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a b s t r a c t

After decades focused on promoting economically valuable species, management of northern temperate
forests has increasingly become focused on promoting tree species diversity. Unfortunately, many for-
merly common species that could contribute to diversity including yellow birch (Betula alleghaniensis
Britton.), paper birch (Betula papyrifera Marsh), eastern hemlock (Tsuga canadensis L.), and eastern white
pine (Pinus strobus L.) are now uncommon in the seedling layer, raising concerns about our ability to use
these species to increase diversity. In this study, two related seed addition experiments conducted in 45
variably-sized harvest gaps (unharvested to 6500 m2) in adjacent mesic northern hardwood stands,
Emmet County, Michigan, USA were used to investigate mechanisms potentially limiting seedling recruit-
ment. The first experiment examined the influence of light (i.e. harvest gap size), competing vegetation,
and deer browsing on seedling survival for three years in a 2 � 2 factorial, where subplots were unfenced
or fenced to exclude deer, unclipped or clipped to control competing vegetation, and located across the
gradient of gap sizes. The second experiment explored the influence of scarification, light, and competing
vegetation on germination and subsequent survival for 2 years in a 2 � 2 factorial, in subplots that were
unscarified or scarified to remove litter, unclipped or clipped to control competing vegetation, and
located across the gradient of gap sizes. Eastern hemlock, paper birch, and yellow birch, all smaller-
seeded species, were 12, 17, and 95 times more abundant in scarified plots compared to unscarified plots.
In contrast, white pine, the largest-seeded species, was unaffected by scarification and had low overall
germination. Shade tolerant hemlock and shade intolerant paper birch germinated at higher densities
in lower light, smaller harvest gap environments, while both mid-tolerant species, white pine and yellow
birch, were unaffected by light. Each species’ initial survival significantly increased with increasing light
availability, and with the exception of yellow birch, each species also survived at a significantly higher
rate with increasing light availability. Paper birch and hemlock third year survival also increased with
increasing light. By the end of the third growing season, only paper birch survival was negatively
impacted by competition from vegetation and no species were affected by exposure to deer browse pres-
sure. At the conclusion of the study, large group selection gaps (24–50 m diameter) contained the highest
density of each species except white pine, suggesting that large group selection gaps may provide the
best opportunity for reestablishing this particular group of species in the seedling layer.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the human population expected to surpass eight billion in
the next decade (United Nations, 2013), demand for goods and
services from already heavily exploited forest ecosystems will

continue to increase. Unfortunately, due to changes in species
composition including declining tree species diversity and
evenness (Schuler and Gillespie, 2000; Lawrence, 2004;
Amatangelo et al., 2011), the variety of goods and services some
forest ecosystems can provide may soon decline (Chapin et al.,
2000; Folke et al., 2004; Drever et al., 2006; Fischer et al., 2006).
Complicating matters further, lower diversity may lead to declin-
ing resilience to novel disturbances, such as climate change and
invasive pests and pathogens (Sturrock et al., 2011; Anderson-
Teixeira et al., 2013; Duveneck et al., 2014).

http://dx.doi.org/10.1016/j.foreco.2015.02.026
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The northern temperate forests of Eastern North America repre-
sent one such forest type where species composition shifts, includ-
ing declining diversity, are occurring. Some of the most noticeable
compositional changes include a decrease in overstory evenness
(Zhang et al., 2000), an expansion of a few shade tolerant species
(Schulte et al., 2007; Nowacki and Abrams, 2008; Amatangelo
et al., 2011; Hanberry, 2013), a large decline in conifers (including
hemlock and white pine) and less shade tolerant species (including
paper birch and yellow birch), and seedling and sapling size classes
dominated by a few shade tolerant species (Neuendorff et al.,
2007; Matonis et al., 2011). Some of these demographic shifts
(e.g. paper birch) cannot be considered unusual or unexpected,
given that much of this land is second growth forest that is simply
undergoing forest succession as it ages (Stearns, 1954; White and
Mladenoff, 1994; Woods, 2000). Nevertheless, the loss of species
diversity is an undesirable development for multiple-use manage-
ment, which seeks to provide society with a variety of forest
products and ecosystem services (Seymour and Hunter, 1999).
Recognizing the problems associated with declining tree diversity,
forest managers have begun investigating silvicultural means to
increase tree species diversity within this forest type.

Emulating natural disturbance is one often suggested approach
for promoting tree species diversity in northern temperate forests
(Scheller and Mladenoff, 2002; Seymour et al., 2002; Bolton and
D’Amato, 2011). Harvest disturbance using single-tree selection, a
commonly used silvicultural system in northern hardwood forests
for over 60 years, creates a series of environmentally similar small
harvest gaps (<80 m2 meters) (Crow et al., 2002; Angers et al.,
2005; Klingsporn-Poznanovic et al., 2013). Unlike single-tree selec-
tion, a harvest regime patterned after natural disturbance regimes
creates a variety of harvest gap sizes (Seymour et al., 2002). It is
generally believed that the broader range of environmental condi-
tions produced by a natural disturbance-patterned harvesting
regime will promote more species diversity than a single-tree
selection harvesting regime. This paradigm is based on the
assumption that the lower light environments produced in smaller
harvest gaps favor the establishment of shade tolerant species,
while the higher light environments of larger harvest gaps promote
the establishment of mid to shade intolerant species (Ricklefs,
1977; Denslow, 1980; McClure et al., 2000; Webster and Lorimer,
2005; Kneeshaw and Prèvost, 2007).

