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Climate extremes are becoming more frequent in Brazil; studies project an increase in 

drought occurrences in many regions of the country. In the south, drought events lead to 

crop yield losses affecting the value chain and, therefore, the local economy. In the 

northeast, extended periods of drought lead to potential land degradation, affecting the 

livelihood and hindering local development. In the southern Amazon, an area that 

experienced intense land use change (LUC) in the last, the impacts are even more 

complex, ranging from crop yield loss and forest resilience loss, affecting ecosystem 

health and putting a threat on the native population traditional way of living. In the 

studies here we analyzed the drought impacts in these regions during the 2000s, which 

vary in nature and outcomes. We addressed some of the key problems in each of the three 

regions: i) for the southern agriculture, we tackled the problem of predicting soybean 

yield based on within-season remote sensing (RS) data, ii) in the northeast we mapped 

areas presenting trends of land degradation in the wake of an extended drought and, iii) in 

southern Amazon, we characterized a complex degradation cycle encompassing LUC, 

fire occurrence, forest resilience loss, carbon balance, and the interconnectedness of these 

factors impacting the local climate. The studies integrated RS data of evapotranspiration, 

temperature, precipitation, soil moisture, albedo, and biomass-related indicators. Official 



 C 

data for population and agricultural statistics were also utilized to better connect climate 

extremes to human factors. Our results indicate that crop yield in southern Brazil can be 

predicted using RS data and therefore, provide valuable information for decision-makers 

in the agriculture value chain. In the northeast, extended drought associated with 

anthropogenic pressure for resources represent a threat to the ecosystem health by 

affecting soil and water quality, micrometeorological conditions and, thus, people's 

livelihood. Finally, in southern Amazon, the LUC led to a regional LD which has positive 

feedback on the climate, causing even more damage as the degradation cycle advances, 

putting a threat on the local agriculture economic sustainability. 
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indicators to assess effects of drought and human-induced land degradation on ecosystem 

health in Northeastern Brazil. Remote Sensing of Environment, 213(April), 129–143. 
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CHAPTER 1.  

INTRODUCTION 

 Brazil is the 5th largest country on the planet (8.5 million square kilometers), with 

five biomes and climates ranging from equatorial to temperate. The country, whose 

development is largely based on the use of natural resources, experienced a period of 

substantial economic growth in the 2000s, promoting the development and, therefore 

reshaping social structure (Lavinas, 2017). Increased class mobility redirected the 

population toward more consumerism, with access to credit and the eagerness for 

development.  

 For developing countries such as the BRICS (Brazil, Russia, India, China, and 

South Africa), growth is highly correlated with energy consumption through fossil fuels, 

water (hydropower) and biofuels (agriculture) (Sasana & Ghozali, 2017). Moreover, in 

the case of Brazil, the focus of our studies, the economic growth was also leveraged by a 

boom in agricultural commodities prices, which is a recurrent feature of the 2000s that 

pushed land use changes (conversion into agricultural enterprises) forward (Hargrave & 

Kis-Katos, 2013; Yao, Hertel, & Taheripour, 2018). With the BRICS getting "late in the 

game", increased pressure for resources is thus expected and, as a result, CO2 (and other 

greenhouse gases) emissions also increase, promoting changes in the climate and 

amplifying effects of the altered radiation balance (Sellers et al., 1996). The increase in 

climate extremes is a problem of global concern. In 2015, during the COP21 in Paris, an 

agreement was signed by 174 countries and the European Union, with the long-term 

commitment of keeping the increase in global average temperature under 2 oC above pre-
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industrial levels (we have already increased the temperature by 0.85 oC) - in general 

terms, the Paris agreement is considered a remarkable global initial effort on keeping the 

Earth a planet that we can still live in (Kinley, 2017). 2015 was also the year of one of the 

most severe droughts ever recorded in Amazon and, the fourth year of an extended 

drought in northeastern Brazil, two regions covered in our studies. It is well known that 

many of the Paris agreement signatories countries are concerned, among other things, 

with extreme weather events. In the case of Brazil: a country with high dependence on 

rainfed agriculture and exploration of its vegetal resources, one of the most feared natural 

hazards is drought. This can sound contradictory to the old Brazilian cultural belief that 

water resources are infinite - this belief is changing (PBMC, 2016). 

 Drought is traditionally defined as a period of below-average precipitation levels, 

leading to an insufficient water supply to human needs, plant health, and ecosystem 

stability (Wilhite, 2000). A global study by Dai et al., (2013) indicates a trend of 

increasing drought incidence under a scenario of global warming, with dire predictions 

for South America. In the fifth Assessment Report (AR5) of the International Panel for 

Climate Change (IPCC), models indicate with medium confidence prediction, a 

temperature increase ranging from 1.6 to 6.7 oC in South America by 2100 (Magrin et al., 

2014). This global warming scenario is not far off of the forthcoming reality, as reported 

by the WorldBank (2012) when considering "business as usual" strategies to cope with 

CO2 emissions, with expected global warming of 4 oC. Lately, scientists are proposing a 

broader definition for drought in a way to include humans as a cause - the drought in the 

Anthropocene (Van Loon et al., 2016), where the occurrence is also tied to positive 

feedback incurred from human actions.   
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 In Brazil, future climate scenarios are dire and droughts are expected to increase 

in frequency and intensity. In the south, a traditional agricultural commodities production 

region (soybeans and corn), changes in the precipitation regime are altering crop growing 

season patterns, as drier conditions are expected early in the growing season (from 

September to November) (Pereira, Blain, de Avila, Pires, & Pinto, 2018). Moreover, 

higher temperatures and shorter, but more intense rainfall are likely to reduce corn yields 

in the region (Resende, Miranda, Cooke, Chu, & Chou, 2019). Farmers are having to rely 

on shorter-cycle (and less productive) breeds of corn and soybeans to diminish exposure 

to drought. In the northeast, which comprehends the most populated dryland in the planet 

(Denis A. Mariano et al., 2018), the prognostics are of pure desolation; studies performed 

by Marengo et al., (2016) and Oliveira et al., (2017) indicate longer dry spells, less 

precipitation, and higher temperatures, in short, leading to ariditization. This scenario 

associated with increasing local human pressure for natural resources is, therefore, a 

pathway toward land degradation. In the Amazon biome, a region containing the largest 

forest on the planet, the trends are toward more intense droughts and longer dry seasons 

(Espinoza, Ronchail, Marengo, & Segura, 2019; Fu et al., 2013), especially in the 

southern parts of the area as a result of combined anthropogenic activities and 

climatological teleconnections (Lopes, Chiang, Thompson, & Dracup, 2016).

 Drought is, therefore, a subject of primary concern for Brazilian policymakers. 

Despite the long history and experience in dealing with related issues, there are still many 

gaps in providing tools to support decision making and overcome political 

shortsightedness. Gutiérrez et al., (2014) identified some of these gaps in the Brazilian 

drought framework, suggesting the development/improvement of studies related to 
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impacts assessment, monitoring, prediction, and adequate mitigatory responses. That 

being said, we designed a series of studies addressing part of these needs and, therefore, 

providing new insights to Brazilian development in face of an unwelcoming climate 

scenario. The background for the studies is set: i) an increasing variability of the climate; 

ii) the unpreparedness of the decision makers for dealing with the fact that the climate 

variability increases at a pace faster than strategies and science address them (in Brazil); 

iii) climate change also becomes a matter of political debate, and policies to deal with the 

risks posed are bound to biased interests rather than scientific evidence; in Brazil, often 

times bribes and other forms of corruption allow for land clearances and illegal logging 

(Povitkina, 2018). 

1.1 Literature review 

1.1.1 Extrinsic drought drivers 

 Several global and oceanic indices are key for local precipitation anomalies 

explanation; therefore, those indicators are usual inputs in global climate models (GCM). 

One of the main factors promoting precipitation anomalies in Brazil is the teleconnection 

of climate variability related to the El Niño Southern Oscillation (ENSO), partially 

explaining droughts in the south, increasing agricultural drought risk (W. Anderson, 

Seager, Baethgen, & Cane, 2018; Cirino, Féres, Braga, & Reis, 2015; Gelcer et al., 2013; 

Gusso, 2013). In the northeast, precipitation anomalies are promoted by changes in 

climate forcings such as the ENSO, Intertropical Convergence Zone (ITCZ), cold fronts 

coming from the south and upper air cyclonic vortex (Pezzi & Cavalcanti, 2001; Vieira et 

al., 2015). In the Amazon, ENSO is one of the factors promoting precipitation anomalies, 

however, the association of ENSO with Madden-Julian Oscillation (MJO) further 
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amplifies hydrological extremes (Shimizu, Ambrizzi, & Liebmann, 2017). ENSO, ITCZ, 

MJO and other forcings are, therefore, useful indicators for precipitation prediction as 

they partially explain  variability (Awange, Mpelasoka, & Goncalves, 2016).  

1.1.2 Drought impacts 

    Drought is characterized by a series of environmental conditions that influence 

vegetation. Evaporation and plant transpiration draws moisture from the soil in what is 

called evapotranspiration (ET); in a drought, with soil moisture (SM) depleting and plant 

potentially getting drier, the radiation will find less water to spend energy in evaporation 

- the latent heat (LE). The energy, instead, will be put into increasing local temperature 

(T) - the sensible heat (H). The consequence of this simple mechanism has direct impacts 

on vegetation, as shown by (da Rocha et al., 2009) in a comprehensive study addressing 

water and heat fluxes patterns in cerrado and tropical forests in Brazil.  

1.1.2.1 Crop yields 

    Crops affected by drought have their yield reduced. In a RS approach, crop yields are 

traditionally associated with biomass, which in turn can be estimated based on vegetation 

indices (VI) (Esquerdo et al., 2011; Liu and Kogan, 2002), that allows for assessing the 

damage caused by drought. Plants like soybeans and corn have their probability of 

emergence reduced if drought happens early in the season. During the growth phase, the 

biomass gain rate decreases and, in the reproductive/grain-filling phase have their seeds 

(grains) development compromised or, when severe, aborted. RS-based data for T and ET 

are used to assess drought impacts in soybeans and corn for southern Brazil (Battisti et 

al., 2017; Carmello and Neto, 2016; Gusso, 2013; Gusso et al., 2014; Mariano, 2015) and 

in the whole country (Anderson et al., 2015, 2016). Measuring pre- and within- stage VI 
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data is an approach to forecasting soybean yields (Johnson, 2014), but not yet tested in 

Brazil. Yield estimation based on water and energy variables has the advantage of 

anticipating the effects on biomass (assessed by VIs), as SM, T and ET anomalies impact 

biomass accumulation and therefore, plant development (Bolton and Friedl, 2013). Thus, 

tracking precipitation, T and ET anomalies (instead of just VIs) have the potential for 

estimating final yield before plants reach maturity and accounting for the drought-

induced effects. Such information is expected to be of interest for stakeholders in the 

agriculture value chain and, assessing the impacts of drought within season is an 

underexplored topic in Brazil.  

1.1.2.2 Fire occurrence 

    In Amazon, fires are mostly associated with land management practices (commercial 

or traditional); however, the occurrence is also related to environmental conditions 

(Cochrane and Laurance, 2008; Uhl, 1990; Uhl et al., 1988). Drought leads to moisture 

reduction and, potentially to higher T and, when associated with deforestation border 

effects increase forest flammability, thus, making land management more challenging 

because of the difficulty to control the fire (Davidson et al., 2012). LUC also promotes 

forest fragmentation, increasing border effects and further accelerating degradation 

through tree mortality, understory fires and species diversity loss (Anderegg et al., 2018; 

Laurance et al., 2011). In regional studies, decoupling natural and human causes for fire 

occurrence is not trivial, since the human factors are less tangible and subject to 

enforcement, legislation and economy. The National Institute for Space Research (INPE, 

Brazil) has monitored fire occurrence since 1988 through RS data, with frequent 

improvements in methodology and data sources for the BDQueimadas (Fire Database), 
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allowing for accurate tracking of fire occurrence in the country (Setzer, Pereira, & 

Pereira, 1994). Using this database, several studies analyzed drought-fire relations in 

Amazon (Aragão et al., 2018; Brando et al., 2014, 2019; Rappaport et al., 2018). 

Assessing occurrences through time allows for tracking forest resilience loss by 

associating fire with increased flammability, a sign of land degradation (LD). 

1.1.2.3 Land degradation 

 LD is commonly defined as the reduction or loss of biological or economic 

productivity. Although the term is associated with fires in tropical forests, the LD subject 

is also extensively studied in drylands, as an intermediate step to desertification. In the 

Northeast of Brazil (NEB), the most populated dryland in the planet, the problem of LD 

is well documented. Signals of LD in drylands include soil erosion, soil compaction and, 

loss of vegetation coverage (Tomasella et al., 2018). Drought is usually harmful for the 

vegetation; however, when these events are repeated (or extended), the consequences for 

vegetation go beyond the interannual variation by leading to the cumulative effects on 

deteriorating environmental conditions for plant development. In RS, a popular approach 

to detect LD is by analyzing trends of biomass-related VI or albedo (to associate with soil 

exposure) (Eckert et al., 2015; Pan and Li, 2013; Samain et al., 2008; Vicente-Serrano, 

2007). Anthropization, like land use changes, overgrazing and population increase, is also 

a factor that can amplify or catalyze LD, exerting furthering the pressure for resources 

(Hein and de Ridder, 2006; Salazar et al., 2015; Tomasella et al., 2018).  

1.1.2.4 Drought and carbon balance 

 LUC drives changes in water and energy balance, also altering carbon budget. 

Post-drought analysis of net carbon balance in the Amazon tropical forest indicates a 
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decrease in above ground biomass carbon density due to three factors: deforestation and 

associated fires, fire occurrences increase due to micrometeorological conditions and 

disturbances impacting mature forests (Yang et al., 2018). Even considering the decrease 

in deforestation rates in Amazon, which would reduce carbon loss, repeated drought 

events led to more fire occurrences counteracting the decline in carbon emissions 

(Aragão et al., 2018). For the other regions covered in our research (south and northeast), 

there are no studies linking carbon balance and drought, which we attribute to the small 

contribution of these regions for global assessments (Nemani, 2003). 

1.1.2.5 Drought-related impacts and human factors feedback on climate change 

 Another contributor to drought causation is the potential positive feedback 

promoted by the impacts. Feedback mechanisms are usually assessed at large 

geographical scale studies, therefore, most of the references are related to large systems, 

such as the Amazon. A GCM simulation presented by Shukla et al., (1990) assesses the 

effects on climate promoted by LUC (forest to pasture) in Amazon, suggesting an 

increase in surface T and decrease in ET and precipitation.  At the local scale, gases 

released by forest fires may alter the wet season onset timing due to a decrease in ET, 

which is an important source of water for local precipitation formation (Wright et al., 

2017). At the large scale, Avissar and Werth (2005) suggest that tropical deforestation 

(like those in Amazon) contribute to alter precipitation regimes at mid and high latitudes 

through hydrometeorological teleconnections; for example, the extreme drought of 2014 

in the southeast and part of the south of Brazil is partially explained by alterations in the 

Amazon basin water balance (Nobre et al., 2016). The land-atmosphere water flux 

changes also contributes to alter the climate, as demonstrated by Fisher et al. (2009), as 
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ET is one of the main contributors to precipitation formation in the tropical areas. 

Therefore, ET reduction is likely to decrease precipitation formation, thus contributing to 

drought occurrence (Fisher et al., 2017).  

 The effects of these positive feedbacks promoting drought associated with 

anthropogenic factors acting on the land surface can turn into what we could consider a 

tipping point in the case of Amazon.  Although the carbon balance of tropical forests 

remains uncertain, studies indicate that parts of Amazon can act as a modest carbon 

source (Baccini et al., 2019). However, Davidson et al., (2012) found signs that impacts 

of drought may surpass the magnitude of natural variations, indicating that in some 

portions of southern and eastern Amazon, the ecosystem acts neutral or a source of 

carbon, instead of the expected sink, suggesting a potential permanent shift on local 

carbon dynamics.  

1.2 Objectives 

 The overall objective of this study is to assess the impacts of drought in Brazil by 

applying several RS dataset and analysis techniques. The focus is on vegetation and 

related impacts of crop yield loss, fire occurrence, forest resilience loss, and LD, as well 

as how they affect human society and economic activities. The scope and objective of 

each research chapter are further detailed in Section 1.3. 

1.3 Dissertation structure 

    The core data source is RS observations, which includes precipitation, soil moisture, 

temperature, evapotranspiration, vegetation indices, gross primary productivity, and 

albedo. The data used in these studies range from medium spatial resolution at 250 m to 

coarse at 25 km pixel size. Most of the datasets used in these studies are provided at a 
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temporal resolution of eight or fewer days, thus establishing dense time-series enabling 

the traceability of events. The temporal and spatial scales of the data allowed us to pursue 

large scale studies, addressing short-term, highly dynamic impacts as well as long-term 

cumulative effects assessments. This dissertation was initially imagined to address the 

drought problem affecting soybeans production in the south of Brazil. However, 

opportunities and increasing interest in applying drought impacts assessment in other 

regions and situations broaden the scope of this research. Figure 1.1 shows a map 

showing study areas per Chapter and the main features of each study. 

