University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

USDA Forest Service / UNL Faculty Publications

U.S. Department of Agriculture: Forest Service --National Agroforestry Center

2015

Long-term droughtiness and drought tolerance of eastern US forests over five decades

Matthew P. Peters Northern Research Station, USDA Forest Service, matthewpeters@fs.fed.us

Louis R. Iverson Northern Research Station, USDA Forest Service

Stephen N. Matthews Northern Research Station, USDA Forest Service; School of Environment and Natural Resources, The Ohio State University, Columbus

Follow this and additional works at: http://digitalcommons.unl.edu/usdafsfacpub Part of the <u>Earth Sciences Commons</u>, <u>Environmental Sciences Commons</u>, and the <u>Forest</u> <u>Sciences Commons</u>

Peters, Matthew P.; Iverson, Louis R.; and Matthews, Stephen N., "Long-term droughtiness and drought tolerance of eastern US forests over five decades" (2015). USDA Forest Service / UNL Faculty Publications. 288. http://digitalcommons.unl.edu/usdafsfacpub/288

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Forest Service -- National Agroforestry Center at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA Forest Service / UNL Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Forest Ecology and Management 345 (2015) 56-64

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Long-term droughtiness and drought tolerance of eastern US forests over five decades

Matthew P. Peters^{a,*}, Louis R. Iverson^a, Stephen N. Matthews^{a,b}

^a Northern Research Station, <mark>USDA Forest Service</mark>, Delaware, OH, United States ^b School of Environment and Natural Resources, The Ohio State University, Columbus, OH, United States

ARTICLE INFO

Article history: Received 7 November 2014 Received in revised form 5 February 2015 Accepted 14 February 2015 Available online 7 March 2015

Keywords: Cumulative drought severity index Forest composition Palmer Drought Severity Index SDM

ABSTRACT

Droughts can influence forest composition directly by limiting water or indirectly by intensifying other stressors that affect establishment, growth, and mortality. Using community assemblages of eastern US tree species and drought tolerance characteristics assessed from literature, we examine recent drought conditions in relation to the spatial distribution of species and their tolerance to drought. First we calculate and compare a cumulative drought severity index (CDSI) for the conterminous US for the periods 1960–1986 and 1987–2013 using climate division Palmer Drought Severity Index (PDSI) values and a gridded self-calibrated PDSI dataset. This comparison indicates that drought conditions in the East tend to be less frequent and generally less severe than those in the West, and that the West has had a large increase in CDSI values in the latter period. Then we focus on the past and potential future role of droughtiness in eastern forests, which are relatively more diverse than western forests but have individual species that are uniquely affected by drought-tolerant and -intolerant species and that drought conditions are relatively uncommon in the East. Understanding the composition and distribution of drought tolerance levels within forests is crucial when managing for the impacts of drought (e.g., managing for survival), especially given the expected rise of drought in the future.

© 2015 Published by Elsevier B.V.

1. Introduction

The phenomenon of drought has been widely studied (Palmer, 1965; McKee et al., 1993; Paulo and Pereira, 2006), along with its impacts on forests (McKenzie et al., 2001; Breshears et al., 2005; Allen et al., 2010; Kardol et al., 2010; Pederson et al., 2014). Various studies have also sought to further our knowledge of drought tolerance levels (e.g., indications of stress and survival rates) among tree species (Niinemets and Valladares, 2006; McDowell et al., 2008; Williams et al., 2013). However, few studies have examined the relationship between spatial distributions of drought-tolerant trees and drought occurrences within the US (Hanson and Weltzin, 2000; Gustafson and Sturtevant, 2013; Russell et al., 2014).

Drought conditions in the US are often aggregated and reported at climate divisions; subdivisions of each state into 10 or fewer units, often defined by county lines (Guttman and Quayle, 1996). These climate divisions average observations among weather stations to account for missing and incomplete data, and are widely used in ecological and meteorological models. However, gridded

* Corresponding author. *E-mail address:* matthewpeters@fs.fed.us (M.P. Peters). datasets have an advantage over aggregated observations in that conditions are not averaged across large areas (Abatzoglou, 2013). Thus, by using gridded data from sources such as the PRISM Climate Group, which interpolates values among observations using a Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Daly et al., 2008), drought conditions can be defined for each grid cell.

Several studies have shown differences in drought conditions when assessed at the climate division versus the station or grid cell (Wells et al., 2004; Heim, 2006; Sullivan, 2013). These differences suggest that by aggregating climate conditions to larger areas such as climate divisions, local detail is often lost or misrepresented as a regional mean. Therefore, gridded datasets should be more representative of local conditions than regionally aggregated values.

Drought indices like Palmer's provide a representative value at a particular location (i.e., climate division or grid cell) for a referenced period (i.e., weekly or monthly). Thus, analyzing conditions among locations for extended periods can require a time series analysis approach, although, there may be instances when a single integrated metric is desired. Accumulating conditions based on the frequency of occurrences for a period can provide a simplified value in which comparisons and change detection analyses can be quickly performed.

Droughts have occurred in nearly all US forests and tree species are adapted in diverse ways to drought conditions, which may be seasonal, annual, or multi-annual in length (Hanson and Weltzin, 2000). These periods of limited water availability can place considerable stress on individuals, which may already be under pressure from competition (native and non-native), disease, insect infestation, and pollution (Grant et al., 2013). Timber harvesting and changes in land use put additional pressure on forests. In response to these amalgamated factors, forest types of the eastern US have undergone many changes, particularly in the extent of timberland. For example, between1952 and 1997: in the North - maple-beechbirch doubled, oak-pine increased, oak-hickory and pine were stable, while aspen-birch, lowland hardwoods, and spruce-fir decreased; in the South - oak-pine and upland hardwoods increased while lowland hardwoods and pine decreased: in the eastern portion of the Great Plains – hardwoods and non-pine softwoods increased (Alig and Butler, 2004). Though the extent of forest types has changed as a result of many factors and conditions, this paper focuses on the potential influence of drought trends on forest composition over the past half century.

To examine the droughtiness and drought tolerance of eastern US forests, we first use climate divisions and a gridded PDSI dataset to calculate a cumulative drought severity index (CDSI) and identify differences among values. Second, we use gridded climate data from PRISM to parameterize a self-calibrated (sc) PDSI algorithm developed by Wells et al. (2004) to examine recent drought conditions in the eastern US. Finally, we compare the distributions of modeled suitable habitat and drought tolerance for 134 tree species to drought conditions during 1961–2012. Mapping the distribution of drought-tolerant and -intolerant species enables us to assess recent trends in drought severity and consider how the species' tolerance within the forest communities may influence impacts from drought events. This effort provides a baseline to begin to understand if the signal of drought during recent decades has influenced the composition of forests in the eastern US.

2. Methods

2.1. Palmer Drought Severity Index

The Palmer Drought Severity Index (PDSI, Palmer, 1965) describes the relative moisture supply of a location derived from precipitation and temperature data. It was originally developed using data from central Iowa and western Kansas to empirically derive values for the water balance coefficients. A recent improvement to the original PDSI equation calibrates climate variables to long-term conditions for a location of interest, or for individual grid cells across a region. This self-calibration process (scPDSI) accounts for local climate trends and generates values that can be compared among regions.

PDSI values were obtained from two sources: the National Climatic Data Center (NCDC), which reports values at climate divisions (NCDC, 2014), and the Western Regional Climate Center's WestWide Drought Tracker (WWDT), which provides a gridded dataset derived from a self-calibration process (Abatzoglou, 2013). WWDT scPDSI data are calculated using the Wells et al. (2004) algorithm and parameterized with PRISM climate data and soil available water-holding capacity from state soil survey geographic data. The gridded data have a resolution of 2.5" (~4 km), and a calibration period as the full length of record (i.e., 1895–present).

2.2. Cumulative drought severity index for the conterminous US

We used data from both PDSI sources to calculate a cumulative drought severity index (CDSI). The frequency of monthly PDSI conditions, defined using NCDC (2014) classes for drought, where values of -2.0 to -2.99 indicate moderate, -3.0 to -3.99 are severe, and ≤ -4.0 are extreme, received a weight of 1, 2, or 3, respectively. These weighted occurrences were summed over the periods of 1960–1986 and 1987–2013 and mapped by climate divisions and ~ 4 km grid cells. Additionally, a mean CDSI was calculated for each climate division from the gridded data (Supplemental Table S1), and then divisional values from both datasets were aggregated to a single mean value for each state. The change in value from the 1960–1986 to the 1987–2013 periods was calculated as a percentage to examine the trend among periods and datasets.

