of Attraction 

Due to the different dependence on and sensitivity to initial data of the individual 
DEs and the discretized counterparts, in conjunction with the existence of spurious 
steady states and asymptotes of higher periods, even associated with the same 
(common) steady-state solution, the basin of attraction of the continuum might be 
vastly different from that of the discretized counterparts. 

Take for example, S(u) = u(l- u). The only stable fixed point of the logistic 
ODE is u = 1 for any positive IX. The entire domain of the real un-axis is divided into 
two basins of attraction for the ODE independent of any real IX. Now if one numeri­
cally integrates the ODE by the modified Euler method, extra stable and unstable 
fixed points can be introduced by the scheme depending on the value of r. That is 
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for certain ranges of the r values, the un-axis is divided into four basins of 
attraction. But, of course, for other ranges of r, higher period spurious numerical 
solutions exist, more basins of attraction are created within the same un-axis range, 
etc. Stable and unstable fixed point diagrams such as Figs. 3.13-3.15 are usually 
very useful in the division of the un-axis into different basins of lower periods. The 
unstable fixed points "lines" (period 1 or higher periods) usually form the 
boundaries of the basins. The basins of attraction for the various methods were 
computed and colored according to the lower order period. They are not shown 
here due to the lack of color printing. 

3.6. Systems of ODEs 

As can be seen from the previous sections, the rich and complicated dynamical 
behavior of discrete maps resulting from finite discretization of simple nonlinear 
scalar autonomous ODEs is enlightening, educational, and useful in giving some 
indications of the strange behavior encountered in practice. One would naturally 
ask how highly coupled nonlinear first-order autonomous systems complicate the 
issue. After all, these types of systems occur naturally in physical science and 
engineering fields. Examples are 

(1) nonlinear scalar first or m th-order nonautonomous ODEs arising from 
physical, biological, and engineering sciences, 

(2) second or higher order nonlinear scalar autonomous ODEs arising from 
physical, biological, and engineering sciences, 

(3) turbulence and turbulence modeling in fluid dynamics [87-89], 

(4) meteorology, 

(5) chemical reaction equations arising from chemistry, 

(6) system of ODEs arising from the method of lines approach in PDEs such 
as the reaction-diffusion, reaction-convection, and reaction-convection-diffusion 
equations. 

Future work will be directed towards investigation into the nonlinear dynamical 
effect of using ODE solvers for nonlinear system of ODEs. Here, we do not attempt 
to give a detailed discussion on this subject, but rather indicate some of the implica­
tions from our experience as well as from what is availiable in the literature. 

First, the coupling of first-order nonlinear systems arising from a higher-order 
scalar nonlinear ODE is very different from the truly nonlinear coupling on systems 
of first-order ODEs. This difference carries over to their discretized counterparts. 
Second, due to the nonlinear coupling effect, most of the phenomena that are 
observed in the nonlinear scalar case will most likely carryover to the coupled 
system case in a more complex manner. Even with help of the center manifold 
theorem [3-6], nonlinear systems of higher than three first-order ODEs are still 
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extremely difficult to analyze. One major factor in analyzing the associated discrete 
maps is that when three or more time levels of ODE solvers are used, even though 
the continuum is a first-order scalar autonomous ODE, the resulting discrete maps 
are (p - 1 )th-order, where p is the time level. One can extrapolate the complexity 
involved if nonlinear coupled systems of higher-order ODEs were discretized by 
p-time levels of ODE solvers. Some aspects and implications of numerical integra­
tion of second- and third-order ODEs are discussed in Refs. [51, 52, 90]. Some of 
our numerical experiments agree with the above general conclusion. 

In our companion paper [14], the dynamical behavior of the previously studied 
ODE solvers on 2 x 2 systems of autonomous ODEs is investigated. In depth global 
analysis similar to the level of the scalar case is very involved and is extremely 
difficult to analyze. The intent of our companion paper is to gain a first-hand 
understanding of the subject. The most interesting result is that due to higher 
dimensional nonlinear coupling effects, stable spurious steady states occurring 
below the linearized stability limit were not observed on the five different coupled 
2 x 2 nonlinear ODE systems. However, more complex phenomena such as stable 
spurious limit cycles and stable spurious higher dimensional tori were observed. 
The study in Ref. [14] indicates that all of the studied Runge-Kutta methods 
exhibit spurious limit cycles. We hypothesize that the existence of spurious limit 
cycles and higher dimensional tori might be one of the major contributing factors 
in slow convergence or nonconvergence in the use of the time-dependent approach 
to the steady states in practical computations. 