 In Chapter 2 (early detection of agricultural drought in southern Brazil) we 

addressed the need for better tools to anticipate drought impacts on soybean crops in this 

area (our initial purpose of the dissertation). During the last 16 years, at least three 

drought occurrences severely impacted soybean production and, therefore, the local 

economy. The agroindustrial soybean chain is composed of various stakeholders, 

including farmers, banks, insurance companies, logistics agents (storage and transport), 

and suppliers. These players are affected by anomalies in climatological conditions 

through the unpredictability of crop yields. In this study, we addressed the short-term 

drought effects on soybean crops. We designed a study proposing a methodology to 

estimate final soybean yields within the growing season. The method makes use of RS 

data of soil moisture, evapotranspiration, precipitation and leaf area index (LAI) as inputs 

to a mathematical model that explains how each of these variables is capable of 

predicting the final soybean yield. In short, this study aims at evaluating how RS data can 

be incorporated in an agricultural drought monitoring system for southern Brazil, as well 

as assessing data capabilities (or limitations) in accurately providing in-season rather than 
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post hoc assessments of crop condition and projected yield in the wake of anomalous 

climate events.  

 In Chapter 3 (use of remote sensing indicators to assess effects of drought and 

human-induced land degradation on ecosystem health in Northeastern Brazil), published 

in the journal Remote Sensing of Environment (RSE), we addressed the land degradation 

problem in the wake of an extended drought event. During the Water for Food Global 

Conference of 2017, held in Lincoln, Nebraska, I had the opportunity to become more 

familiar with (at that time) the ongoing drought situation in the northeast of Brazil, which 

was not my study focus. The region registered a drought starting in 2011/2012 and, at the 

end of the study (2018) the situation remained the same. We aimed to map the areas 

showing consistent trends of LAI reduction under the effect of drought. We also 

investigated the human factors impacting areas that we mapped as "potential land 

degradation" (we cannot confirm land degradation without post-drought data, so we 

softened it as "potential"). The study also implemented an innovative mathematical 

approach to assess the timing of cause-effect of pairs of variables. In this way, we could 

understand how land degradation (better represented by negative trends of LAI), albedo 

and precipitation are affecting evapotranspiration (ET), as the latter is a crucial water 

source for precipitation formation in the region. By understanding these relationships, we 

aimed at assessing the potential of land degradation having positive feedback on the local 

climate and, unfortunately (unsurprisingly) it has occurred. This paper expanded our 

scope of research for this dissertation, moving from the south to the northeast, from 

agriculture to land degradation, from subtropical to tropical climate, from short time 

scales (weeks) to more extended trend detection (16 years). As a critical difference 
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regarding drought, in this study, we addressed the cumulative impacts of a prolonged 

drought rather than a specific short-term event. 

 Chapter 4 (drought impacts on crop yields, wildfire occurrence, and the carbon 

budget in the southeastern Amazon) is what I consider the most comprehensive and 

complex part of the dissertation. The study investigates the Xingú Indigenous Park (PIX) 

and its surrounding area, whose extensive land use changes - the conversion of natural 

vegetation into pastures and agriculture - are affecting the local climate, ecosystem, 

population and potentially the economy. In this study, we addressed land use changes, 

crop yield loss due to drought, fire occurrences, forest resilience loss and effects on the 

carbon budget. One additional layer of complexity addresses the indigenous population 

growth during part of the study period. To tie all these elements together, we had to 

further understand how they are connected, therefore establishing the PIX degradation 

cycle. The reader will notice that this chapter contains aspects of the two previous 

studies, such as crop yield anomalies and land degradation as a result of both specific and 

repeated drought events in the southern Amazon region. It is in this study where we 

addressed more emphatically the concept of drought in the Anthropocene - at what 

human activities have positive feedback on drought causation.  

 Finally, Chapter 5 addresses final remarks and outlooks. It is the opportunity to 

point out issues and identify future possibilities of research based on what was presented 

in the previous research chapters and the findings. 
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Figure 1.1: Studied regions and main subjects covered in a briefly presented climate 

change cycle. 
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CHAPTER 2.  

EARLY DETECTION OF AGRICULTURAL DROUGHT IN 

SOUTHERN BRAZIL 

Abstract: 

Drought is the most common natural hazard impacting crops in tropical and subtropical 

regions. In southern Brazil, this negative precipitation anomaly can potentially lead to 

below-average plant development and therefore, yield loss. Tracking drought is possible 

by relying on remote sensing-based indicators; however, early detection of the potential 

effects is critical for drought mitigation and better decision making. We detected 

meteorological drought occurrences in the south region of Brazil (SB) for the summer 

season from 2004 to 2016 and, how they transitioned into agricultural drought impacting 

soybean (Glycine max), the dominant crop in this season. To track these events, we 

analyzed: i) two versions of the Evaporative Stress Index product (ESI), one provided by 

the United States Department of Agriculture (USDA-ESI, one week temporal resolution 

at 5 km spatial resolution) and the other derived from Moderate Resolution Imaging 

Spectro-radiometer ET data (MODIS-ESI, 8-day, 500 m), ii) soil moisture (SM) [through 

the Soil Water Deficit Index (SWDI, daily, 25 km)] datasets as drought indicators and, 

MODIS Leaf Area Index (LAI, 8-day, 500 m) as the reference for biomass. We delimited 

the intra-annual growing season through phenology analysis and used these periods to 

focus our analysis and, to use the peak of season (POS) as reference for lagging drought 

indicators. Therefore, considering only the growing season, a severe drought was 

detected in 2006, extreme drought in 2005 and 2012 and, an extremely wet year in 2016. 
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An Impulse Response Analysis (IRA) method was used to determine the lead time of 

drought indicators (considering all the years) and both ESI products were found to track 

agricultural drought with a 3 to 5 weeks lead time of ESI effects on maximum LAI. 

Similar time ranges were achieved by SWDI in the best cases, however, with lower 

magnitudes, highlighting this dataset inability on capturing the temporal behavior of the 

crops due to spatial resolution limitations. Regionally, USDA-ESI provided a longer lead 

time than MODIS-ESI for a few regions, however, from a spatial resolution standpoint, 

MODIS-ESI has proven to be more efficient on resolving the landscape heterogeneity 

and, therefore, providing more reliable spatial insights on agricultural drought early 

detection. Overall, even considering the spatial limitations, USDA-ESI and SWDI were 

able to detect early-stage drought for few regions under extreme drought occurrences 

(2005 and 2012), when the effects were more widespread and conditions more severe. 

MODIS-ESI, on the other hand, was effective for most regions and drought years, but the 

same was not observed for the wet year. We concluded that MODIS-ESI proved valuable 

for early detection of agricultural drought with up to 5 weeks lead time at a municipality 

level, whereas SWDI and USDA-ESI are not appropriate for regional monitoring because 

of lower spatial resolution for the study area. 

2.1 Introduction 

 Drought is one of the most dangerous hydroclimatic hazards for societies with 

substantial dependence on agriculture for subsistence or market purposes. In Brazil, a 

country in which a large part of the Gross Domestic Product derives from the agriculture, 

drought is a phenomenon that often negatively impacts the economy (Mariano, 2015). In 

developing countries, drought is a threat for livelihoods, food security and hence, 



 

 

16 

 

economic sovereignty, as these nations are heavily dependent on crops for subsistence or 

commodities trading (Wilhelmi and Wilhite, 2002). Agricultural drought is a result of an 

extended meteorological drought (lack of precipitation over a determined period), leading 

to a deficit in soil moisture (SM) causing plant stress (Behrangi et al., 2016) and, yield 

loss (Battisti et al., 2017).  

 To date, drought is assessed globally using remote sensing data translated into 

various indices, which relate to environmental variables as potential indicators of this 

phenomenon. For agriculture, many tools were developed to detect drought occurrence, 

starting from a meteorological point of view concerning precipitation anomalies 

measurement - being the Standardized Precipitation Index [SPI, Mckee et al., (1993)] the 

most popular (Rouault and Richard, 2004). According to Awange et al. (2016), southern 

Brazil (SB) has a probability of undergoing an extreme drought once every 10 years, with 

the areas at risk increasing at a rate of 3.4% per year; which is often an effect of an 

intense La Niña event that leads to a decrease in precipitation and increase in temperature 

(Berlato et al., 2005; Cirino et al., 2015). However, below-average precipitation does not 

always impact crop yields, as drought is one of the causes of yield variability whereas 

adaptation and management decrease crop sensitivity to climate extremes (Hlavinka et 

al., 2009; Lobell et al., 2014; Samanta et al., 2010). To assess drought effects on 

agriculture, several indicators were designed based on characteristics more closely related 

to the soil-plant-atmosphere continuum.  

    With a focus on plants, reflectance-based vegetation indices (VIs) and LAI are 

commonly used to assess agricultural drought over large areas, achieving remarkable 

results in terms of measuring geographical extent and associating deviations in the 
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indicators with yield variation, as they correlate well with biomass (Anderson et al., 

2015; Esquerdo et al., 2011; Fang et al., 2011; Guindin-Garcia et al., 2012; Mishra et al., 

2014; Nguy-Robertson et al., 2012; Tagliapietra et al., 2018; Yagci et al., 2015). Going 

one step further, some studies combine SPI with traditional VIs for a variety of 

vegetation types, in which the authors relate anomalies in SPI to changes in VIs in a lag-

based manner to assess how drought impacts vegetation (Caccamo et al., 2011; Ji and 

Peters, 2003; Van Hoek et al., 2016). Another improvement in the modeling techniques 

to associate VIs with yield is the consideration of phenological features that characterize 

a specific crop. Bolton and Friedl (2013) found that correlation between soybean yield 

and VIs are ~10% higher when phenology metrics are included in the model, yet, it 

cannot be used as an early drought indicator, but rather for post hoc crop condition 

assessment. 

 Below-average precipitation is likely to imply increasing SM deficit, partially as a 

result of higher water demand for plant transpiration (Otkin et al., 2017). Some early 

indicators of plant stress and ecosystem health, which potentially can affect biomass and 

therefore yield, are based on canopy and soil thermal responses as a result of both energy-

balance and plant water demand (Hobbins et al., 2016). Hence, below-normal ET can be 

an early indicator of water stress in plants and be used to estimate potential drought 

effects in crops. Such effects on agriculture and other types of vegetation can be assessed 

by an indicator such as the Evaporative Stress Index [ESI (Anderson et al., 2007a, b)], a 

thermal infrared-based ET anomalies indicator. Useful results were found for Brazil when 

analyzing ESI patterns under drought regimes (Anderson et al., 2007a, b). Many methods 

of ET estimation rely on land surface temperature (LST) dynamics for sensible heat and 
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water fluxes, highlighting changes in SM, in turn, a crucial preceding driver for ET 

(Kalma et al., 2008). 

 SM is a fundamental component of the hydrological cycle, more particularly as a 

source of water for atmosphere via latent heat flow through ET from soil and vegetation, 

playing a central role in drought monitoring (AghaKouchak et al., 2015; Seneviratne et 

al., 2010). With the increasing availability of active remote sensing-derived SM data, 

drought assessment over large areas studies (due to spatial resolution limitations) have 

been carried out associating SM with VIs, especially in the 2010s. These studies range 

from development of new indices having SM as an input like the SWDI (Martínez-

Fernández et al., 2015), flash drought detection (Yuan et al., 2015), intercomparison 

between drought indicators (Adegoke and Carleton, 2002; Anderson et al., 2013; Mishra 

et al., 2014; Nicolai-Shaw et al., 2017) and comparison including timing between 

indicators (Bolten and Crow, 2012; Mladenova et al., 2017; Zhang et al., 2017). Authors 

reported the capability of assessing drought with SM or SM-derived indices and their 

correlation with VIs/ET (Anderson et al., 2013) and crop yield (Martínez-Fernández et 

al., 2016). As reported by Bolten and Crow (2012), SM is potentially a good indicator for 

regional scale early drought detection if assessed in a weekly basis rather than monthly, 

therefore, capturing agriculture temporal dynamics. However, data frequency was a 

limitation back when the paper was published, on top of the well-known spatial 

resolution issue (Kerr, 2007). 

 A comprehensive study was performed for Brazil to analyze yield correlation to 

its driving factors like precipitation, ET and LAI (Anderson et al., 2015). The current 

study incorporates various elements of what was done in the 2010s, but targets the 
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agriculture in SB making use of precipitation, SWDI and ESI as drought indicators by 

comparing their impacts on the maximum LAI of the crop. LAI is, therefore, the variable 

for phenology analysis and post hoc vegetation condition indicator. As intrinsic 

limitations, we can highlight the spatial difference between datasets, the inability to 

resolve the spatial heterogeneity of the study area and the degree that these issues affect 

our ability to detect agricultural drought. This study is part of a major effort to design an 

agricultural drought monitor for Brazil, a fundamental tool for increasing preparedness 

and adaptive capacity (Gutiérrez et al., 2014). The primary objective of the study is to 

track agricultural drought, understanding the capacity to anticipate drought occurrence, 

by analyzing a multitude of indicators. LAI is used as a proxy for biomass and thermal-

based (ESI) and SM (SWDI) were used as drought indicators. The specific objectives are: 

i) map drought occurrence in the region from 2004-2016 based on precipitation analysis, 

ii) analyze how drought indicators relate to LAI in a time-lagged manner to assess their 

potential on early drought detection and, iii) assess the capability of early drought 

detection for these datasets spatial resolution standpoint. 

2.2 Spatio-temporal domain 

 The study area represents a major soybeans production region of the SB, with 

most the agricultural areas located in the states of Paraná (PR) and Rio Grande do Sul 

(RS), as shown in Figure 2.1. The region is characterized by double cropping, in which 

the majority of the summer crop (1st) is soybeans, with a small fraction of corn. The 

second crop is usually corn with a small fraction dedicated to either winter crop (e.g. 

wheat) or cover crops (e.g. oat, rye and triticale), but rarely soybeans (Albrecht et al., 

2018). SB is a traditional region for grains in Brazil, with high levels of farming 
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technology and investment, the crops have high productivity even considering that most 

of the farming is rainfed.  

 The regional climate is predominantly subtropical in PR and temperate in RS, 

with Köppen classification of Subtropical Humid (Cfa) and Marine-Mild Winter (Cfb), 

respectively (Carmello and Neto, 2016; Grzegozewski et al., 2016). Annual precipitation 

ranges from 1500 to 1700 mm and 19 oC for average temperature (Liu and Kogan, 2002). 

For all the region, Summer is the rainy season and therefore, the period of maximum 

intensity for agriculture. The local climate determines the agricultural calendar based on 

soybean water needs. There are two periods when water availability is critical for 

soybean development: emergence/germination and flowering/grain filling. For the first, 

lack or excess water might compromise canopy uniformity by the inability of the seeds to 

germinate under anomalous conditions. For the latter, lack of water leads to flower 

abortion or premature fall, pod malformation, insufficient grain-filling and consequently, 

yield loss (Carmello and Neto, 2016). Although these phases are critical for soybean 

yield, water availability is essential throughout the entire plant cycle; excessive water is a 

problem not only for physiology but also for management due to mechanization issues on 

wet soils. In PR, soybeans are sowed mostly in October and November and harvest takes 

place in February and March; the peak of biomass is usually in January, marking the end 

of the vegetative phase (Esquerdo et al., 2011; Grzegozewski et al., 2016). In RS, the 

agricultural calendar for soybeans is usually one month late as compared to PR  (Gusso et 

al., 2014; Tagliapietra et al., 2018). From now on, we refer to a year as the end of the 

season, which means, the harvest year (e.g. year 2016 is the season that started in 2015 

and finished in 2016). 
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2.3 Data 

2.3.1 Crop mask 

 From the MapBiomas project (www.mapbiomas.org), we downloaded yearly land 

cover maps based on automatic Landsat imagery classification. These datasets were used 

to mask remote sensing data by restraining them to crops. Although MapBiomas provides 

yearly data, a quick analysis showed that the classification fluctuates among the chosen 

classes due to the methodology applied (partially based on NDVI thresholds), which 

forced us to derive an overall mask that comprises the entire studied period, rather than 

yearly masks. The crop mask (30 m spatial resolution) comprehends soybeans and corn; 

however, the summer crop (1st season) is dominated by soybeans, therefore, focusing 

only on this crop, as we present in Section 2.2. The crop map is shown in Figure 2.1.   

2.3.2 Yield data 

 Yearly crop yield and percentage covered area data at municipality level were 

acquired from the Brazilian Institute of Geography and Statistics (IBGE, 2018a). The 

data for soybeans are summarized in Figure 2.1, which shows median yield and area 

percentage for the studied period and, yearly yield z-score. As shown, we grouped 

municipalities in five regions keeping contiguous borders within them and similar level 

of productivity, say: cn-PR, cw-PR, ce-PR, sw-PR and nw-RS, where cn - center-north, 

cw - center-west, ce is center-east, ss - southwest and nw - northwest for the PR and RS 

states. We preferred to keep municipalities with a reasonable percentage of crop area to, 

at a certain degree, avoid pixel contamination from other classes. 
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Figure 2.1: a) simplified land cover map from MapBiomas as of 2017. All the following 

maps are based on (IBGE, 2018a) yearly data from 2003 to 2017: b) median soybean 

yield, c) median percentage area and, the small maps show the annual yield variation 

expressed in z-scores.  