2.3. Drought characteristics in the eastern US, 1961-2012

We calculated scPDSI values for 20×20 km grid cells that spatially corresponded to modeled tree species' habitat, as derived from USDA Forest Service Forest Inventory and Analysis (FIA) data (Iverson et al., 2008). The scPDSI algorithm (Wells et al., 2004) was parameterized with (1) soil available water supply to a depth of 150 cm, derived from Natural Resources Conservation Service (NRCS) county soil geographic survey data (NRCS, 2009) prepared using methods described in Peters et al. (2013); (2) latitude from the grid's centroid; (3) monthly precipitation; and (4) temperature values obtained from PRISM climate data (PRISM Climate Group, 2012) at a 4 km resolution for the period 1961–2012 (rather than the full length of record as with the WWDT data). Climate values were aggregated from the 4 km resolution by taking the mean values of precipitation and temperature that intersected the 20 km grids. Additionally, monthly mean temperatures were averaged for the 52 year period and used as a climate normal for the calibration process.

The scPDSI algorithm was designed to process data for a specific location; thus to generate gridded output, the parameters had to be updated at each location. Python code was used to extract values from raster data, update the parameter files, run the scPDSI algorithm, and copy output files. Individual output files for each grid were compiled into an eastern US dataset and the frequency, duration of longest consecutive period, and mean interval of each PDSI class were calculated from monthly values. The frequency of each PDSI class was graphed by decade and mapped for the period May– September along with duration.

2.4. Tree species drought tolerance in the eastern US

Using FIA data for the period 1980–1993, Iverson et al. (2008) modeled the distributions of potential suitable habitat in the eastern US based on importance values (IVs) derived from the relative number of stems and basal area of species reported at survey plots for 134 tree species. IVs represent a species' relative abundance and were averaged among plots contained within each 20×20 km cell (Iverson et al., 2008), therefore combining IVs from individual species provides a way to examine the probable composition of species within a grid cell. Potential habitat suitability (IV > 0) modeled under the 1961–1990 climate normals define the current habitat distributions of eastern tree species in this analysis.

Species' characteristics related to drought tolerance were used to develop two maps of species drought tolerance across the eastern US. Each species was scored from -3 (very drought intolerant, DIT3) to +3 (very drought tolerant, DT3) based on a literature review of its overall habitat range (Matthews et al., 2011) (Supplemental Table S2), and this score was multiplied by the IV of each species within each grid cell to derive a weighted IV. These weighted IVs were summed among species for each of the three drought tolerance and three intolerance classes within a cell to classify the underlying forest as dominantly tolerant (1,2,3), intolerant (-3, -2, -1), balanced, or mixed. Cells were assigned 'tolerant' if the greatest absolute value among the weighted IV sums was from the tolerant class, and likewise for 'intolerant'; 'balanced' was assigned if the sum was within ±5% of half the total sum of the weighted IVs. 'Mixed' was assigned if the maximum absolute value was shared (tied) among multiple classes. Using the dominant tolerance class, we mapped the distribution of drought tolerance for the overall forest species composition of each cell for the eastern US. In this calculation, the final class is often determined by a single or relatively few common species. For a second view of overall tolerance to drought, which better considers all species, tolerance classes were normalized to account for all species having suitable habitat within a cell by adding the weighted IV sums of each tolerance class (-3, -2, -1, 1, 2, 3), and then dividing the total weighted IV sum by the unweighted IV sum of each species.

$$\begin{split} N_{class} &= [(IV_{DIT1}*-1) + (IV_{DIT2}*-2) + (IV_{DIT3}*-3) + (IV_{DT1}) \\ &+ (IV_{DT2}*2) + (IV_{DT3}*3)]/IV_{sum} \end{split}$$

Defining the drought class based on the dominant potential habitat allows us to examine how the dominant tree species could be affected by drought conditions. Including all potential species' habitats provides information on how the forest might be affected as a community.

Drought tolerance classes for each 20 km grid were used to analyze trends related to drought conditions based on calculated scPDSI values. The frequency of PDSI-derived drought and near normal conditions was calculated and mapped. These data are summarized at the state level in Supplemental Table S3.

3. Results

3.1. Cumulative drought severity index for the conterminous US

CDSI values represent the overall droughtiness during a period, and based on CDSI values using the NCDC climate divisions and the WWDT gridded scPDSI values (Fig. 1), 35-36 states had greater CDSI values during the 1987-2013 period as compared to the 1960-1986 period (Table 1). Mean CDSI values from WWDT gridded scPDSI values were generally lower than those from NCDC data with the exception of 13 states during the 1960-1986 period and 12 states during the 1987–2013 period. A paired t-test of CDSI values confirmed that the mean differences between datasets and between periods were significant (P < 0.04). Between the two periods, based on NCDC data, 33 states experienced increases in CDSI values while 15 decreased. Based on gridded scPDSI values, 25 states had increased mean CDSI values whereas 23 decreased. The percent change among states ranged from a decrease of 83% (Massachusetts) for climate division data and 79% (Rhode Island) for gridded mean CDSI values to increases of 286% (Arizona) and 341% (South Carolina) for climate division data and gridded mean CDSI values, respectively (Table 1). Regardless of the source of data, the eastern US had lower CDSI values than the West, and between the two periods, the West has shown a much larger increase in CDSI values compared to the East (Peters et al., 2014).

3.2. Drought characteristics in the eastern US, 1961–2012

The frequency (Figs. 2 and 3), duration of the longest consecutive period (Fig. 4) and mean interval (Supplemental Table S3 and Fig. S4) of each drought severity class calculated from scPDSI values at 20 km grids indicate that, for most of the 1961– 2012 period, the eastern US experienced near normal conditions. However, the frequency of near normal conditions decreased during the 1990s and continued to decrease through the end of the period of analysis (Fig. 2), at which time increases in both wet and dry conditions have been reported. Extreme drought was very rare, never occupying more than about 5% of the region (primarily during the 1960s); however, after three decades of very low levels of extreme drought (<2% of the region), the 2000s have witnessed a rise in classes both of extreme drought and of extremely moist conditions (Fig. 2). The greatest frequency of near normal conditions during the growing season (May-September) occurred within the western Great Lake states, in Iowa, and along the New England coast (Fig. 3). Frequencies of drought conditions tended to be widely dispersed across the region and localized as severity increased from moderate to extreme (Fig. 3). The duration of the longest consecutive number of months within any particular class of drought provides a glimpse of the nature of droughts in the past decades. Most are short (<6 months), though conditions lasting longer than 24 months have been distributed across the eastern US (Fig. 4). This pattern is similar to that of the conterminous US mentioned previously, in which the West has had greater CDSI values in recent decades.

3.3. Tree species drought tolerance in the eastern US

Among the 134 tree species used to examine the relationship between potential forest composition and recent drought conditions, 5, 40, and 43 species were intolerant to drought (DIT classes 3, 2, 1, respectively), while 26, 15, and 5 were tolerant to drought (DT classes 3, 2, 1, respectively) (Supplemental Table S2). Drought tolerance calculated from the dominant composition of tree species' habitat indicates that most of the eastern US falls into drought intolerant class 2 (DIT2, 45.9%), followed by Balanced (19.5%), and drought tolerant classes comprising 6, 11.5, and 12.5% (DT1, DT2, DT3, respectively) (Fig. 5A). The remaining classes of DIT1, DIT3, and Mixed cover less than 4.6% of the region. Though the classification in this map is based on multiple species within the tolerant/intolerant class contributing to the dominance, the assignment might be driven largely by a single or few species.

Accounting for the tolerance of all species with suitable habitats (i.e., IV > 0) within a weighted averaging approach greatly generalized the results, with 48% of the eastern US as having a balanced composition (Fig. 5B). Of the remaining area, most was either somewhat tolerant (DT1; =18%) or somewhat intolerant (DIT1; =29.8%). All of the more severe classes combined occupied only 4.2% of the area.

3.4. Combining drought conditions with species tolerance

Examining the recent drought conditions against the current distributions of tree species revealed that eastern forests, whether defined by the dominant class (Fig. 5A) or including all species (Fig. 5B), have all faced mainly near normal conditions (Fig. 6). Using the dominant species classification, intolerant class 2 (DIT2) represents ~46% of the eastern US, but experienced conditions similar to the other classes. Intolerant class 3 (DIT3) experienced slightly more normal conditions than the other classes (Fig. 6A). However, using all species to define drought tolerance, the DIT3 class had the smallest area of normal conditions and the largest area of moderate and severe (Fig. 6B). The source of these differences is the number of grids assigned to each class and the underlying modeled habitat. With the dominant definition, DIT2 and Balanced account for 65% of the East, whereas Balanced and DIT1 constitute 77% based on all species.