Nevertheless, recent evidence from gap regeneration studies
suggests that gap dynamics are far less predictable, and may be
influenced by several factors in addition to gap size (Shields
et al., 2007; Falk et al., 2010; Gasser et al., 2010; Bolton and
D’Amato, 2011; Matonis et al., 2011; Kern et al., 2012, 2013;
Fahey and Lorimer, 2013; Klingsporn-Poznanovic et al., 2013).
Consequently, management that manipulates gap size alone to
regenerate a more diverse seedling cohort will likely fail. While
current approaches have identified individual factors likely respon-
sible for gap regeneration failure, a mechanistic understanding of
how these factors interact to affect regeneration is currently lack-
ing. This suggests that an experimental approach manipulating
several potential inhibiting factors may be needed to identify the
most critical bottlenecks inhibiting natural regeneration in north-
ern harvest gaps.

Seedling establishment failure is one potential explanation
for the variable patterns of tree recruitment within harvest
gaps (Wright et al., 1998; Caspersen and Saprunoff, 2005).
While harvest gap size can be manipulated to give individual
species or groups of species a competitive advantage based
on their shade tolerance, seed must be present and seedlings
must be able to establish before any competitive advantage
can be realized. As such, manipulating factors to enhance the
recruitment of young seedlings of declining tree species is an

important prerequisite to manipulating factors that affect seed-
ling growth and survival.

Similar to how tree species vary in their competitive abilities
among light environments, tree species also vary in their abilities
to germinate and establish on a variety of forest floor substrates
(Perala and Alm, 1990; Shields et al., 2007; Marx and Walters,
2006, 2008). For instance, smaller-seeded species are more suc-
cessful on easily-penetrable, moisture-holding substrates such as
decaying coarse woody debris (hereafter referred to as CWD) com-
pared to the undisturbed litter layer (McGee and Birmingham,
1997; Cornett et al., 2001; Caspersen and Saprunoff, 2005; Marx
and Walters, 2008). In addition, smaller-seeded species also germi-
nate and establish better on bare mineral soil compared to leaf
litter (Raymond et al., 2003; Lorenzetti et al., 2008; Prèvost et al.,
2010). By contrast, larger-seeded species, some of which are now
dominating northern temperate forest understories (e.g., sugar
maple, American beech) (Neuendorff et al., 2007; Matonis et al.,
2011), are less constrained by substrate characteristics and thus
can establish successfully on undisturbed leaf litter substrates
(Caspersen and Saprunoff, 2005). Currently, in managed northern
temperate forests, undisturbed leaf litter substrates dominate
and CWD is becoming increasingly rare, as mortality of large trees
has been greatly diminished by harvest removals (Hura and Crow,
2004). Furthermore, bare mineral soil substrates are likely becom-
ing less common in selection-managed northern hardwood sys-
tems as timber harvests are often conducted in the winter over
snowpack, which buffers the forest floor from mechanical distur-
bance (Shields et al., 2007). While conducting harvests over snow
does not entirely eliminate the occurrence of forest floor distur-
bance, it likely does limit its extent to areas of the stand that are
heavily traversed, such as skid trails or landings. As a result, the
majority of the forest floor is left undisturbed (Personal observa-
tion). Collectively then, the lack of suitable seedling establishment
substrates may contribute as much or more than low light avail-
ability to smaller-seeded species recruitment failures in managed
northern temperate forests.

One apparent solution to this potential recruitment bottleneck
is to increase the availability of favorable establishment sites.
While CWD may take decades to develop naturally, and is pro-
hibitively labor-intensive to restore artificially, bare mineral soil/
humus establishment sites are relatively easy to create and may
provide similar establishment opportunities. For example, the for-
est floor could be scarified, a silvicultural technique which disturbs
the litter layer and understory vegetation by dragging chains or
disks across the forest floor to increase bare mineral soil/humus
availability. Indeed, scarification has been shown to be effective
at promoting smaller-seeded species establishment (Godman and
Krefting, 1960; Raymond et al., 2003; Lorenzetti et al., 2008;
Prèvost et al., 2010). What remains unknown, however, is whether
this observed increase in smaller-seeded species establishment fol-
lowing scarification is driven by greater seedling germination on
bare mineral soil/humus microsites, or by greater subsequent sur-
vival of newly established seedlings. In addition, little is known
about how gap size interacts with bare mineral soil/humus avail-
ability to influence patterns of seedling germination and subse-
quent survival for species of varying seed sizes. Given the
movement toward a natural disturbance based harvest regime,
quantifying these relationships is important if scarification is to
be used effectively in the management of northern temperate
forests.

Another potential explanation for inconsistent patterns of har-
vest gap recruitment is the interaction between harvest gap size
and non-tree vegetation (forbs, shrubs, ferns, and graminoids). By
responding quickly to harvest, non-tree vegetation can compete
strongly with newly established seedlings by decreasing light
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and other resources (Royo and Carson, 2006). Large gaps created by
the removal of groups of trees (group selection or patch selection
harvesting) may experience the greatest degree of resource dimin-
ishment, as highly competitive early successional species like rasp-
berry (Rubus idaeus), blackberry (Rubus occidentalis), and sedge
(Carex sp.) have been shown to increase in density in larger harvest
gaps (Shields et al., 2007; Matonis et al., 2011; Kern et al., 2012).
Consequently, intense competition for resources from non-tree
vegetation may shift the competitive balance in large harvest
gaps from resource-demanding shade intolerant species to more
resource-conserving shade tolerant species that can withstand
being overtopped and shaded by non-tree vegetation
(Montgomery et al., 2010).