 

2.3.3 Soils and agricultural aptitude maps 

 To support our analysis and discussion, we used soil and agricultural suitability 

maps of Brazil (Filho and Pereira, 1999). The agricultural suitability classes range from 1 

to 8, 1 being the best. The suitability is closely associated with soil classes and 

topography. We summarized the main occurrences in the studied region with a short 

description of the predominant classes. Regarding soils, we have LV - Red latosol, LB - 



 

 

23 

 

tan latosol, NV - red nitosol and, CX - haplic cambisol. Nitosols are deep with good 

water storage/availability for plants, they are considered the best soils in the studied 

regions and are closely associated with the best (1) agricultural suitability. Latosols are 

usually associated to good to regular suitability classes for agriculture, with enough depth 

for roots and high capacity to store water; haplic cambisols can have good fertility, 

however they are not as deep as nitosols/latosols and, might not provide de ideal 

suitability regarding water storage/availability for crops and the topography might be 

hilly, they are usually associated to regular suitability. The soybean crops within each 

region are distributed as follows: cn-PR - mostly NV and a little LV, mostly in 1-Good, a 

little in 5-Regular/limited; cw-PR - mostly LV and a little less NV, about half in 1-Good, 

the other half divided into 4-Regular and 5-Limited; ce-PR - mostly LV and a tiny bit 

CX, mostly in 4-Regular and a little in 6-Limited;  sw-PR - mostly LB and a little of CX, 

mostly in 4-Regular, a little in 6-Limited and 8-Not-recommended; nw-RS - mostly LV 

and a little of LB, the vast majority in 4-Regular, a little in 6-Limited and an even smaller 

amount in 5-Regular/Limited.  

2.3.4 Precipitation 

 We acquired 10-day precipitation standardized anomalies (z-score) data from the 

Climate Hazards Group InfraRed Precipitation with Station [(CHIRPS-v.2) (Funk et al., 

2015) delivered at 0.05 o resolution. A global validation study was performed by (Beck et 

al., 2017) and, for our region, the reported accuracy was about 0.7, which might not seem 

ideal; however, for PR, Castelhano et al. (2017) reported a correlation with ground data 

of 0.86 for the monthly data. The issues regarding inaccuracy are minimized by using z-

scores rather than absolute values for comparative analysis between variables.  
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2.3.5 MODIS LAI 

 The time series of LAI data were established from MODIS sensors onboard the 

Terra and Aqua satellites, which have been in operation since 1999 and 2002, 

respectively. The MCD15A2Hv6 (Myneni et al., 2002) dataset is delivered at 500 m 

spatial and 8-day temporal resolutions and, are derived from Terra and Aqua combined 

data. The MODIS LAI dataset is used for phenology analysis (Section 2.4.2) and as a 

proxy for biomass to be later associated with yield data. 

2.3.6 Evaporative Stress Index (ESI) 

 ESI represents anomalies in actual/potential ET. The lower the ET, the smaller the 

fraction ET/PET is, therefore, giving an idea of dryness. ESI, as a stress index, has 

positive values associated to drought, as shown in Equation 2.1. 

 
𝐸𝑆𝐼 = 1 −

𝐸𝑇

𝑃𝐸𝑇
 

(2.1) 

 where PET is the potential ET. The original product is based on a surface energy 

balance model, the Atmosphere-Land Exchange Inverse model (ALEXI) and LAI 

(Anderson et al., 2007a). ESI is calculated based on a weekly moving window and 

composited over periods of 1, 2, 3, 4 or 12 months at 0.05o spatial resolution for the 

global product (0.04 o for the United States). The data is, therefore, provided in the 

weekly z-scores form. We choose the 4-month composite as it is neither too noisy, nor 

too smooth, therefore being adequate for tracking crop cycle seasonality. Anderson et al. 
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(2016) assessed agricultural drought using ESI in Brazil, with ESI higher correlations 

with soybean yields 25 days earlier in comparison to LAI. To date, ESI is currently the 

state-of-art drought monitoring remote sensing-based tool, and it is being constantly 

improved by incorporating active remote sensing-based temperature retrieval for better 

gap-filling, once the energy balance model relies on clear-sky measurements (Holmes et 

al., 2015). For now on we refer to this dataset as USDA-ESI, to avoid confusion with 

MODIS-ESI. 

 We also calculated a MODIS-ESI product based on the ET datasets (MOD16A2 

and MYD16A2). MODIS ET is based on the Penman-Monteith equation by combining 

Monteith and Priestley-Taylor methods for PET estimation, with albedo and LAI (canopy 

conductance and light interception) as input parameters for the surface energy balance 

partition algorithm, thus retrieving the actual ET (Mu et al., 2011, 2013). Ruhoff et al. 

(2013) validated the ET product for a basin in Brazil achieving good results when 

compared to eddy flux towers. The MODIS-ET version 6 (released in 2017) has an 

improvement in spatial resolution from 1000 m to 500 m, delivered at 8-day composites, 

therefore, the resolutions of our calculated MODIS-ESI dataset. As part of this study 

preprocessing, we held MYD16A2 (Aqua) as the main product and gap-filled it with 

MOD16A2 (Terra) data whenever available for a given pixel-date.   

2.3.7 SWDI 

 SM-based indicators have a crucial advantage over precipitation-based indicators 

- a precipitation event during a drought period might not change the situation, but can 

statistically break the drought, missing the point of detecting its occurrence. SM, 

however, tends to have a longer memory, thus being less sensitive to small precipitation 



 

 

26 

 

events. The SWDI was designed to better represent the soil water availability conditions 

and, therefore, track agricultural drought (Martínez-Fernández et al., 2015). We 

calculated the SWDI based on the root-zone soil moisture product of the Global Land 

Evaporation Amsterdam Model [GLEAM v3.2b, (Martens et al., 2017)]. The GLEAM 

product is provided daily at 25 km spatial resolution. The modeling approach is based on 

the surface SM and land cover classes, assuming three depths (0-10, 10-100 and 100-250 

cm), at which crops fall into the 10-100 cm layer. In fact, according to Franchini et al. 

(2017), the typical maximum depth for soybeans root-zone is 100 cm for PR. First, we 

averaged weekly SM and proceeded with the calculation of SWDI as follows:   

 𝑆𝑊𝐷𝐼 =  𝜃 − 𝜃𝐹𝐶 ∗ 𝜃𝐴𝑊𝐶 (2.2) 

 where 𝜃 is the root-zone SM, 𝜃𝐹𝐶  is the field capacity and 𝜃𝐴𝑊𝐶  is the available 

water content. According to Martínez-Fernández et al. (2016), the parameters 𝜃𝐹𝐶   and 

𝜃𝐴𝑊𝐶  is calculated statistically based on 𝜃 percentiles within the growing season as 

follows: 𝜃𝐹𝐶  is the 95th and Wilting Point (WP) is the 5th percentile, finally, 𝜃𝐴𝑊𝐶 =

𝜃𝐹𝐶 − 𝜃𝑊𝑃. Figure 2.2 shows for each region the time-series of SWDI and all the other 

remote sensing-based variables used in this study. 
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Figure 2.2: Time-series of MODIS-ESI, MODIS-LAI, USDA-ESI, precipitation and 

SWDI for each region. For display purposes, the resampled weekly (or 8-day) data are 

averaged by a 30-week rolling window. 
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2.4 Methodology 

2.4.1 Datasets preparation 

 All the MODIS images were submitted to a time-series filtering process to 

remove/reduce data gaps and unexpected peaks producing smoother time-series. The 

procedure is necessary to avoid observation gaps and outliers mostly due to cloud-

coverage, which is usually intense during the summer in the region (Eberhardt et al., 

2016). We chose a 5-period moving average (two before and two after) as this was 

proven to maintain the seasonal shape of the series without altering the main features. 

This step is also critical for the phenology analysis described in Section 2.4.2 (Sakamoto 

et al., 2010; Shao et al., 2016; Verger et al., 2016). 

 For the comparative analysis, we prepared time-series of z-scores at a pixel i, j for 

a period w (weekly or 8-days, depending on the product). Z-scores have the advantage 

over raw or anomalies data for being inter-comparable between variables and, the 

property of having less seasonal effects, which is important for multivariate time-series 

analysis. Traditionally, z-scores are calculated based on deviations from the mean; 

however, we chose the median for being less sensitive to extremes and proceeded with 

the calculation as: 

 

 

(2.3) 

    where the first term in the numerator is the current value v, the second is the historical 

median (M) for the period w considering all the years y and, the denominator is the 

median absolute deviation. For all the MODIS data, we calculated z-scores based on 40-
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day accumulation throughout the time-series for each 8-day period, meaning the average 

of two observations before and two after the reference 8-day period (16 + 8 + 16) and, 

closely match the methodology used to calculate USDA-ESI (Anderson et al., 2007a), 

which uses weekly data (14 + 7 + 14). Thus, a given z-score data point is computed based 

on the historical median and standard deviation from the current date and their four 

immediate neighbor periods (two periods before and two after) as a way to smooth the 

time-series to reduce the impact of outliers (due to observational issues such as clouds). 

For SWDI and precipitation, we calculated weekly z-scores based on a 35-day period. 

Finally, to extract data from the images, we averaged pixels within the regions for each 

date. The MODIS-ESI, MODIS-LAI and USDA-ESI data were masked for soybeans, 

which is feasible for the MODIS spatial resolution (500 m) and marginally for USDA-

ESI (5 km). For precipitation and SWDI, the extractions were performed over all the 

pixels within the regions based on their administrative boundaries regardless land use, as 

the spatial resolution is too coarse to resolve the local spatial heterogeneity.  

2.4.2 Phenology analysis 

 In our study, phenological metrics are necessary to define the period of analysis 

and understand the timing effects of drought on crops. The essential phenological metrics 

for this study are related to the period when drought can severely impact crops leading to 

potential yield loss. For this, we detected start of the season (SOS), which determines the 

onset of the green-up phase. For soybeans, it is related to the cotyledon stage and, for a 

hypothetical LAI temporal curve, the SOS is the point in time when LAI starts to increase 

marking the vegetative stage onset. We also detected the peak of the season (POS), which 

is equivalent to the maximum LAI along the curve and, which is related to the soybean's 
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pod development phase, which occurs during the reproductive stage. After the POS, there 

is still water demand from the plant during the grain filling phase, which lasts typically 

two to three weeks and the end coincides with the beginning of LAI decreasing section of 

the curve, characterizing senescence. A similar approach was taken by Sakamoto et al. 

(2010), relying on variation of NDVI to detect phenology features for corn and soybeans 

in Nebraska, United States. In our study, the POS dates are used as the reference to 

correlate LAI with drought indicators as described in Section 2.4.5, as maximum values 

of VIs are often used to correlate with crop yields (Bajgain et al., 2015).     

2.4.3 Meteorological drought detection 

 Once the phenological metrics were retrieved, we delimited the period of analysis 

for precipitation, which usually varies from region to region. To quantify precipitation, 

we considered the period that includes the month prior of SOS to the month of POS, 

which based on our exploratory analysis totals four months. For this, we summed the 

monthly precipitation z-scores within the season in a pixel basis for each year/season. 

Values of z-scores rarely fall outside of the range of [-1.6,1.6]. Therefore, we considered 

totals below -3 (𝜇 = −0.75) as severe drought and close to -4 as extreme (𝜇 = −1.0). 

For wet years, the same strategy applies by inverting the signals. To verify the 

relationship between precipitation z-scores and crop yield, we also calculated the Pearson 

correlation (r) for each region (Oya et al., 2004). The proposed procedure simplifies the 

detection of dry and wet years so that we can focus the subsequent analysis on the most 

extreme occurrences.  

2.4.4 Impulse-response analysis 
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 To assess how drought indicators can anticipate the response of our post hoc 

assessment variable, the LAI, we rely on the Impulse Response Analysis [IRA, 

(Lütkepohl, 2005)]. This is a novel approach for natural sciences (Mariano et al., 2018), 

although the technique is widely used in econometrics to, in a multivariate time-series 

system, assess how a shock in one variable impacts another in subsequent periods, 

independently from the other variables in the system. The lagged analysis allows us, for 

instance, to verify when the impact is maximum for a pair of variables and therefore, 

helps on detecting the timing of the highest correlation. The procedure is an extension of 

the Vector Autoregressive models (VAR) method for multivariate time series, where each 

variable is a linear function of past lags on itself and the other variables (Lütkepohl, 

2005). The VAR approach for this study has Ordinary Least Squares (OLS) linear 

regression method under the hood; however, applied by lagging variables in relation to 

each other (Mangiarotti et al., 2012).  

 Once the VAR model over z-scores (less autocorrelation and seasonality, easing 

time-series analysis) of variables for a given region is set, we proceeded with the IRA. 

Further, the magnitude of the effects is orthogonalized (uncorrelated), enabling us to 

assess the effect of each variable on LAI independently from other variables. Although it 

is known that USDA-ESI and MODIS-ESI have inherently some correlation with LAI, 

which is at least indirectly part of their design, as LAI is an input for USDA-ESI and 

MODIS ET calculation (Anderson et al., 2007a; Mu et al., 2011), the IRA analysis still 

captures other sources of correlation. In short, IRA will elucidate how shocks in 

precipitation, SWDI and ESIs impact LAI. 

2.4.5 Pixel-based lag correlation 
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 A pixel-wise correlation analysis allows us to assess how the variables relate to 

each other taking into account the spatial resolution limitation since we aimed at 

verifying the capability of tracking drought. It also allows to assess the patterns on spatial 

variation, which determines the degree to what the datasets can spatially capture the 

drought spatial extension. The MODIS datasets have the highest resolution in this study 

(500 m), whereas USDA-ESI is 5 km and SWDI is 25 km, the lowest. We resampled 

USDA-ESI and SWDI to the same resolution of the MODIS images using the cubic 

spline method just to allow us to perform pixel-wise comparisons without truly creating 

new data (Toutin, 2004).  

 We used the weighted Kendall Tau correlation as a measure of similarity since it 

takes into account observations with low or high ranking in the data distribution, 

penalizing those with high rankings (Shieh, 1998). The correlations are calculated 

between variables having LAI at the POS date as reference and lagging the drought 

indicators backward in time at the point of maximum impulse-response according to the 

results of the IRA. Thus, we are correlating datasets from different periods in order to 

assess how an early drought indicator (at the point of maximum IR) can explain LAI at 

the POS date, which is a reasonable proxy for crop yield (Tagliapietra et al., 2018).  

2.5 Results 

2.5.1 Phenology analysis 

 Figure 2.3 shows the SOS and POS for each region at some specific years and the 

median LAI for all the period (2002-2016). We choose five years to represent a wide 

variation in the drought/wet conditions and, therefore, capture the extremes to verify 

whether phenology metrics shift annually due to precipitation anomalies. As expected, 
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the lower the latitude, the earlier the SOS. The average SOS date ranged from mid-

October (northern regions of PR) to late-November (nw-RS), whereas the POS ranged 

from late-February (nw-RS) to mid-January (cw-PR). Finally, the time between SOS and 

POS was around 100 days for the regions in PR and 86 days for RS. The inter-annual 

changes in regional phenological metric timings are minimal, as the length of the period 

(SOS to POS) presented has low variation. The average SOS dates found for each region 

are in accordance to the literature (Esquerdo et al., 2011; Grzegozewski et al., 2016; 

Gusso et al., 2014; Tagliapietra et al., 2018), regardless of the drought level of a given 

year. Further, the SOS to POS period is not related to the number of days to maturity, 

which takes into account the grain filling and later phases in the crop development 

(Alliprandini et al., 2009) - the POS-SOS period is just a metric for biomass 

accumulation throughout the plant cycle. Although metrics dates remained consistent, the 

magnitude of them (LAI values at POS) showed inter-annual variation with smaller 

amplitude for the regions ce-PR, cn-PR and sw-PR (2.3-2.6, 2.4-3.0 and 2.4-3.1), and 

higher for cw-PR and nw-RS (2.5-3.5 and 2.7-3.6). The observed LAI amplitudes at the 

POS dates indicate each regions' sensitivity to hydroclimatic conditions in a given year 

when farming management practices are not considered. 



 

 

34 

 

 

Figure 2.3: Phenology metrics for the five regions. The points on the left side of the 

curves are the SOS whereas POS are on the right. The median (gray line) refers to all the 

years (2002-2016). To ease visualization and comparison we smoothed the time-series 

using a 6-week moving average, standardized the y-axis and chose some representative 

events to be plotted (Section 2.5.2). In the legend, the signals - and -- indicate severely 

and extremely dry, whereas + and ++ indicate wet and extremely wet years, respectively. 

 With the SOS and POS date from each region/year, we finally delimited our study 

period within the so-called summer growing season, so we proceeded with the 

meteorological drought mapping for these periods. The POS dates are also later used as 

the reference for lagging other variables considered in this study. The analysis also gave 

us an overview of how the LAI curves are shaped for each region allowing us to associate 

drought-related events to phenology stages. 

