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physical viscosity and the reacting terms into consideration since only non-

dissipative high order schemes are used as the base scheme. In other words,

numerical dissipations based on the convection terms are used to filter the

numerical solution at the completion of the full step of the time integration at

regions where the physical viscosity is inadequate to stabilize the high frequency

oscillations due to the non-dissipative nature of the base scheme.

The method applied to the 2-D conservation law where U is the conservative
vector and F and G are the inviscid fluxes,

+ F(U)x + a(U) = O, (5.1)

can be described as taking, e.g., one full time step by a Runge-Kutta method on

the semi discrete system without or with entropy splitting, respectively, by

dUj,k _
dt - -DjF(Uj,k) - DKG(Uj,k),

(5.2)

at -- 1-_[DjF(Uj, k) + DKG(Uj,k)]
(5.3)

1
- I+_[Fw(Uj,k)DjWj,k + Gw(Uj,k)DKWj,k],

where Dj and DK are high order finite difference operators, acting in the j- and

k-direction respectively. They can be the SBP satisfying higher-order difference

operators (e.g., sixth-order central scheme with SBP boundary schemes). We

consider here a rectangular grid with grid spacing Ax and Ay and time step

At. Denote a full Runge-Kutta step by

_f jn+l = RK(U;k). (5.4),k

After the completion of a full Runge-Kutta step, a filter (post processing) step

is applied leading to

ujn+l _"Tn+ 1 _ N
,k -- "_j,k -- /_x(ff'j+l/2,k -- Fj-1/2,k) -- /_y(Cj,k+l/2 -- Gj,k-1/2) (5.5)

with Az = At/Ax and Av = At/Ay. The filter numerical fluxes Fj+I/2, k

and Gj,k+l/2 act in the j- and k- coordinate directions respectively, and are

evaluated on the function _'n+l. For example,

1 (I,*
Fj+l/2,k -- _Rj+I/2 j+l/2 (5.6)

where Rj+I/2 is the fight eigenvector matrix of the Jacobian of the inviscid flux

F evaluated at Roe's average state with the k index suppressed. The lth element
of the filter flux (I)*j+l/2 in the x-direction (olj+l/2) * is a product of a sensor
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CO/ l ,j+1/2 and a nonlinear dissipation ¢j+1/2 1 = 1, 2, 3, 4. With the omission of
the k index, it is of the form

(¢tj+1/2), l t-- Wj+I/2(gj+I/2. (5.7)

l
For the ACM sensor, wj+l/2 is a product of a physical dependent sensor coeffi-

z
cient and a gradient like detector. The nonlinear numerical dissipation q_j+l/2

can be obtained, from the dissipative portion of a TVD, ENO or WENO scheme.

For example, the numerical flux Hj + 1/2,k of a second- or third-order TVD, ENO
or WENO scheme can be written

1 F 1
Hj+l/2,k -- -_( j,k -t- Fj+x,k) + _Rj+I/2(I2j+I/2,

(5.8)

with the first two terms corresponding to the flux average of a centered difference

and (I)j+_/2 with elements ¢}+1/2 being the numerical dissipation portion of
the scheme.

For all the numerical experiments, the numerical dissipation portion of the

Harten-Yee scheme is used. It has the form for the j-direction

(/)_+1/2 1 l l l _l-- (gj+l -t- -- 75.+1/2-- Q(aj+l/2 -4- )O_j+l/2__Q(aj+l/2 ) g_.) l (5.9)

with Q(x) = x/x 2 + e2, the entropy satisfying remedy for the scheme with

entropy correction parameter e (not to be confused with the entropy splitting
parameter), ta j+l� 2 is the lth characteristic speed evaluated at the Roe's average

state in the j-direction. "7J+1/2 is the modified characteristic speed and 9_ is

a slope limiter which is a function of aj+l/2, the jump in the characteristic
variable in the x-direction.