In addition to substrate limitations and competition from non-
tree vegetation, browsing by white-tailed deer (Odocoileus virgini-
anus (Zimmermann)) could also limit the efficacy of varying gap
size to increase tree diversity. Indeed, browsing from elevated deer
populations has been linked to altered regeneration patterns in
several recent studies (Long et al., 2007; Witt and Webster,
2010; Kain et al., 2011; Randall and Walters, 2011; Matonis
et al., 2011; Nuttle et al., 2014). Not all species, however, may be
equally affected by browsing, as deer have been shown to browse
certain species preferentially, while avoiding others (Horsley et al.,
2003; Rooney and Waller, 2003; Long et al., 2007; Kain et al., 2011;
Randall and Walters, 2011; Schumacher and Carson, 2013; Nuttle
et al., 2014). Similarly, certain species of seedlings also show a
greater tolerance to browsing compared to others (Augustine and
McNaughton, 1998; Côtê et al., 2004). Therefore, even if silvicul-
tural treatments are successful at overcoming establishment sub-
strate and light/non-tree competition barriers to regeneration,
outcomes in harvest gaps may still ultimately reflect local deer
density (Millington et al., 2010).

In summary, the lack of predictable tree regeneration patterns
in variably-sized harvest gaps may be due to interactions with
other factors affecting the early stages of regeneration including
substrate availability, competition with non-tree vegetation, and
deer herbivory. Here, we examine the effects of these factors on
germination, initial survival (1 year), and short-term survival (up
to 3 years) of four species that are declining in northern temperate
forests (hemlock, white pine, paper birch, yellow birch) in a mesic
northern hardwood stand. Specifically we predict: (1) smaller-
seeded species will have greater germinant densities in scarified
than unscarified subplots due to the dominance of leaf litter sub-
strate in harvest gaps, (2) competition from non-tree vegetation
will negatively affect seedling survival, especially for shade intoler-
ant species in large group selection gaps, (3) browsing by deer in
unfenced plots will lead to decreased seedling survival for all spe-
cies compared to fenced plots, (4) in combination, sufficient
resource availability and modest competition from non-tree
vegetation will result in the highest seedling survivorship in
medium-sized harvest gaps for all species.

To test these predictions we established two experiments that
collectively tracked the germination and survival of hemlock
(Tsuga canadensis L.), yellow birch (Betula alleghaniensis Britton.),
paper birch (Betula papyrifera Marsh), and white pine (Pinus strobus
L.) seedlings for up to three years in subplots established across 45
variably-sized harvest gaps and 4 unharvested areas in two adja-
cent, recently harvested northern hardwood stands. Subplots were
either unscarified or scarified to create bare mineral soil/humus
substrate, unclipped or clipped to control aboveground com-
petition from non-tree vegetation, and unfenced or fenced to
exclude deer. Collectively, this information will provide mechanis-
tic insight into the causes of regeneration failure for four tree spe-
cies that are declining in the northern temperate forest and provide
insight for the development of silvicultural prescriptions designed
to increase tree species diversity.

2. Materials and methods

2.1. Study site

Our experimental sites were located in two adjacent northern
hardwood stands in Emmet County, Michigan, USA (N45.574624-
W85.074373). The stands feature post-glacial moraine topography
and a mesic, rich to very rich habitat type (AFOca) (Burger and
Kotar, 2003). Both stands were dominated by sugar maple (Acer
saccharum (Marsh.) with white ash (Fraxinus americana L.), bass-
wood (Tilia americana L.), paper birch (Betula papyrifera (Marsh.)),
black cherry (Prunus serotina (Ehrh.)), and American beech (Fagus
grandifolia (Ehrh.)) as minor components of the overstories. In
total, 45 harvest gaps ranging in size from 220 to 6500 m2 and four
unharvested areas were selected from the two stands (stand 1–40
harvest gaps + four unharvested areas; stand 2 � five harvest
gaps). At least 50 m of unharvested forest separated harvest gaps
from one another. Logging slash was removed from the interior
of each gap and scattered along the borders.

2.2. Experiment one

The goal of this experiment was to identify the effects of light
availability, non-tree vegetation, and deer herbivory on seedling
survival. Beginning in the spring of 2011, we located main plots
(13 � 13 m) in the center of each harvest gap and four unharvested
areas. All existing advanced regeneration (seedlings and saplings)
was then removed with a brush saw from each main plot. Main
plots were then either fenced to exclude deer (30) or left unfenced
(15). To ensure our fencing/non-fencing treatments were evenly
distributed across the full range of gap sizes, an equal number of
fenced and unfenced plots were chosen within four gap size cate-
gories; unharvested (0 m diameter), single-tree gaps (<23 m
diameter), large group gaps (24–50 m diameter), and patch cut
gaps (PC) (>50 m diameter). Gap size was determined by measur-
ing the distance between boles of gap edge trees (Runkle, 1981).
Four subplots (4 m2) were established within each main plot.
Each subplot was randomly assigned one of four treatments: con-
trol, surface scarification, non-tree vegetation (forb, graminoids,
ferns, shrubs) control, and surface scarification with vegetation
control. Scarification was conducted in late-May and was accom-
plished by raking away the litter layer to create a bare mineral
soil/humus seedbed. Vegetation removal was accomplished by
clipping all non-tree vegetation to the ground once per month
throughout the growing season. After scarification, 500 cold-
stratified seeds each of eastern hemlock (Michigan source,
Michigan Department of Natural Resources, Wyman Nursery,
Manistique Michigan), yellow birch (Pennsylvania source,
Sheffield’s seeds, Locke, New York), and paper birch (Michigan
source, Sheffield’s seeds Locke, New York) were sown in late-May
in each subplot. These species were chosen due to their declining
status in northern temperate forests, their rareness in the over-
story at our site (seed dispersal control), and for the variation that
exists in their seed weight and shade tolerance (Table 1). Prior to
sowing, we conducted germination tests on each species to ensure
seed viability. Despite yellow birch demonstrating adequate
germination in the test, poor germination was observed in the
field, prompting us to remove yellow birch results from this report.