2.5.2 Drought mapping 

 The sum of precipitation z-scores from October to January for the regions in PR 

and November to February for RS are presented in Figure 2.4. As noteworthy events, we 

identified the seasons of extreme drought (2005 and 2012) and severe drought in 2006, 

whereas the only extremely wet year detected was 2016. On the drought side, negative 
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anomalies in precipitation have, at least visually, matched the yield losses presented in 

Figure 2.1, where the soybean yields for the seasons of 2005 and 2012 presented highly 

negative anomalies. The effects of precipitation on yield seem to be region-specific, as 

the calculated correlation (r) between precipitation z-scores and yield for each region 

implies: cePR = 0.72, cnPR = 0.50, cwPR = 0.79, swPR = 0.89 and nwRS = 0.85. The 

range of correlations (0.50 to 0.89) highlights two realizations for our study, which are in 

accordance with Hlavinka et al. (2009) and Lobell et al. (2014) when it comes to crops 

sensitivity to drought. First, lack of precipitation does not necessarily lead to yield loss; 

therefore, soil-plant regional characteristics might drive most of the precipitation-yield 

relationship. Second, the occurrence of more dry than wet years within the period can 

potentially bias the results towards the adverse effects of drought on yield and the 

relationship between negative and positive effects are asymmetrical, meaning that crops 

might not benefit from above-normal precipitation at the same magnitude as drought can 

damage them. These findings are in accordance with to (Johnson, 2014), which reports 

that crop yield (for soybeans and corn in the United States) is also related to precipitation 

distribution over the season rather than just total amounts. Our research did not fully 

explore the distribution of precipitation to the point of detecting dry spells, instead, we 

justify our approach considering that precipitation distribution is therefore encompassed 

in SM-related variables, which has a longer memory than precipitation itself. 
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Figure 2.4: Four-month accumulated precipitation z-scores by region. The accumulation 

periods are from October to January for PR and November to February for RS. Negative 

values are drier years, positive values are wetter years. 

 

2.5.3 Impulse response analysis 

    Figure 2.5 shows the results of the IR analysis for independent variables impulses on 

LAI throughout ten weeks of the growing season, as we noted that this period captures 

most of the interactions between variables and it is enough time for the shock's impacts to 

dissipate. The y-axis is expressed in standard deviation (𝜎), meaning that one unit of 𝜎 

impulse on variable A causes y 𝜎 response on  variable B at the x-weeks lag. USDA and 

MODIS ESI presented the higher values for responses on LAI, with peaks observed in 

region cw-PR at five and four weeks for USDA-ESI and MODIS-ESI, respectively. 

USDA-ESI reached peaks of IR at longer lags than for MODIS-ESI and, in the case of 

ce-PR and sw-PR these effects were not clear (low magnitude and therefore, long lagged 

response, which highlights the inability of the analysis to capture the phenomenon). Thus, 
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we can summarize the ESI analysis as having regional effects, such as the ability to 

anticipate impacts on peak LAI at a four- to five-week lead period for the regions cw-PR, 

cn-PR and nw-RS. In our methodology, both ESI products were masked for crops and, 

this is potentially a factor pointing out the limitations of the datasets on capturing the 

spatial heterogeneity of the regions sw-PR and ce-PR. In Figure 2.1, these regions have 

the crops that are more sparsely distributed. As reported by Anderson et al. (2016), the 

highest USDA-ESI/LAI correlations were observed on a state scale, which led us to 

suspect that spatial resolution might play a role in our analysis (at sub-municipality 

level).  

 For SWDI the responses magnitude was smaller than for ESI. The sw-PR and cw-

PR regions showed the highest peaks of SWDI at five and three weeks respectively, 

whereas the responses for the other regions was weak and unclear, indicating that the 

SWDI dataset failed at detecting drought. The analysis of SWDI poses an unusual result 

for the lead time of SM anomalies impact on vegetation, which were expected to have 

about six weeks lead time (Adegoke and Carleton, 2002). For the nw-RS, the impulse 

seems to be dissipated over a long period, or the technique failed to capture the 

relationship, as it happened on regions ce-PR and cn-PR. These latter regions are 

composed mostly of high-quality soils (refer to Section 2.3.3), which tend to attenuate the 

effects of drought due to higher availability of soil water storage in the soybean root-

zone. Further, the high heterogeneity of crop spatial distribution makes it difficult for the 

SWDI to capture the SM dynamics for crops, whereas the same was not observed on cw-

PR, which is also a region with high-quality soils, but with lower spatial heterogeneity.  
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 Precipitation has a shorter memory than SWDI and ESI, the other drought 

indicators considered in this study, with peaks occurring from 1 to 4 weeks. Regarding 

magnitude, the levels are low due to spatial resolution discrepancies and also for the 

intrinsic inability of precipitation on correlating with biomass  (Hlavinka et al., 2009; 

Lobell et al., 2014; Samanta et al., 2010). Another factor that plays a role in this 

relationship is the precipitation distribution, such as the occurrence of dry-spells (not 

covered in our study), which can have significant consequences depending on the 

phenological phase where it happens (Hunt et al., 2009). Therefore, the short memory 

issues for precipitation are not impactful in SWDI or ESI, which is why precipitation-

based drought indicators might not effectively explain variability in biomass or yield. It is 

worthy to observe that the region nw-RS presented comparatively high response to 

precipitation, which can be explained by the lower quality of the local soils (mostly 

regular to limited, as shown in Section 2.3.3), with a lower water storage capacity and 

therefore, relying more upon timely precipitation distribution. 

 

Figure 2.5: Impulse response analysis for variables impacting LAI for each region. The y-

axis is presented in standard deviation 𝜎): the IRA shows how long a shock of 1 𝜎 in one 

variable takes to dissipate in the response variable. The upper row plots [(a), (b), (c) and 
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(d)] represent the impulse response function and the peaks indicate the period of 

maximum response. The bottom row plots [(e), (f), (g) and (h)] show the responses 

cumulative effects.     

 

Finally, by analyzing the cumulative effects of IR (bottom plots in  

Figure 2.5), we observed that the most influential variables are the USDA-ESI and 

MODIS-ESI, then, SWDI and finally, precipitation. In the soil-plant-atmosphere 

continuum, ET (and therefore ESI) is closely related to the plant response to water and 

energy availability, thus, exerting more impact than those observed by SWDI and 

precipitation, although the latter two are the source of water for the whole system. The 

lack of shock-response observed in SWDI and precipitation may be partially due to 

spatial limitation of these datasets, which is further assessed in Section 2.5.4. 

2.5.4 Pixel-wise correlations 

 Figure 2.6 shows weighted Kendall's tau correlations between the reference LAI 

at the POS dates versus the resampled drought indicators at lag-max (period of maximum 

impulse-response). To account for the range in hydrological conditions, we chose to 

analyze and present four years (three for drought and one for wet), as found in Section 

2.5.2 (2005 and 2012 were extremely dry, 2006 severely dry and, 2016 was extremely 

wet). This is a three-fold analysis encompassing indicators (ESI, SWDI, and MODIS-

ET), degrees of drought (the four chosen years) and geographic regions.  
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Figure 2.6: Weighted Kendall's Tau correlation at lag-max for ESI, SWDI and MODIS-

ESI (mESI). As a reminder, 2005 and 2012 were years of extreme drought, 2006 was a 

severe drought and, 2016 an extremely wet year.  

As presented in Figure 2.6, MODIS-ESI showed the highest correlations, 

followed by USDA-ESI and SWDI. The cases where USDA-ESI (for cw-PR and nw-

RS) and SWDI (sw-PR and nw-RS) presented moderate correlations (0.40 to 0.45) 

occurred in the most extreme drought year for the study period (2012). For MODIS-ESI, 

most of the cases showed moderate to high correlations (0.36 to 0.75), except for the 

extremely wet year (2016), which corroborates with the fact that soybean yields are 



 

 

41 

 

asymmetrically subject to both dry or wet conditions (Anderson et al., 2016). The ability 

of the datasets to correlate with LAI is, apparently, closely related to their spatial 

resolution. Therefore, SWDI and USDA-ESI failed to detect agricultural drought in most 

regions. The few successful cases (correlations above 0.4) occurred in the extreme 

drought of 2012, as the effects are geographically widespread and more evident, and the 

coarse resolution datasets were able to capture the broad and pronounced phenomenon.  

 Regarding regions, nw-RS presented the highest correlations for both ESI 

indicators during the drought years. As observed in Figure 2.1, the region is densely 

covered by crops, which enables the datasets to spatially resolve the targets, as the 

landscape is more homogeneous than the other regions and, has also lower quality soils, 

which leads the vegetation to respond more closely to hydrological anomalies. According 

to Gusso et al. (2014), high temperatures are the primary driver for yield loss in the 

region, where heat waves eventually occur intensifying drought effects. Therefore, SM 

plays a smaller role in the local yield as compared to land surface energy balance (ET 

based indicators), partially explaining the inability of SWDI to detect drought in the 

region.  For the other regions, where spatial heterogeneity is more evident, USDA-ESI 

and SWDI were less capable of capturing drought effects on LAI, implying that the use 

of these datasets should be restricted to regional rather than local assessments. 

 In short, SWDI and USDA-ESI were unable to early detect agricultural drought in 

most cases, except for a few occurrences in the most extreme events. On the other hand, 

MODIS-ESI was more highly correlated with lag-max in most of the drought cases 

(Figure 2.6). That suggests that only MODIS-ESI can be used for early agricultural 

drought detection at sub-municipality level, with a lead time ranging from 4 to 5 weeks. 
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To date, at the given spatial resolutions, SWDI and USDA-ESI should have their use 

restricted to regional drought assessment. In the case of USDA-ESI, recent studies 

addressed large regions with little discrimination for crop heterogeneity, where the 

datasets were proven to be effective for drought assessment (Anderson et al., 2015, 

2016). To allow local-scale studies, progress is being made towards designing products 

with higher spatial scales for ET (Semmens et al., 2016; Senay et al., 2016), which we 

encourage to further assess their capacity for early detection of  agricultural drought. The 

limitations of coarse resolution SM-based products are widely discussed (Loew et al., 

2013; Piles et al., 2011) and the authors recommend the use of such data mostly for 

regional modeling purposes. To overcome these limitations, considerable efforts have 

been to achieve finer scales for SM products (Crow et al., 2012; Das et al., 2011; Draper 

et al., 2013; Kim and Hogue, 2012), thus, their usability has to be re-assessed as their 

quality and spatial resolution increase.  

2.6 Discussion 

 This research study aimed at verifying methods and datasets for early detection of 

agricultural drought in the southern Brazil, as well as assessing several methods and data 

limitations. Southern Brazil is often stricken by hydroclimatic hazardous events such as 

drought, impacting crop yields and, therefore, the local economy. Early detection of 

agricultural drought has the potential of providing insights for decision makers regarding 

commodities offer, price formation, logistics and insurance planning. We relied on remote 

sensing datasets that capture anomalies in root-zone SM, ET and LAI, the latter as a post 

hoc vegetation condition assessment. We analyzed the summer seasons from 2004 to 

2016, from which we delimited the growing season through LAI time-series phenology 
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analysis. We proceeded with lagged correlation investigation to assess how drought 

indicators can early detect events based on the IRA approach. Finally, we assessed the 

datasets limitations on detecting drought due to their spatial resolution, which is a severe 

hurdle for their usability at local scales. 

 The phenology analysis showed that SOS and POS dates are not related to 

drought occurrence, which led us to conclude that management practices (sowing dates) 

tend to regulate the average SOS date and therefore, the POS dates are predetermined by 

the soybean variety maturity group (Alliprandini et al., 2009). We mapped drought 

occurrence based solely on precipitation z-scores for the period ranging from the months 

of SOS and POS, totalizing four months for all the regions. We identified a severe 

drought in 2006 and, extreme droughts in 2005 and 2012 for all the regions. This tells us 

that drought effects in the SB are widespread, however, with different regional impacts 

for vegetation. In some cases, like for the regions cw-PR and nw-RS on 2012 drought, 

however, the LAI levels at the POS date dropped significantly as a result of the slower 

rate of biomass accumulation.  Such effect is usually expected to turn into yield loss 

(Anderson et al., 2018; Cirino et al., 2015; Gelcer et al., 2013) - La Niña years tend to 

lead to drought in the SB, potentially affecting crop yields. What is alarming is that in 

addition to the three severe/extreme drought events, we detected four other moderate 

drought occurrences, adding up to seven drought years in a 14-year period, which were 

all not related to La Niña events. As a result, the correlation between soybean yield and 

precipitation anomalies varies by region, ranging from 0.50 to 0.89, with an apparent 

pattern of correlations increasing southwards, where lower quality soils characterize the 

area.  Although climate change scenarios studies predict an increase in precipitation totals 
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for the SB in the next 40 years (Ribeiro Neto et al., 2016), the high frequency of droughts 

observed in our study period (7 out of 14 years) led us to be less optimistic about the 

projections for this region. Still, if models indicate an increase in annual precipitation at 

the same as the frequency of droughts also increases, implying that precipitation intensity 

would increase, making the distribution more narrowly distributed. Therefore, we would 

likely have problems of drought and inadequate distribution of precipitation in wet years, 

which can also have a negative impact on crops in SB.  

 The core of the current research was to identify how drought indicators can 

anticipate the effects on soybean yield. As expected, both USDA-ESI and MODIS-ESI 

achieved higher IR with LAI for three to five weeks lead time (Anderson et al., 2015, 

2016). ESI relies on the surface capacity of meeting the potential ET given that adequate 

nutrient/water/radiation is supplied to the plant, therefore, a low ET/PET ratio indicates 

that the surface (and the plant) has failed at transferring water to the atmosphere; in the 

case of drought occurrence, this ratio tend to be low due to the tension at which water is 

retained in the soil, making it difficult for the plant root to extract it.  

 SWDI, which was expected to have longer lead time due to its nature in the soil-

plant-atmosphere continuum, failed at describing the relation due to spatial resolution 

limitations on resolving the local heterogeneity, which varied among the regions. The 

range of IR peaks considering all the drought indicators goes from 3 up to 5 weeks prior 

the POS date; in the local soybean phenology cycle these periods can be equivalent to 

most of the early reproductive stages (R1 to R6), which are highly dependent on water 

availability (Farias et al., 2001). The peak IR for the datasets occurs at crucial stages for 

the crop concerning water needs.  
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 To date, given the spatial resolution of the globally available datasets, we would 

recommend the use of USDA-ESI and SWDI to be restricted to regional monitoring, 

whereas MODIS-ESI use is encouraged at the local scale. In a drought monitoring system 

design, the spatial resolution would dictate the extent to what each of the chosen datasets 

can address the targets. In our ideal system, SWDI would address drought at a regional 

level with a long leading period, but with low reliability. Then, USDA-ESI at a 

municipality level, as it proved be an earlier indicator (as compared to MODIS-ESI) for 

some regions. Finally, MODIS-ESI would be related directly to crops rather than 

landscape, being closer related to the municipality level yields. This is a way of 

respecting each dataset limitation but taking into account their capabilities. Agricultural 

drought should use a holistic approach to deliver regional and local level information for 

decision makers in a timely manner.  

2.7 Conclusions 

 Monitoring agricultural drought in tropical/sub-tropical regions is a challenging 

task because frequent cloud coverage hampers the usability of freely available higher 

resolution images (e.g. Landsat, Sentinel, China–Brazil Earth Resources Satellite 

(CBERS)) and, such temporally-limited data hardly capture crop dynamics. We 

addressed the drought problem with datasets usability in mind, recognizing their 

limitations but also extolling their capabilities. We analyzed datasets ranging from 500 m 

to 25 km spatial resolution and up to an 8-day temporal resolution. We concluded that 

ET, the variable that encompasses most elements related to crop development in the soil-

plant-atmosphere continuum, is most capable of the variables assessed for early detecting 

agricultural drought more efficiently (represented by ESI, an ET stress indicator). The use 
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of MODIS-ESI is strongly recommended for such a task, as it has a long record of 

validation and application across a variety of biomes and, it has the potential of 

continuity through the NASA/NOAA - Suomi NPP Visible Infrared Imaging Radiometer 

Suite (NPP-VIIRS) (Hulley et al., 2018). Although a longer lead time can be potentially 

achieved with SM related products, its value is dependent on developing finer spatial 

resolution products; therefore, SWDI failed at delivering useful insights on agricultural 

drought. SM is most appropriate for regional scale analysis, but downscaling efforts 

could improve its applicability at more local scales. USDA-ESI and MODIS-ESI 

provided up to 5-week lead time for agricultural drought signals and this information is of 

great relevance for decision making. We encourage the development of MODIS-ESI 

based products tailored for a variety of stakeholders in the agricultural chain to enable 

data-supported decisions. We also expect improvement of USDA-ESI spatial resolution 

by incorporating new datasets (such as active sensors), and the re-assessment of this 

product capabilities.  

 Developing strategies for detecting/mapping and even predicting agricultural 

drought is of great relevance for a variety of stakeholders in the agricultural chain. Grain 

traders might take advantage of such information by potentially predicting the soybean 

offer in the local market (although the grains might already be negotiated/sold), which 

might affect prices and impact logistics (transportation and storage). At the government 

level, since credit is often provided and regulated by the government, timely information 

is therefore helpful on understanding the possible financial outcomes of the drought for 

the farmers and expecting potential defaults. Insurance companies might take advantage 

of early drought indicators by preventing moral hazard (the unwillingness of the farmer 
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to comply with the insurance contract once it is signed), making the contracts more 

transparent, preventing defaults and therefore, allowing the companies to lower the 

premium and popularize the adoption of agricultural insurance. 
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CHAPTER 3.  