A form of the ACM sensor w_+l/2 proposed in [82] is

cO}+1/2 ---_ max(O}, t0_q_l) (5.10)

where

j ---

l%-_/21

16_l I5lj+ll2[+ j-il2l
(5.11)

See [82, 83] for details. It was shown in [63] that the method can be improved by
l

letting the sensor wj+l/2 be based instead on a regularity estimate obtained from
the wavelet coefficients of the solution. The wavelet analysis gives an estimate

of the so called local Lipschitz exponent a. The dissipation is switched on for

low a values, and switched offwhen c_becomes large [63]. The wavelet analysis

is more general and can be used to detect other features besides shocks/shears.

The following gives a more detailed explanation.
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5.2 Wavelet Sensor for Multiscale Flow Physics

Wavelets were originally developed for feature extraction in image process-

ing and for data compression. It is well known that the regularity of a function
can be determined from its wavelet coefficients [13, 46, 41] far better than from

its Fourier coefficients. By computing wavelet coefficients (with a suitable set

of wavelet basis functions), we obtain very precise information about the regu-

larity of the function in question. This information is obtained just by analyzing

a given grid function. No information about the particular problem which is

solved is used. Thus, wavelet detectors are general, problem independent, and
rest on a solid mathematical foundation.

As of the 1990's, wavelets have been a new class of basis functions that

are finding use in analyzing and interpreting turbulence data from experiments.
They also are used for analyzing the structure of turbulence from numerical data

obtained from DNS or LES. See Farge [15] and Perrier et al. [57]. There are

several ways to introduce wavelets. One standard way is through the continuous

wavelet transform and another is through multiresolution analysis, hereafter, re-

ferred to as wavelet based multiresolution analysis. Mallet and collaborators

[41, 42, 43, 44, 45, 46] established important wavelet theory through multires-

olution analysis. See references [72, 71] for an introduction to the concept of
multiresolution analysis. Recently, wavelet based multiresolution analysis has

been used for grid adaptation (Gerritsen & Olsson [20]), and to replace existing

basis functions in constructing more accurate finite element methods. Here we

utilize wavelet based multiresolution analysis to adaptively control the amount

of numerical dissipation.

The wavelet sensor estimates the Lipschitz exponent of a grid function fj
(e.g., the density and pressure). The Lipschitz exponent at a point x is defined
as the largest c_ satisfying

sup If(m + h) - f(x)l _< C, (5.12)
he0 hC_

and this gives information about the regularity of the function f, where small

c_ means poor regularity. For a C 1 wavelet function ¢ with compact support,
o_can be estimated from the wavelet coefficients, defined as

wm,j =< f, Cm,j >= I f(x)¢m,j(x)dx, (5.13)
J

where
/ _z-j

Cm,j : 2m_b__) (5.14)

is the wavelet function _)m,j on scale m located at the point j in space. This

definition gives a so called redundant wavelet, which gives (under a few tech-

nical assumptions on ¢) a non-orthogonal basis for L 2. Theorem 9.2.2 in [13]
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statesthatif _ isC 1 and has compact support, and if the wavelet coefficients

maxj IWm,j] in a neighborhood of j0 decay as 2mc_ as the scale is refined, then

the grid function fj has Lipschitz exponent o_at j0. In practical computations,

we have a smallest scale determined by the grid size. We evaluate Wm,j on this
scale, m0, and a few coarser scales, m0 + 1, m0 + 2, and estimate the Lipschitz

exponent at the point j0 by a least square fit to the line [63]

max logs Iwm,j = mc_ + c. (5.15)
j near jo

Proper selection of the wavelet ¢ is very important for an accurate detection

of the flow features. The result in [46, 45], which is used in [20], gives the
condition that ¢(x) should be the kth-derivative of a smooth function rl(Z)

with the property

r/(x) >0, /rl(x)dx= 1, z_+_limr/(k)(x):0. (5.16)

Then the result is valid for 0 < o_ < k. A continuous function f(x) has a

Lipschitz exponent c_ > 0. A bounded discontinuity (shock) has oz = 0, and a

Dirac function (local oscillation) has c_ = -1. Large values of k can be used in

turbulent flow so that large vortices or vortex sheets can be detected. Although

the theorem above does not hold for o_negative, a useful upper bound on o_can
be obtained from the wavelet coefficient estimate.