IV. LEVEL OF COMPLEXITY FOR PDEs 

At present few general results are known on the dynamics of numerics for non­
linear nonhomogeneous hyperbolic and parabolic PDEs. In order to gain some 
insight into this area, we shall be content with pursuing the subject in three stages. 
First, we will attempt to obtain a better understanding of the subject of time 
discretization of ODEs. The investigation can give insight into numerical methods 
employing the Strang type of operator splittings [91] or methods of lines [92] 
approach for nonhomogeneous hyperbolic and parabolic PDEs. The second stage 
will involve the study of the discrete traveling wave solutions of the reaction­
convection and reaction-convection-diffusion equations. The third stage will involve 
the study of the complete temporal-spatial discretizations of the reaction-convection 
and reaction-convection-diffusion equations. The last stage of the proposed plan is 
extremely difficult to analyze. Some aspects of full discretizations, traveling wave 
solutions, and discrete traveling wave solutions were investigated in [10, 58-66, 
68-71,93-96]. More recent results are reported in our companion papers [15-18]. 

The following is an attempt to give a flavor of the subject and at the same time 
provide a justification for the importance of this subject area in CFD algorithm 
development for our next generation aerodynamics needs. 
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4.1. Model Equations 

One of the recent areas of emphasis in CFD has been the development of 
appropriate finite-difference methods for combustion and nonequilibrium gas 
dynamics in the hypersonic range [2, 21, 97-99]. A nonlinear scalar reaction­
diffusion model equation would be of the form 

au a2u 
at = e ax2 + ocS(u), e, oc system parameters, (4.1 ) 

a nonlinear scalar reaction-convection model equation would be of the form 

(4.2) 

and a nonlinear scalar reaction-convection-diffusion model equation would be of 
the form 

au af(u) a2u 
at +~=e ax2 + ocS(u). (4.3) 

Here f( u) is a linear or nonlinear function of u. The nonlinear source term (or the 
reaction term) S(u) can be very stiff. Note that phenomena such as chaos, bifurca­
tions and limit cycles most often relate to source terms S(u) which are nonlinear in 
u. Equation (4.3) can be viewed as a model equation in combustion or as one of 
the species continuity equations in nonequilibrium flows (except in this case, the 
source term is coupled with other species mass fractions). 

4.2. Level of Complexity 

As in the ODE case, the goal is to investigate what types of new phenomena arise 
from the numerical methods that are not present in the original nonlinear PDE, as 
a function of the stiff coefficient 0(, the diffusion coefficient e, and the time step At 
with a fixed (or variable) grid spacing Ax. The time step can vary greatly depending 
on whether the time discretization is explicit or implicit. The study can be divided 
into steady and unsteady behavior with or without shock waves. 

In addition to the fact that spurious equilibrium states can be introduced by the 
time differencing and/or the spatial differencing, combustion-related and high speed 
hypersonic flow problems usually contain multiple eqUilibrium states and shock 
waves that are inherent in the governing equations. In many instances the stable 
and unstable equilibrium states, whether due to the physics or natural spuriousness, 
are interwoven over the domain of interest and are usually highly dependent on the 
initial conditions and the time steps (even when the chosen time step is within the 
linearized stability limit as indicated in our study), as well as variation of 
parameters such as angle of attack, Reynolds number, and coefficients of physical 
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and numerical dissipations and physical and numerical boundary conditions. One 
can extrapolate the complexity involved when the influence of the various temporal, 
as well as spatial, discretizations are sought on the basins of attractivity. 

The sensitivity of numerical solutions to coefficients of physical and numerical 
dissipation is evident from the study of Mitchell and Bruch [59] on the reaction­
diffusion equation. Their main result is that diffusion, which is usually perceived as 
having a stabilizing effect, is able to produce chaotic as well as divergent numerical 
solutions. Another interesting result due to Mitchell and Bruch was the production 
of chaos by decreasing the space increment or increasing the time increment. They 
showed that the addition of diffusion poses severe problems unless waves of con­
stant speed c are assumed, in which case it reverts to an OOE with x + ct as the 
independent variable. The sensitivity of numerical solutions to numerical boundary 
condition procedures was discussed in [100, 101]. 

In order to assess the possible errors, slow convergence and non convergence of 
steady-state numerical solutions when using the time-dependent approach for 
nonlinear reaction-convection BVPs, four different numerical aspects are addressed 
in our companion papers [17,18]. First, they show that stable and unstable 
spurious steady-state numerical solutions (numerically irrelevant solutions) can be 
independently introduced by spatial and temporal discretizations satisfying the same 
boundary condition and initial data. Second, they investigate how the various ways 
of discretizing the reaction term can drastically affect the stability of the spurious 
as well as the exact steady-state solutions. Third, they illustrate how the time 
discretization can destablize the stable spurious steady-state numerical solutions 
that are introduced by the spatial discretizations or vice versa. Finally, they 
show how the numerical phenomenon of incorrect propagation speeds of discon­
tinuities may be linked to the existence of some stable spurious steady-state 
numerical solutions. 