USE OF REMOTE SENSING INDICATORS TO ASSESS EFFECTS 

OF DROUGHT AND HUMAN-INDUCED LAND DEGRADATION 

ON ECOSYSTEM HEALTH IN NORTHEASTERN BRAZIL 

Abstract: 

Land degradation (LD) is one of the most catastrophic outcomes of long-lasting drought 

events and anthropogenic activities. Assessing climate and human-induced impacts on 

land can provide information for decision makers to mitigate the effects of these 

phenomena. The Northeastern region of Brazil (NEB) is the most populous dryland on 

the planet, making it a highly vulnerable ecosystem especially when considering the 

lingering drought that started in 2012. The present work consisted of detecting trends in 

biomass [leaf area index (LAI)] anomalies as indicators of LD in NEB. We also assessed 

how the loss of vegetation impacts the LD cycle, by measuring trends in albedo and 

evapotranspiration (ET). LAI, albedo and ET data were derived from MODIS sensors at 

8-day temporal and 500 m spatial resolutions. For precipitation anomalies, we relied on 

CHIRPS-v2 10-day temporal at 5 km spatial resolution data. For detecting trends, we 

applied the Theil-Sen slope analysis on time series of MODIS LAI, albedo and ET 

images. Trend analysis was performed for the periods ranging from 2002-2012 (no severe 

droughts) and 2002-2016 (including the last drought). LAI trends were more pronounced 

and had a stronger signal than ET and albedo, therefore, LAI was our choice for mapping 

LD. The first analysis highlighted the human-induced LD prone areas whereas the last 

detected drought-induced LD prone areas. Considering only the trending areas, which 
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was about 23.4% of the total, 4.5% of this area has undergone human-induced 

degradation whereas drought was responsible for 73%, although, not mutually exclusive. 

As reported in the literature and official data, grazing intensification might be a factor 

driving human-induced degradation. We noticed that the range of variation of LAI is 

narrow and even narrower for albedo, which demonstrates that land surface response is 

more influenced by soil reflectivity rather than the characteristic sparse vegetation 

coverage (LAI ranging from 0.04 to 0.4 in the Caatinga biome), which can barely alter 

albedo. Finally, the effects of LD on ET anomalies were assessed by Granger causality 

and impulse-response analyses as means to link land surface feature changes to the 

hydrological cycle. Albedo had a slightly weaker impulse than LAI on ET whereas 

precipitation played a major role. These relations are site-specific and, land surface 

features (biomass and albedo) had a more substantial influence on ET in severely 

degraded areas. We concluded that drought led to trends indicating LD prone areas in 

NEB and the degradation cycle has positive feedback derived from ET reduction 

resulting in an increased net moisture deficit, although the latter statement has yet to be 

further investigated. The study warns of the desertification risk that NEB is facing and 

the need for the authorities to take action to mitigate degradation and drought effects on 

both traditionally surveyed (desertification nuclei) and newfound LD prone areas. We 

also highlight the limitation of confirming LD, as to date there is no post-drought data 

available and, lessons learned from the Sahel case make us cautious about claiming that 

an area is in fact degraded.  
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3.1 Introduction 

Desertification is defined by the United Nations Convention to Combat 

Desertification as "land degradation in arid, semiarid, and dry subhumid areas resulting 

from various factors, including climatic variations and human activities", within this 

context, land degradation (LD) is therefore defined as "the reduction or loss of biological 

or economic productivity" (UN, 1994). This interdisciplinarity definition leads the 

scientific community to take more integrative approaches to address the problem, 

considering both climate change and sustainable development, as discussed in a review 

by Reynolds et al. (2007), drawing special attention to drylands, which typically have low 

fertility and sparse vegetation coverage characterizing a fragile ecosystem. In a 

comprehensive work of simulations, Huang et al. (2015) argue that enhanced warming, 

population growth, and higher aridity will likely increase the risk of LD and, to an 

extreme extent, desertification. Further, the drylands in developing countries are more 

sensitive to climate change due to anthropogenic pressure and dependence on local 

natural resources − poverty is likely to increase, therefore feedbacking pressure on 

drylands leading to soil erosion, and eventually, desertification (Jiang and Hardee, 2011; 

Reynolds et al., 2011).  

All the factors mentioned above are present in the Northeastern region of Brazil 

(NEB), the most populous dryland region in the world, with more than 53 million 

inhabitants and a population density of about 34 inhabitants per km2 (Marengo et al., 

2017). It is highly vulnerable to both environmental and anthropogenic LD, as observed 

(Oyama and Nobre, 2004). More than 10% of the area experienced intense environmental 

degradation processes, showing the vulnerability of the Caatinga - the local predominant 
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xeromorphic biome - to climate hazards, and more specifically to drought. During the 

period of 2011-2016, a severe, long-lasting drought has taken place in NEB, drawing the 

scenario for high degrees of LD (Gutiérrez et al., 2014; Marengo and Bernasconi, 2015). 

Simulations for climate change scenarios of global warming show that the future of the 

NEB may be compromised, which draws attention to the LD problem and its apparent 

irrevocability (Huang et al., 2017; Marengo et al., 2016).   

 Privette et al. (2002) and Fensholt et al. (2004) validated MODIS Leaf Area Index 

(LAI) with in situ measurements in semiarid regions of Southern Africa Kalahari and the 

Sahelian zone of Senegal finding strong linear relation with Normalized Difference 

Vegetation Index (NDVI) and characterizing phenological variability; considering the 

regions where the studies were carried out, LAI is potentially a good indicator for 

biomass loss and, therefore, LD assessment. Surface albedo as an indicator of soil 

exposure is often used to assess LD on arid regions. The study carried out by Oyama and 

Nobre (2004) relied on integrating albedo and vegetation cover fraction trends to simulate 

LD effects leading to precipitation reduction. A comprehensive and prominent approach 

was taken by Pan and Li (2013) on desertification detection by coupling NDVI and 

albedo information based on Landsat data, in which they could assess degradation and its 

intensity levels. Samain et al. (2008) thoroughly investigated albedo variability to 

associate it with degrees of desertification in Sahel, supporting the fact that increased 

albedo may affect drought occurrence and leverage LD.  

Assessing LD over large areas is an issue commonly addressed by trend analysis 

of long-term biomass-related and environmental remote sensing based data. Vicente-

Serrano (2007) analyzed 13 years of high-frequency coarse resolution imagery along with 
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precipitation anomalies to assess drought impacts on vegetation in the Mediterranean 

semiarid region. They concluded that drought occurrence is the primary driver of 

interannual vegetation variability based on the aridity of the region. Dubovyk et al. 

(2013) analyzed time-series of NDVI data to detect negative trends as an indicator of 

degradation in Uzbekistani irrigated croplands. Eckert et al. (2015) mapped not only LD 

but grass regeneration, urban expansion, and other land use changes in Mongolia using 

trend analysis of MODIS NDVI and precipitation. They were able to detect changes even 

in small-scale areas, which is an important feature to address in smallholder agriculture 

that characterizes some of the regions covered in this study. One concern about RS-based 

time-series analysis to detect LD is the strength that the signal has to have to produce 

significant negative slope and map these trends; moreover, decoupling vegetation 

persistent changes from interannual variations due to anomalies in precipitation and 

anthropogenic activities may require ancillary data (Wessels et al., 2012). 

Once biomass changes are decoupled from environmental anomalies (mostly 

precipitation), human-induced LD can be assessed; nevertheless, it is not easily 

approachable (Evans and Geerken, 2004). Although no long-term remote sensed data 

exist to depict human-induced land changes, trend analysis based methods have the 

potential to provide a general idea of such occurrences. For both cases of drought and 

human-induced LD, no post-drought data are existent for NEB, considering the year of 

2017, which makes the LD confirmation unfeasible, as like in the case of Sahel, which 

still drawing controversy related to LD and desertification processes, as reported by 

Prince et al. (2007). There are recent studies showing a re-greening behavior in parts of 

Sahel due to both anthropogenic and climatic reasons, which may weaken the claims of 
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desertification (popularly thought as an irreversible phenomenon) (Brandt et al., 2014; 

Dardel et al., 2014; Herrmann et al., 2005; Tong et al., 2017). This illustrates a limitation 

to the extent one can assess LD; however, LD prone areas based on trends of albedo, 

biomass and ecosystem health indicators are still identifiable. 

Finally, albedo and LAI also play a significant role in the surface energy balance 

which in turn, is a key driver of evapotranspiration (ET) on partitioning sensible and 

latent heat fluxes. Charney et al. (1977) simulated albedo changes over semiarid areas to 

investigate its effect on ET and precipitation; the authors support a link between albedo, 

vegetation, ET and precipitation as a partial cause for recurrent drought in semiarid 

regions, which intensifies the effects of degradation. Li et al. (2016) studied the changing 

global net primary production (NPP) effects on ET, showing a complementary 

relationship between NPP and ET in arid regions rather than a proportional relationship 

in humid areas. A review on desertification described two cycles of degradation with 

losses of vegetation as their starting point (D’Odorico et al., 2013). The first cycle 

follows increases in albedo and ET; this depends on the regional characteristics of ET 

contributions to large fractions of total precipitation. The second cycle is simply 

described by an increase in soil erosion and a reduction in its fertility. In both cases, there 

are positive feedbacks aggravating vegetation condition, a key trigger for desertification. 

Nicholson et al. (1998), however, reported that the albedo increase may not be as 

pronounced as observed by Charney (1977) for the Sahel, because the albedo dynamic is 

driven by vegetation and precipitation, meaning that loss of biomass not necessarily will 

lead to higher albedo due to precipitation effects on the surface brightness. 
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The overarching objective of this study is to develop a solid basis for 

understanding LD trends in the NEB region for the period spanning from 2002 to 2016. 

The specific objectives are: (1) to analyze precipitation variation through the study period 

and highlight drought occurrences, (2) to detect the hotspots of LD prone areas, (3) to 

detect areas of human-induced degradation, and (4) analyze how LD impacts ET. This 

study enables us not just to locate hotspots of LD prone areas, but also determine whether 

human activities are catalyzing these trends and how degradation can potentially 

contribute to the drought feedback. 

3.2 Spatio-temporal domain 

The study area is the NEB, which consists of the states of Maranhão (MA), Piauí 

(PI), Ceará (CE), Rio Grande do Norte (RN), Paraíba (PB), Pernambuco (PE), Sergipe 

(SE), Alagoas (AL), and Bahia (BA). The NEB comprises the most populous semiarid 

region in the world (Marengo et al., 2016). The predominant biome (52.5% of the NEB) 

is the Caatinga [from tupi language: ka'a (forest) + tinga (white)], which is characterized 

by xeromorphic vegetation, mostly small semi-deciduous trees, shrubs, and low profile 

grass. The vegetation is highly responsive to climate variations and adapted to various 

degrees of aridity. The remaining biomes are savanna (Cerrado - 29.4%), Atlantic Forest 

(10.7%), and Amazon (7.4%) (P. F. da Silva et al., 2017). Our study focuses on Caatinga 

and Cerrado biomes. Agriculture in the region is mostly for subsistence consisting mainly 

of beans, cassava, potatoes and pasture (natural vegetation), with low levels of 

technology and input.  

In the NEB, some areas historically have shown remarkable signals of 

desertification, such as the absence of vegetation and high degrees of erosion. These 
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areas were then delimited, and classified as groups of municipalities called desertification 

nuclei (Figure 3.1), so governmental institutions could draw particular attention to them 

(Perez-marin et al., 2012). The current study was not restricted to these nuclei; 

nevertheless, we often used them as references. 

Regarding climatology, the precipitation regime varies across the region due to a 

diversity of climate forcings, highlighting the Intertropical Convergence Zone, cold fronts 

coming from the south and upper air cyclonic vortex. The wet season is usually from 

November to July, with high regional variability during this period. Excluding the coastal 

and Amazonian areas, the region is considered semiarid, with evaporative demand greater 

than precipitation. Normal annual precipitation ranges from 400 mm to 1800 mm from 

semiarid to coast, whereas potential evapotranspiration rates can surpass 500 mm, leading 

to a net moisture deficit (Vieira et al., 2015). 

The study comprised the period spanning from 2002 to 2016, which allowed us to 

capture a high interannual precipitation variability and a considerable time-span of data to 

calculate trends. The study period was constrained by the chosen remote sensing data 

availability, especially for MODIS/Aqua. 
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Figure 3.1: Land cover for NEB (source: www.mapbiomas.org)}. The biomes are, from 

northwest to southeast, Amazon, Cerrado, Caatinga and Atlantic Forest (coast). The 

Desertification Nucleus are: 1) Gilbués, 2) Irauçuba, 3) Seridó, 4) Cabrobró, 5) Inhamuns 

and 6) Jaguaríbe. 

 

3.3 Data 

3.3.1 Land use 

From the MapBiomas project website (www.mapbiomas.org), we downloaded 

yearly land cover maps based on automatic Landsat imagery classification; the project 

was launched in 2015 and is recently getting more attention and supporting Brazil-based 

http://www.mapbiomas.org)/
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studies (Crouzeilles et al., 2017; Noojipady et al., 2017; Tyukavina et al., 2017). These 

datasets were used to mask remote sensing data by restraining them to natural vegetation 

(forests and marshes), mixed (grasslands/pasture and subsistence agriculture), and crops 

(large-scale farming) (Figure 3.1). Although MapBiomas provides yearly data, a quick 

analysis showed that the classification fluctuates among the chosen classes due to the 

methodology applied (partially based on NDVI thresholds), which forced us to derive an 

overall mask that comprises the entire studied period, rather than yearly masks. The mask 

resolution is finer (30 m) than all the remote sensing data used in this study, eliminating 

large non-vegetated areas such as urban, dunes and beaches, and water catchments. As 

reported by Dias et al. (2016) and visually confirmed in the MapBiomas platform, land 

use changes in the Caatinga were minimal during the 2000-2016 period. Within the NEB 

region, the most noticeable land change was the agricultural expansion in western Bahia, 

and to a lesser degree, in western Piauí, both regions are located in the Cerrado biome 

(Noojipady et al., 2017). 

3.3.2 Cattle herd 

To support the analysis results and given that traditionally, in most of the 

considered region, ranching is one of the most important factors that lead to human-

induced LD, we considered the yearly cattle herd (bovine, caprine, and ovine) by 

municipality in the NEB. The data is provided by the Brazilian Institute of Geography 

and Statistics (IBGE, 2017), which regularly  collects information from various sources, 

such as self-reporting, slaughterhouse and vaccines count data (IBGE, 2002), supporting 

studies in different fields of knowledge (Millen et al., 2011; Parente et al., 2017; Ruviaro 

et al., 2014). For our study, we collected herd data from 1991 to 2016; to ease 
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interpretation, we considered the summation of all the kinds of cattle for each 

municipality as a rough indicator of density.  

3.3.3 Precipitation 

We acquired monthly precipitation absolute values and z-score data from the Climate 

Hazards Group InfraRed Precipitation with Station [(CHIRPS-v.2) (Funk et al., 2015)], 

delivered at 0.05o resolution. Dinku et al. (2018) validated the CHIRPS products for the 

Greater Horn of Africa, showing the good applicability of these datasets on semiarid 

regions and the advantages over traditional weather stations. Paredes-Trejo et al. (2017) 

validated the CHIRPS product for the NEB, showing some accuracy issues such as 

precipitation detection and, on dealing with extremes by overestimating lower monthly 

precipitation and, underestimating higher values. They recommended the CHIRPS 

product due to the poor meteorological station density in the region and the good 

possibilities of application in drought studies.  In our study, the issues related to extreme 

occurrences were minimized due to the use z-scores for comparative analysis, rather than 

absolute precipitation values, although we still relying on the latter for discussion 

purposes.  

3.3.4 MODIS data 

LAI and albedo: The time series of remote sensing optical data were established 

from MODIS sensors onboard of the Terra and Aqua satellites, which have been in 

operation since 1999 and 2002, respectively. The LAI [MCD15A2H, (Myneni et al., 

2002)] and albedo [MCD43A3 (Aqua+Terra), (Schaaf et al., 2002)] datasets are delivered 

at 500 m spatial and 8-day temporal resolutions from the collection 6 (available at 
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www.reverb.echo.nasa.gov), and are derived from Terra and Aqua combined data. Figure 

3.2 shows the statistical distribution of LAI and albedo of the wet period for each region 

in NEB, based on 15 years time series data. 

 

Figure 3.2: 1st and 3rd quartiles for LAI, albedo and ET considering the wet period from 

2002 to 2016. The legends for each variable refer to both quartiles. 

 

Evapotranspiration: The MODIS ET product (MOD16A2 and MYD16A2) is computed 

based on the Penman-Monteith equation by combining Monteith and Priestley-Taylor 
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methods for potential ET (PET) estimation, with albedo and LAI as input parameters for 

the surface energy balance partition algorithm  (Mu et al., 2007, 2011). In the algorithm, 

LAI is used to derivate canopy conductance, whereas albedo is used to estimate reflected 

solar radiation and, therefore, net incoming solar radiation. The MODIS-ET version 6 

(released in 2017) has an improvement in spatial resolution from 1000 m to 500 m, 

delivered at 8-day composites. As part of this study preprocessing, we held MYD16A2 

(Aqua) as the main product and filled up the gaps with MOD16A2 whenever available 

for a given pixel-date. 