For the numerical experiments, the wavelet coefficient Wm,j is computed

numerically by a recursive procedure, which is a second-order B-spline wavelet
or a modification of Harten's multi-resolution scheme [63]. We can express the

algorithm as follows. Introduce the grid operators

A f j = _-,qk=-p dkf j+k

Dfj q= Y]k=-p ckfj+k

and its ruth level expanded versions

(5.17)

Amfj

Dmfj

= __q dkfj+2mkk=-p

= _qk= ckfj+2mk,-p

(5.18)

where the integers p and q and the coefficients Ck and dk are related to the

chosen ¢(x) and ¢(x), and can be determined from them. Here ¢(x) is the so

called scaling function of the multiresolution wavelets.
The ruth level of wavelet coefficients can be written as

wm,j = (f,¢m,j)= Dm-lAm-2Am-3...Aofj, m = 1,2, .... (5.19)
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Once the coefficients dk and ck are determined, the computation is a very

standard application of grid operators. In practice, we only use m0 - 3 to 5.

To be able to compute up to the boundary, we use one sided versions of the

given operators. This seems to work well in practice, although it is not covered

by the wavelet framework described above.

Detectors from the B-Spline Wavelet Basis Function. Developing the

best suited wavelets that can characterize all of the flow features might involve

the switching or blending of more than one mother wavelet ¢(x) and scaling

function ¢(x), especially if one needs to distinguish turbulent fluctuations from

shock/shear and/or spurious high frequency oscillations. The mother wavelet

function used in [20] and described in detail in [46] meets some of our require-

ments. It is obtained from second order B-splines.

'_,(x) =

0 x>l

-2(x-1) 2 1/2<x< 1

-4x(1 - x) + 2x 2 0 < x < 1/2

-4x(l+x)-2x 2 -1/2<x<0

2(x + 1) 2 -1 < x < -1/2
0 x< -1

For this wavelet (5.20), there exists a scaling function, given by

+ a/4

¢(x)= i((x+

x>2

l<x<2

O<x<l

-l<x<O

x<-i

(5.20)

(5.21)

The normalization is such that the integral of the scaling function above is

equal to one. The functions above are standard, and can be found in [13]. The

scaling function differs by a shift from the scaling function used in [20], but the

important relations

¢(x) = ¼¢(2x+l)+3¢(2x)+3¢(2x-1)+¼¢(2x-2)

¢(x) =¢(2x+l)-¢(2x)

hold, and give the grid operators

(5.22)

= (fj-1 + 3fj + 3fj+l + fj+2)/8,

= (fj-l-- fj)/2 j= 2,...,N.

j=2,...,N-2
(5.23)

Note that this wavelet stencil is not symmetric. In general, the wavelet

coefficients involve points from p2 m°-I to -q2 m°- 1, giving a stencil of totally

(p + q)2 m°-I + 1 points.
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Detectors from the Redundant Form of Harten Multiresolution Wavelet.

For the redundant form of Harten multiresolution wavelet there is more than

one choice for the interpolation function. See Sj6green [62] for a discussion.

The exact form of the method for the computations in this article is

Afj

Dfj

= (fj-l + fj+l)/2 j= 2,...,N-1

=fj-Afj j = 2,... ,N -1.
(5.24)

The above choice was made in order to have a simple and efficient method. The

stencil is narrower than for the B-spline formulas that were given previously.