The results in Refs. [17, 18] are concerned with separable temporal and spatial 
finite difference approximations (as those arising from the method of lines resulting 
in semi-discrete approximations of the POE). Their illustrations of the existence of 
spurious steady states for the semi-discrete approximations serve a dual purpose. 
That is, their study also indicates the existence of spurious steady"state numerical 
solutions when the steady-state POE, rather than the time-dependent approach, is 
used to solve for the steady-state numerical solution. A major difference in the 
dynamical behavior between the two approaches to obtaining steady-state numeri­
cal solutions is that for the time-dependent approach, the time discretization can 
independently contribute spurious steady states, but at the same time it can 
destablized the spurious steady states that are introduced by the spatial discretiza­
tion or vice versa. See [16-18] for a discussion. The interplay between the spatial 
and time discretizations on the stability of spurious solutions (by both time and 
spatial discretizations) is very complex. At this time few general results are known. 
On the other hand, by solving the steady-state POE, all spurious steady states due 
to the spatial discretizations are present. There is no concept of stability since there 
is no time involved. The difficulty lies not only in the method of identifying the 
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TABLE II 

Systematic Approach-Level of Complexity 

I. ODE Connection: Gain insight into time discretization of PDEs 

II. Discrete travelling wave: 

--
{ Scalar 

System-Time splitting or method of lines 

au au a2u 
at +C ax =8 ax2+IXS(U) 

{
Reaction-diffusion J 

Scalar Reaction-convection J 
reaction-convection-diffusion 

III. Full Discretization (temporal and spatial): 

""'" (U 0) { J} /I,,,,,,~....., ('''patial '"""'"".,' 

SooI~ (S ~ 0) { } """,_",,homo (oc .,. •• 1 ,""","",tioo 

'''''', (U 0) { } .""'...., """'" ('''pa'''' """",,tioo 
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spurious steady states from the exact ones, but also in the major shortcoming that 
quite often one has to deal with PDEs of the mixed type. 

Table II summarizes the level of complexity for a systematic approach to these 
types of PDE. The check mark on each type of PDE and approach indicates the 
ones where some work has been done on this subject. 

4.3. Involvement in the Study of Full Discretization of PDE 

Consider a three-level explicit time differencing and a three-point spatial 
differencing of the reaction-convection-diffusion equation (4.3) of the form 

(4.4) 

where uj is the numerical solution at t = n At and x = j Ax. Then the study of the 
asymptotes of (4.4) amounts to the study of fixed point behavior of period p in time 
and period q in space, denoted by (p, q), where p and q are integers. Here the fixed 
point of the partial-difference equation (4.4 ) is defined in a slightly more 
complicated way than for the ODE. 
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For example, a fixed point of period (1,1) is defined as u'J:l = u'J and a fixed 
point of period (2, 1) is defined as u'J: 12 = u'J. However, a fixed point of period (1,2) 
is defined as u'J:i = u'J. Thus, in general, a fixed point of period (p, q) is defined as 
uJ:: = u'J. One can see that for p, q> 3, solving the resulting nonlinear algebraic 
equation is very involved, especially when physical boundary conditions and physi­
cal dissipation terms as well as numerical boundary conditions [100, 101, 22, 17, 
18J and numerical dissipation [59J are additional dimensions of consideration. 
Current available work involving the studies beyond the linearized stability limit of 
the schemes, and assuming the nonexistence of spurious fixed points of period (1, 1) 
for reaction diffusion equations and reaction convection equations are reported 
in Refs. [20, 38, 58-66, 68-71]. Some issues on spurious steady-state numerical 
solutions are discussed in [102J and our companion papers [17,18]. 

4.4. Influence on Dynamical Behavior by Property of the PDEs and 
Schemes, and Treatment of the Source Terms 

Although the general study of the dynamical behavior of partial-difference equa­
tion for (4.3) is an enormous task, if we can isolate certain restricted subsets of the 
PDEs and schemes in hand which are immune to the type of phenomena discussed 
in Section III for time discretization as well as spatial discretization, then we can 
concentrate on the rest of the unknowns. For a comprehensive introduction to 
conservation laws, see Refs. [103, 104]. 

As can be seen in Section III, the nature of the dynamical behavior of the 
discretized counterparts is strongly influenced by properties of the numerical 
method and the types and form of nonlinear DEs. Here we want to study the 
influence on the dynamical behavior of elements such as conservation and non­
linearity of the schemes and treatment of the source terms [2, 35-37, 21, 97-99J 
when nonlinear conservation laws are sought. 

