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High-order simulation of hypersonic
nonequilibrium flows on overset grids

By A. Lani, B. Sjögreen AND H. C. Yee

1. Motivation and objectives

The time-accurate unsteady 3D compressible flow solver ADPDIS3D is supported by
a grant from the Department of Energy (DOE) SciDAC program through the Science
Application Partnership (SAP) initiative. The objective of this grant is to develop, im-
plement and validate this variable high-order 3-D multiblock overlapping (overset) grid
solver for turbulence with strong shocks and density variations. ADPDIS3D includes
capabilities for both direct numerical simulation (DNS), resolving all scales of the flow
fields, and large eddy simulation (LES) modeling the small turbulent scales. One of the
unique features of the code is the ability to perform DNS and LES computations in
non-trivial geometries through the use of overset curvilinear grids. ADPDIS3D contains
a large number of high-order numerical schemes and shock-capturing numerical schemes
for accurate unsteady computations for flow speeds that range from nearly incompressible
to hypersonic speeds. Importantly, ADPDIS3D implements many innovative low dissipa-
tive algorithms that adaptively use numerical dissipation from shock-capturing schemes
as post-processing filters on non-dissipative high-order centered schemes. These schemes
were especially designed for improved accuracy over standard high-order shock-capturing
schemes in capturing of turbulence with strong shocks and density variations. For a de-
scription of algorithms and their performances, including a detailed LES computation of
temporal-evolving mixing layer, see e.g., Sjögreen & Yee (2009), Yee & Sjögreen (2006),
Yee et al. (2008), Yee & Sjögreen (2009), Yee et al. (2010), Wang et al. (2010), Hadjadj
et al. (2010). Furthermore, ADPDIS3D contains solvers for standard compressible flow,
compressible non-ideal MHD, and chemical nonequilibrium hypersonic flows. For a more
detailed description see Sjögreen et al. (2009).

Multiscale turbulence with strong shocks and flows containing both steady and un-
steady components requires mixing of numerical methods and switching on the appro-
priate scheme in the appropriate subdomains of the flow fields, even under the multi-
block grid or adaptive grid refinement framework. It is a non-trivial task to find adaptive
schemes that both correctly identify different flow features, and perform switching locally
to a suitable method without seriously affecting the overall accuracy of the method. While
low dissipative sixth- or higher-order shock-capturing filter methods are appropriate for
unsteady turbulence with shocklets, third-order or lower shock-capturing methods are
more effective for strong steady or nearly steady shocks in terms of convergence. An im-
portant application for the subject flow physics is chemical and thermo-chemical nonequi-
librium hypersonic turbulence flows. In order to minimize the shortcomings of low-order
and high-order shock-capturing schemes for the subject flows, ADPDIS3D contains over-
set grids with different types of spatial schemes and orders of accuracy on the chosen
block grids as an efficient method in combating the difficulty. It is anticipated that this
particular overset grid framework capability with highly modular design will allow an
optimum synthesis of these new algorithms in such a way that the most appropriate spa-



162 A. Lani, B. Sjögreen and H. C. Yee

tial discretizations can be tailored for each particular region of the flow. In addition, for
nonequilibrium/combustion flows, ADPDIS3D has been merged with the MUTATION
library (version 1.3, Thierry Magin, private communication) for more accurate transport,
chemical/thermo properties.

The overset grid implementation for a perfect gas has been validated in Sjögreen & Yee
(2009) and Yee & Sjögreen (2006). With additional improvements (Wang et al. 2010),
the same numerical methods and the same overset grid framework for perfect gas can
be carried over to chemical and certain thermo-chemical nonequilibrium flows. This is a
work-in-progress report of the first step of a multistep validation process for the nonequi-
librium implementation. Only 2-D five-species one-temperature blunt body inviscid and
viscous flows are considered for the present validation. In the considered test case, the
flow consists of a major steady bow shock and smooth flow on the rest of the computa-
tional region. Unlike the standard pseudo time-marching to the steady state, in order to
asses the capability of unsteady computations, the computations are time accurate. In
addition, due to the steady flow nature of the test case, high-order filter schemes that
were not designed for efficient convergence to the steady states will not be considered.
Only a second-order TVD scheme and fifth-, seventh- and ninth-order WENO (WENO5,
WENO7 and WENO9) using the Lax-Friedrichs flux schemes are considered.