4. Discussion

Understanding the implications of long-term persistent drought conditions is important as we witness the drastic impacts that

Fig. 1. A cumulative drought severity index (CDSI) for 1960–1986 and 1987–2013, calculated from Palmer Drought Severity Index (PDSI) values obtained from National Climatic Data Center (NCDC) and WestWide Drought Tracker (WWDT) self-calibrated PDSI data. The NCDC values are reported at climate divisions; WWDT values have a 2.5 arc-minutes grid with climate divisions overlaid for reference. The percentage of change from the 1960–1986 period to the 1987–2013 shows decreases (blue gradient) and increases (red gradient) as CDSI is influenced by the frequency and intensity of drought conditions. Decreases can result from more normal conditions rather than increased precipitation.

drought is having on western forest communities and strive to understand how changing drought patterns in the eastern US may emerge with projected climate change. The PDSI uses a 3month moving window to determine the start and end of conditions, which is ideal for events occurring over multiple months. The CDSI weights the occurrence of monthly conditions for an extended period, in this case two periods of 27 years each, to assign a single value representing the overall droughtiness. Events that span many months with high intensity will have a greater impact on vegetation than might be suggested by the CDSI, but the index is useful for mapping and comparing drought conditions among multiple-year periods and among locations.

The scPDSI algorithm generates monthly values similar to the method developed by Palmer (1965). However, instead of using data from a limited region (i.e., central Iowa and western Kansas) to empirically derive values for the water balance coefficients; the algorithm uses calibration to incorporate historical patterns of climate variability within each location (in this case a 20×20 km grid cell). By accounting for local trends in the climato-logical record, the scPDSI values at the grid-cell level address the

issue of spatial comparability (Alley, 1984; Wells et al., 2004). In this way, comparisons among fine-scale locations can be made that might not otherwise be appropriate for conditions aggregated to climate divisions, because the number and distribution of meteorological stations differ widely among divisions.

CDSI values from the two datasets (NCDC and WWDT) resulted in different spatial patterns and values when summarized at the scale of climate divisions (Fig. 1 and Supplemental Table S1). The gridded WWDT values captured more local influence within climate divisions due to calibration and the fine-scale resolution. Distinct patterns also emerged among CDSI values between the two time periods, and even more so with WWDT data: (1) the western US had higher values than the East; (2) values tended to increase from the 1960–1986 period to the 1987–2013 period; and (3) within the East, CDSI values in the more recent period were lower in the mid-Atlantic and Northeast and higher in the Southeast. Given these trends and the uncertainties of future drought predictions (Dai, 2012), it will be important for resource managers to consider how species may respond to variability in drought patterns and how forestry practices can address drought.

Table 1

Cumulative drought severity index (CDSI) calculated from climate division (NCDC) and gridded (WWDT) data for the conterminous US. Weights of 1, 2, and 3 were used for the moderate, severe, and extreme drought classes, respectively, as defined by the Palmer Drought Severity Index, and were applied to the monthly frequencies of conditions. Climate divisions were used to calculate the mean CDSI value among gridded data, and values for both datasets were averaged to the state level.

State	Cumulative drought severity index					
	1960-1	986	1987-2	013	Percent	change
	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
Alabama	41	28	107	81	157.7	189.4
Arizona	61	94	237	255	286.5	171.3
Arkansas	68	64	87	83	28.4	28.4
California	85	112	175	214	105.0	91.2
Colorado	133	94	183	105	37.7	12.4
Connecticut	117	121	31	42	-73.7	-65.5
Delaware	117	104	79	75	-32.9	-27.3
Florida	74	60	115	152	55.1	151.2
Georgia	46	39	161	163	247.4	313.0
Idaho	101	53	205	107	103.7	101.8
Illinois	87	46	92	34	5.7	-25.9
Indiana	64	34	77	23	20.2	-31.1
Iowa	86	38	111	55	28.4	45.9
Kansas	92	54	106	51	15.6	-4.6
Kentucky	38	17	94	45	148.3	167.8
Louisiana	84	61	90	84	7.8	37.9
Maine	71	58	36	45	-49.8	-21.7
Maryland	76	79	94	77	23.2	-2.9
Massachusetts	123	105	20	26	-83.4	-75.5
Michigan	92	53	80	29	-12.7	-46.2
Minnesota	107	49	129	48	21.1	-2.6
Mississippi	68	50	75	62	10.0	24.2
Missouri	80	55	71	42	-12.0	-23.1
Montana	86	77	210	94	142.9	21.5
Nebraska	84	33	158	64	89.4	97.4
Nevada	80	105	251	191	214.1	81.8
New Hampshire	72	75	27	24	-63.2	-67.2
New Jersey	92	113	62	76	-32.2	-33.0
New Mexico	80	92	156	168	94.7	82.7
New York	81	98	40	34	-50.6	-65.4
North Carolina	51	34	106	109	107.4	222.7
North Dakota	99	54	152	64	53.9	18.9
Ohio	65	46	67	29	4.3	-36.8
Oklahoma	104	88	86	66	-17.2	-24.6
Oregon	70	63	208	105	197.3	65.3
Pennsylvania	79	88	51	48	-35.7	-45.0
Rhode Island	81	100	20	21	-75.3	-79.4
South Carolina	44	29	138	128	213.0	341.1
South Dakota	137	65	159	63	15.9	-2.7
Tennessee	58	29	98	65	70.9	127.0
Texas	71	68	132	131	85.2	92.6
Utah	92	108	203	144	120.4	33.3
Vermont	97	81	28	21	-71.6	-73.6
Virginia	78	81	72	78	-6.7	-3.4
Washington	77	47	132	84	72.7	80.1
West Virginia	56	51	61	47	8.9	-8.0
Wisconsin	104	70	83	26	-20.5	-62.4
Wyoming	97	72	237	126	144.5	74.5

A major concern is if and when the water stress of future climates exceeds that observed over the previous 120 years, compositional shifts may occur rapidly, which is now apparent in the West (Allen and Breshears, 1998; Allen et al., 2010; Williams et al., 2013). Indeed, the North American Drought Atlas (Cook and Krusic, 2004) and further analysis (Pederson et al., 2014) indicate that 1950–2005 was one of the wettest periods since 1500 over much of the eastern US, suggesting that future drought may have relatively large impacts on eastern forests.

The scPDSI calculated for 20×20 km grid cells for the eastern US differs from that provided by the WestWide Drought Tracker in that the calibration period was 1961–2012 rather than 1895–present, and finer resolution soil available water supply was used (county soil surveys rather than state soil survey data). Because

the number and quality of weather stations varied in the early part of the 20th century, we calibrated our PDSI values based on the 1961–2012 period, which has had a relatively stable number of stations (Menne et al., 2009). While self-calibration greatly improves the calculation of PDSI values, the influence from land use and management actions are not well represented moving away from meteorological stations. However, we assume that the temperature values interpolated to 4 km grids are representative of the average conditions and the influence from land cover change is reflected in climate observations. Calculating scPDSI values among the same grids used to model species' suitable habitat provides compatibility between data on historical drought conditions and current and potential tree habitat.

Though modeled IVs for species represent potential suitable habitat that would occur based on recent conditions, we acknowledge that species may or may not actually be present or as abundant as suggested by these data. However, the modeled habitat does provide information which landowners and managers can use to derive a list of possible species that could inhabit the landscape. Drought tolerance levels were assigned to species based on the literature, which reports general characteristics of a species that could differ among regions. Impacts on species related to recent drought conditions will vary at a fine scale: trends may or may not be captured from the local scale to the 20×20 km grids to the climate divisions. Site conditions (i.e., aspect, soil texture, and topography) could weaken or intensify the impacts of drought on species; thus our results should be interpreted at a macro scale.

The distribution of drought-tolerant and -intolerant species, as defined by (1) the dominant composition of species potential habitats and (2) averaged over all species' habitats, provides insight into the forest communities in the eastern US. When considering only the tolerance level of dominant species, just under half of the region is moderately intolerant to drought (DIT2). This pattern can be attributed to the tolerance level of a select few species. For example, loblolly pine (Pinus taeda) dominates much of the southern part of the region, and it has a moderate intolerance to drought according to the Modification Factors of Matthews et al. (2011). In the North, quaking aspen (*Populus tremuloides*) and balsam fir (Abies balsamea) are the dominant DIT2 species, while American elm (Ulmus americana) is the top contributor in the central region. Each method of defining drought tolerance provides unique information: the dominant species' habitat can be used to examine trends in forest composition, and the all-species approach is useful when evaluating the overall impact of drought on a forest.

Regardless of how cells were assigned to drought tolerance classes, the western portion of the region (Fig. 5) resembles a wedge shaped pattern, which Transeau (1935) described as the "prairie peninsula"; the transition from conifers and northern hardwoods along the north and northeastern part of the region to more open and grassy landscapes. This pattern is more prominent when the dominant class is used (Fig. 5A), where the most abundant suitable habitat corresponds to green ash (*Fraxinus penn-sylvanica*), American elm (*Ulmus american*), boxelder (*Acer negundo*), hackberry (*Celtis occidentalis*), bur oak (*Quercus macrocarpa*), and post oak (*Q. stellata*).

Coupling this species-based information with drought trends over five decades indicates that species-drought classes generally experienced near normal conditions. Although most of the eastern US forests are balanced to moderately tolerant to droughts (DT1 & 2), these classes experienced drought conditions only 18.8 and 19.3% (for the dominant species classes and averaged over all species, respectively) of the period. Across the eastern US, these drought tolerance classes (including Balanced) account for 37.0 and 68.9% (dominant and all species, respectively) of the area, and their prevalence might explain why droughts have not caused dramatic shifts in species compositions in recent decades.