First, take the scalar convection equation (4.2) with S( u) = 0 and consider a 
conservative explicit scheme [105, 106, 2J whcih is consistent with the conservation 
law of the form . 

n+1 n '[hn hn J uj = uj -I\, j+ 1/2 - j-I/2 , (4.5) 

where A = At/Ax and h'J± 1/2 are the numerical flux functions. For a two-time level 
and five-point spatial scheme, h'J±1/2=h(u'J, U'J±I' U'J±2)' 

We also can consider a two-parameter family of schemes 

n + I + A(} [hn + I hn + I ] n A( 1 - (}) [hn hn ] u j 1 + w j + 1/2 - j - 1/2 = U j - 1 + w j + 1/2 - j - 1/2 , 

(4.6) 

where 0 ~ () ~ 1. When () = 0, the scheme is explicit and when () = w + !, the scheme 
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is temporally second-order accurate. One can obtain (4.5) from (4.6) by setting 
() = 0 and w = O. The time differencing belongs to the class of LMM. Under the 
assumption that this scheme is conservative and consistent with the 1D conserva­
tion law, discrete map (4.6) will have no spurious steady-state numerical solution, 
since consistency means 

h(u*, u*, u*) = f(u*). (4.7) 

Thus any steady-state solutions of (4.6) are steady-state solutions of the original 
PDE. The above result assumes no nontrivial exact steady state of the conservation 
law exists. However, this does not preclude (4.7) from the possibility of exhibiting 
spurious limit cycles that can interfere with stability, convergence, and basins of 
attraction of the true physics of the continuum. See our companion paper [14] or 
Section 4.6 for a short discussion. We remark that the situation is more complicated 
if higher than 1D conservation laws (S = 0) are considered since nontrivial exact 
steady states exist. 

Now the situation is different when S(u) # O. Under this solution, even if the 
same time and spatial discretization are employed, one still has to evaluate S 
properly. Here S is the function S evaluated at some proper average state u 
[2,35-37] for the full discretization that is consistent with the scheme and achieves 
conservation at jumps. For a discussion on this subject, see Refs. [21, 2, 35-37] for' 
details. The other crucial aspect is that when S( u) # 0, a full investigation into the 
dynamical behavior of the temporal and spatial discretization is necessary. The 
knowledge gained from the finite-difference methods analysis for S(u) = 0 does not 
carryover to the S(u)#O case [14,17,18]. 

4.5. Discrete Traveling Waves 

Analysis of the dynamical behavior of the full discretization of nonlinear 
nonhomogeneous PDEs of the hyperbolic and parabolic types is very involved. In 
this section, we look at a more restricted class of solutions-the discrete traveling 
wave solutions. 

Consider a reaction-diffusion equation 

i}u i}2u 
i}t=i}x2+S(u). (4.8) 

Solution u(x, t) depends on the space variable x and on the time t. Every zero of 
S(u) constitutes an equilibrium of the PDE. Then a traveling wave solution is a 
profile U(x) that travels along the x-axis with propagation speed 1 Neither the 
shape of the wave nor the speed of propagation changes. To find traveling waves, 
we seek solutions 

u(x, t) = U(x - At), (4.9) 

resulting in an ODE 

U" +AU' +S(U)=O. (4.10) 
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By solving this ODE, one can calculate asymptotic states for the POE. Let U 1 and 
U2 be roots of S(u) and hence equilibrium solutions for both the PDE and the 
ODE. The asymptotic behavior of solution U for x --+ ± 00 determines the type of 
traveling wave. Every solution with 

U(oo)= U 1 

U( - (0) = U2' 

(4.11a) 

(4.11 b) 

with U 1 "# U2' is a front wave of the ODE. This corresponds to a heteroclinic orbit 
[4] of the ODE, connecting the two stationary points U 1 and U2' Here for a second­
order autonomous ODE (4.10), when distinct saddles are connected, one encoun­
ters a heteroclinic orbit; also a heteroclinic orbit may join a saddle to a node or vice 
versa. Another type of special orbit is a homoclinic orbit. A homoclinic orbit con­
nects a saddle point to itself and such orbits have an infinite period. Several 
heteroclinic orbits may form a closed path called a homoclinic cycle. Both the 
heteroclinic and homoclinic orbits are of great interest in applications because they 
form the profiles of traveling wave solutions of many reaction-diffusion problems. 
See Refs. [4, 11, 93, 94] for a discussion. 

Similarly, one can study discrete traveling wave solutions for the finite discretiza­
tion of (4.8). See Refs. [93-96] for a discussion. Before a short description of the 
subject, it is important to point out that understanding of the discrete traveling 
wave solutions of the corresponding PDEs only gives insight into a very small sub­
set of the dynamics of the PDEs. In most cases, it provides no information at all 
for the fully discretized equation. Although there is a considerable body of 
knowledge concerning traveling wave solutions of (4.8), little work has been done 
for the corresponding discrete case. A recent study by Keener [95] concerns the 
semi-discrete equations 

duj = [uj_1-2uj+Uj+l] S(.) 
dt (L1X)2. + uJ • 

In the case that S(u) is N-shaped 

S(O) = S(b) = S(I) =0, S'(O)<O, S'(I)<O 

S(U) < 0 for O<u<b, S( u) > 0 for b < U < 1. 