3.4 Methodology 

3.4.1 Precipitation analysis to map drought occurrence 

Precipitation drives most of the phenomena analyzed in this study and there is 

extensive literature about drought occurrences in NEB. Marengo et al. (2016) presents a 

well-documented review of this matter. The authors emphasized the severity of the event 

that has started in 2012 for the majority of the region (also confirmed by Bretan and 

Engle (2017), and Marengo et al. (2017)), which is the only long-lasting drought in our 

studied period.  

Although the drought is well documented, we preferred to run an exploratory 

analysis to have a more accurate spatiotemporal picture of the studied period. Taking 

advantage of the drought documentation, that the last five years are considered dry, we 

divided the entire period into three equal parts. For each of them, we calculated the sum 

of z-scores for the four wet months of each year. Cunha et al. (2015) mapped the region 

based on its 4-month rainy season; therefore, we based our precipitation z-scores and 

other subsequent analysis on these regions (Figure 3.3). 
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3.4.2 Mapping trends in remote sensing data 

LAI is our primary component on LD prone areas mapping as it is immediately 

related to loss of biomass, which is understood to be directly affected by climate and 

human activities. Albedo and ET, in turn, are thought as to partially respond to biomass 

changes, comprehending part of the LD cycle, as presented by D’Odorico et al. (2013). 

For all the MODIS data, we calculated z-scores (number of standard deviations 

from the mean in a data point) based on 40-day accumulation throughout the time-series 

(historical averages and standard deviations) for each 8-day period. Thus, a given z-score 

data point is calculated based on the historical average and standard deviation from the 

current date and its four immediate neighbor periods (two periods before and two after), 

where each period is 8-day long. 

To detect trends in time series of MODIS z-scores data, we relied on a pixel-based 

Theil-Sen slope analysis, a non-parametric median based technique not subjected to the 

linear regression assumptions. The method calculates trends in sequential data and is 

often used in remote sensing studies (Higginbottom and Symeonakis, 2014). The fitted 

slope line indicates the rate at which the variable is changing over the timescale and, 

therefore, the intensity of the trend. As observed by Wessels et al. (2012), a considerable 

signal in an indicator (e.g., NDVI) is needed to produce a negative trend that can be 

characterized as LD. The initial and final years of a time series are likely to influence 

trend retrievals heavily; this is a limitation of our study due to the nonexistence of post-

drought data. It is worth reminding the reader that the objective of this study is to detect 

trends within the analyzed period, assuming the limitations given by the backloading of 

drought at the end of our time series. That being said and taking advantage of the Theil-
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Sen method's ability to deal with outliers; we can define the LD detection procedure 

regarding Theil-Sen slopes for this study as follows: 

1. The most extreme value (either positive or negative) sets the range of the scale, 

therefore, the no-trend will be always centered at zero; 

2.  The data itself will determine the trends' thresholds. We define, for this study, 

that the values outside of the 𝜇 ± 𝜎 are considered as trends for the side at what 

the distribution is skewed; then, the value is reflected into the other side of the 

distribution;  

3. The slope is subject to the data and, to the time-series length - longer series may 

produce flatter slopes, as observed by Wessels et al. (2012). That is why we let 

the data distribution itself determine the trends' extremes. 

4.  The slope indicates the rate of change in z-scores, which facilitates the 

intercomparison between variables (LAI, albedo and ET). 

Considering we separated the period of analysis into pieces according to precipitation 

distribution, we were able to focus on detecting monotonic trends within each period or a 

combination thereof. Finally, we restricted the datasets to the wet period (4 months) of 

each region (as described by Cunha et al. (2015) and shown in Figure 3.3)  and, run the 

Theil-Sen algorithm. The processes were carried out twice for each variable: i) for the 

entire series (2003 to 2016) and, ii) for the period before the drought of 2012 (2003 to 

2011). The analysis over the entire period gives us the panorama of degradation 

considering the last great drought, whereas the second analysis highlights areas that have 

shown degradation signals prior to the drought, indicating non-climate induced LD. 

Given our definition of LD detection for this study, the results are visually comparable, as 
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the color bars are tied to the extremes provided by the data and centered at zero (Figure 

3.4). By visual analysis, in addition to the desertification nuclei, we highlighted regions 

where negative trends are strong and dense (avoiding salt-and-pepper pattern). Finally, 

we extracted time series data for the highlighted regions and the desertification nuclei for 

further analysis by averaging pixels values within these areas. The nuclei are given as 

groups of municipalities, so, the highlighted regions were also aggregated having 

municipalities as the smallest unit. Some degradation areas coincided with parts of the 

desertification nuclei, in these cases, we aggregated one to another.  

3.4.3 Time series analysis 

Working with z-scores eases the comparison between variables, takes into account 

the richness of a long time series, and removes seasonality. We extracted MODIS z-score 

times series for each of the regions mapped by the methods described in Section 3.4.2 

and used them as input for the following procedures. 

To test for the hypothesis of trend existence, we used the Mann-Kendall (MK) 

non-parametric test as a function of the ranks of observations, making it is less sensitive 

to outliers since the function is not based on the actual observations (de Jong et al., 2011). 

MK test outputs z-statistics and p-values; then it considers the ascending trend a 𝑧 ≥ 1.96 

and descending trend a 𝑧 ≤ 1.96 at 𝛼 = 0.05 significance level, as recommended by 

Fensholt and Proud (2012) in a study with similar methods. We used MK tests to verify 

trends in time-series of LAI, albedo, and ET; however, we focused on LAI to lead the 

analysis as it is the primary indicator of LD, as we are interested in biomass reduction 

effects on land. Another particularity of this study was that the MK tests were performed 
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over all the data (not restricted to the wet season). We applied the MK tests for all 

variables for each chosen region for the 2002-2011 and 2002-2016 periods. 

Both MK tests results and visual analysis of z-scores time series for all variables 

for each region underlie our analysis on LD processes taking place in NEB. We carefully 

interpreted these results and relied on the literature and local reports to support our 

findings. 

3.4.4 Cattle population trend analysis 

To support the discussion about human-induced LD, we designed a simple 

analysis of cattle population trends using yearly municipality data, ranging from 1991 to 

2011. As stated by Lambin et al. (2001), "rangeland has a natural carrying capacity for 

livestock, and exceeding this causes degradation especially in tropical and subtropical 

zones". It is noticeable that period of this analysis does not match the pre-drought period 

(2002 to 2011). The reason to consider earlier data (e.g., from 1991) is that headcount 

may not necessarily incur in immediate overgrazing, even in extensive ranching. 

However, in the long term, any existing trend, if present, tend to be more robust and not 

suffer from the limitations of analyzing trends in short time series. The period ranging 

from 1991 to 2011 has few drought occurrences reported for 1992-1993, 1997-1998, 

2001-2002, 2005 and 2010; however, no long-lasting drought was reported for the period 

(Marengo et al., 2017). This allows us to understand cattle headcount trends as an effect 

of human activities, rather than climate. Our analysis consists of running MK test to 

detect and measure trends in cattle headcount from 1991 to 2011 at the municipality 

level. The resulting map was then used to support discussion on LD trend maps. 

3.4.5 Impacts of vegetation loss on the LD cycle 
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To understand and measure how a loss of vegetation (as measured by trends in 

LAI) impacts other components of the LD cycle, we proceeded with a novel approach for 

multivariate time series analysis. ET is the indicator that aggregates most of the variables 

in the LD cycle and, therefore, is chosen as our ecosystem health indicator (Anderson and 

Kustas, 2008; Moran, 2003) - an indicator of the proper functioning of a complex 

ecosystem. This entire procedure was carried out over z-scores of LAI, albedo, 

precipitation, and ET to reduce autocorrelation and seasonality. For analyzing how LAI, 

albedo and precipitation impact ET, we used the Vector Autoregressive models (VAR) 

method. VAR is used for multivariate time series, where each variable is a linear function 

of past lags on itself and the other variables. The method has been widely used in 

Econometrics studies to analyze dynamic structures in multivariate time series, with the 

advantage over traditional Least Squares regression because it takes into account the 

relationships between variables through time, otherwise, correlations would be 

overestimated. The VAR approach for this study has Ordinary Least Squares (OLS) 

linear regression method under the hood; however, applied by lagging variables in 

relation to each other; an outline of the VAR method equations is presented in 

Mangiarotti et al. (2012). Once the appropriate VAR model was obtained, we proceeded 

with the Granger-causality and impulse response analysis (IR).  

Causality is defined by Granger (1969) as “if some other series yt contains 

information in past terms that help in the prediction of xt and if this information is 

contained in no other series used in the predictor, then yt is said to cause xt.” Literature 

often refers to this relationship as "X Granger causes Y", as this is just a mathematical 

causality relation which has yet to be assessed for each specific study. The Granger 
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method is an extension for time series analysis tools, such as the VAR method; an outline 

of the Granger causality mathematical derivation is in Detto et al. (2012). We used 

Granger analysis to assess causality existence of LAI, albedo and precipitation on ET. 

Finally, we carried out an IR analysis, as Granger-causality may not be enough to 

describe how variables relate to each other. IR function measures the response of a 

variable to an impulse in another variable in a system involving other variables; in short, 

it shows the system's reaction to a shock (Lütkepohl, 2005). IR analysis can pairwise 

measure these impulse-response relations through time, allowing us to understand how 

ET is affected by LAI, albedo and precipitation for the desertification nuclei and the new 

regions mapped from the trend maps (Figure 3.4). For the IR analysis, the effects values 

were orthogonalized (uncorrelated), enabling us to assess the effect of each variable on 

ET independently from other variables, although we know that they are correlated (given 

the MODIS-ET algorithm design, which has LAI and albedo as input data). For an 

outline of how the IR analysis is implemented on the top a VAR model, the reader can 

refer to Fang et al. (2018).  

 For VAR, Granger-causality and IR analysis, we first resampled the time series 

data to weekly time-steps applying linear interpolation. The IR analysis was carried out 

for up to 15 periods (105 days), as that was a reasonable amount of time to capture lag 

effects between variables. We expressed IR orthogonalized values regarding standard 

deviation and also cumulative effects.  

3.5 Results 

3.5.1 Precipitation and drought occurrence 
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Precipitation was not evenly distributed throughout the analyzed period over the 

NEB region. Figure 3.3 depicts the accumulated z-scores from November to May for 

each year and the accumulated z-scores for each five-year period. As shown, the northern 

subregions (FMAM and JFMA) presented the most extreme years, either wet or dry as in 

2009 and 2012, respectively. Overall, 2009 was the wettest year whereas 2012 was the 

driest and the latter marks the onset of the last long severe drought, as shown in the 

bottom-right map (2012-2016). It is worth noting that the CHIRPS z -score product 

showed a narrow range of variation, which is evident in Figure 3.7, when comparing to z 

-scores of MODIS based products. In fact, CHIRPS z -score product relies on a 30+ years 

time series whereas for MODIS we used 15 years, which might affect the z -scores' range 

of variation. 
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Figure 3.3: Annual maps of accumulated z-scores for the wet months (upper two rows). 

Five years accumulated monthly z-scores for the wet months. The regions were delimited 

by their wet season as proposed by Cunha et al. (2015), where the acronyms stand for the 

rainy months for each region.    

 

As shown in Figure 3.3, the northern regions (FMAM and JFMA) were severely 

stricken by drought for the period starting in 2012, showing variability signals related to 

the ENSO cycle in the region. Although a dry year was detected in the second period 

(2010), it was followed by a wet year; therefore, the period ranging from 2007 to 2011 

can still be considered wet on average. By combining the first two periods (2002 to 

2011), no long-lasting drought occurrences were detected. Thus, these results are 

essential to our understanding of human-induced LD, since no substantial climate impacts 

were present. In short, the precipitation anomalies analysis agreed with the studies of 

(Brito et al., 2017; Marengo et al., 2016; Marengo et al., 2017). 
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It is known that the incidence of precipitation in the NEB is intrinsically related to 

the Ocean-Surface-Atmosphere interaction. These physical and dynamic interactions 

induce complex climatic systems in which they are mainly linked to the Sea Surface 

Temperature Dipole (SST Dipole) and are associated with events such as El Niño-

Southern Oscillation (ENSO), the Intertropical Convergence Zone (ITCZ), Eastern 

Waves (EW), characteristic teleconnections, such as the Pacific Decadal Oscillation 

(PDO), the Atlantic Multidecadal Oscillation (AMO) and the Madden-Julian Oscillation 

(MJO). Finally, depending on their phase of positive or negative behavior, the average 

annual climatological precipitation level tends to be above or below the historical 

average, respectively (Marengo et al., 2013; Uvo et al., 1998). Additionally, in the NEB, 

dry conditions appeared in 2012/2013 due to an active role of the South Atlantic high-

pressure system, which determined the low-level subsidence and anomalous downward 

motion that impacted the precipitation regime in the study region (Marengo et al., 2013; 

Rodrigues and McPhaden, 2014). 

3.5.2 Trend maps and LD occurrence 

Theil-Sen slope regression maps for the periods of 2003 to 2011 and 2003 to 2016 

are presented in Figure 3.4. Additionally, Figure 3.6 shows the total detected areas by 

period based on zLAI trends. With an initial focus on zLAI maps, we identified few 

regions showing degradation trends before the 2012 drought, with BA1, BA2, PI1 and 

PI2 being the most evident and parts of ND2 and CERN [northeastern Ceará (CE), 

western Rio Grande do Norte (RN) and ND6]. These are the regions where we detected 

decreasing trends of zLAI prior to 2012, showing potential signs of human-induced LD. 

Although there are regions in northern MA and PI states showing negative zLAI trends, 
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we preferred to not include them in the further analysis due to their salt-and-pepper 

pattern, which can potentially be attributed to noise. The zLAI trend map matches what 

was observed by Redo et al., 2013 in a study ranging from 2001 to 2009 - gain of woody 

vegetation in most of the Caatinga, except for a few central regions in BA.  

The zLAI trend map for the 2003-2016 period highlights the drought effects on 

vegetation, as can be seen in Figure 3.4 showing a widespread negative trend for zLAI in 

a large polygon comprehending all desertification nuclei and the newly highlighted areas 

(in BA and PI). In fact, a backload of drought in the time series led the trends to be 

negative; however, the slopes are less steep due to the longer time series (minimum of -

0.087 in 2003-2011 and -0.035 for 2003-2016).  

The same patterns were not observed in the albedo maps. When referring to 

Figure 3.2, for the mapped regions, LAI roughly ranges from 0.04 to $0.4$ whereas 

albedo range is much narrower (0.1 to 0.19). The lack of variation in albedo incurs in a 

lower sensitivity to changes in the surface, leading us to conclude that the albedo 

response is dominated by soil reflectivity, given that LAI is predominantly low for the 

region; therefore, changes in LAI have minimal impact on albedo. In the case of ET, 

when including the dry period, the effects of LAI on ET are evident in the region 

delimited by an arc encompassing the CERN, ND3, ND4, and BA2 regions. zET trends 

map for this period has roughly the same range as the albedo map; however, its pattern 

matches the LAI map whereas the albedo does not. As observed in Figure 3.5 which 

pairwise relates variables trends for pixels within the analyzed areas, whenever albedo is 

involved, correlations are poor due to its positive kurtosis (narrow distribution). As in the 

Sahel, in our study area vegetation coverage is sparse and the net radiation attributed to 
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vegetation is low. Therefore, transpiration is more related to energy availability rather 

than canopy condition and stomatal conductance as described by Boegh et al. (1999), 

and, changes in albedo are more related to soil moisture/precipitation than vegetation 

coverage (Samain et al., 2008).  

 

Figure 3.4: Theil-Sen slopes for LAI, albedo and ET z-scores. The color bars are 

stretched to fit the range of each regression, therefore, allowing comparison between 

maps. The non-significant trend pixels are masked in grey. Albedo scale is inverted to 
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ease interpretation.

 

Figure 3.5: Scatterplots for pairs of variables trends within the analyzed areas. The 

distributions on the top refer to the terms of the left (LAI, LAI and albedo, respectively.  

 

The changes in the median for absolute values for each variable were compared 

between the pre-drought and full periods, as presented in Table 3.1, values of ET and 

precipitation are computed as annual totals, and the median is obtained by considering all 

the years in a given period (pre-drought or full). The percentage change magnitude 

follows the pattern: ET > precipitation (P.) > LAI > albedo (negligible) for most of the 

regions, except for ND1 and BA1+BA2. In general, ET changes range from -13% to -

26%, while precipitation ranges from -8% to -23% and, LAI ranges from -3% to -18%. 

ND1 and BA1+BA2 did not experience substantial changes in ET or precipitation; 

however, BA1+BA2 did experience a change in absolute LAI (-6.3%). 
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Table 3.1: Percentage changes in the median comparing the pre-drought to the full 

period. 