2. Flow Solver

2.1. Governing equations

The system of governing equations for a gas mixture in thermodynamic equilibrium and
chemical nonequilibrium can be expressed in conservative form as

Ut + (Fk(U))xk
+ (Gk(U))xk

= S(U), k = 1, .., 3, (2.1)

where U = (ρs, ρv, ρE)T are the conservative variables, ρs the partial densities, with
s = 1, . . . , Ns for a mixture of Ns species. The convective and diffusive fluxes, Fk and
Gk, are, respectively, given by

Fk =





ρsvk

ρvkvl + pδkl

ρvkH



 , Gk =





ρsvsk

−τkl

−τklvl + qk +
∑

s ρsvskhs



 , l = 1, .., 3. (2.2)

The mixture total density, the pressure and the total energy per unit volume appearing
in (2.2) are computed with

ρ =
∑

s

ρs, p = RT

Ns
∑

s=1

ρs

Ms

, ρE =

Ns
∑

s=1

ρs

(

es(T ) + h0
s

)

+
1

2
ρv2, (2.3)

where h0
s are the species formation enthalpies. The exact expressions for the species inter-

nal energies es(T ), including roto-translational, vibrational and electronic contributions,
can be found in Abeele (2000). The viscous stresses τkl and the conduction heat fluxes
qk can be expressed as follows:

τkl = µ

[(

∂ul

∂xk

+
∂uk

∂xl

)

−
2

3
∇ · vδkl

]

, qk = −(λt + λr)
∂T

∂xk

. (2.4)
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Here, the computation of transport coefficients and fluxes is based on the modified
Chapman-Enskog perturbative analysis for partially ionized plasmas and on efficient
iterative algorithms (Magin & Degrez 2004) for solving the linear systems from which
shear viscosity µ and translational thermal conductivity λt can be obtained. The rota-
tional thermal conductivity λr is calculated with the Eucken approximation (Abeele
2000). The diffusion fluxes ρsvsk are computed by solving the Stefan-Maxwell system
(Abeele 2000), i.e., a linear system in the diffusion fluxes consisting of as many equations
as those of the mixture chemical species, supplemented by the auxiliary condition of zero
sum for the diffusion fluxes. The source term in (2.1) reads

S =





ω̇s

0
0



 , ω̇s = Ms

Nr
∑

r=1

(

ν
′′

sr − ν
′

sr

)







kfr

Ns
∏

m=1

(

ρm

Mm

)ν
′

mr

− kbr

Ns
∏

m=1

(

ρm

Mm

)ν
′′

mr







,

(2.5)
with ω̇s expressing the mass production/destruction term for chemical species s. In Eq.
2.5, the forward reaction rates coefficients kfr = Af,rT

nf,r exp(−Ef,r/kT ) are expressed
by means of Arrhenius’ law. The backward reactions rates coefficients are computed
as kb,r = kf,r/K

eq
c,r, where Keq

c,r is the equilibrium constant. In the present work, all
thermodynamic, transport, chemical properties have been calculated by the MUTATION
library (version 1.3, Thierry Magin) which provides state-of-the-art models described
extensively in Abeele (2000) and Magin & Degrez (2004), to whom any interested reader
is referred.

2.2. Numerical Discretization

In spite of the vast number of low-dissipative high-order schemes contained in ADPDIS3D
(Sjögreen & Yee 2009; Yee & Sjögreen 2006; Yee et al. 2008; Yee & Sjögreen 2009; Yee
et al. 2010; Hadjadj et al. 2010; Wang et al. 2010), in the present preliminary study,
only the second-order Harten-Yee TVD (see Yee (1989) and references cited therein for
details) and WENO Lax-Friedrichs schemes are considered for the discretization of the
inviscid flux derivative. A matching order of discretization as the inviscid flux derivatives
is applied to the viscous flux derivatives. A pointwise evaluation is used for the reacting
term. Explicit second-order Runge-Kutta (RK2) is used in a time-accurate mode for the
time discretization. Due to the explicit time-accurate computation, a very large number
of iterations should be expected. With a sufficiently fine grid, unsteady features of the
flow field, if they exit, can be observed with this time-accurate approach.