Fig. 2. Decadal frequency of self-calibrated PDSI classes presented as the percentage of 20×20 km grids within the eastern US.

Fig. 3. Frequency of monthly drought classes (A: near normal conditions; B: moderate drought; C: severe drought; D: extreme drought) as a percentage, for the period May-September 1961–2012. The maximum potential frequency is 260 months during this period.

Fig. 4. Duration of longest consecutive period (monthly) for each drought class from 1961 to 2012. PDSI classes were calculated using a self-calibration algorithm, PRISM climate data, and NRCS County Soil Survey Geographic available water-holding capacity.

Additionally, the relatively short durations of droughts in the East may have allowed tree species time to recover between prolonged periods of limited water availability (Pederson et al., 2014). However, both droughts and wet conditions have increased in recent decades, and these patterns of extreme climate variability

are projected to increase. Under these projected conditions, the combined stress from periods of intermingling severe droughts and very wet conditions could have the potential to initiate major changes in forest composition. Alternatively, when we define the tolerance based on habitat from all species, the different drought

Fig. 5. Mapped distribution of drought tolerance based on (A) dominant tolerance classes among species with suitable habitat and (B) all species (mixed not used). DIT_x = drought intolerance class level, with 3 being the most intolerant; DT_x = drought tolerance level, with 3 being the most tolerant.

Fig. 6. Proportion of the area of drought tolerance classes of (A) the dominant species' habitat composition and (B) composition of all species' habitat experiencing drought conditions (self-calibrated) in eastern US grids, over the period 1961–2012.

tolerances contained within the community seem to suggest that eastern forests have a relatively balanced composition and as a whole, may be quite resilient to the impacts of a moderate level of drought. Should the climate models be correct, the eastern US may experience climates in the future out of the realm of that documented in this paper, with much higher temperatures and more variability in precipitation events, creating physiological drought even if overall precipitation remains the same or even increases slightly.

The results presented provide an overall depiction of the spatial distribution of 134 tree species based on modeled output and species drought tolerance from the literature. This macro-level analysis, though not precise at the forest stand level, helps further our general understanding of eastern US forests and the impacts of past and pending future drought conditions.

5. Conclusion

Drought is one of the many stress factors that affect the establishment, growth, and mortality of trees. Given that the recent trend of increasing frequency of drought conditions over much of the US is projected to continue into the future, understanding the spatial and temporal distribution of these conditions and how tree species are distributed along this gradient is important to developing and implementing management practices. Unlike the western US, which has shown large increases in the CDSI since 1986, the eastern US so far has had fewer and less intense droughts. Trees living under predominately near normal conditions, as is the case in the East, likely reflect the broader tree communities and drought tolerance classes of forests where drought occurrence has been infrequent. Our analyses of overall species tolerances indicate that, in general, the level of resilience to drought (DT1-balanced-DIT1, Fig. 5) for the eastern US forests is sufficiently balanced that dramatic compositional changes from low-level droughts between 1960 and 2013 would not be expected. However, when the analysis focuses on the numerically dominant tree species across the East, a larger proportion of both drought intolerance and tolerance appears. Nonetheless, as we move into the more variable climate that many climate projections predict, forest drought impacts will likely be amplified for specific portions of the country over short durations.

Acknowledgements

We are grateful for data provided by the National Climatic Data Center, PRISM climate group, and WestWide Drought Tracker. We thank Chris Woodall, Paul Hanson, Cynthia Moser and two anonymous reviewers who provided comments on an earlier version of this manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.foreco.2015.02. 022.

References

- Abatzoglou, J.T., 2013. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33 (1), 121–131. http:// dx.doi.org/10.1002/joc.3413.
- Alig, R.J., Butler, B.J., 2004. Area changes for forest cover types in the United States, 1952 to 1997, with projections to 2050. Gen. Tech. Rep. PNW-GTR-613. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, pp. 106.
- Allen, C.D., Breshears, D.D., 1998. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc. Natl. Acad. Sci. 95 (25), 14839–14842.
- Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259 (4), 660–684. http://dx.doi.org/10.1016/j.foreco.2009.09.001.
- Alley, W.M., 1984. The palmer drought severity index: limitations and assumptions. J. Climate Appl. Meteorol. 23, 1100–1109.
- Breshears, D.D., Cobb, N.S., Rich, P.M., Price, K.P., Allen, C.D., Balice, R.G., Romme, W.H., Kastens, J.H., Floyd, M.L., Belnap, J., 2005. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 102 (42), 15144–15148.
- Cook, E.R., Krusic, P.J., 2004. The North American Drought Atlas. http://iridl.ldeo.columbia.edu/SOURCES/LDEO/.TRL/.NADA2004/.pdsi-atlas.html>.
- Dai, A., 2012. Increasing drought under global warming in observations and models. Nat. Clim. Change 3 (1), 52–58. http://dx.doi.org/10.1038/NCLIMATE1633.
- Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., Pasteris, P.P., 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28 (15), 2031–2064.
- Grant, G.E., Tague, C.L., Allen, C.D., 2013. Watering the forest for the trees: an emerging priority for managing water in forest landscapes. Front. Ecol. Environ. 11 (6), 314–321. http://dx.doi.org/10.1890/120209.
- Gustafson, E.J., Sturtevant, B.R., 2013. Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems 16 (1), 60–74. http:// dx.doi.org/10.1007/s10021-012-9596-1.
- Guttman, N.B., Quayle, R.G., 1996. A historical perspective of US climate divisions. Bull. Am. Meteorol. Soc. 77 (2), 293–303. http://dx.doi.org/10.1175/1520-0477(1996)077<0293:ahpouc>2.0.co;2.
- Hanson, P.J., Weltzin, J.F., 2000. Drought disturbance from climate change: response of United States forests. Sci. Total Environ. 262 (3), 205–220. http://dx.doi.org/ 10.1016/S0048-9697(00)00523-4.
- Heim, J., Richard R., 2006. Station-based indices for drought monitoring in the U.S. In: North American Drought Monitor Workshop, Mexico City, Mexico.
- Iverson, L.R., Prasad, A.M., Matthews, S.N., Peters, M., 2008. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manage. 254 (3), 390–406. http://dx.doi.org/10.1016/j.foreco.2007.07.023.

- Kardol, P., Todd, D.E., Hanson, P.J., Mulholland, P.J., 2010. Long-term successional forest dynamics: species and community responses to climatic variability. J. Veg. Sci. 21 (4), 627–642. http://dx.doi.org/10.1111/j.1654-1103.2010.01171.x.
- Matthews, S.N., Iverson, L.R., Prasad, A.M., Peters, M.P., Rodewald, P.G., 2011. Modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history-factors. For. Ecol. Manage. 262 (8), 1460–1472. http://dx.doi.org/10.1016/j.foreco.2011.06.047.
- McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178 (4), 719–739. http://dx.doi.org/ 10.1111/j.1469-8137.2008.02436.x.
- McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston, MA, pp. 179–183.
- McKenzie, D., Hessl, A.E., Peterson, D.L., 2001. Recent growth of conifer species of western North America: assessing spatial patterns of radial growth trends. Can. J. For. Res. 31 (3), 526–538. http://dx.doi.org/10.1139/cjfr-31-3-526.
- Menne, M.J., Williams Jr, C.N., Vose, R.S., 2009. The US historical climatology network monthly temperature data version 2. Bull. Am. Meteorol. Soc. 90 (7), 993–1007. http://dx.doi.org/10.1175/2008bams2613.1.
- National Climatic Data Center, 2014. North American Drought Monitor Indices. http://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/indices.php?>
- Natural Resources Conservation Service (NRCS), 2009. Soil Survey Geographic (SSURGO) database for counties of Alabama, Arkansas, Connecticut, Delaware, District of Columbia, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Vermont, Virginia, West Virginia, Wisconsin <http://soildatamart.nrcs.usda.gov/State.aspx> (accessed between August 2009 and November 2010).
- Niinemets, Ü., Valladares, F., 2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol. Monogr. 76 (4), 521– 547. http://dx.doi.org/10.1890/0012-9615(2006)076[0521:ttsdaw]2.0.co;2.
- Palmer, W.C., 1965. Meteorological drought. In: Weather Bureau Research Paper No. 45. U.S. Department of Commerce, Washington, DC, pp. 58.
- Paulo, A.A., Pereira, L.S., 2006. Drought concepts and characterization. Water Int. 31 (1), 37–49.
- Pederson, N., Dyer, J.M., McEwan, R.W., Hessl, A.E., Mock, C.J., Orwig, D.A., Rieder, H.E., Cook, B.I., 2014. The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecol. Monogr. 84 (4), 599–620. http://dx.doi.org/ 10.1890/13-1025.1.
- Peters, M.P., Iverson, L.R., Prasad, A.M., Matthews, S.N., 2013. Integrating fine-scale soil data into species distribution models: preparing Soil Survey Geographic (SSURGO) data from multiple counties. GTR NRS-122. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station, pp. 70.
- Peters, M.P., Iverson, L.R., Matthews, S.N., 2014. Spatio-temporal trends of drought by forest type in the conterminous United States, 1960–2013. Res. Map NRS-7. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. (scale 1:12,000,000).
- PRISM Climate Group, 2012. Oregon State University, Corvallis <http://prism. oregonstate.edu>.
- Russell, M.B., Woodall, C.W., D'Amato, A.W., Domke, G.M., Saatchi, S.S., 2014. Beyond mean functional traits: influence of functional trait profiles on forest structure, production, and mortality across the eastern US. For. Ecol. Manage. 328, 1–9. http://dx.doi.org/10.1016/j.foreco.2014.05.014.
- Sullivan, J.R., 2013. Characterization of drought in Texas using NLDAS soil moisture data. In: Department of Civil, Architectural and Environmental Engineering. The University of Texas at Austin, pp. 92.
- Transeau, E.N., 1935. The Prairie Peninsula. Ecology 16 (3), 423–437. http:// dx.doi.org/10.2307/1930078.
- Wells, N., Goddard, S., Hayes, M.J., 2004. A self-calibrating palmer drought severity index. J. Clim. 17 (12), 2335–2351. http://dx.doi.org/10.1175/1520-0442(2004)017<2335:Aspdsi>2.0.Co;2.
- Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., McDowell, N.G., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3 (3), 292–297. http://dx.doi.org/10.1038/nclimate1693.