For each subplot, we assessed non-tree vegetation cover and
height, light availability above non-tree vegetation, and light avail-
ability at the forest floor (beneath non-tree vegetation). Non-tree
vegetation density was determined by visually estimating subplot
coverage to the nearest five percent (looking down) and by mea-
suring its height (cm) at nine pre-determined locations in
September annually. Canopy openness, a proxy for canopy gap
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light availability (Kobe and Hogarth, 2007), was determined from
analyses of hemispherical photographs taken in July 2011 at a
height of 1.5 m (which was above the non-tree vegetation layer)
using Gap Light Analyzer v 2.0 (Frazer et al., 1999) with an auto-
matic threshold value determined for each photo from Sidelook
v. 1.1.01 (Nobis and Hunziker, 2005). To quantify the impact of
competing non-tree vegetation on light availability to developing
seedlings, we estimated the light environment at 1 cm height
(below non-tree competing vegetation) relative to the light
environment at 1.5 m height (above competing vegetation in
mid-July 2012) as diffuse non-interceptence (DIFN) with an LAI
2000 plant canopy analyzer (LI-COR Incorporated, Lincoln,
Nebraska). This value as a proportion of non-intercepted light
was then multiplied by the canopy openness value (as a proportion
of open sky light reaching 1.5 m height) obtained with canopy pho-
tos to estimate light availability to seedlings established on the for-
est floor (i.e. 1 cm height). Each seedling was given a colored tag
denoting its cohort year at the time of its germination. Seedling
survivorship for sown species was then monitored within subplots
at the end of September for three years.

2.3. Experiment two

The goals of this experiment were to (a) acquire higher res-
olution information than in Experiment One on how light, sub-
strate availability, and non-tree vegetation affect the germination
and survival via more frequent censusing, and (b) assess the effects
of these factors on a greater number of species than those that suc-
cessfully germinated in Experiment One (i.e. paper birch and east-
ern hemlock). In spring 2012, we established four additional
subplots adjacent to the main plot in 13 of the 40 harvest gaps
and two understory locations. Gaps were selected from gap size
strata in order to assure we captured the entire range of gap sizes.
Subplots were also established in five additional single-tree gaps,
located in an adjacent recently harvested stand (summer 2011),
as a lack of available gap space prevented us from locating subplots
outside of the main plot in the single-tree gaps used in Experiment
One. Each of the four new subplots were randomly assigned one of
the treatment options described above in Experiment One. After
scarification, 500 cold-stratified seeds of eastern hemlock
(Michigan source, Michigan Department of Natural Resources,
Wyman Nursery, Manistique Michigan), yellow birch
(Pennsylvania source, Sheffield’s seeds, Locke, New York), paper
birch (Michigan source, Sheffield’s seeds Locke, New York), and
white pine (Michigan source, Michigan Department of Natural
Resources, Wyman Nursery, Manistique Michigan) were spread
evenly throughout each subplot. Due to a shortage in seed, white
pine was only added to subplots in 10 of the 18 harvest gaps and
two understory locations.

In each subplot in each location, we assessed non-tree veg-
etation cover and height, light availability above non-tree veg-
etation, and light availability below non-tree vegetation using
the same protocol described in Experiment One. Germination
was surveyed within each subplot on a bi-weekly basis from

early-May through September. We increased the sampling inten-
sity in this experiment to get a more accurate measurement of
germination and early survival, as high seedling mortality was
observed in Experiment One prior to our lone September census.
A seed was considered successfully germinated and established
once its first true leaves expanded. Each established seedling was
then tagged and monitored for survival over the next two years.

2.4. Statistical analysis

For statistical analysis, we kept the results of each experiment
separate. This was done to exclude potential confounding factors
including differences in cohort age, sampling intensity and varia-
tion in climate between years. As such, we used the cohort from
Experiment One (less intense sampling, smaller species pool, but
longer duration) to compare third year survival, while the cohort
established in Experiment Two (greater sampling intensity and lar-
ger species pool) was used to compare germination, initial survival
(1st year), and second year survival of individual species. We
examined the effects of scarified/unscarified, light availability, spe-
cies, and their interactions on seed germination for each of the four
species (Experiment Two) with Generalized Linear Mixed Models
(GLMM) assuming a Poisson distribution with a logarithmic link
function. This method was adopted because our data were heavily
right skewed due to the large number of plots with few or no
germinants. Clipping was not considered as a factor for germina-
tion, as the competing non-tree vegetation was already altered in
subplots receiving scarification treatments.

To examine seedling establishment (1st year survival) and sec-
ond and third year survival we used Generalized Logistic Mixed
Models assuming a binomial distribution. For establishment and
second year survival of each of the four species, we considered
the effects of clipping/unclipped, light availability, species, and
their interactions. Fencing was not included as a factor at these
intervals because seedling establishment and second year survival
were only evaluated in unfenced subplots (Experiment Two).
Fencing was, however, considered along with each previously
mentioned factor in third year survival of paper birch and hemlock,
as seedling survivorship was evaluated in subplots which had been
either fenced or left unfenced (Experiment One).