 

3.5.3 Trending areas and cattle headcount 

Figure 3.6 shows the zLAI trends total areas for both analyzed periods. We denoted 1 as a 

negative trend, 2 as no-trend and 3 as increasing; the tens refer to the 2003-2011 period 

and the ones to 2003-2016. In the NEB, only 23.43% of the area showed at least one 

trend occurrence. From the total trending area (23.43%), about 70% were areas that 

showed decreasing zLAI trend for the 2003-2016 period and no trend in 2003-2011. A 

few occurrences of decreasing zLAI were observed in PI1, BA1, and BA2, contributing 
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to a total of 3.46% of the trending area. Within the desertification nuclei, ND1, ND3, and 

ND5 presented occurrences of increasing zLAI for one or both periods.  

The regions where LD indication was detected, as shown in Figure 3.4, overlap 

with the high susceptibility to degradation maps presented by Teixeira et al. (2006) and 

Vieira et al., 2015. By comparing our zLAI trend maps of 2003-2011 and 2003-2016, we 

noticed similar patterns in the increased area affected by drought (Cunha et al., 2015). 

The desertification nuclei in Ceará (ND2, ND5 and ND6), in PB (ND3), and PE (ND4) 

were the subject of many studies addressing LD and desertification (Alves et al., 2017; 

Petta et al., 2013) A characteristic of the northern part of NEB is the predominance of 

smallholder agriculture and human occupation that has historically driven land 

vulnerability to desertification (Sietz et al., 2006). However, these studies were carried 

out during periods before the drought of 2012/2013. Our findings highlight that the LD 

aggravation problem on these regions is mainly due to the lack of precipitation during the 

last five years of our analysis. 

 Zika and Erb (2009) globally mapped regions where human-induced LD had been 

reported. We found an agreement in the case of BA1+BA2, where the effects of human 

activities led the area to undergo severe and widespread loss of biomass during the 

prolonged drought. As shown in Figure 3.6, some municipalities in BA1, BA2 and PI1 

showed an upward trend in cattle headcount for the 1991-2011 period, which may 

indicate that overgrazing is potentially leading to LD, further confirmed by some small 

red spots (decreasing zLAI for both periods). However, cattle headcount is a rough 

indicator for overgrazing, provided that obtaining information regarding cattle 

management from the field is unfeasible and, therefore, out of the scope of our study. To 
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date, these areas have not been labeled as desertification nuclei and are simultaneously 

heavily occupied by cattle as reported in Parente et al. (2017) and observed in our maps. 

These facts should alarm decision-makers to take action towards mitigating the drought 

effects and susceptibility to degradation. For most of the desertification nuclei, no 

decreasing zLAI trends were observed in the 2003-2011 period, although the cattle 

headcount increased, which might indicate that increasing headcount no longer play a 

significant role on human-induced LD for these regions. Therefore, one can attribute LD 

in these areas to climate factors. 

 

Figure 3.6: zLAI trends for the two analyzed periods on the left. 1 is decreasing trend, 2 

is no-trend and 3 is increasing; the tens refer to the period from 2003 to 2011 whereas the 

ones refer to 2003 to 2016 (e.g., 12 means decreasing trend in 2003-2011whereas the 

ones refer to 2003 to 2016 (e.g., 12 means decreasing trend in 2003-2011 and no trend in 

2003-2016). The percentages refer only to the total trending area, the "22 no-trend" was 

excluded, corresponding to 76.57% of the total NEB area. On the right panel, the cattle 
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headcount MK trends from 1991 to 2011 are presented at the municipality level, non-

significant trend occurrences are masked in grey. 

 

3.5.4 Time-series analysis 

The regions highlighted in Figure 3.4 were submitted to further time series analysis. The 

MK test results for trend significance are presented in Table 3.2, where 𝑧 ≥ 1.96 is 

increasing, 𝑧 ≤ 1.96$ is decreasing, otherwise, no-trend was detected (p-value>0.05). 

Table 3.2: Mann-Kendall test results for trend detection in time series. 

 

As shown in Table 3.2, all the regions showed decreasing trends for zLAI when 

considering the entire period, whereas BA1+BA2 were the only regions showing 

decreasing trend prior to the drought. zAlbedo, in turn, in the pre-drought period showed 
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decreasing or no-trend for all the regions as expected; however, increasing trends for the 

entire period were not observed for most of the regions, which falls into the already 

discussed issue related to the small range at which albedo varies for the region - loss of 

vegetation may not necessarily incur in albedo increase, as the LAI influence on albedo 

response in the area is minimal. Therefore, care should be taken on drawing conclusions 

about the albedo behavior as noise might play a significant role in this study. Regarding 

zET trends, we found a good agreement with zLAI, as expected considering what was 

observed in the maps in Figure 3.4. An interesting disagreement was found in BA1+BA2 

for the pre-drought period when zLAI decreased while zET showed an upward trend, 

which can potentially indicate that loss of vegetation is not driving ET. 

To better understand the unexpected behavior presented in Table 3.2 we visually 

analyzed the z-scores time series depicted in Figure 3.7. As shown in Figure 3.7 and 

Table 3.2, the overall behavior is that zLAI, zET, and zPrec follow the same pattern 

whereas zAlbedo has an inverse relation to thereof. The plots are divided into two shaded 

areas, before and after 2012 to ease interpretation and mark the drought effects onset. 

Hereafter, we proceed with the events descriptions by breaking them into two periods 

separated by 2012, having zLAI as the guiding reference and all other variables 

mentioned whenever necessary. 
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Figure 3.7: Z-scores time series for ET, LAI, albedo and precipitation for the regions 

detected in the LD mapping process. The plot area highlighted on the left (blue) refers to 

2003-2011 period whereas the right (orange) is related to 2012-2016.   
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3.5.4.1 2002 to 2011: detecting signs of human-induced land degradation 

To ease visual interpretation of the time series in Figure 3.7, henceforth, we refer 

to years as pairs to capture the summer season in the Southern Hemisphere (e.g., 

2009/2010 refers to the wet season starting in 2009 and finishing in 2010). Further, we 

considered as dry/wet years CHIRPS z-scores outside of the [-0.25,0.25] range, for 

reasons already mentioned in Section 3.5.1. For MODIS data, we considered as extreme 

values z -scores outside of the [-0.75,0.75] range.  

For most of the analyzed regions, the first five years show no apparent extremes, 

except zLAI peaks in 2006/2007 for PI1+PI2, BA1+BA2 and CERN and, another peak 

for BA1+BA2 in 2005/2006. Stability concerning zPrec marked this first period. The 

following five years were marked by the highest peaks for all the regions in 2009/2010 

and 2011/2012, again, with BA1+BA2 as an exception regarding z LAI response. This 

confirms what was observed by Redo et al. (2013) in central Bahia (BA1+BA2), where 

vegetation was lost without any apparent drought occurrence (as we observed in the 

precipitation analysis on Section 3.5.1). Most of the regions presented increasing trends 

as result of these latter year peaks. However, the regions ND1 and ND2 on western Ceará 

and PI1+PI2 showed no significant trend (Table 3.2) due to their fluctuation behavior 

throughout the early years and low zLAI in the year of 2010/2011. As observed in Figure 

3.4, these regions showed a heterogeneous distribution of increasing and predominantly 

no-trending areas, which may have contributed to an overall no-trending behavior.   

The case of BA1+BA2 is the only one that showed a decreasing trend in zLAI and 

zAlbedo, although zPrec fluctuated closely to 0, indicating no drought occurrences and 

precipitation influence on albedo response, which masks the loss of vegetation effects on 
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the trend. The period from 2003 to 2007 was marked by three consecutive zLAI peaks 

followed by a slightly decreasing behavior every year within the period before 2012. 

BA1+BA2 and PI1+PI2 are the only regions where we detected negative biomass trends 

in a hydrologically stable period, highlighting the human-induced LD. In fact, the cattle 

headcount analysis showed increasing trend in some municipalities within BA1+BA2 and 

PI1, which may indicate that an increase in overgrazing has been preventing herbaceous 

vegetation regrowth, characterized by the negative zLAI trends. 

3.5.4.2 2012 to 2016: the long drought 

The period spanning from 2012 to 2016 was marked by a long and drought with 

its onset on 2012/2013 (Figure 3.3), at what all the regions presented their lowest zLAI 

values (Figure 3.7). The year of 2013/2014 was regular regarding precipitation; however, 

zLAI levels remained low for most of the regions, with a subsequent decrease on the 

slightly dry year of 2015/2016 and dropped even further on the dry year of 2016/2017. 

For all the regions, the backloaded drought in the time series led to a decreasing trend in 

zLAI when considered the entire period (2002-2016). During the last five years period, 

even having normal and moderately dry years (2014/2015 and 2015/2016, respectively), 

the vegetation was not able to recover to normal levels of zLAI and, with another drought 

event (2016/2017), vegetation dropped almost to the 2012/2013 levels for most of the 

regions. An exception was the BA1+BA2 region, where the drought was not severe after 

2012/2013, and the vegetation shows signals of recovering. 

In the considered period of study, the apparent inability of the vegetation to 

recover even under regular precipitation regimes poses a tricky question: are these areas 

degrading or not? We do not have post-drought data to provide a proper answer, as 
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already stated in the limitations of this study and, the case of Sahel with its recent re-

greening occurrences led us to be cautious about drawing any firm conclusion. On the 

other hand, the decreasing zLAI trends and, for most of the cases, decreasing in zET 

(except for ND1) indicates that these are LD prone regions, given the last 15 years 

observed trends. 

3.5.5 Linking ET to land degradation 

The Granger causality analysis results are presented in Table 3.3 at 𝛼 = 0.05 significance 

level. The independent variable zAlbedo Granger causes zET in all regions, and zPrec 

also Granger causes zET, except for ND1 (borderline p-value of 0.057). Regarding 

vegetation, the regions of ND6+CERN, PI1+PI2 and ND5 (borderline p-value of 0.073) 

are the negative cases of zLAI Granger causing zET. We expected that all the variables 

would Granger cause zET, as the computation of ET is based on a radiation balance 

model, which has LAI and albedo as input and, precipitation indirectly affects these 

variables, as it is known that precipitation is the main driver for vegetation condition in 

NEB as reported by Barbosa et al. (2016). The cases of PI1+PI2 and ND6+CERN, 

however, raise questions about which factors play a role in driving ET, as PI1+PI2 

apparently presents human-induced LD signals and, ND6+CERN shows strong negative 

zLAI trends (Figure 3.4), indicating that vegetation no longer plays a role in the latter, as 

its LAI is negligible (close to 0). To further address such issues, we investigated cause-

effect relations in a lagged manner to understand how these variables interact having time 

as a factor, through the IR analysis. 



 

 

82 

 

Table 3.3: Granger causality analysis test results. 

 

Figure 3.8 shows the results of the IR analysis for independent variables impulse 

on zET throughout 15 weeks for the entire study period, where the y-axis is expressed in 

standard deviation (e.g., variable A causes y standard deviations on variable B at the n-

weeks lag). For most of the analyzed regions, zAlbedo, zLAI and zPrec had their highest 

impulse on zET at four to six weeks period. zLAI apparently did not impact zET on ND1 

and PI1+PI2 regions, whereas in BA1+BA2 and ND6+CERN the impulses were just 

marginal. In fact, by analyzing the 2003-2016 trend maps in Figure 3.4, we can observe a 

mismatch between LAI and ET for these regions and, on the other hand, a good match for 

ND2, ND3, and ND4, which presented the highest impulses from zLAI. These regions 

were also the ones that presented visually stronger signals of LD trends. Concerning 

zAlbedo, the IR analysis expressed its results as expected - zAlbedo negatively impacting 

zET with short memory after the peak (steep curve towards zero) for most regions; ND3 

and PI1+PI2 were less impacted by albedo, as this variable has a small amplitude in these 

areas (Figure 3.2). Finally, the zPrec impulse on zET was clear for all the regions, being 

ND6+CERN the most sensitive and BA1+BA2, PI1+PI2, ND1 and ND4 the less 

impacted.   
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Figure 3.8: Impulse response analysis results. The y-axis is expressed in standard 

deviation change that one variable cause to the other, remembering that the IR analysis 

was performed over z-scores. The upper row ((a), (b) and (c)) shows the impulse 

response res response results for each independent variable to zET, the lower ((d), (e) and 

(f)) shows the cumulative impulses thereof. 

 

Surface energy balance-based ET models are  highly responsive to biomass and 

surface conditions, as they are critical drivers for surface heat exchange (Li et al., 2016; 

Rajan et al., 2015; Yuan et al., 2010). However, as we observed in the NEB, LAI levels 

are low and, therefore, albedo exerts high influence on surface-related data inputs on the 

ET model. Furthermore, albedo has a narrow range of variation (0.10 to 0.19), and its role 

on ET, although being a key factor, remains nearly constant. That led us to conclude that 

ET is driven mostly by precipitation, as presented in Figure 3.8 and other factors not 

measured in this study (e.g., temperature). According to Oyama and Nobre (2004), in the 

NEB, LD leads to an increase in albedo and surface temperature as result of biomass loss. 

In turn, cloudiness decreases from precipitation reduction if a large spatial scale scenario 
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is considered. Regarding the cumulative effects of impulse-response (Figure 3.8 d, e and 

f), our results indicate that biomass loss (cumulative impulse-response up to 1.2 after 15 

weeks) along with albedo (up to -0.8) increase have altered ET dynamics in all the 

regions at different levels, although precipitation plays a major role (up to 1.4). That 

further confirms the overall trend of decreasing ET as an effect of not only precipitation 

anomalies but also LD. Although we statistically decoupled the weight of factors 

affecting ET, this separation is not straightforward given the climatological system 

complexity of NEB and the partial dependency that one variable exerts on another. The 

results hereby presented give us strong indication that LD due to drought and human 

activities are leading to ET reduction, which in turn, can potentially feedback the LD 

cycle. 

3.6 Discussion 

This research study aimed at identifying hotspots of LD prone areas caused either 

by drought or human activities. For that, we used trend analysis of LAI from MODIS 

sensors covering the entire NEB region. Furthermore, we investigated how vegetation 

removal affects the LD feedback cycle by analyzing changes in land surface albedo and 

ET, also from MODIS. The study was temporally designed based on precipitation 

anomalies from 2002 to 2016; notably, the last five years of the period were marked by a 

long-lasting drought, with a severely dry start in 2012/2013. That allowed us to 

understand LD under normal and drought conditions and, therefore, decouple climate 

from human-induced LD. Finally, by relying on Granger causality and IR analysis, we 

investigated how LD affects the ecosystem health (as measured by ET), which is 

potentially a driver for the degradation cycle itself.  
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Under reasonable confidence thresholds, we found that 23.4% of the region showed 

at least one type of trend for zLAI. From this total, about 4.5% presented decreasing trend 

due to human activities and 73% experienced drought-related trends in vegetation. We 

relied on LAI to delimit LD prone areas finding that most of the degradation hotspots 

coincided with the desertification nuclei and surroundings, historically problematic 

regions of NEB where authorities draw particular attention. However, our results detected 

new hotspots in the states of Piauí and Bahia, where we found evidence of human-

induced degradation which can partially be attributed to overgrazing, as the hotspots were 

already evident before the prolonged drought that started in 2012/2013. Further, the cattle 

headcount trend analysis also showed an increase in population for few municipalities 

within these regions. Although cattle headcount is a rough proxy for overgrazing, it is 

still the most accessible data that relates extensive human intervention on altering the 

landscape in the NEB, which is historically managed using low levels of technology.  

For all the desertification nuclei, LAI decreasing trends were detected only when 

the drought period was included in the analysis, showing that this climate hazard 

impacted vegetation conditions.  As mentioned by Moura et al. (2013), shrubs may 

increase soil fertility and moisture acting as buffers against radiation and high 

temperatures, also determining seedling survival ratio. Similar patterns of trends were 

observed in ET, although, not as pronounced as LAI; in fact, according to Santos et al. 

(2014), leaf loss and woody vegetation suppression (commonly used as fuel source in the 

NEB) are likely to imply in increased soil evaporation during the dry season. Albedo 

trends, on the other hand, matched poorly with LAI or ET. The range of variation of these 

variables are small: LAI ranges from 0.04 to 0.4, and albedo ranges from 0.10 to 0.19, 
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which demonstrates how changes in LAI barely affect albedo, due to the already 

dominant response of the soil. That being said, we concluded that albedo is not suitable to 

map LD in the NEB and, its minimal changes (given its positive kurtosis) may not 

produce a signal strong enough to characterize a significant trend. Further, albedo 

changes might be due to precipitation/soil moisture conditions rather than vegetation 

coverage for the NEB, which is the similar case of Sahel (Nicholson et al., 1998).  

In our analysis relating impulse-response between variables having time as a factor, 

we found causality between pairs of variables in most the cases. In fact, LAI, albedo, ET, 

and precipitation are all connected, and causality is expected. Further, LAI and albedo are 

input data for the MODIS-ET algorithm and, precipitation affects all these three 

variables. However, the degrees to which variables affect ET are lag and region-specific. 