(4.12) 

(4.13a) 

(4.13b) 

A detailed analysis of the corresponding continuous problem is given by Fife and 
McLeod [96] who proved, among other things, that (4.8) has a unique traveling 
wave of the form (4.9), (4.11) with U 1 = 1 and U2 = O. A simple example of an 
N-shaped source term is given by 

S( u) = u( U - b)( 1 - u) with O<b<!. (4.14 ) 

For the system (4.12), Keener [95] shows that 
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1. for Ax sufficiently large there is an infinite number of st~ble nonuniform 
standing wave solutions of (4.12) and these effectively act to block the propagation 
of traveling waves, 

2. for Ax sufficiently small the system exhibits propagation (the technique 
used is that of super- and sub-solutions but, unfortunately, does not reveal the 
existence of shape invariant solutions of the form uj(t) = u(j Ax - yt) with propaga­
tion speed y), and 

3. monotone shape invariant traveling waves, if they exist, are stable. 

In the case of the cubic source term it is shown that propagation is blocked if 
b Ax> 2, whereas propagation is assured for Heaviside: initial data if 

(AX)2 < 25 , (4.15) 
2b 2 - b + 1 - 2( 1 + b) J b2 - 3b + 1 

provided b2 - 3b + 1 > 0, or 0 < b < 0.382. Numerical experiments suggest that 
propagation first occurs at a value of Ax between the given bounds. 

The simplest fully discrete approximation of (4.8) is given by 

u;+ 1 = uJ + f[UJ-l - 2uJ + uJ+ 1] + AtS(uJ), (4.16) 

where f=At/Ax2. The behaviour of this scheme for S(u)=lXu(l-u) (IX>O) in the 
neighbourhood of its fixed points u* = 0, 1 has been studied extensively (see 
[59,65,68]). It has been shown that solutions of (4.16) are stable in the 
neighborhood of u* = 1 (the stable fixed point of (4.8)) provided that 

0< IX At < 2(1- 2i'), (4.17) 

which defines the linearized stability limit of the method. When the rightmost 
inequality is violated, the constant solution uJ = 1 bifurcates and the system admits 
solutions of the form uJ = const + e( - 1 t - j for some amplitude e. This type of 
solution represents a wave of wavelength 2Ax that travels a distance Ax during 
each time step. 

The study of shape invariant traveling wave solutions of (4.16) has to be restricted 
to situations where the speed of propagation is a rational multiple, q/p say, of 
the mesh ratio Ax/At. Uniform waves of this type correspond to the period (p, q) 
solutions discussed in [65] where it was deduced that, for each value of At where 
the logistic equation (3.12) has a stable solution of period p, (4.16) admits a stable 
solution of period (p, 1) for f sufficiently small. 

To illustrate some of the aspects involved, we consider shape invariant waves 
that travel one grid point per time step. That is, they are more general forms 
of period (1, 1) solutions and are characterized by uJ = Vn _ j for all nand j. 
Substituting this into (4.16) leads to the ordinary difference equation 

j= ···,1,0, -1, -2, ... , 

( 4.18) 
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which has been written as a backward recursion so that the fixed point u* = 1 is 
stable (an attractor) provided that (4.17) holds. Thus, if a sequence Vj is constructed 
satisfying (4.18) and this is used as initial data for (4.12) (uJ = vj ), then the resulting 
solutions of (4.12) will be traveling waves with the required property. Numerical 
evidence suggests that these are stable, subject to (4.17), but there is, to Our 
knowledge, no theoretical analysis available. It should be noted that (4.18) is a 
consistent linear multistep method for the differential equation 

solved backwards in time. 

dv 
-= -lXv(l- v) 
dt 

(4.19) 

When the right inequality in (4.17) is violated, the solutions of (4.18) undergo a 
period doubling bifurcation so that Vj tends to constant + e( -l)j as j tends to - 00. 

As At increases, say, for fixed i', further bifurcations occur, including the appearance 
of strange attractors, until the solution eventually escapes to 00 (blows up). 
The association with strange attractors can be made more precise by the change 
of variable . . 

Vj=G+ 1~~i']+ l~i'U-C~~i'r]Hj' 
In this case, (4.18) becomes 

Hj _ 1 = 1- JIB] + PHj + I, 

the Henon map [107] written as a backward recursion, where 

Jl.=(~)2 [!_(1-2i')2], 
1-r 4 2At 

i' p=-. 1-i' 

(4.20) 

(4.21) 

(4.22) 

The most common choice of parameters in, the Henon map are Jl. = 1.4, P = 0.3 
which correspond to i' = 0.321 and At = 1.898. 

Similar arguments can be applied to hyperbolic equations with nonlinear source 
terms, but work in this area is still at a very early stage and the dynamical behavior 
of the discrete traveling waves is more complicated to analyze. The reader is 
referred to our companion paper [15] for a discussion. 