Prior to model construction we tested for co-linearity between
the predictors with Pearson’s correlations. All Pearson’s correlation
coefficients were <0.7 indicating that co-linearity would not have
severe effects on model estimation and prediction, thus justifying
our co-consideration of all predictors in modeling (Dormann
et al., 2013). Model selection was accomplished through back-
wards elimination. If the results of our modeling produced an
interaction term exceeding the suggested threshold for pooling
variances (p > 0.25, Bancroft, 1964), we eliminated the highest
order interaction term with the highest P value and re-ran the
model. This protocol was repeated until all interactions fell below
the pooling threshold. Main effects and interactions p < 0.05 were
considered significant. Significant species interactions were inves-
tigated by examining the response of each individual species to the
significant interacting factor. Once we arrived at a final model, we
checked the model for dispersion of the distribution, goodness of
fit, and the existence of potential outliers. Model dispersion was
estimated by calculating an over-dispersion factor (ĉ = chi-
sqaure/df). Models whose dispersion factors exceeded one were
considered over-dispersed. In such cases, parameter estimates
were obtained using a quasi-likelihood approach which inflated
the standard errors of each factor estimate by

p
ĉ. The model was

then re-run and checked for significance. Model fit and potential
outlier detection was accomplished by examining plots of studen-
tized deviance residuals. Model fit was evaluated by visually
inspecting how evenly the residuals were distributed around zero.

Table 1
Average seed weight of a cleaned seed and shade tolerance rating for each
investigated species.

Species Seed Size (Mg) Shade tolerance

Hemlock 2.43 4.83
Paper birch 0.33 1.54
Yellow birch 1.01 3.17
White pine 17.24 3.21

Note – Seed weight information obtained from Bonner and Karrfalt (2008), while
shade tolerance is based on the continuous index of Niinemets and Valladares
(2006).
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Points on the plot exceeding two standard deviations of the mean
were identified as potential outliers. To evaluate the influence of
such points, we used Cook’s distance statistic. Distance statistics
exceeding one were identified as potentially having strong lever-
age effects on the model. To investigate these effects, we removed
the potential outlier from the data set and re-ran the model. If all
parameters in the model remained significant, the potential outlier
was kept as part of the data set. However, if changes in parameter
significance occurred without the outlier, the point was then
removed (Ramsey and Schafer, 1997). All analyses were performed
in JMP 9.0 (SAS Institute, Cary, NC).

3. Results

3.1. Germination

Scarification dramatically increased bare mineral soil/humus
availability compared to unscarified plots (Table 2) and had strong
overall effects on germination, but significant species and scarifica-
tion interactions indicate that species responded differently to
scarification (Table 3). Smaller seeded hemlock, paper birch, and
yellow birch (Table 1) were, on average, 12, 17, and 95 times more
abundant in scarified plots compared to unscarified plots (Table 4).
In contrast, white pine, the largest seeded species (Table 1), which
had lower overall germination than the other species, was unaf-
fected by scarification (Table 4). Light availability, which increased
along with harvest gap size, also affected germination, but a signifi-
cant interaction with species indicated that species also responded
differently to light (Fig. 1) (Tables 3 and 5). Shade tolerant hemlock
and shade intolerant paper birch both germinated at greater densi-
ties in lower light environments, while both mid-tolerant species,
white pine and yellow birch, were unaffected by light (Fig. 1).

3.2. Seedling survival

Initial seedling survival (1st growing season survival) and sec-
ond year survival were strongly affected by the main effects of spe-
cies and light availability and modestly affected by their
interaction (Table 6). All species’ initial survival increased with
light; however, the strength of response varied among species,

with hemlock showing the most dramatic increase in survival with
increased light (Fig. 2). Similar increases in second-year survival
with light were observed for hemlock, paper birch, and white pine,
but yellow birch survival did not respond to light the second year
(Fig. 3). In the third year, seedling survival was most strongly influ-
enced by clipping, light, and species (only hemlock and paper birch
tested) (Table 7). Clipping (Table 8) and light (data not shown)
both had positive effects on each species (Table 7); however, only

Table 2
Mean percent cover of mineral soil/humus, hardwood litter, and non-tree vegetation
(shrubs, forbs, ferns, graminoids) in scarified and unscarified subplots at the time of
sowing.

Treatment Mineral soil/humus
(mean % cover)

Hardwood litter
(mean % cover)

Non-tree vegetation
(mean % cover)

Scarified 90 5 5
Unscarified 5 55 40

Table 3
Results of a generalized linear mixed model for the effects of scarification, light,
species, and their interactions on germination for hemlock, yellow birch, paper birch,
and white pine. Each combination of factors was considered up to three way
interactions in the original model. All interactions with Prob ChiSq > 0.25 were pooled
with the error term and the models rerun. Effects and interactions with Prob
ChiSq < 0.05 were considered significant.

Factor L-R ChiSquare Prob > ChiSq

Germination
Scarification 38.31 <.0001
Species 3.96 0.2659
Scarification � Species 11.17 0.0108
Light 14.14 0.0002
Species � Light 12.26 0.0066
R2 = .44

Table 4
Observed germination response of paper birch, yellow birch, hemlock, and white pine
in scarified and unscarified subplots.