With the formula above we also get a symmetric stencil, which is more natural if

the other parts of the computation, such as difference approximations of PDEs

are done by symmetric formulas. Furthermore, symmetry makes periodic BCs
somewhat easier to implement. Note that the absence of symmetry for either

the scaling function or the wavelet can lead to phase distortion. This can be

shown to be important in signal processing applications.

Multi-Dimensional Wavelets. The computation of multi-dimensional wavelets

is quite expensive, especially in 3-D. A simple minded efficient way is to eval-

uate the wavelet coefficients dimension-by-dimension. This means that we get

two set of wavelet coefficients w_,j(y) and wVm,k(x), where now (j,k) is the
position and m is the scale. The precise definition is

wX,j(y) = f f(x,y)¢m,j(x)dx

Y (x) -- ff(x,y)_Pm,k(y)dy.Wrn,k

(5.25)

Thus, the dimension-by-dimension approach involved only terms evaluated
as finite differences in the x-direction and terms which are evaluated in the y-

direction. We then use the wX,j (y) coefficients for the x-direction computation,
and the y-coefficients for the y-direction computation.

Shock/Shear Wavelet Sensor. For the numerical experiments presented in

the next section the wavelet sensor is obtained by computing a vector of the

approximated Lipschitz exponent of a chosen vector function to be sensed
with a suitable multiresolution non-orthogonal wavelet basis function. Here,

"vectors or variables to be sensed" means the represented vectors or variables

that are suitable for the extraction of the desired flow physics. The variables

to be sensed can be the density, the combination of density and pressure, the
characteristic variables, the jumps in the characteristic variables _t ,j+1/2 or the
entropy variable vector W ([20, 83]).
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For example, if the characteristic variables are the chosen vector to be sensed
l

by the wavelet approach, the sensor $_+1/2 can be defined as

l
,9}+1/2 = T(O_j+l/2) , (5.26)

where l
c_j+l/2 is the estimated Lipschitz exponent of the/th characteristic com-

ponent with l = 1, 2, 3, 4, the four characteristic waves. 7(c_) is a sensing

function which decreases from T(0) = 1 to 7(1) = 0 (for the aforementioned

type of wavelets). Note that the/th component of the estimated Lipschitz expo-
nent o_tj+1/2 is not to be confused with the jump in the/th characteristic variables

L
_+1/2 in Section 5.1. We use $_+1/2 as the sensor to distinguish it from the

ACM sensor J
j+1/2 in Section 5.1. Noted that the k index is omitted (for the

2-D case) for simplicity.

If we instead base the exponent estimate on point centered quantities, we

will use the sensor function

SJ+I/2 = m&X(T(O_}), T(Ol_+l) ). (5.27)

If the exponent estimate is based on other quantities than the characteristic

variables, (e.g., density and pressure), we use the switch

l
Sj+I/2 = max Sj.+I/2 , (5.28)

l

where the maximum is taken over all components of the waves used in the

estimate. In this case, the switch is the same for all characteristic fields.

The function r(c_) should be such that r(0) = 1, and 7(1) = 0. Three

options considered are

1 c_ < oz0_-(cd= 0 __>o_o

1 1 arctan K(c_0 - c_) (5.29)_(_) = _ +

T(C_) = max{0, min[1, (c_- 1)/(c_0 -- 1)]}.

Here, o_0 is a cut off exponent to be chosen. For the arctan function the values

0 and 1 are not attained, but we take the constant K large enough so that the

function is close to zero for c_ > 1, and close to one for c_ < 0. We have

tried values for K in the interval [200,500]. Alternatively, one can integrate

the actual c_ value into the sensor function instead of using the same amount of

numerical dissipation at the cut off exponent.

After some experimentation we have found that switching on the dissipation

at the grid points where c_ < 0.5 works well, i.e.,

1 a<0.5
r(c_) = (5.30)

0 _>0.5
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In fact the method does not seem to be very sensitive to the exact value of cut

off o_0, (for 0.4 _< o_0 _< 0.6) for all the test cases considered. Furthermore, the

same cut off value, 0.5, works well for all problems we have tried in Section 6

(except for the vortex convection case, where c_0 = 0.0 is used in conjunction

with entropy splitting [83]). Experiments with smoothed step functions do not

give very different results.