Supplemental Table S1. Cumulative drought severity index (CDSI) calculated from climate division (NCDC) and gridded (WWDT) data for the conterminous US. Weights of 1, 2, and 3 were used for the moderate, severe, and extreme drought classes, respectively, as defined by the Palmer Drought Severity Index, and were applied to the monthly frequencies of conditions. Climate divisions were used to calculate the mean CDSI value among gridded data.

		Cumulative Drought Severity Index					
		1960)-1986	1987	7-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
	101	32	20	106	69	231.3	237.6
	102	37	17	104	84	181.1	401.5
a	103	46	25	89	70	93.5	187.2
an	104	45	15	143	89	217.8	476.4
lab	105	37	20	153	93	313.5	356.9
<	106	36	28	92	57	155.6	106.5
	107	42	34	87	92	107.1	173.9
	108	56	64	79	90	41.1	41.2
	201	28	104	254	254	807.1	145.0
	202	80	77	190	217	137.5	182.1
Ja	203	78	69	258	240	230.8	247.5
izoı	204	46	47	305	249	563.0	426.4
Ar	205	57	124	120	263	110.5	112.4
	206	92	133	220	308	139.1	132.5
	207	48	103	311	250	547.9	142.6
	301	86	81	68	58	-20.9	-27.8
	302	68	65	49	56	-27.9	-14.1
	303	51	54	81	75	58.8	38.4
sas	304	83	103	41	55	-50.6	-46.1
ans	305	45	42	70	66	55.6	58.4
Ark	306	53	55	100	119	88.7	118.4
	307	71	56	139	109	95.8	93.9
	308	73	53	116	90	58.9	70.5
	309	79	71	118	115	49.4	61.4
	401	51	102	106	182	107.8	77.9
	402	73	91	104	167	42.5	83.0
nia	403	79	75	155	200	96.2	164.7
ifor	404	119	103	134	200	12.6	93.8
Cali	405	121	114	188	215	55.4	88.6
_	406	102	134	243	247	138.2	83.6
	407	52	163	294	287	465.4	76.5
	501	117	114	169	110	44.4	-3.7
opi	502	144	86	268	109	86.1	26.1
ora	503	125	88	109	77	-12.8	-12.4
Col	504	150	94	79	95	-47.3	1.3
	505	128	86	289	136	125.8	57.8
icut	601	149	125	25	31	-83.2	-75.4
nect	602	107	105	28	39	-73.8	-63.0
Cor	603	94	132	39	56	-58.5	-58.0

		1960)-1986	1987	-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
ware	701	123	97	39	45	32	47
Dela	702	111	111	118	106	106	95
	801	43	30	104	120	242	403
	802	39	20	167	175	428	884
a	803	42	44	174	195	414	447
oric	804	87	93	85	178	98	192
Ē	805	83	76	117	150	141	198
	806	92	69	74	102	80	149
	807	135	92	87	142	64	154
	901	33	18	176	122	533	694
	902	59	28	136	140	231	496
	903	45	40	176	171	391	422
<u>a</u> .	904	41	34	209	155	510	462
sori	905	55	59	143	184	260	312
Ğ	906	45	52	162	181	360	351
	907	47	41	155	150	330	366
	908	41	45	138	161	337	357
	909	52	38	157	200	302	526
	1001	76	41	82	51	108	124
	1002	91	40	121	55	133	139
	1003	98	55	110	67	112	120
-	1004	80	44	244	123	305	277
aho	1005	109	66	328	137	301	207
Id	1006	154	67	184	104	119	154
	1007	107	68	244	157	228	230
	1008	146	43	115	89	79	206
	1009	73	56	320	175	438	315
	1010	72	47	301	109	418	232
	1101	108	65	120	48	111	74
	1102	131	80	93	39	71	49
	1103	85	33	175	78	206	238
is	1104	90	48	132	54	147	112
lino	1105	80	50	66	24	83	48
=	1106	69	24	96	36	139	153
	1107	71	36	62	11	87	31
	1108	96	41	36	10	38	24
	1109	55	40	50	8	91	20
	1201	74	40	86	38	116	94
	1202	67	44	93	42	139	96
	1203	97	68	95	32	98	47
Ina	1204	57	23	58	11	102	48
ldia	1205	51	18	79	21	155	118
<u>_</u>	1206	88	61	63	28	72	46
	1207	52	26	67	11	129	42
	1208	46	12	8/	18	189	144
	1209	41	11	01	8	149	/8

		1960)-1986	1987	-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
	1301	119	53	114	65	96	121
	1302	72	36	144	71	200	199
	1303	94	64	81	49	86	75
a	1304	111	48	92	41	83	85
NO	1305	112	39	99	59	88	152
_	1306	87	39	124	62	143	159
	1307	66	20	105	40	159	198
	1308	58	18	112	57	193	308
	1309	59	22	128	53	217	245
	1401	71	33	146	50	206	152
	1402	92	25	110	41	120	163
	1403	88	36	134	62	152	169
sas	1404	93	59	113	53	122	89
ans	1405	86	45	140	50	163	110
×	1406	98	68	88	52	90	76
	1407	95	79	93	59	98	75
	1408	96	61	76	48	79	78
	1409	109	76	57	46	52	60
× ₹	1501	41	24	98	28	239	114
tuc	1502	29	14	/1	41	245	295
Ken	1503	32	10	116	42	363	428
	1504	49	19	90	105	184	362
	1601	114	90	117	105	103	110
	1602	100	89	79	75	79	84
g	1603	01 112	10	00	/5	84 76	92
sian	1605	115	03 E0	00	92	1/1	111
sinc	1605	00 70	20	95 76	0/ C0	141	175
Ľ	1607	70	20 25	70	00	97 104	1/0
	1609	50 01	20	97 102	90	194	270
	1600	70	30	102	50	120	152
	1701	5/	44	 	46	83	100
ine	1701	73	63	38	53	52	8/
Ĕ	1702	86	69	24	33	28	54
	1801	86	96	147	142	171	148
	1802	65	76	110	102	169	135
	1803	73	58	88	50	121	86
anc	1804	79	88	78	68	99	76
ا ک	1805	106	115	76	72	72	62
Ĕ	1806	86	91	63	60	73	66
	1807	84	69	69	71	82	104
	1808	28	39	117	48	418	125
etts	1901	165	125	18	33	11	26
achus	1902	113	94	18	18	16	20
Mass	1903	90	95	25	25	28	27