Species Treatment Sub-
plots

Mean
seedlings/4 m2

Median Range SD

Paper birch Scarifieda 40 17.15 7.5 0–128 24.97
Yellow birch Scarifieda 40 9.53 1 0–113 20.38
Hemlock Scarifieda 40 10.98 2 0–59 16.02
White pine Scarified 24 2.04 1 0–13 2.84

Paper birch Unscarified 40 0.98 0 0–16 2.65
Yellow birch Unscarified 40 0.1 0 0–1 0.3
Hemlock Unscarified 40 0.88 0 0–18 2.93
White pine Unscarified 24 2 1 0–8 2.19

Note – White pine was seeded in fewer subplots due to seed shortages.
a Represent statistically significant differences (Prob > |Z| < 0.0001, Wilcoxon/

Kruskal–Wallis test).

Fig. 1. The effects of scarification (SC) and light on paper birch, yellow birch,
eastern hemlock, and white pine germination. Black circles represent germination
in scarified plots, while white circles reflect germination in unscarified plots. R2

applies to the whole model including the main effects of scarification and light
availability. Partial P values are displayed for scarification and light in that order.

Table 5
Summary of environmental conditions across different gap size classes. With the
exception of the first row, values represent mean values.

Variable Understory
(0 m
diameter)

Single
tree
(<23 m
diameter)

Large
group
(24–50 m
diameter)

Patch cut
(>50 m
diameter)

Gaps/Understory (n = 49) 4 13 24 8
Canopy openness (%) 7.18 17.21 35 74.12
Non-tree vegetation

cover (%)
10 12 66 76

Non-tree vegetation height
(cm)

3 4 27 44

Rubus spp. cover (%) 0 1 15 50
Forest floor light (%) 6.98 16.15 21.06 36.16

J.L. Willis et al. / Forest Ecology and Management 347 (2015) 237–246 241



the survival of paper birch was significantly improved by clipping
(Table 8). In addition, the effect of clipping was independent of
light availability, indicating that clipping was equally effective

across the range of gap sizes. Overall, paper birch exhibited higher
third year survivorship (65%) compared to hemlock (21%). Clipping
did not affect first or second year survival and fencing (deer exclu-
sion) was not a significant factor in establishment or survival in
any year for any species (data not shown).

3.3. Temporal changes in seedling density in harvest gaps

Across gap sizes, seedling density in scarified subplots was a
function of germination and subsequent survival. In integrating
these effects, we found that the optimal gap size for maximizing
seedling density changed over time for most species. Maximum
seedling density for white pine and hemlock, for example, shifted
from unharvested areas where they germinated best (Fig. 4) to
higher light environments where they survived better (Fig. 4).
Paper birch followed a similar pattern, as it germinated best in sin-
gle-tree gaps but survived best in larger group harvest gaps after
three years (Fig. 4). In contrast to these species, yellow birch
showed no change in environmental preference, as it germinated
and survived at its greatest density in larger group harvest gaps
(Fig. 4).

4. Discussion

4.1. Germination

Since the seed to seedling transition is one of the earliest steps
in the natural regeneration process, factors affecting germination
have the potential to strongly influence forest stand dynamics.
Small-seeded species (yellow birch, paper birch, and hemlock)
germinants were overwhelmingly more abundant in scarified com-
pared to unscarified subplots, demonstrating the strong influence
of bare mineral soil/humus on seedling layer composition. These
results support our initial hypothesis of substrate limitation for
smaller seeded species, and are consistent with germination pat-
terns found in other forest types (Valkonen and Maguire, 2005),
seedling substrate associations found in northern hardwood for-
ests (Godman and Krefting, 1960; Caspersen and Saprunoff,

Table 6
Results of a generalized logistic mixed model for the effects of clipping, light, species,
and their interactions on initial survival (1st year survival) and second-year survival
for hemlock, yellow birch, paper birch, and white pine. Each combination of factors
was considered up to three-way interactions in the original model. All interactions
with Prob ChiSq > 0.25 were pooled with the error term and the models rerun. Effects
and interactions with Prob ChiSq < 0.05 were considered significant.

Factor L-R ChiSquare Prob > ChiSq

Initial Survival (1st year)
Species 100.2 <.0001
Light 34.92 <.0001
Species � Light 8.85 0.0314
R2 = .43

Survival (2nd year)
Species 82.69 <.0001
Light 19.28 <.0001
Species � Light 9.37 0.0247
R2 = .36

Fig. 2. The effect of light availability on paper birch, yellow birch, eastern hemlock,
and white pine initial survival (1st year survival). R2 and partial P values represent
the effect of light on initial survival.

Fig. 3. The effect of light availability on paper birch, yellow birch, eastern hemlock,
and white pine seedling second year survival. R2 and partial P values represent the
effect of light on seedling survival.

Table 7
Results of a generalized logistic mixed model for the effects of clipping, light, species,
fencing, and their interactions on third-year hemlock and paper birch survival. Each
combination of factors was considered up to three-way interactions in the original
model. All interactions with Prob ChiSq > 0.25 were pooled with the error term and
the models rerun. Effects and interactions with Prob ChiSq < 0.05 were considered
significant.

Factor L-R ChiSquare Prob > ChiSq

Survival (3rd year)
Clipping 16.55 <.0001
Species 15.98 <.0001
Light 12.85 0.0003
Clipping � Species 3.1 0.0784
R2 = .39

Table 8
The effect of clipping on paper birch and hemlock third year survival. SD = standard
deviation.

Species Cohort age Treatment Subplots Mean
(%)

Median Range SD

Paper birch 3 Clippeda 26 68 82 0–100 39
Paper birch 3 Unclipped 19 33 0 0–100 46
Hemlock 3 Clipped 32 27 6 0–100 37
Hemlock 3 Unclipped 28 15 0 0–100 32

a Represent statistically significant differences (Prob > |Z| = 0.05 Wilcoxon/
Kruskal–Wallis test).