5.3 Test Example of the Shock/Shear Wavelet Detectors

This section shows the performance of the wavelet sensor using the dimension-

by-dimension approach for a 2-D complex flow structure. It is important to note
that the illustration involves only the feature extraction capability of the wavelet

sensor on a given grid function. No dynamic behavior was involved (i.e., the
numerical scheme is not part of the analysis). Figure 5.1 shows the computed

density and pressure contours from a precomputed numerical simulation at
t = 120 with At = 0.12 to be used as the two-dimensional discrete functions

to be analyzed by the wavelet algorithm. The discrete functions represent a

numerical data of a shock from the upper left corner, impinging on a horizontal

shear layer in the middle of the domain. The shock is reflected from the lower

wall boundary. For more details about the problem, see Yee et al. [82, 83].

Density

X

Pressure

----_ _ o 0 _

10
>, 0

-10

-200-- 50 1O0 150 200
X

Fig. 5.1. 2-D Testing discrete function, (density and pressure contours at

t = 120).
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Figure 5.2 shows contours of the estimated Lipschitz exponent o_for the function

in Fig. 5.1. The value o_ was computed here from three levels (m0 = 3) of the

wavelet algorithm, using the wavelet coefficient

V/ x y 2Wm,j,k = (Wm,j,k) 2 + (Wm,j,k) , (5.31)

where the one dimensional coefficients were computed by the multiresolution

operators (5.24) in each coordinate direction. The coefficients were computed

for the pressure. The top figure in Fig. 5.2 shows c_ contours on levels from

0.5 to 0.9. The lower figure shows the corresponding sensor, a function which

is one for c_ < 0.5 and zero otherwise. The wavelet sensor clearly captures

the shock and the shear layer. The low c_ at the upper boundary to the right is

probably due to mildly unstable BCs at the upper boundary.

10

>, 0

-10

-20

Alpha contours [0.5 0.9]

5O 100 150 200
X

10

>, 0

-10

Sensor, contour at 0.5

Jr-_2._,c= ,=_ _ ,=_---'--,_.-_,=_? _ " ....-...----j_r./_ (_j

50 100 150
X

Fig. 5.2. Top." c_ contours 0.5 _< c_ _< 0.9; Bottom: sensor contour at

o_ = 0.5. by the RH-wavelet.

5.4 Blending of Different Filters

The nonlinear filters for the ACM or wavelet shock/shear capturing nonlinear

filter might not be sufficient for (a) time-marching to steady state and (b) spuri-

ous high frequency oscillations due to insufficient grid resolution and nonlinear
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instability away from discontinuities, especially for turbulent and large-eddy

simulations. This Section discusses the blending of other filters with these
shock/shear filters.

In classical CFD codes, a second order accurate base method is used together

with two constant strength linear numerical dissipation terms. One linear fourth-

order dissipation is used everywhere except near shocks/shears/steep-gradients
to remove nonlinear instabilities. It does not affect the second order accu-

racy of the base scheme. The second dissipation term is a second-order linear

dissipation, which affects the order of accuracy, but is only switched on near

discontinuities, and/or steep unresolved gradients using a gradient sensor. The

sensor used cannot distinguish the different flow features distinctly and is not

accurate enough for turbulent statistics and long-time acoustic computations,
unless extreme grid refinement is employed.

In analogy with the aforementioned classical methods, a more advanced

numerical dissipation model with improved flow feature extraction sensors for

high order central schemes is proposed. Here, we consider a dissipation model

with two parts. One part is a nonlinear filter ([82]) and the second part is a

high order linear numerical dissipation term modified at boundaries to become

a semi-bounded operator, see [67, 65]. The wavelet dissipation control sensor

developed in [63] is used as the flow feature detector.