2.2.1. Finite difference WENO schemes

Consider a scalar hyperbolic conservation law with source term in one dimension:

ut + f(u)x = s(u), (2.6)

with a positive advection speed f ′(u) ≥ 0. For a finite difference discretization, evolve
the point values ui at mesh points xi in time with a uniform mesh size ∆x for simplicity.
The spatial derivative in Eq. 2.6 is approximated by a conservative flux difference:

f(u)x|x=xi
≈

1

∆x

(

f̃i+ 1

2

− f̃i− 1

2

)

. (2.7)

The numerical flux f̃i+ 1

2

is computed through the neighboring point values fj = f(uj).

For a (2k − 1)-th order WENO scheme, first k numerical fluxes are computed by



164 A. Lani, B. Sjögreen and H. C. Yee

f̃
(r)

i+ 1

2

=

k−1
∑

j=0

crjf(xi−r+j), r = 0, . . . , k − 1, (2.8)

corresponding to k different candidate stencils Sr(i) = xi−r, . . . , xi−r+k−1. Each of these
k numerical fluxes is k−th-order accurate. For example, when k = 3 (fifth-order WENO),
the three third-order accurate numerical fluxes are given by

f̃
(0)

i+ 1

2

=
1

3
fi +

5

6
fi+1 −

1

6
fi+2 (2.9)

f̃
(1)

i+ 1

2

= −
1

6
fi−1 +

5

6
fi +

1

3
fi+1 (2.10)

f̃
(2)

i+ 1

2

=
1

3
fi−2 −

7

6
fi−1 +

11

6
fi. (2.11)

The (2k− 1)-th order WENO flux consists of a convex combination of all these k fluxes:

f̃i+ 1

2

=

k−1
∑

r=0

wr f̃
(r)

i+ 1

2

. (2.12)

Here, the conditions wr ≥ 0 and
∑k−1

r=0 wr = 1 hold for the nonlinear weights which are
defined as

wr =
αr

∑k−1
s=0 αs

, αr =
dr

(ǫ+ βr)2
, (2.13)

where the linear weights dr yield the required (2k − 1)-th order accuracy, βr are the
so-called smoothness indicators which measure the smoothness of the function f(u(x))
within the stencil Sr(i). ǫ is a constant which prevents the denominator from becoming
zero (typically assumed to be 10−6). An example of linear weights and smoothness in-
dicators for k = 3 can be found in Yee et al. (2008). The procedure for the case with
f ′(u) ≤ 0 is mirror symmetric with respect to i + 1

2 . An upwinding mechanism, neces-
sary for stabilizing the scheme, can be embodied in the WENO schemes by a global flux
splitting, such as Roe with entropy fix (WENO-RF) or Lax-Friedrichs, as described in
Jiang & Shu (1996). The latter, in particular, is defined as

f±(u, x) =
1

2
(f(u, x) ± λαu), α = maxu|f

′(u)|, λ = 1. (2.14)

The WENO procedure is applied to both f+ and f− with upwind biased stencils. The
scheme for which the max is taken globally along the line of computation is commonly
denoted WENO-LF. A well-balanced version (WENO-LF-WB) of the baseline WENO-
LF, capable of preserving certain non-trivial steady-state solutions exactly and resolving
accurately relatively small perturbations around the steady solution up to machine ac-
curacy is introduced in Wang et al. (2009). In one form of WENO-LF-WB, in order not
to affect stability near shocks, λ is no longer constant but acts as an equilibrium limiter:

λ := max(min(1, χ1), . . . , min(1, χm)), χj =
(|r+j | + |r−j |)2

|r+j |2 + |r−j |2 + ǫ
, (2.15)

with r±j = rj(ui±1, xi) − rj(ui, xi) being differences of some known functions (e.g., com-
puted pressure or density) which should be close to zero near the specific steady state. ǫ is
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again a small quantity (10−6) to avoid division by zero. Both baseline WENO-LF (fifth-,
seventh-, ninth-order) and WENO-LF-WB (fifth- and seventh-order) schemes have been
employed for our numerical experiments. More details can be found in Jiang & Shu
(1996), Wang et al. (2009) and Wang et al. (2010).