242 J.L. Willis et al. / Forest Ecology and Management 347 (2015) 237–246



2005;Bolton and D’Amato, 2011; Bèland and Chicoine, 2013), and
post scarification seedling layer composition from other forest
types (Raymond et al., 2003; Lorenzetti et al., 2008; Beguin et al.,
2009; and Prèvost et al., 2010). Collectively, these findings suggest
that substrate-related germination failures are likely contributing
to the scarcity of smaller seeded species seedlings in mesic north-
ern temperate forests (Neuendorff et al., 2007; Matonis et al.,
2011). However, it should also be noted that a reduction in local
seed sources may also factor into natural regeneration failures,
and were not considered in this seed addition study.

In contrast to the germination response of smaller seeded spe-
cies, white pine was unaffected by the scarification treatment.
While limited to just one species, this finding supports our non-
substrate limitation hypothesis for larger-seeded species and the
findings of Cornett et al. (1998), who also found white pine emer-
gence to be insensitive to forest floor disturbance, but differs with
the findings of Raymond et al. (2003) who found white pine
germination was improved by scarification.

There are several potential biological explanations for this dis-
crepancy, though before any of these possibilities are considered,
it should be noted that in this study white pine was seeded in
fewer harvest gaps than the other species, and also germinated
at a lower density. Given this preface, one potential explanation
for lower white pine germination may come from a difference in
leaf litter depth between studies. The overstory at our site is domi-
nated by sugar maple and other mesic hardwoods which produce
relatively nutrient rich, quickly decomposing litter resulting in
relatively thin litter layers (Melillo et al., 1982). In contrast, the
dominant overstory species in Raymond et al. (2003) was white
pine (38% volume) which produces a more recalcitrant litter layer
(Melillo et al., 1982; Rustad and Cronan, 1988), and, thus, could be
characterized by a thicker litter layer that may have imposed a

larger impediment to white pine germination. Temperature differ-
ences may also have contributed to differences in litter layer depth,
as Raymond et al. (2003) was conducted in a colder, sub-boreal
climate which likely would have had slower decomposition rates
than those which likely exist at our more temperate field site.
Consequently, scarification may have had a larger effect on forest
floor conditions at the site used by Raymond et al. (2003).

Another factor which may have minimized influence of scar-
ification on white pine germination is seed predation. White pine
seeds are a preferred food for small mammals (Abbott, 1961;
Martell, 1979), and studies have demonstrated greater germination
when seed predators are excluded (Cornett et al., 1998; Raymond
et al., 2003). In this study, no attempts were made to exclude seed
predators, and white pine germinant density was the lowest
among our experimental species. Thus, we cannot eliminate the
possibility that seed predation may have confounded positive
scarification effects if there was greater seed loss to predators in
scarified than unscarifed plots. This is plausible if seeds are more
apparent in scarified than unscarified areas, but is contrary to the
finding that a continuous non-tree vegetation layer, which
scarification disrupts, encourages small mammal seed predation
(Royo and Carson, 2008).

The presence of earthworms (Lumbricus spp.) may also have
contributed to a thinner litter layer at our site. Several studies have
reported a large decrease in litter layer depth in areas occupied by
invasive earthworms (Hale et al., 2005; Frelich et al., 2006; Suárez
et al., 2006). While no attempts were made to detect earthworms
at our site, we do not believe that earthworms are having strong
effects on litter layer depth, as each of our light seeded species ger-
minated at significantly lower densities in unscarified plots.

In addition to scarification, species responded differently to
light availability. While the decline in hemlock germination in
higher light environments was consistent with its reputation as a
shade specialist, the preference for lower light environments by
paper birch was unexpected given its collection of early succes-
sional life history traits (Burns and Honkala, 1990). Nevertheless,
this finding is consistent with earlier studies which found greater
hemlock and paper birch germination in shade (Hough, 1960;
Goerlich and Nyland, 2000).

One potential explanation for this pattern may be related to
microclimatic differences between lower light environments
(unharvested/single-tree harvest gaps) and higher light environ-
ments (large group selection gaps/patch cuts), as lower light forest
understories have lower temperature fluctuations and higher
humidity compared to understories in higher light environments
(Phillips and Shure, 1990; Strong et al., 1997). These climatic differ-
ences may have led to greater seed and/or germinating seedling
desiccation in higher light environments than lower light environ-
ments. Germination substrate moisture may have been a particu-
larly important factor in this study, as although hemlock and
yellow birch prefer warm, moist conditions for germination and
can germinate as late as July in the northern portion of their range
(Burns and Honkala, 1990; Goerlich and Nyland, 2000), their win-
dow for germinating in open, more drought susceptible locations
may have been truncated given our May seed sowing. Consistent
with our findings, Jordan and Sharpe (1967) witnessed little hem-
lock germination on south facing aspects and/or open canopy areas
following a May seeding, and speculated that had they seeded just
after snow-melt in late-March to early-April they might have
increased germination in more exposed locations.

In contrast to hemlock and paper birch, light availability had no
effect on white pine and yellow birch germination. As previously
mentioned, seed predation may account for the overall low
germination observed for white pine; however, the insignificant
response of yellow birch to light availability is surprising con-
sidering that light has been shown to lessen the effect of a
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water-soluble germination inhibitor present on its seed-coat
(Redmond and Robinson, 1954). Nevertheless, this finding is con-
sistent with previous work which also found yellow birch germi-
nant density did not increase with increasing light availability
(Houle, 1992). While the exact mechanism remains unclear, the
gentle decline in germination with increasing light availability
does, however, suggest that moisture stress is likely a stronger con-
straint on yellow birch germination than its seed coat germination
inhibitor. The high overall variability in its germination also sug-
gests that microenvironment differences between subplots may
be highly influential, as germination tended to be higher in sub-
plots where clay was a more prominent component of the soil
(Personal observation). The importance of clay would also support
the notion that soil moisture is critical for yellow birch germina-
tion reported by Godman and Krefting (1960).