Time-Marching to Steady State. For time-marching to steady state one

usually needs to add fourth-order linear dissipation to a second-order spatial

differencing scheme (Beam and Warming (1976)). For the present schemes us-

ing characteristic filters, in addition to the nonlinear shock/shear filter, one might
need to add a sixth-order linear dissipation to a fourth-order spatial base scheme

and an eighth-order linear dissipation to a sixth-order spatial base scheme in
regions away from shocks for stability and convergence. Let La be such an
additional filter operator. The two ways of incorporating the La operator are

options I and II discussed in Section 4.

To minimize the amount of dissipation due to Ld in the vicinity of shock

waves, there should be a switching mechanism na to turn off the Ld operator in

the vicinity of shock waves. The Ld operator can be applied to the conservative,

primitive or characteristic variables. The simplest form is to apply Ld to the

conservative variables. Alternatively, since all of the work in computing the

average states and the characteristic variables is done for the shock-capturing

filter operator, one can apply the La operator to the characteristic variables.

In this case, the switching mechanism kd can be a vector so that it is more in

tune with the nonlinear shock detector using the approximate Riemann solver.

For example, one can set n = 0 for the linearly degenerate fields and blend a

small amount of _d to remove spurious noise generated by the lack of nonlinear
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filters. This blending of the nonlinear shock/shear filter with the La operator

can be applied to time-accurate computations as well.

Suppression of Spurious High Frequency Oscillations. The nonlinear

shock/shear filters might not be able to remove spurious high frequency oscilla-

tions effectively unless sufficient fine grid points are used. For the suppression

of unphysical high frequency oscillations due to insufficient grid resolution

and nonlinear instability away from discontinuities, higher-order spectral-like

filters (Vichnevetsky (1974), Lele (1994), Alpert (1981), Visbal and Gaitonde

(1998), Gaitonde and Visbal (1999)) might be needed at the locations where
the value of the shock/shear sensor is very small or zero. If spectral-like filters

are needed, a proper blending of nonlinear shock/shear filters with spectral-like

filters should be applied. In this case, we can use the same procedures as the

time-marching to the steady state except the La operator should be replaced

with the spectral-like filters (for compact central schemes).

An Adaptive Numerical Dissipation Model for Shock-Turbulence Inter-

actions. Assume a sufficient grid is used for the problem and scheme in

question, and that the scale of turbulent fluctuations is larger than the spuri-

ous high-frequency oscillations. Below we present a filter model under these

assumptions. If the scale of the turbulent fluctuation is in similar scale as the

high-frequency oscillations, a different wavelet with a turbulent fluctuation sen-

sor should be added. For example, for a sixth-order central spatial base scheme,
we define the 1-D filter numerical flux of the numerical dissipation operator as

H_-1/2.

Hd l/2 -- F* --- Sj--1/2 j--l�2 -t-dj[1 Sj_I/2](h6D_(D+D_)aUj, (5.32)

here @-1/2 is a switch computed as described in Section 5.2.4, and F]_I/2 is
the flux function corresponding to the dissipative portion of a shock-capturing

scheme (e.g., second order accurate TVD scheme) [82]. The first part of the filter
stabilizes the scheme at shock/shear locations. The second part is an eighth-

order linear filter which improves nonlinear stability away from shock/shear

locations. Analogous eighth-order filters can be used if a sixth-order compact

spatial base scheme is used [18, 76]. We switch on the high order part of the
filter when we switch off the nonlinear filter. The physical quantity (e.g., local

Mach number) can be used to determine the dj parameter of this high order

dissipation term.
To further increase stability properties, it is possible to use the sensor to switch

on and off the entropy splitting and adjust the value of the entropy splitting

parameter according to flow type and region. For the 1-D shock/turbulence

interactions to be presented in the next section, however, we believe a constant
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/3 = 1 away from the shock waves is sufficient. After the completion of a full

timestep computation using the sixth-order base scheme (denoting the solution

by Uj), we filter this solution by

At
u; +1= vj + HJ_I/ 1 (5.33)

Here the filter numerical fluxes HS+I/2 are evaluated at U.