2.2.2. Finite difference Harten-Yee TVD

For the x inviscid flux derivatives F, the numerical flux by the second-order Harten-Yee
TVD scheme can be written (with all the y and z indices suppressed) as

F̃j+ 1

2

=
1

2

(

Fj + Fj+1 + Rj+ 1

2

Φj+ 1

2

)

, (2.16)

where R is the matrix of right eigenvectors for the convective flux Jacobian and each
component of Φj+ 1

2

denoted by φl
j+ 1

2

with l = Ns + 4 is given by

φl
j+ 1

2

=
1

2
ψ

(

al
j+ 1

2

)

(

gl
j + gl

j+1

)

− ψ
(

al
j+ 1

2

+ γl
j+ 1

2

)

αl
j+ 1

2

, (2.17)

with αl
j+ 1

2

being elements of R
−1
j+ 1

2

(Uj+1 − Uj) and

γl
j+ 1

2

=
1

2
ψ

(

al
j+ 1

2

)

{

(gl
j+1 − gl

j)/α
l
j+ 1

2

αl
j+ 1

2

6= 0

0 αl
j+ 1

2

= 0
, (2.18)

where ψ is the entropy correction function defined in Harten (1984). In all the following

computations, the most diffusive limiter, namely gl
j = minmod

(

αl
j− 1

2

, αl
j+ 1

2

)

, has been

used just for validation purposes, because of its fast convergence properties to steady
state. Accuracy comparison among schemes must take this fact into consideration.

3. Results

For our inviscid and viscous numerical experiments, a 2D test case simulating high-
speed air flow around a 1[m] radius cylinder was chosen. The corresponding free-stream
and wall conditions (for the viscous case) are given in Table 1. This test case was com-
puted by Peter Gnoffo (private communication) and further studied by Dr. Xiaowen
Wang from the UCLA SciDAC team. In this section, his numerical analysis is referred to
as Wang’s study (not to be confused with the Wei Wang et al.’s well-balanced schemes
for nonequilibrium flows). The physico-chemical model used in the present work does
not consider thermal nonequilibrium as in Wang’s study, but uses more sophisticated
and computationally expensive thermodynamic and transport properties (see Section 2.1
for details) as opposed to energy-fitting polynomials and mixture rules. The chemical
reaction rate coefficients for characterizing the neutral air mixture are taken from Park
(1993) by neglecting reactions involving ions and electrons. In the following section the
performance of TVD and WENO schemes (fifth-, seventh- and ninth-order) on the invis-
cid case on single-block and overset meshes is analyzed at first. Secondly, some results
on the viscous case, again on single-block and overset meshes, are shown, but only for
the TVD scheme (simulation with WENO is still work in progress). A grid convergence
study has only been performed for the single-block case for simplicity. Since the simu-
lations have been run in unsteady mode, the residual tracking has not been used as a
convergence criterion, but computations have been run for long enough (typically up to
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M∞ ρ∞[kg/m3] U∞[m/s] T∞[K] Tw[K] Re∞

17.64 0.0001 5000 200 553.3 37634.8

Table 1. Free-stream and wall conditions for Gnoffo’s test case.

500,000 iterations and 2,000,000 iterations for inviscid and viscous cases, respectively,
using a CFL number up to 0.5) to let the flow fully establish.

3.1. Inviscid flow: TVD versus WENO on single-block mesh

This case has been run on two meshes: coarse (61 x 129 nodes) and fine (4 times finer in
both directions). In Figures 1 and 2 TVD and WENO-LF solutions are compared on the
coarse mesh in terms of pressure and temperature profiles on the stagnation line. Here,
WENO schemes and TVD show a negligible difference on the shock standoff distance and
on the peak temperature (about 1%). WENO predicts a slightly sharper profile. Grid
convergence is achieved on the fine mesh, since all differences between TVD and WENO
completely disappear, as testified by the pressure and temperature profiles in Figures 3
and 4, where all schemes are compared. This appears even clearer in Figure 5, where only
TVD and WENO5-LF are compared on the two meshes in terms of temperature. The
shock gets sharper and steeper, especially for TVD and the peak temperature increases
about 6% for both schemes, as highlighted by Figure 6. On both coarse and fine meshes,
WENO5 and WENO7 deliver a clean oscillation-free solution, whereas the WENO9-LF
scheme gives severe spurious oscillations on all flow quantities (except for the x-velocity
component), particularly on the pressure, as shown in Figures 1 and 3. This oscillating
behavior tends to amplify towards the wall and, as the mesh gets finer, tends to increase
in wave number and decrease in amplitude. This phenomenon was not identified in Wang
et al. (2009) or Wang et al. (2010), where at most WENO5 was used and only on 1D cases
with shock. Another well-known example of a problem driven by multidimensionality in
high-speed flows is the carbuncle, which does not appear in our case, because the TVD
scheme includes a suitable multidimensional entropy fix (Yee 1989).