		1960)-1986	1987	7-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
	2001	71	52	173	56	244	108
	2002	69	48	138	82	200	172
	2003	61	38	64	22	105	58
Ę	2004	78	36	73	23	94	62
liga	2005	93	47	76	11	82	23
lich	2006	110	63	44	11	40	18
2	2007	106	51	59	19	56	37
	2008	74	51	63	26	85	50
	2009	117	68	60	11	51	17
	2010	140	80	52	26	37	33
	2101	124	58	176	63	142	109
	2102	119	43	122	36	103	85
æ	2103	88	56	88	26	100	46
sot	2104	105	40	126	38	120	94
nes	2105	106	37	143	55	135	146
۸in	2106	129	54	124	42	96	78
2	2107	109	59	149	72	137	121
	2108	72	35	146	67	203	192
	2109	110	61	91	33	83	54
	2201	69	59	82	92	119	156
	2202	62	44	66	47	106	105
	2203	58	35	62	43	107	125
id	2204	95	73	102	73	107	99
sip	2205	61	46	59	46	97	99
ssis	2206	58	34	85	47	147	141
Ξ	2207	58	43	71	59	122	139
	2208	71	47	54	64	76	136
	2209	65	54	68	78	105	144
	2210	84	65	100	72	119	111
	2301	89	43	102	55	115	129
	2302	117	59	81	49	69	83
our	2303	84	61	72	34	86	56
liss	2304	62	65	52	37	84	57
Σ	2305	78	58	46	25	59	43
	2306	52	43	71	52	137	122
	2401	83	46	240	77	289	167
	2402	61	37	410	77	672	211
na	2403	100	130	119	118	119	90
nta	2404	74	68	222	99	300	146
No	2405	74	51	280	107	378	210
-	2406	107	123	62	84	58	68
	2407	105	84	134	92	128	110
	2501	99	57	201	136	203	240
	2502	124	56	175	82	141	146
Ð	2503	103	45	146	71	142	159
ask	2505	59	12	168	34	285	289
pre	2506	78	24	132	33	169	140
Ň	2507	49	34	146	87	298	256
	2508	59	9	123	26	208	290
	2509	98	25	176	46	180	183

		1960)-1986	1987	-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
σ	2601	79	81	410	158	519	196
ada	2602	104	86	271	108	261	125
lev	2603	59	90	100	186	169	206
~	2604	77	162	221	311	287	191
ew pshire	2701	49	62	32	22	65	36
Ham	2702	95	87	21	26	22	30
. >	2801	111	116	48	61	43	53
vev erse	2802	94	115	55	73	59	64
2 9	2803	71	109	84	93	118	86
	2901	97	84	95	134	98	160
	2902	132	88	183	138	139	156
ico	2903	91	120	148	159	163	133
lex	2904	58	60	155	160	267	265
2	2905	64	92	114	199	178	216
Nev	2906	68	84	220	162	324	194
	2907	69	123	162	210	235	170
	2908	61	82	169	179	277	218
	3001	54	102	43	30	80	30
	3002	116	124	36	40	31	32
	3003	71	86	20	23	28	27
×	3004	84	153	54	102	64	66
Yor	3005	143	128	31	39	22	30
Ň	3006	53	102	49	30	92	29
ž	3007	62	78	35	19	56	24
	3008	69	66	34	8	49	12
	3009	62	58	52	28	84	48
	3010	91	82	44	21	48	25
	3101	63	41	141	113	224	273
a	3102	59	50	103	134	175	265
olin	3103	55	44	88	103	160	236
aro	3104	57	40	123	141	216	351
ц Ч	3105	50	27	139	145	278	528
lor	3106	40	16	97	88	243	535
Z	3107	38	21	64	69	168	328
	3108	46	31	91	83	198	270
	3201	97	53	131	56	135	106
	3202	105	54	137	65	130	119
ota	3203	107	50	128	60	120	118
ako	3204	71	47	167	71	235	152
	3205	91	53	148	57	163	109
ort	3206	103	57	116	48	113	84
ž	3207	88	57	209	89	238	158
	3208	106	55	199	85	188	154
	3209	121	57	133	44	110	77

		1960)-1986	1987	7-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
	3301	111	80	70	26	63	33
	3302	93	59	66	22	71	37
	3303	70	49	53	33	76	68
	3304	64	71	74	32	116	46
.0	3305	40	22	70	33	175	148
ho	3306	52	36	52	21	100	59
	3307	93	80	78	29	84	37
	3308	46	27	63	25	137	93
	3309	46	19	97	40	211	212
	3310	30	18	50	29	167	162
	3401	101	111	80	80	79	72
	3402	94	95	88	63	94	66
	3403	79	71	72	59	91	83
ma	3404	115	110	77	69	67	62
ho	3405	126	82	102	63	81	76
)kla	3406	106	78	74	54	70	69
0	3407	140	105	77	71	55	67
	3408	103	61	109	62	106	100
	3409	70	78	94	78	134	100
	3501	37	59	107	121	289	205
	3502	51	57	92	102	180	181
	3503	63	77	71	156	113	201
c	3504	47	81	58	110	123	137
680	3505	60	55	259	96	432	173
õ	3506	114	67	185	74	162	110
	3507	99	62	372	95	376	154
	3508	64	46	428	71	669	155
	3509	96	66	304	117	317	177
	3601	122	129	32	49	26	38
	3602	118	116	39	34	33	29
	3603	83	117	35	42	42	36
ia	3604	63		57	53	90	68
var	3605	57	86	46	37	81	44
lysr	3606	105	105	46	35	44	33
enr	3607	55	-03 61	83	66	151	107
д.	3608	65	75	77	79	118	106
	3609	72	61	43	45	60	74
	3610	53	51	52	43	98	94 84
	5010	55	51	52	72	50	04
Rhode Island	3701	81	100	20	21	25	21
	3801	44	36	102	136	232	377
ina	3802	44	23	208	175	473	747
roli	3803	49	20	154	143	314	702
Ca	3804	43	32	91	92	212	283
uth	3805	36	25	177	156	492	629
Sol	3806	44	24	116	86	264	359
	3807	48	42	116	109	242	259

		1960)-1986	1987	7-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
	3901	149	70	200	99	134	143
	3902	129	46	194	59	150	128
ta	3903	182	67	79	26	43	39
ioye	3904	97	53	222	78	229	146
Da	3905	153	88	199	106	130	120
uth	3906	128	55	132	56	103	102
So	3907	129	63	121	28	94	44
	3908	134	71	135	53	101	76
	3909	132	74	147	66	111	89
e	4001	62	31	111	89	179	285
SSE	4002	66	35	113	71	171	201
JUE	4003	51	21	107	54	210	263
Tei	4004	51	27	62	46	122	167
	4101	63	118	106	140	168	119
	4102	58	83	122	111	210	135
	4103	94	56	103	66	110	118
	4104	103	64	132	100	128	157
as	4105	30	77	150	185	500	239
Lex I	4106	79	83	105	122	133	146
•	4107	90	47	190	116	211	248
	4108	76	30	95	85	125	282
	4109	67	67	123	177	184	262
	4110	50	53	189	203	378	386
	4201	75	103	235	147	313	143
	4201	/9	95	205	207	418	217
	4202	96	86	265	111	279	129
ah	4203	123	103	12/	109	101	106
5	4204	115	70	257	103	223	118
	4205	112	15/	172	164	152	107
	4200	75	104	162	170	217	120
ţ	4207	110	130	105	20	12	129
nor	4301	110	111 72	14	20	12	10
err	4302	04 00	/3	40	24	40 20	28
>	4503	90	59	29	24	00	40
	4401	69 00	57	/ð 05	70	00 106	123
iia	4402	90	98 100	95 67	00 01	00T 00T	90
rgir	4403	6C 81	102	0/ 60	82 50	ŏ5 102	18 27
Ζİ	4404		12	80	52	T03	72
	4405	8/	110	44	80	51	/3
	4406	52	45	82	94	158	206
	4501	49	42	/1	114	145	275
	4502	/6	26	92	66	121	257
c	4503	46	25	85	8/	185	343
gto	4504	40	35	62 C7	99	155	279
uin,	4505	54	41	b/ ۱۸۱	98	124	238
/asl	4500	/8	51	141	00 7	101	111
5	4507	90 100	58 70	270	97	3UU 211	111
	4508	103	79 27	23U 170	00 50	211 100	111
	4509	90 100	5/	170 122	53 72	109	145 110
	4510	133	65	133	/3	100	113

		1960)-1986	1987	-2013	Percen	t Change
STATE	DIVISION	NCDC	WWDT	NCDC	WWDT	NCDC	WWDT
_	4601	47	56	76	31	162	56
inia	4602	47	47	44	33	94	71
lirg.	4603	75	36	64	37	85	102
st V	4604	54	41	55	46	102	112
Š	4605	57	55	61	67	107	122
	4606	57	74	67	70	118	94
	4701	104	54	159	39	153	73
	4702	88	60	138	53	157	87
_	4703	77	54	102	42	132	77
Jsin	4704	97	58	91	15	94	25
COL	4705	85	63	51	18	60	28
Wis	4706	80	62	50	15	63	25
-	4707	127	90	64	30	50	33
	4708	148	107	47	16	32	15
	4709	129	83	41	9	32	11
	4801	73	35	405	68	555	194
	4802	124	33	115	63	93	192
	4803	77	83	359	156	466	187
ജപ	4804	66	62	117	156	177	250
, , ,	4805	103	77	157	132	152	172
٨v	4806	112	72	329	104	294	144
5	4807	131	98	167	138	127	141
	4808	118	102	157	128	133	126
	4809	73	89	212	186	290	208
	4810	91	71	349	130	384	183

Supplemental Table S2. Tree species modeled for habitat suitability and drought tolerance class. Negative drought classes correspond to drought-intolerant classes (DIT -1,-2,-3), while positive values represent drought-tolerant classes (DT 1,2,3). Importance Value (IV) sum for all 20×20 km cells in the eastern US indicate the species' relative abundance based on modeled inventory data.