5.5 Spurious Numerical Solutions and Instability Due to
Under-Resolved Grids

There has been much discussion on verification and validation processes for

establishing the credibility of CFD simulations [68, 7, 75, 21, 52]. Since the

early 1990s, many of the aeronautical and mechanical engineering related ref-

erence journals mandated that any accepted articles in numerical simulations

(without known solutions to compare with) need to perform a minimum of one

level of grid refinement and time step reduction. On the other hand, it has

become common to regard high order schemes as more accurate, reliable and

requiring less grid points. The danger comes when one tries to perform com-

putations with the coarsest grid possible while still hoping to maintain numeri-
cal results sufficiently accurate for complex flows and, especially, data-limited

problems. On one hand, high order methods when applied to highly coupled
multidimensional complex nonlinear problems might have different stability,

convergence and reliability behavior than their well studied low order counter-
parts, especially for nonlinear schemes such as TVD, MUSCL with limiters,

ENO, WENO, and spectral elements and discrete Galerkin. See for example

references [23, 74, 6, 49, 78, 81, 80, 79]. On the other hand, high order meth-

ods involve higher operation counts per grid and systematic grid convergence

studies can be time consuming and prohibitively expensive. At the same time it

is difficult to fully understand or categorize the different nonlinear behavior of

finite discretizations, especially at the limits of under-resolution when different

types of numerical (spurious) bifurcation phenomena might occur, depending

on the combination of grid spacings, time steps, initial conditions (ICs) and

numerical treatments of BCs as well as the nonlinear stability of the scheme in

question.



Adaptive Low-Dissipative Schemes

(256, 16) c_ = 0.0, t= 1.0

(b)
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(256, 16) c_ = 0.3, t = 1.5

(c)
(256, 8) c_ = 1.0, t = 1.5

(_)
(256, 8) c_=0.3, t=1.5

(e)
1024, 8) c_ = 0.05, t = 1.2

(f)
(256, 16) a=0.05, t= 1.2

/
Fig. 5.3. Spectral element solutions of doubly periodic shear layer roll-up

problem with different (E, N) pairings and filter strengths c_: (a-d) thick shear

layer case (p = 30), (e-f) thin shear layer case (p = 100).
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Due to the difficulty in analysis, the effect of under-resolved grids and the

nonlinear behavior of available spatial discretizations are scarcely discussed
in the literature. Here, an under-resolved numerical simulation, according to

Brown & Minion, is one where the grid spacing being used is too coarse to re-

solve the smallest physically relevant scales of the chosen continuum governing

equations that are of interest to the numerical modeler. Before the nineties, it

was common in DNS to avoid the use of numerical dissipations. It was standard

practice to refine the grid not just to resolve the multiscale physics but also to
overcome nonlinear instability instead of employing numerical dissipation or

filters. In certain cases, the grid is finer than what is needed to resolve the

smallest scale. This section illustrates the situation where the necessity of finer

grid can be overcome by the use of an appropriate filter and still be able to

obtain an accurate and stable solution with a much coarser grid.

Brown and Minion [6, 49] studied the effects of under-resolved grids by

considering the shear layer roll-up problem that arises when the Navier-Stokes

equations are solved in the unit square with doubly-periodic BCs with ICs given

by

tanh(p(y- 0.25)) for y < 0.5u = tanh(p(0.75 - y)) for y > 0.5 ' (5.34)

v = 0.05 sin(27rx). (5.35)

In [6, 49], the behavior of several difference methods was considered. These

difference methods include a Godunov projection method, a primitive variable

ENO method, an upwind vorticity stream-function method, centered difference

methods of both a pressure-Poisson and vorticity stream-function formulation,

and a pseudospectral method. They demonstrated that all these methods pro-

duce spurious, non-physical vortices. While these extra vortices might appear
to be physically reasonable, they disappear when the mesh is refined.