While the limited range of species investigated in this study
restricts our ability to comment on general trends among species,
these results do suggest that lower light availability (associated
with single-tree gaps) is not a strong constraint on germination
for this particular group of species. Thus, moving away from sin-
gle-tree selection toward a natural disturbance based silvicultural
system is unlikely to increase these species’ initial representation
in harvest gaps. This underscores the importance of considering
factors that affect not just seedling survivorship, but also germina-
tion when natural regeneration is the goal.

4.2. Seedling survival

Within harvest gaps, increasing light availability (larger harvest
gaps) had a positive influence on each species’ initial survival and,
with the exception of yellow birch, each species’ second-year sur-
vival. This finding is unsurprising considering that previous work,
including on some of the same species, has shown light to be posi-
tively related to seedling survival over the range we examined
(Walters and Reich, 2000). It also supports the notion that larger
canopy harvest gaps provide important regeneration opportunities
for less tolerant species in forest systems where large scale distur-
bances are uncommon (Runkle, 1982; McCarthy, 2001). The
combination of a mid-tolerance of shade and a short survival
census period (2 years) may account for the unresponsiveness of
yellow birch (Burns and Honkala, 1990; Kobe et al., 1995).
Nevertheless white pine, a species of similar shade tolerance,
responded positively to increasing light availability, suggesting
that another unmeasured factor(s) may be obscuring the influence
of light availability on yellow birch survival.

Consistent with our expectations, seedlings that established in
unclipped subplots were quickly overtopped by non-tree veg-
etation in larger canopy openings, which reduced light environ-
ments and survival by the third year, compared to seedlings
established in clipped subplots. While limited to just two species
(hemlock and paper birch), and only statistically significant for
paper birch, this finding suggests that competition from non-tree
vegetation can influence seeding layer composition even at the
earliest stages of seedling development. In our opinion, the
insignificant response of yellow birch, white pine, and hemlock
to clipping was likely due to their greater shade tolerance and
the short duration of this experiment, rather than an indicator of
the potential influence of non-tree vegetation over seedling layer
composition, as previous work has shown non-tree vegetation to
have negative effects on each species’ survival (George and
Bazzaz, 1999; Saunders and Puettmann, 1999; Gasser et al.,
2010; Kern et al., 2012).

Browsing was not shown to be a significant factor affecting
seedling survival for any species. While this finding runs contrary
to our initial hypothesis, we urge caution in its interpretation, as
severe browsing effects have been observed on larger seedlings

planted in neighboring (<2 m away) subplots (unpublished data).
These observations suggest that slash is having little to no influ-
ence on browse pressure since larger, planted seedlings are being
selectively browsed. We attribute the insignificance of browsing
to the availability of more palatable food that is easier to find than
our smaller seedlings. Consequently, we do not believe the results
of this study should be taken as evidence that deer are an
inconsequential factor influencing natural regeneration in north-
ern temperate forests, as our separate observations and the find-
ings of several other investigators support the opposite
(Millington et al., 2010; Witt and Webster, 2010; Matonis et al.,
2011; Kern et al., 2012).

5. Conclusion and management recommendations

The collective findings from the two manipulative experiments
comprising this study provide several important insights for the
development of natural disturbance-patterned harvest regimes in
managed northern temperate forests. Central among these is the
importance of bare mineral soil/humus for smaller-seeded species
germination. While we cannot predict whether seedlings estab-
lished in scarified plots will successfully pass through the series
of filters that exist between seedling establishment and canopy
ascension, scarification at least gives smaller-seeded species the
opportunity to complete this transition by allowing them to germi-
nate. Without the opportunity to bypass this critical early filter,
species traits that may otherwise facilitate gap capture including
shade tolerance, browse tolerance, drought tolerance, and com-
petitive ability would be rendered effectively moot. Thus, our find-
ings support the notion put forth by Bolton and D’Amato (2011)
suggesting that germination substrate may override the influence
of harvest gap size for smaller-seeded species, and demonstrate
the importance of incorporating surface disturbance into silvicul-
tural prescriptions (e.g., harvesting in the absence of snow or scar-
ification). However, it should be emphasized again that seed
supply issues may override the influence of substrate under natu-
ral regeneration conditions.

Variation in harvest gap size also affected seedling demo-
graphics. Although no harvest gap size provided the optimal
environment for seed germination, large group harvest gaps sup-
ported the highest density of seedlings for all species except white
pine, which germinated at low initial densities. Taken together, our
results suggest that large group selection harvest gaps may repre-
sent the best management option for establishing a new seedling
cohort for this particular group of species, as they provide gener-
ally favorable environments for seed germination and encourage
greater seedling establishment and survival. This pattern also pro-
vides initial support for adopting an expanding gap harvesting sys-
tem where harvest gaps are expanded once advanced regeneration
has been achieved (Raymond et al., 2009). Nevertheless, our results
also indicate that non-tree vegetation had a negative effect on
seedling survival. As such, management efforts may need to con-
sider vegetation control options if they are attempting to regener-
ate this collection of species in harvest gaps on high quality sites.
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