3.2. Inviscid flow: TVD versus WENO on overset mesh

The overset grid used for this case has three-blocks, namely background (123x122 nodes),
shock (201x40 nodes), body (123x40 nodes) and its upper half is shown in Figure 7. The
flow solution in terms of Mach number contours is shown in Figure 8. Here, solutions
yield by TVD, WENO5-LF and WENO7-LF are superposed, but they are barely dis-
tinguishable one from the other. In particular, a smooth solution transition from one
block to another can be noticed, even in the post-shock region where all three mesh
blocks overlap. Figure 9 indicates a temperature stagnation line profile comparison. As
in the coarse single-block grid case, the standoff distances between TVD and WENO
are slightly different and WENO predicts a 2% higher temperature peak. The overall
quality of the solution on the overset mesh is comparable to that on the fine single-block
mesh. Finally, temperature stagnation profiles computed by WENO5-LF, WENO7-LF,
WENO5-LF-WB and WENO7-LF-WB are shown in Figure 10. While no visible differ-
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Figure 1. Stagnation line pressure on
coarse mesh: TVD (dashdot line), WENO5-LF
(right triangles), WENO7-LF (diamonds),
WENO9-LF (solid line).

Figure 2. Stagnation line temperature on
coarse mesh: TVD (dashdot line), WENO5-LF
(right triangles), WENO7-LF (diamonds),
WENO9-LF (solid line).

Figure 3. Stagnation line pressure on
fine mesh: TVD (dashdot line), WENO5-LF
(right triangles), WENO7-LF (diamonds),
WENO9-LF (solid line).

Figure 4. Stagnation line temperature on
fine mesh: TVD (dashdot line), WENO5-LF
(right triangles), WENO7-LF (diamonds),
WENO9-LF (solid line).

ence appears among WENO5-LF, WENO5-LF-WB and WENO7-LF, WENO7-LF tends
to predict a slightly higher temperature.

3.3. Viscous flow: TVD on single mesh

Gnoffo’s test case has also been used to verify our implementation of diffusive terms for
chemical nonequilibrium flows but only with the TVD scheme for now. In Figures 11 and
12 our solution on the same coarse mesh is compared with the TVD result in Wang’s
study in terms of pressure and temperature. Note that this is not a fair comparison as
Gnoffo’s test case was simulated in Wang’s study with a two-temperature model. While
Figure 11 shows pressure fields in perfect quantitative agreement, the shock standoff
distance is slightly bigger for Wang’s study, which is consistent with the fact that he also
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Figure 5. Stagnation line temperature: TVD
on coarse (dashdot line) and fine mesh (solid
line), WENO5-LF on coarse (squares) and fine
mesh (right triangles).

Figure 6. Zoom around the peak temperature:
TVD on coarse (dashdot line) and fine mesh
(solid line), WENO5-LF on coarse (squares)
and fine mesh (right triangles).

Figure 7. View on the upper half of the three-
-block overset mesh used for Gnoffo’s test case.
Boundaries for shock and body blocks are high-
lighted in white.

Figure 8. Mach number on the overset mesh:
TVD (contours), WENO5-LF (black isolines),
WENO7-LF (white dashdot isolines). Herein,
part of the background block has been blanked.

assumed thermal nonequilibrium, leading to a higher roto-translational temperature in
the post-shock region (11460 K against 8680 K), as emerges from Figure 12. A different
temperature field leads to a different effective temperature for activating the chemistry,
which, according to Park’s model adopted by Wang’s study, is a geometric average of roto-
translational and vibrational temperature, whereas in our model it is the temperature
itself. This fact causes discrepancies in dissociation/recombination rates. Moreover, since
transport properties depend on local temperature and chemical composition of the gas
mixture, and chemical composition depends on the local temperatures (one in our case,
two in our reference), an impact is expected on the boundary layer properties. This effect
can justify the visibly smaller boundary layer thickness in our solution.
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Figure 9. Stagnation line temperature on the
three-block overset mesh: TVD (dashdot line),
WENO5-LF (solid line), WENO7-LF (right tri-
angles).