Figure 5.3 shows filter-based spectral element results for the problem (5.34)

as computed by Fischer and Mullen [17]. The spectral element method is char-
acterized by the discretization pair (E, N), where E is the number of quadri-

lateral elements and N is the order of the tensor-product polynomial expansion

within each element. This filter presented in [17] is designed to stabilize the

PN2 spectral element method at high Reynolds numbers. The PN2 method,
introduced by Maday and Patera [40], is a consistent approximation to the Stokes

problem which employs continuous velocity expansions of order N and discon-

tinuous pressure expansions of order N - 2. The discretizations in Fig. 5.3a -

5.3e consist of a 16 array of elements, while Fig. 5.3fconsists of a 32 × 32 array.

Here, a denotes the spectral filter coefficient (not to confused with the Lipschitz

exponent or the jump in the characteristics in Sections 5.1 and 5.2), with c_ = 0

corresponding to no filtering. The time step size is At -- 0.002 in all cases,

corresponding to CFL numbers in the range of 1 to 5. Without filtering, Fischer
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and Mullen were not able to simulate this problem at any reasonable resolution.

Figure 5.3a illustrates the result prior to blow up for the unfiltered case with

(E, N) = (162, 16), which has a resolution corresponding to an n x n grid with

n = 256. Unfiltered results for N = 8 (n = 128) and N = 32 (n = 512) are

similar. Filtering with o_ - 0.3 yields dramatic improvement for n = 256 (Fig.

5.3b) and n = 128 (Fig. 5.3d). Though the so-called full projection with filter

strength o_ = 1 is stable, the partial filtering of (o_ < 1) gives smoother results

and is preferable. The cases in 5.3e and 5.3f correspond to the difficult "thin"

shear layer case of [6] and show the benefits of high-order discretizations. Both

cases correspond to a resolution of n 2 = 2562. In Fig. 5.3e, this is attained

with (E, N) = (162, 16), while in Fig 5.3f, (E, N) -- (322, 8). Although both

results are stable (due to the filter), Fig 5.3f reveals the presence of spurious

vortices that are absent in the higher-order case.

6. Numerical Examples

This section illustrates the power of entropy splitting, the difference in per-

formance of linear and nonlinear (with sensor controls) filters and the combi-

nation of both types of filters with adaptive sensor controls. We use the same

notation as in [82, 83, 64]. The artificial compression method (ACM) and

wavelet filter schemes using a second-order nonlinear filter with sixth-order

spatial central interior scheme for both the inviscid and viscous flux derivatives

are denoted by ACM66 and WAV66. See [82, 83, 64] for the forms of these
filter schemes. The same scheme without filters is denoted by CEN66. The

scheme using the fifth-order WENO for the inviscid flux derivatives and sixth-
order central for viscous flux derivatives is denoted by WENO5. Computations

using the standard fourth-order Runge-Kutta temporal discretization are indi-

cated by appending the letters "RK4" as in CEN66-RK4. ACM66 and WAV66
use the Roe's average state and the van Leer limiter for the nonlinear numer-

ical dissipation portion of the filter. The wavelet decomposition is applied in

density and pressure, and the maximum wavelet coefficient of the two com-

ponents is used. The nonlinear numerical dissipation is switched on wherever
the wavelet analysis gives a Lipschitz exponent [63] less than 0.5. Increasing

this number will reduce oscillations, at the price of reduced accuracy (see [63]

for other possibilities). Computations using entropy splitting are indicated by

appending the letters "ENT" as in WAV66-RK4-ENT. Computations using an
eighth-order linear dissipation filter are indicated by appending the letters "D8"
as in WAV66-RK4-D8. In order not to introduce additional notation, inviscid

flow simulations are designated by the same notation, with the viscous terms
not activated.