4.6. Spurious Limit Cycles vs Slow Convergence or 
Nonconvergence of Numerical Methods 

For the purpose of illustration, we consider the viscous Burgers' equation with 
zero source term 

e>O. (4.23) 
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Let j = 1, ... , J. We consider a three-point central difference discretization in space 
with periodic condition uj = UJ+ j' which implies that "Lf= 1 (du)dt) = 0 or 
r.f= 1 Uj = const. This system is sometimes referred to in the literature as a perturbed 
Hamiltonian. For simplicity, take J = 3 and Ax = 1. Then 

(4.24a) 

(4.24b) 

(4.24c) 

~ du 
L... _J=O. 

j= 1 dt 
(4.24d) 

This system can be reduced to a 2 x 2 system of first-order nonlinear autonomous 
ODEs. In this case, the nonlinear convection term is contributing to the non­
linearity of the ODE system (4.24). Equation (4.24) has four steady-state solutions 
(fixed points) of which three are saddles and one is a stable spiral at (1, 1) for e#O. 
For e = 0 the stable spiral becomes a center. 

To study the bifurcation phenomena of the corresponding steady-state numerical 
solutions of time discretizations of the semi-discrete system (4.24) as the time step 
is varied, two existing interactive computer programs were modified and adopted 
for our current computations. One of the interactive computer programs, written by 
Creon Levit of NASA Ames, was originally designed to aid the study of flow 
visualization in CFD. The other computer program "AUTO" [108], written by 
Eusebius Doedel, is a software package for continuation and bifurcation problems 
in ODEs. 

The time discretizations that.we are considering are similar to our scalar study. 
These schemes include the explicit Euler, modified Euler, improved Euler, Heun (a 
third-order Runge-Kutta method), and a fourth-order Runge-Kutta method. Our 
studies indicate that all of the studied Runge-Kutta methods exhibit spurious limit 
cycles. See our companion paper [14] for more details. 

Note that spurious steady states are not a problem for this model PDE (4.23), 
since S = 0 and LMM time discretizations and conservative schemes are used. 
However, the existence of stable and unstable spurious limit cycles makes the basins 
of attraction of the discretized counterparts very different from the continuum and 
thus can have severe effects on the speed of convergence or possible noncon­
vergence of numerical solution from a given set of initial data even though the data 
may be physically relevant. 



302 YEE, SWEBY, AND GRIFFITHS 

v. IMPLICATIONS AND RECOMMENDATIONS 

Due to the complexity of the large increase in system dimension and the involve­
ment of multiple floating parameters for finite difference methods in PDEs, we are 
not certain that a similar systematic general result can be arrived at for more 
complex nonlinear systems. The main indication at this point is from our time dis­
cretization study and some early stage development for the model reaction-diffusion 
and reaction-convection PDEs. 

5.1. Results Drawn from the ODE Connection Study and 
from Our Companion Papers 

Our study illustrates a few fundamental aspects in explaining what happens when 
linear stability breaks down for truly nonlinear problems, i.e., for equations that 
display genuinely nonlinear types of behavior. The important points are as follows: 

(1) For certain time discretizations, spurious steady-state solutions may 
occur below· the linearized stability limit of the scheme. . 

(2) The result of operating with a time step beyond the linearized stability 
limit is not always a divergent solution; spurious steady-state solutions can occur. 

(3) Associated with the same (common) steady-state solution the basin of 
attraction of the DEs might be vastly different from that of the discretized counter­
parts. This is mainly due to the dependence on and sensitivity to initial conditions 
and boundary conditions for the individual systems. In the absence of the influence 
of the initial and boundary conditions, the difference in the basins of attraction 
between the continuum and its discretized counterparts occurs even when an 
implicit unconditionally stable LMM type of method is used unless the resulting 
nonlinear algebraic equations are solved exactly. 

(4) Nonunique steady-state solutions can be introduced by the spatial dis­
cretization even though the original POEs might possess only a unique steady-state 
solution and a LMM type of time discretization is used so that no spurious steady 
state can be introduced by time discretizations [17, 18]. The tie between temporal 
and spatial dynamical behavior is more severe when one is dealing with the 
nonseparable temporal and spatial finite-difference discretization such as 
the Lax-Wendroff type, where the time and spatial difference cannot be separated 
from each other [16]. The situation would be more complicated if the governing 
nonlinear POE possessed more than one steady-state solution as well as the 
spurious ones that are purely due to the numerical method. 

(5) Spurious limit cycles can be generated by finite discretizations of non­
linear POEs containing zero source terms. The existence of stable spurious limit 
cycles might be one of the contributing factors in nonconvergence of the time­
dependent approach to the steady state. 
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(6) There is a misconception that computational instability or inaccuracy can 
be cured simply by making L1 t smaller. Other elements such as (1 )-( 5) above, as 
well as the variation of the grid spacings, numerical dissipation terms, and system 
parameters other than the time steps can interfere with the dynamical behavior. See, 
for example, Fig. 3.6 for the case of the logistic ODE and the modified Euler 
method. Figure 3.6 shows that if the initial data is not inside the basins of attraction 
for the 1 E branch of the solution, no matter how one redu~s the time step, the 
numerical solution will not converge to the exact steady state. 