Figure 10. Stagnation line temperature on
the overset mesh: WENO5-LF (solid line),
WENO5-LF-WB(dashdot line), WENO7-LF
(squares), WENO7-LF-WB (right triangles).

3.4. Viscous flow: TVD on overset mesh

Our implementation of nonequilibrium diffusive terms has been verified on two distinct
overset meshes: the same three-block computational mesh in Figure 7 and another one
sharing the same topology, but with a smaller background block and a finer resolution
in both shock (3 times in normal direction) and boundary layer (6 times in normal
direction). As in the previous case, all our viscous simulations have been run with the
TVD scheme. In Figures 13 and 14 the solutions on single-block (fine) and three-block
overset grids (both coarse and fine) are compared in terms of pressure and temperature.
The pressure isolines/levels and shock standoff distance match perfectly between the fine
single- and multiblock meshes. The shock refinement applied between the coarse and fine
overset mesh consistently leads the solution to get closer to the fine single-block mesh
case. The agreement on the temperature isolines also improves significantly while refining
the overset mesh, but some differences still persist in the boundary layer region, where
the single-block mesh resolution is about twice as fine as that of the overset grid.

4. Conclusions and future plans

With the present analysis, additional insight has been gained into the application of
fifth- up to ninth-order WENO schemes to study nonequilibrium flows with strong bow
shocks. In our numerical experiments, no significant gain has been identified in using
WENO of order higher than fifth. Therefore, WENO5-LF or, alternatively, WENO5-LF-
WB can be indicated as candidates (among the family of schemes here considered) for
pursuing nonequilibrium flow computations, even though the resolution of WENO5 is
slightly better than TVD. However, the most diffusive limiter has been used for TVD in
our case. Some preliminary results to verify our implementation of nonequilibrium vis-
cous flows on overset meshes have also been shown, but limited to a TVD discretization.
Higher-order discretizations for the diffusive flux derivatives are included in ADPDIS3D
and will be considered in future work. Since the use of higher-order schemes is beneficial
particularly in smooth flows, an enhanced prediction of boundary layer properties, skin
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Figure 11. Pressure isolevels (in Pa) for
Gnoffo’s cylinder on coarse single-block mesh:
MUTATION-based chemical nonequilibrium
model (top), thermo-chemical nonequilibrium
model in Wang’s study (bottom).

Figure 12. Temperature isolevels (in K)
for Gnoffo’s cylinder on coarse single-block
mesh: MUTATION-based chemical nonequilib-
rium model (top), thermo-chemical nonequilib-
rium model in Wang’s study (bottom).

friction and thermal loads on relatively coarse overset meshes is expected when applying
variable high-order finite difference methods to nonequilibrium flows. Those schemes will
combine WENO (or TVD) schemes close to the bow shock and sixth- or higher-order
filter central discretizations elsewhere. Future efforts will focus on evaluating such possi-
ble benefits and in performing a more challenging mixed steady/unsteady 3D simulation
of the high- speed chemically reactive flow around the NASA Crew Exploration Vehicle
(CEV) with variable high-order filter schemes based on some of the schemes here de-
scribed. A preliminary study on the full CEV configuration (nonreactive gas simulated
with TVD scheme) is described in Lani et al. (2010). Extension of the current chemical
nonequilibrium model to a multitemperature approach is envisioned in order to include
thermal relaxation processes that can significantly affect the actual chemical kinetics in
high-temperature gas, especially in regions (e.g., afterbody) characterized by expanding
flows.
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Figure 13. Pressure field (in Pa): isolines and
levels on fine (top) single-block mesh, on coarse
(bottom, dashed line) and fine (bottom: solid
line) overset mesh.

Figure 14. Temperature field (in K): isolines
and levels on fine (top) single-block mesh, on
coarse (bottom, dashed line) and fine (bottom:
solid line) overset mesh.
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Lani, A., Sjögreen, B. & Yee, H. C. 2010 Computational study of hypersonic flow
past a CEV-like capsule on multiblock overlapping grids. Annual research brief.
Centre for Turbulence Research, Stanford University.

Magin, T. & Degrez, G. 2004 Transport algorithms for partially ionized and unmag-
netized plasmas. J. Comput. Phys. 198, 424–449.

Park, C. 1993 Review of chemical-kinetic problems of future nasa mission, I: Earth
entries. J. Thermophys. & Heat Transfer 7, 385–398.
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