Common Name	Scientific Name	Model Reliability	Drought Class	IVsum
balsam fir	Abies balsamea	High	-2	9519
Florida maple	Acer barbatum	Medium	1	187
boxelder	Acer negundo	Medium	3	14132
black maple	Acer nigrum	Low	-1	181
striped maple	Acer pensylvanicum	High	-2	2081
red maple	Acer rubrum	High	1	47858
silver maple	Acer saccharinum	Medium	-2	7835
sugar maple	Acer saccharum	High	-1	27948
mountain maple	Acer spicatum	High	-2	515
Ohio buckeye	Aesculus glabra	Low	-1	549
yellow buckeye	Aesculus octandra	Medium	-2	397
serviceberry	Amelanchier sp.	Medium	-2	1526
pawpaw	Asimina triloba	Low	-2	552
yellow birch	Betula alleghaniensis	High	-1	4067
sweet birch	Betula lenta	High	-1	3632
river birch	Betula nigra	Low	-2	788
paper birch	Betula papyrifera	High	-2	6703
gray birch	Betula populifolia	Medium	-1	751
cittamwood/gum bumelia	Bumelia lanuginosa	Low	2	50
American hornbeam, musclewood	Carpinus caroliniana	Medium	-2	6507
water hickory	Carya aquatica	Medium	1	1238
bitternut hickory	Carya cordiformis	Low	2	4195
pignut hickory	Carya glabra	High	-2	9615
pecan	Carya illinoensis	Low	-1	825
shellbark hickory	Carya laciniosa	Low	-2	202
shagbark hickory	Carya ovata	Medium	-1	8241
black hickory	Carya texana	High	1	2930
mockernut hickory	Carya tomentosa	High	1	9770
American chestnut	Castanea dentata	Medium	1	169
northern catalpa	Catalpa speciosa	Low	1	430
sugarberry	Celtis laevigata	Medium	-2	3851
hackberry	Celtis occidentalis	Medium	2	13010
eastern redbud	Cercis canadensis	Medium	-1	3037
Atlantic white-cedar	Chamaecyparis thyoides	Low	-2	167
flowering dogwood	Cornus florida	High	-2	14892
common persimmon	Diospyros virginiana	Medium	-1	4194
American beech	Fagus grandifolia	High	-1	12659
white ash	Fraxinus americana	High	-1	18408
black ash	Fraxinus nigra	High	-2	4605
green ash	Fraxinus pennsylvanica	Medium	1	20012
- blue ash	Fraxinus quadrangulata	Low	1	63
waterlocust	Gleditsia aquatica	Low	-2	94

Common Name	Scientific Name	Model Reliability	Drought Class	IVsum
noneylocust	Gleditsia triacanthos	Low	2	5804
oblolly-bay	Gordonia lasianthus	Medium	-1	724
Centucky coffeetree	Gymnocladus dioicus	Low	-1	336
, ilverbell	, Halesia sp.	Medium	-1	60
American holly	Ilex opaca	High	-1	2390
utternut	Jualans cinerea	Low	-2	318
lack walnut	Jualans niara	Medium	-2	8664
astern redcedar	Juniperus virainiana	Medium	2	13509
amarack (native)	Larix laricina	High	1	2233
weetgum	Liquidambar styraciflua	High	-2	28185
ellow-poplar	Liriodendron tulipifera	High	-1	12919
Jsage-orange	Maclura pomifera	Medium	1	5626
ucumbertree	Maanolia acuminata	High	-2	480
outhern magnolia	Maanolia arandiflora	Medium	-2	492
igleaf magnolia	Maanolia macrophylla	Low	-1	26
weetbav	Maanolia virainiana	High	-1	3318
ed mulberry	Morus rubra	Low	-1	4689
vater tupelo	Nyssa aquatica	Medium	-3	1811
wamp tupelo	Nyssa biflora	High	-3	5305
geechee tupelo	Nyssa ogeche	Medium	-2	79
lackgum	Nyssa sylvatica	High	-1	10796
astern hophornbeam, ironwood	Ostrva virainiana	Medium	- 1	9598
ourwood	Oxydendrum arboreum	High	- 1	4278
edhav	Persea horhonia	High	-1	1177
hite spruce	Picea alauca	Medium	-1	1520
ack spruce	Picea mariana	High	-2	3176
d spruce	Picea rubens	High	-2	2875
ck nine	Pinus hanksiana	High	2	3192
and nine	Pinus clausa	Medium	-3	875
oortleaf nine	Pinus echinata	High	-2	10087
ash nine	Pinus elliottii	High	2	14744
	Pinus alabra	Medium	-2	238
ngleaf nine	Pinus palustris	High	-1	4849
able Mountain nine	Pinus pungens	Medium	2	100
ed pine	Pinus resinosa	Medium	-2	3421
tch pine	Pinus rigida	High	-1	1203
and pine	Pinus serotina	High	-2	1158
astern white pine	Pinus strobus	High	ר ג	8628
blolly pine	Pinus taeda	High	-2	46705
rginia pine	Pinus virainiana	High	- 1	5817
vater elm	Planera aquatica	1 ow	-1	Δ11
rcamore	Platanus occidentalis	Medium	1	4035
alsam poplar	Populus balsamifera	High		2273
astern cottonwood	Populus deltoides	10.00	1	9376
gtooth aspen	Populus arandidentata	High		29240
Jaking aspen	Populus tremuloides	High	-∠ _)	18067
ild nlum	Princis americana		- <u>-</u> _1	210
in cherry	Prunus nensylvanica	Medium	- <u>-</u>	510 707
lack cherry	Prunus serotina	High	-2	21157
hokecherry	Prunus virainiana		ے 1	1267
hite oak	Auercus alba	High	-1 1	78281
wamn white oak	Quercus bicolor		⊥ _1	1000
ימוווף שווונכ טמג		LUW	-1	T000

	Colombilia Nome	Model	Drought	1) (
		Kellability	Class	IVSUM
durand ook	Quercus coccined	nigii	1	4505
uuranu oak	Quercus allinsoidalis	LOW	-1	0 1170
northern pin Oak	Quercus empsoidums		3	11/8
southern red oak	Quercus falcata var. paradasfalia	⊓igii Madium	1	7348
cherrybark Oak, swamp red Oak	Quercus jaicata var. pagoadejolia	weatum	-1	2021
bedr Odk, Scrub Odk	Quercus incijoliu	LOW	2	1770
Shirigie Oak	Quercus impricaria	Medium	2	I//9 F01
	Quercus incana	Wedlum	-1	1209
turkey oak	Quercus laevis	High	2	1398
laurei oak	Quercus laurifolia	Hign	-1	5168
overcup oak	Quercus lyrata	Medium	-2	1694
bur oak	Quercus macrocarpa	Medium	3	12197
ыаскјаск оак	Quercus marilandica	Medium	3	3453
swamp chestnut oak	Quercus michauxii	Medium	-1	/13
chinkapin oak	Quercus muehlenbergii	Medium	1	2313
water oak	Quercus nigra	High	-1	11570
nuttall oak	Quercus nuttallii	Low	1	633
pin oak	Quercus palustris	Medium	-1	1927
willow oak	Quercus phellos	Medium	-1	3591
chestnut oak	Quercus prinus	High	1	7933
northern red oak	Quercus rubra	High	1	18801
Shumard oak	Quercus shumardii	Low	2	233
post oak	Quercus stellata	High	3	14630
black oak	Quercus velutina	High	2	16081
live oak	Quercus virginiana	Medium	1	2790
black locust	Robinia psuedoacacia	Low	-2	4685
peachleaf willow	Salix amygdaloides	Low	-1	255
black willow	Salix nigra	Low	-2	4866
sassafras	Sassafras albidum	High	2	7563
American mountain-ash	Sorbus americana	Medium	-1	35
bald cypress	Taxodium distichum	Medium	-2	3014
pond cypress	Taxodium distichum(var.nutans)	High	1	3335
northern white-cedar	Thuja occidentalis	High	-2	4672
American basswood	Tilia americana	Medium	-1	8479
eastern hemlock	Tsuga canadensis	High	-2	5951
winged elm	Ulmus alata	High	-1	7378
American elm	Ulmus americana	Medium	-2	28934
cedar elm	Ulmus crassifolia	Low	-1	544
slippery elm	Ulmus rubra	Medium	1	8758
rock elm	Ulmus thomasii	Low	-1	326

Supplemental Table S3. Duration of the longest consecutive period and mean interval of monthly drought and near normal conditions for the period 1961–2012. Values of self-calibrated PDSI among 20×20 km grids are summarized for 37 states.