(7) When linearized stability limits are used as a guide for a time step 
constraint for highly coupled nonlinear system· problems, this time step might 
exceed the actual linearized stability limit of the coupled equations. Therefore all of 
the situations in (1)-(6) can occur. In particular, when one tries to stretch the 
maximum limit of the linearized allowable time step for highly coupled systems, 
most likely all of the different types of spurious branches of supercritical, subcriti­
cal, and trancritical bifurcations can be achieved in practice, depending on the 
initial conditions. Consequently, the occurrence of spurious steady-state solutions 
beyond the linearized stability limit is not just secondary, but might be as 
important as the occurrence of spurious steady states below the linearized stability 
limit. This is compounded in practical situations where the exact linearized 
stability is not usually computed, but rather a frozen coefficient procedure at each 
time step with a fixed grid spacing used to estimate the stability limit of the 
algorithm. Therefore, in practical computations, erroneous numerical can easily be 
achieved unknowingly. 

(8) The occurrence of spurious asymptotes is independent of whether the DE 
possesses a unique steady state or has additional periodic solutions and/or exhibits 
chaotic phenomena. The form of the nonlinear DEs and the type of numerical 
schemes are the determining factors. 

(9) It is not just the occurrence of stable spurious numerical solutions that 
causes difficulty. Indeed such cases may be easier to detect. These spurious features 
of the discretizations often occur but can be unstable; i.e., they do not appear as an 
actual (spurious) solution because one usually cannot obtain an unstable 
asymptotic solution by mere time integration. However, far from being benign, they 
can have severe detrimental effects on the basins of attraction of the true solution 
for the particular method, hence causing slow convergence or possibly even 
nonconvergence from a given set of initial data even though the data might be 
physically relevant. 

5.2. Recommendations 

Although more theoretical development and better guidelines are needed to aid 
the construction of appropriate algorithms for PDEs containing nonlinear source 
terms and although the understanding of the topic is still at an early stage, 
nevertheless, we believe nonlinear dynamics playa vital role in this research area. 
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In spite of the limited knowledge in hand, we believe it is of importance to know 
the nonlinear dynamical behavior of the various schemes before their actual use for 
practical applications. Otherwise, it might be very difficult to assess the accuracy 
(spurious or otherwise) of the solution when the numerical method is the sole 
source of the understanding of the physical solutions. When in doubt, it is always 
safer to use schemes that do not produce spurious steady-state solutions for the 
nonlinear scalar case. Some examples of methods of this type in time discretization 
can be listed: 

(1) LMM [27] ODE solvers such as the explicit, implicit Euler, three-point 
backward differentiation, etc. can be used. 

(2) One can use the "regular" Runge-Kutta methods [28,29]. 

(3) Solving the nonlinear algebraic systems arising from implicit LMM 
exactly would avoid spurious steady-state numerical solutions. Otherwise, the type 
of iteration method used in solving nonlinear algebraic systems can degrade the 
basin of attractivity of implicit LMM [27,28]. 

The insight gained from time discretization will only give an indication in 
separable schemes or method of lines approaches. Also, the commonly used residual 
test [109-111] in the time-dependent approach to the steady state might be mis­
leading. This is the direct consequence of what was indicated in Section 5.1. 
The procedure of using the inverse problem of nonlinear dynamics to analyze time 
series data from a finite difference method computer code in an attempt to learn 
about the true behavior of the solution of the continuum governing PDEs without 
knowing by other means the exact solution behavior of the PDEs other than the 
numerical solutions can yield misleading results. These will be discussed in the next 
two sections. 

5.3. Residual Test 

Consider a quasi linear PDE of the form 

au . 
at = G(u, ux , Uxx , IX, e), (5.1 ) 

where G is nonlinear in u, Ux ' and Uxx and IX and e are system parameters. For 
simplicity, consider a two-time level and a (p + q )-point grid stencil of the form 

n+! n H( n n n At A ) Uj = Uj - uj+q, ... , uj , ... , Uj_ p, IX, e, LJ ,LJX (5.2) 

for the PDE (5.1). Let U*, a vector representing (ul+ q, ... , uf, ... , uj*_p), be a steady­
state numerical solution of (5.2). It is a common practise in CFD to use a 
time-dependent approach such as (5.2) to solve the steady-state equation 
G(u, Ux ' Uxx , IX, e) = O. The iteration is stopped when the residual H and/or some L2 
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norm of the dependent variable u between two successive iterates is less than a 
pre-selected level. 

Aside from the various standard numerical errors such as truncation error, 
machine round-off error, etc. [112], there is a more fundamental question on the 
validity of the residual test and/or L2 norm test. If the scheme happens to produce 
spurious steady-state numerical solutions (due to spatial discretizations), these 
spurious solutions would still satisfy the residual and L2 norm tests in a deceptively 
smooth manner. Moreover, aside from the spurious solutions issue, depending on 
the combination of time as well as spatial discretizations, it is not easy to check 
whether G(u*, u;, u~x, IX, 8) -+ 0 even though H(U*, IX, 8, At, Ax) -+ 0, since spurious 
steady states can be introduced by spatial discretizations. This is contrary to the 
ODE case, where if u* is spurious in (1.1) then S(u*);6 O. Among other factors, this 
is one of the contributing factors for the increase in magnitude of difficulty when 
analyzing the dynamical behavior of numerical methods for hyperbolic and 
parabolic PDEs. See our companion papers [17, 18] for a discussion. 

One might argue that one can judge the accuracy of the scheme by comparing 
the numerical solutions with more than one numerical method, and by doing a 
sequence of grid refinements and time step reductions. The latter approach, 
however, might not be feasible at an acceptable cost, and the former might 
not be foolproof if one does not know the dynamical behavior of the finite 
difference schemes being used. One important contributing factor when using the 
Lax-Wendroff types of schemes [113,114] is that these schemes are more accurate 
and sometimes more stable when operated on or near the linearized stability limit, 
and thus hinder the time step reduction strategy. 

5.4. The Inverse Problems of Nonlinear Dynamics 

The use of the inverse problem of nonlinear dynamics to analyze the dynamical 
behavior of time series data arising from experimental or observable data has 
received much attention in nonlinear physics as well as in many of the engineering 
disciplines. The approach is very useful for gaining some insights into the nonlinear 
dynamical behavior in problems where experimental or observable data are the 
main source of information. Often the associated governing equations (continuum 
or otherwise) do not exist to start with. There has been an explosion of theory, 
numerical procedures, and computer software addressing this rapidly growing 
direction [115-118]. There also has been much recent interest in forecasting 
algorithms that attempt to analyze a time series by fitting nonlinear models. The 
attractive feature of this approach is that when used correctly on the appropriate 
problems one can reduce the complexity of the problem from unmanageable higher 
dimensions to a very low dimension. It is therefore a natural tendency for 
practioners in computational sciences to apply this approach to analyze the 
dynamical behavior of time series data from a finite difference method computer 
code in an attempt to learn about the true physical behavior of the governing 
PDEs. This application of time series analysis can be misleading and can lead 
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to a wrong conclusion if the practitioner does not know. by other means the exact 
solution behavior of the PDEs other than from the numerical solutions. Examples 
of the use of this type of approach in CFD computations have been presented in 
Refs. [119-121]. It can be seen from our study that the conclusions drawn from 
this type of time series analysis provide very little information, but rather can 
actually mislead one as to the true physics of the problem. 

VI. CONCLUDING REMARKS 

Spurious stable as well as unstable steady-state numerical solutions, spurious 
asymptotic numerical solutions of higher period, and even stable chaotic behavior 
can occur when finite-difference methods are used to solve nonlinear DEs numeri­
cally. The occurrence of spurious asymptotes is independent of whether the DE 
possesses a unique steady state or has additional periodic solutions and/or exhibits 
chaotic phenomena. The form of the nonlinear DEs and the type of numerical 
schemes are the determining factors . .In addition, the occurrence of sp~rious steady 
states is not restricted to the time steps that are beyond the linearized stability limit 
of the scheme. In many instances, it can occur below the linearized stability limit. 
Therefore, it is essential for practitioners in computational sciences to be 
knowledgeable about the dynamical behavior of finite-difference methods for 
nonlinear scalar DEs before the actual application of these methods to practical 
computations. It is also important to change the traditional ways of thinking and 
practices when dealing with genuinely nonlinear problems. 

In the past, spurious asymptotes were observed in numerical computations but 
tended to be ignored because they all were assumed to lie beyond the linearized 
stability limits of the time step parameter A t. As can be seen from our study, bifur­
cations to and from spurious asymptotic solutions and transitions to computational 
instability not only are highly scheme dependent and problem dependent, but also 
initial data and boundary condition dependel1t, and not limited to time steps that 
are beyond the linearized stability limit. 

The symbiotic relation among all of these various factors makes this topic 
fascinating and yet extremely complex. The main fundamental conclusion is that, in 
the absence of truncation and machine round-off errors, there are qualitative 
features of the nonlinear DE which cannot be adequately represented by the finite­
difference methods and vice versa. The major feature is that convergence in practical 
calculations involves fixed At as n -+ 00 rather than At -+ 0 as n -+ 00. It should be 
emphasized that the resulting discrete maps from finite discretizations can 
exhibit a much richer range of dynamical behavior than their continuum counter­
parts. A typical feature is the existence of spurious numerical asymptotes that 
can interfere with stability, accuracy, and basins of attraction of the true physics 
of the continuum. 
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