	nal	MAX	38.9	38.9	28.6	28.6	38.9	38.9	38.9	38.9	38.9	38.9	38.9	38.9	38.9	29.3	28.6	38.9	38.9	38.9	38.9	38.9
Mean Interval	Near Norr	MEAN	13.6	13.6	15.3	15.4	13.5	13.5	13.5	13.9	13.5	13.5	13.7	13.6	14.2	14.9	15.0	13.5	13.4	13.6	13.6	13.8
		NIM	5.5	5.5	7.8	7.8	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	7.0	7.4	5.5	5.5	5.5	5.5	5.5
	1 oderate Drought	ИАХ	7.3	7.3	7.3	4.6	7.4	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.4	8.0	7.3	7.5	7.3
		IEAN D	3.4	3.4	3.4	3.3	3.5	3.5	3.4	3.4	3.4	3.5	3.4	3.4	3.4	3.3	3.3	3.5	3.7	3.4	3.5	3.4
		NI N	7	1.7		.3	2.1	2.1	2.1	7		1.7			7	1.1	1.1	2.1	2.1	[.7	1.7	2.7
	Extreme Drought Severe Drought N	IAX N	.8	8.	.5	۲. ۲	2.6 1	2.6 1	.8	.5	.8	2.6 1	.5	.8	.5	۲. ۲	۲. ۲	2.6 1	2.6 1	.8	2.6 1	5
		AN V	6	6	ŝ	ŝ	9	9	6	8	6	9	8	6	6	6	6	0	.1	80	1	∞
		N ME	3.	ω.	6.4	.4	ς. Γ	ς. Γ	ς. Γ	Э	ς. Γ	с, З		ς. Γ	.3.	Э.		4.	4.	с, З	4.	т Э.
		Σ×	1.1	1.1	2.6	2.8	1.1	1.1	1.1	1.0	1.1	1.1	1.4	1.1	2.0	2.0	2.0	5 1.1	5 1.1	1.1	5 1.1	1.4
		(MA)	10	10	7	7	10	10	10	6	10	10	6	6	7.5	7	7	10.5	10.5	6	10.5	6
eriod		MEAN	3.8	3.9	4.1	4.3	4.0	4.0	3.9	3.8	4.0	4.0	3.8	3.9	3.7	3.9	4.0	4.1	4.0	3.9	4.0	3.8
		NIM	1.3	1.3	2.0	2.2	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	2.0	2.0	1.3	1.0	1.3	1.3	1.3
	ar Normal	MAX	190	190	188	181	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190
		MEAN	63.2	62.8	78.3	83.8	62.2	62.4	62.5	64.5	62.5	62.0	63.3	63.0	66.1	74.5	74.5	61.8	62.8	63.1	62.3	63.7
	Nea	NIN	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	25	19	19	19	19
	ught	ИАХ	22	22	19	19	27	25	22	22	22	25	22	22	20	19	19	27	27	22	27	22
	Moderate Dro	AEAN P	10.2	10.3	10.3	10.8	10.7	10.5	10.5	10.0	10.4	10.5	10.0	10.2	9.9	9.6	9.7	10.8	11.2	10.2	10.9	10.0
		NIN	ъ	ъ	9	9	ы	ы	ы	ы	ы	ъ	ы	ы	9	9	9	ы	ы	ъ	ъ	ъ
ngest	Severe Drought	MAX	27	27	18	18	36	36	31	20	27	36	20	22	20	18	18	36	36	27	36	20
Lor		EAN I	.0.3	.0.3	1.0	.1.5	.0.7	.0.7	.0.5	0.0	0.4	.0.7	6.9	0.2	0.2	0.2	0.4	1.2	2.2	.0.1	1.5	9.9
		NIN M	2 1	2 1	5	6 1	2 1	2 1	2 1	2 1	2 1	2 1	7	2 1	4	5	5	2 1	2 1	2 1	2	7
	Extreme Drought	IAX N	22	22	∞	∞	22	22	22	22	22	22	22	22	13	10	∞	22	22	22	22	22
		AN N	ŝ	ы	2	6	~	9	ы	-	ы	9	7	ŝ	6	~	9	∞	9	4	~	5
		N ME	7.	7.	.9	<u>.</u>	7.	7.	7.	7.	7.	7.	7.	7.	9.	<u>.</u>	9	7.	7.	7.	7.	7.
		S MI	2	5	4	ъ	2	2	2	2	5	5	2	. 2	2	4	4	5	-	5	5	2
		GRID	383	390	51	24	455	429	420	272	411	430	317	374	252	108	89	483	621	361	522	310
		STATE	AL	AR	Ե	DE	F	ВA	Ę	Ζ	A	KS	¥	P	ME	MD	MA	Σ	Ν Μ	MS	MO	NE

	lar	MAX	29.3	28.6	38.9	38.9	38.9	38.9	38.9	38.9	28.6	38.9	38.9	38.9	38.9	29.3	38.9	38.9	38.9
	r Norm	ЛЕАN	15.0	15.7	13.6	13.6	14.1	13.7	13.5	13.7	15.6	14.2	13.9	13.7	13.4	15.3	13.7	14.4	13.5
	Nea	NIM	7.4	7.8	5.5	5.5	5.5	5.5	5.5	5.5	7.8	5.5	5.5	5.5	5.5	7.4	5.5	6.1	5.5
Mean Interval	ate Drought	MAX	7.3	7.3	7.3	7.3	7.3	7.3	7.4	7.3	4.0	7.3	7.3	7.3	11.7	7.3	7.3	7.3	7.3
		ЛЕАN	3.3	3.3	3.4	3.4	3.4	3.4	3.5	3.4	3.2	3.4	3.4	3.4	3.8	3.3	3.4	3.4	3.4
	Moder	NIM	2.1	2.1	1.7	1.7	1.7	1.7	1.7	1.7	2.3	1.7	1.7	1.7	1.1	2.1	1.7	1.7	1.7
	Severe Drought	MAX	7.5	7.5	7.8	7.8	7.5	7.5	12.6	7.8	7.5	7.5	7.5	7.5	12.6	7.5	7.5	7.5	7.8
		ЛЕАN	3.9	4.1	3.9	3.8	3.8	3.8	4.0	3.8	4.1	3.9	3.8	3.8	4.3	4.0	3.8	3.9	3.9
		MIN	2.0	2.5	1.1	1.1	2.0	1.4	1.1	1.4	2.8	2.0	1.5	1.4	1.1	2.0	1.4	2.0	1.1
	Extreme Drought	MAX	٢	٢	10	10	7.5	6	10	6	6.5	7.5	6	6	14	٢	6	٢	10
		MEAN	3.9	4.0	3.9	4.0	3.8	3.8	4.0	3.8	4.3	3.8	3.8	3.8	3.9	3.9	3.8	3.8	3.9
		MIN	2.0	2.0	1.3	1.3	1.3	1.3	1.3	1.3	2.2	1.3	1.3	1.3	1.0	2.0	1.3	1.3	1.3
	nal	MAX	190	190	190	190	190	190	190	190	181	190	190	190	190	190	190	190	190
	ar Norn	MEAN	74.8	78.0	62.8	62.7	62.9	63.5	62.2	63.5	83.5	66.6	64.6	63.3	6.09	77.8	63.2	68.3	62.4
	Ne	NIM	19	19	19	19	19	19	19	19	19	19	25	19	19	31	19	19	19
	ought	MAX	19	19	22	22	20	22	27	22	19	20	22	22	32	19	22	20	22
	Moderate Di	MEAN	9.7	9.7	10.3	10.3	9.8	10.0	10.8	10.0	10.7	9.8	10.0	10.0	11.5	9.7	10.0	9.8	10.4
t Perio		MIM	9	9	ъ	ß	9	ß	ß	ß	9	9	S	S	7	9	ъ	9	ы
onges	Severe Drought	MAX	18	18	27	27	20	20	36	27	16	20	20	27	36	18	27	20	31
_		MEAN	10.4	10.6	10.3	10.2	10.2	9.9	10.9	10.1	10.8	10.2	10.0	10.1	11.9	10.4	10.1	10.4	10.5
		MIM	ъ	ъ	7	2	4	2	2	2	9	4	7	7	7	ъ	7	4	7
	ought	MAX	∞	∞	22	22	13	22	22	22	∞	13	22	22	24	∞	22	11	22
	eme Dro	MEAN	6.5	9.9	7.4	7.6	7.0	7.2	7.7	7.2	6.9	7.0	7.1	7.2	7.4	6.5	7.2	6.9	7.5
	Extre	MIM	4	4	2	2	2	2	2	2	Ŋ	2	2	2	1	4	2	2	7
		GRIDS	85	72	388	398	236	311	466	337	17	241	277	327	1104	88	331	207	417
		STATE	HN	Z	Ň	NC	DN	Ю	ð	PA	R	SC	SD	TN	ΧĽ	ΥT	VA	Ŵ	Ň

Supplemental Figure S4. Mean duration of the longest consecutive period (monthly) for each drought class from 1961-2012. PDSI classes were calculated using a self-calibrating algorithm, PRISM climate data, and NRCS County Soil Survey Geographic available water holding capacity.