The IR analysis showed that all variables have their peak impulse on ET at four to six 

weeks lag.  The correlation between drought indicators (precipitation and ET-based) to 

biomass-related variables is particularly high in semi-arid regions globally (Huang et al., 

2016), with their peak occurring at less than 3 months lag time, as observed in the 

southwestern US, the majority of Australia, southern Argentina and a variety of sub-

Saharan regions, which falls into the lag period observed in our study (Vicente-Serrano et 

al., 2013). Among the variables considered, precipitation plays a significant role in ET, 

whereas LAI and albedo cause a slightly smaller response. In a study carried out by 

Anderson et al. (2015), ET anomalies had a higher correlation with LAI than 

precipitation had for the NEB, which is in agreement with our results and expected for 

semiarid regions globally.  Regions where the LD trends are more evident show higher 

LAI and lower albedo influence on ET, leading us to conclude that in such areas, loss of 
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vegetation is affecting ET and, possibly contributing to alter the hydrological cycle. At 

this point, we raise the concern about whether the reduction on ET will further reduce 

precipitation, catalyzing the LD cycle, as indicated by Oyama and Nobre (2004). This 

latter conjecture opens an avenue of investigation to date not explored in-depth for the 

NEB: impacts in the hydrological cycle due to changes in vegetation coverage.  

The reader might have noticed that we did not mention the word "desertification" 

throughout our results and discussion and, we preferred the term "LD prone areas" rather 

than "degraded areas."  To confirm that LD in fact occurred, we would need post-drought 

data, which is to date a limitation of our study, rather, we indicated LD prone areas based 

on loss of vegetation trends and changes in ET, which might potentially feedback the LD 

cycle. Lessons learned from the Sahel case make us cautious on drawing conclusions 

about LD in the NEB. The Sahel has been experiencing some cases of regreening, due to 

land management and changes in the local climate, although, there is an intense debate 

about the region's dynamics. In our study, we found some signs of vegetation recovering 

in BA1+BA2 after a severe drought; however, for this region, the drought was not as 

prolonged as for the northern regions of the studied area.  Finally, as Marengo et al. 

(2016) warned, considering climate change projections, the NEB is likely to undergo 

increases in temperature and precipitation reduction, leading to higher frequency and 

intensity of dry spells. These findings and cited literature draw a scenario of imminent 

LD, which is partially confirmed by our study.  

3.7 Conclusions 

Our study indicates an overall negative trend in biomass due mostly to a lengthy 

drought in the NEB, as the last third of the 15 years period was remarkably dry. In few 
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regions, a negative trend was detected even in a normal precipitation period, indicating 

human-induced LD, possibly as a result of herd increase, leading to overgrazing. To date, 

the latter regions are not classified as desertification nucleus and might be subjected to 

further surveillance by local authorities to prevent LD. As compared to albedo, LAI 

showed itself as a better indicator for LD assessment due to a wider range of variation, 

also showing a higher correlation with ET. When comes to ET causation, albedo had a 

slightly weaker impulse than LAI on ET whereas precipitation played a major role. In 

areas where LD was more intense, the link between LAI/albedo to ET was stronger. 

These findings highlight the fact that ET is affected by LD; however, precipitation still 

being the main driver on ET anomalies. The capacity of LD on partially affecting ET 

indicates a potential impact on the hydrological cycle, which feedbacks the LD cycle. 

Claiming LD occurrence in our study is precipitated, we rather indicated LD prone 

areas due to the absence of post-drought data. Assessing vegetation resilience and better 

understanding the NEB hydrological cycle feedback under LD occurrence are, therefore, 

subjects for future studies. Monitoring and detecting LD prone areas is just the first step 

on providing valuable information for decision makers to mitigate effects and prevent 

climate disasters by establishing policies regarding land exploration and occupation. We 

advocate for the authorities to draw particular attention to the areas mapped in this study, 

as a significant portion of the Brazilian population will be affected by LD and a looming 

desertification disaster.   
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CHAPTER 4.  

DROUGHT IMPACTS ON CROP YIELDS, WILDFIRE 

OCCURRENCE, AND THE CARBON BUDGET IN THE 

SOUTHEASTERN AMAZON 

Abstract: 

The Xingú Indigenous Park (PIX) region, in the southeastern portion of the Amazon 

forest, is characterized by the intense conversion of natural vegetation (Amazon and 

Cerrado biomes) into agricultural enterprises whose expansion decelerated in the recent 

years. We studied the effects of drought in the region, as the period of 2003 to 2017 was 

marked by climate extremes including a prolonged drought from a Standardized 

Precipitation Evapotranspiration Index (SPEI) standpoint, with two critical episodes, one 

in 2005/2006 and, the most severe in 2015/2016. We analyzed how these events impacted 

the region in various aspects: soybean yield loss, fire occurrence, forest resilience loss, 

and the carbon budget, thus, characterizing the PIX degradation cycle. Soybeans yield 

decreased severely during the highlighted drought events, being particularly affected by 

above-normal temperatures and evaporative stress during the reproductive/grain-filling 

phase. Fire occurrences showed abnormally high occurrences within the PIX borders, a 

protected area, due to a loss of resilience to drought events. This effect may be attributed 

to the vegetation breeze, which desiccates the forest interface with clearing/agricultural 

areas. Hotspots of forest disturbance and resilience loss (high yearly gross primary 

productivity (GPP) variance) were mapped within the borders using the MODIS-based 

GPP modeled product (MOD17A2H). Moreover, an increased GPP variance near rivers 
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in the PIX were detected, where part of the indigenous population (53% growth in 10 

years) dwells, increasing the pressure for resources. We observed post-drought declines 

in total GPP (e.g., 16% reduction of forest GPP in 2016), suggesting that, if the 

degradation spreads, forest contribution to total GPP might decline even further in future 

drought events, therefore, impacting the local climate, which is likely to increase in 

drought frequency. Based on this scenario, agriculture can be negatively impacted by 

climate change, which can threat its viability, therefore, we close the PIX degradation 

cycle concluding that agricultural expansion represents a potential threat to itself and on 

native population livelihood. 

4.1 Introduction 

 Drought is becoming more frequent in the Amazon biome, as shown by a trend of 

drought occurrences over the last fifteen years (Lopes et al., 2016; Marengo et al., 2018). 

In the southern Amazon, the increase in dry-days frequency during the wet season is 

associated with the northern Atlantic Ocean warming and reduced water vapor flux from 

the tropical Atlantic, partially explaining these trends in a synoptic scale (Espinoza et al. 

(2018). Concomitantly, many land use changes (LUC) have been observed along the 

borders of the Amazon forest, predominantly by deforestation followed by a conversion 

into pasture and, in many cases followed by crops like soybeans and corn (Coe et al., 

2013). Replacing tropical forests with pastures or degraded grass leads to increase in 

temperature and decrease in ET (Shukla et al., 1990) and, LUC associated with other 

sources of greenhouse gases emissions can also alter precipitation distribution (Costa et 

al. (2007).  
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 The deforestation cycle is observed in the Indigenous Xingu Park (Parque 

Indígena do Xingú - PIX) region, which is covered by evergreen forest and surrounded 

by cerrado, a particular variation of savanna. Forest-to-crop and forest-to-pasture 

transitions together were responsible for an increase in land surface temperature (LST) of 

0.3 oC, and evapotranspiration (ET) reduction of 32% in the 2000s (Silvério et al., 2015). 

The cerrado biome, which is where most of the conversion happened, is composed of a 

mosaic of semi-decidual forest and grasslands. It has undergone a substantial 

transformation in the recent past and nowadays is a main soybean production region 

(Rada, 2013). In the eastern Amazon, forest-to-crop and cerrado-to-crop conversion 

accounted for about 30% of the carbon emissions from 2003 to 2013 (Noojipady et al., 

2017). Lima et al. (2019) suggest that agricultural expansion, represented by these 

conversions, is not sustainable due to the intensification of drought. 

 The impacts on agriculture expressed through yield loss are partially due to a 

decrease in local-scale moisture advecting from the nearby forest to the soybean 

production areas in the north of the state of Mato Grosso, led by an increase in the 

atmospheric vapor pressure deficit (VPD), which dries the local environment, 

consequently reducing long-term ET rates, due to the depletion of moisture drawn from 

adjoint forest canopies. The "robbed" moisture also contributes to ephemerous cloud 

formation over the clearing area, however, the precipitation is short-lived because of the 

increased distance from forests, as deforestation advances and forest border dries 

(Cochrane and Laurance, 2008; Khanna et al., 2017; Numata et al., 2017). The 

phenomenon, as depicted in Figure 4.1, is known as vegetation-breeze, which leads to 

forest dehydration on the interfaces with agricultural or clearing area, causing 
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desiccation, which increases flammability. This is a scenario once simulated by Sampaio 

et al. (2007) and later confirmed by António Sumila et al. (2017) in the eastern part of the 

forest and the PIX, which nowadays corresponds to the southeast corner of the Amazon 

forest. ET is also an important source of water for the local precipitation formation, 

therefore, its reduction due to LUC further exacerbate the degradation effects on the local 

climate (Fisher et al., 2009; Harper et al., 2014). 

 

Figure 4.1: The vegetation breeze (Cochrane and Laurance, 2008). Photo source: 

(www.ibama.gov.br).  

As a result of these transformations, the forest has had its resilience reduced, which was 

observed during an extreme drought during the El Niño period of 2015/2016 (Anderson et 

al., 2018). For our study, the concept of resilience is defined as "the capacity of an 

ecosystem to return to the original state following a perturbation, maintaining its essential 
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characteristic taxonomic composition, structures, ecosystem functions, and process rates 

(Holling, 1973)." The reported drought episode is of great importance, especially because 

as simulated by Marengo et al. (2018), the frequency of droughts shows a trend of increase 

since anthropogenic activities began to play a more-than-usual role in the region's 

biophysical dynamic. There is a the long history of the native population using fire as a 

tool for land preparation purposes in the context of their traditional agriculture (Serrão et 

al., 1996), however, recent LUC associated with climate change lead to an increase in fire 

risk in Amazon (Le Page et al., 2017). Moreover, wildfires, when not severe, can favor 

lower vegetation growth due to a higher incidence of radiation on the surface (Uhl et al., 

1988). During a drought, the temperature increases, relative humidity decreases and the 

vegetation gets drier and flammable. As a result, the risk of wildfires increases contributing 

to tree mortality, Brando et al. (2014) verified an up to four-fold increment in fire-induced 

tree mortality during a severe drought event, with declines in canopy cover favoring the 

dispersion of highly flammable grasses on the nowadays Amazon-Cerrado southern 

interfaces of the PIX. Repetitive disturbances including fire associated with increased 

border effects (due to fragmentation), are responsible for species richness decrease, which 

makes the forest more sensitive to drought, implying in biomass loss (Anderegg et al., 

2018; Laurance et al., 2011).  Understory fueled fires lead to a more persistent and broad 

reduction in biomass (Rappaport et al., 2018), characterizing what we could call an 

anthropo-climatic land degradation (LD).  

 Droughts in the Amazon region associated with LD intensification has a direct 

impact on the carbon budget, gradually converting the land from sink to source. As 

observed by Gatti et al. (2014), measurements of CO2 and CO during a dry and a wet 
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year, the region acted as a carbon source in the dry year and neutral on the next year. 

Aragão et al. (2018) point out the increase in the number of active fire counts detected in 

2015, a dry year regardless of the decrease in deforestation rates as the gross emissions 

from wildfires surpassed those from deforestation by 50% during this drought. Anderson 

et al. (2018) and  Yang et al. (2018) also noticed a post-drought decline in Amazon's role 

of carbon sink. Baccini et al. (2019), however, found patches where the forest has 

become a source of carbon in southern Amazon as result of repeated droughts and local 

disturbances, adding to the debate about the carbon source or sink role of the forest. 

These studies alert for the outcomes of increasing frequency of droughts, where the 

moisture anomaly will pose a restriction to vegetation development and increase wildfire 

occurrences, thus reducing forest's carbon sequestration capacity. To date, the ability of 

the forest to deal with repeated droughts is not yet fully known since there is not enough 

post-event data (and time) to address this question. In fact, loss of resilience is part of the 

forest degradation cycle, where climatic and anthropogenic factors are the overall 

impelling forces (Coe et al., 2013). The loss of forest resilience associated with changes 

in climate and increased exposure to risks (border effects) pose a severe threat to the 

ecosystem health; a study indicates that drought impacts are surpassing hydrological and 

biochemical cycles natural variability, thus, suggesting that some of these analyzed areas 

have reached a tipping point at where forests might not recover even under favorable 

hydrothermal conditions  (Davidson et al., 2012).  

 Economic forces push land changes forward (Hargrave and Kis-Katos, 2013; 

Richards et al., 2012) on the surroundings of the PIX, converting Amazon forest and 

Cerrado into agricultural enterprises. As an immediate result, the native population of the 
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park has to cope and adapt to this new scenario, where the microclimate is affected, thus 

drying the borders of the forest out. In the long-run, drought becomes more frequent 

threatening the forest health and its resilience, increasing wildfire occurrences, altering 

the carbon balance and, leading to crop yield loss. We hypothesize that such alterations 

have positive feedback in the degradation cycle of the PIX region, leading to crop yield 

reduction and forest resilience losses, thus compromising agricultural profitability and 

people's livelihood. Our objective is to analyze the extreme drought event of 2015/2016 

in the context of the 2002-2018 period to understand these losses and how their positive 

feedback on the region's degradation cycle. To account for that, we analyze yearly crop 

yields, LUC, active wildfire occurrences and carbon balance supported by drought 

indicators. 

4.2 Spatio-temporal domain 

 The study region is located in the northeastern part of the state of Mato Grosso 

and, includes the PIX and the surrounding mosaic of evergreen forest (Amazon), savanna 

(Cerrado) and croplands (mostly soybeans in the Summer). We delimited a rectangle 

totaling roughly 170000 km2, whose composition is 62% of evergreen forest, 5% of 

deciduous forest, 21% of grasslands and, 12% of crops, as of 2017 according to the 

MCD12Q1 Type-5 land cover product, as presented in Figure 4.2. The PIX is composed 

mainly of semideciduous evergreen and rainforest, the latter is also the predominant 

physiognomy in the Amazon biome. The evergreen and semideciduous blend 

characterize the transitional aspect of these two biomes. Vegetation is highly adapted to 

the local climate, which has a short dry and twice longer wet seasons, although these 

proportions are not permanent as pointed out by recent studies indicating prolongation of 
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dry season most likely due to LUC, which makes up for grasslands (21%) and crop (12%) 

areas in our study region (Marengo et al., 2018; Rao et al., 2016). 

 It is also worth mentioning a change in the PIX demographics from 2000 to 2010, 

based on census data, showing an increase in the indigenous population of the 

municipalities that are within the PIX from 2892 to 4413 (53.2% increase) inhabitants 

(Villas-Bôas, 2012). The PIX and its population play a fundamental role in hampering the 

LUC advance toward the forest, as the region is legally protected (Nepstad et al., 2006; 

Schwartzman et al., 2013).  

 

Figure 4.2: Land cover in 2017 (MCD12Q1) for the study region. The large dashed 

rectangle comprehends the whole study area, the small shaded rectangles indicates the 

focus areas (Forest_PIX, Cerrado-Grass and Agro_West).  

The current research focus on the widely studied and documented drought of 2015/2016, 

which was remarkably hot and dry over some regions, including our study area (Aragão 
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et al., 2018; Jimenez et al., 2018; Leitold et al., 2018; Yang et al., 2018). The period was 

characterized by a strong El Niño event associated with unprecedented warming and soil 

moisture deficit (Garcia et al., 2018; Jimenez et al., 2018). The current study, however, 

relies on past events for short-term climatology comparisons and discussion we associate 

"short-term" with the availability of MODIS-Aqua data, launched on 2002; therefore, our 

historical averages for MODIS data are based on the period spanning from 2003 to 2018.  

4.3 Data and methods 

4.3.1 Land use change 

 Understanding the LUC of the region is crucial to delineating our research and 

explain much of what is observed in the other topics of our study. To depict yearly land 

cover and compute the change rates we relied on the MODIS land cover product 

(MCD12Q1 Type 5) from 2003 to 2017. We further simplified the dataset classes and 

combined them into Agriculture (Broadleaf Crop + Cereal Crop), Cerrado_Grass 

(Deciduous Broadleaf + Shrub + Grass) and Forest (Evergreen Broadleaf). Figure 4.2 

shows the original classes of our study area as of the year 2017. 

 We quantified the total area of each class per year to present a time-series to 

verify the forest-to-crop and cerrado-to-crop conversion rates. This exploratory analysis 

is fundamental to pick representative regions as described below and to contextualize the 

region within the last two decades to support our discussion. We compared 2017 to 2003 

to detect areas that presented no substantial LUC throughout the period. Then we picked 

a sizeable homogeneous area of each class to perform more detailed time-series analysis, 

as presented in Section 4.3.3 and described as follows: Forest_PIX - a large sample 

totaling 2480 km2 of evergreen forest in the PIX, 19 km from the park's southern border, 
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Agro_West - a much smaller area of agriculture totaling 396 km2 where soybean is the 

predominant crop during the Summer (part of the wet season) and, Cerrado-Grass - an 

intermediate size sample of Cerrado physiognomy composed of semideciduous forest and 

grass totaling 1682 km2, located at 87 km south of the PIX. 

4.3.2 Drought classification 

 Drought classification supports the entire study and, therefore, consolidates the 

base for subsequential topics. We addressed drought levels during the dry (June to 

September) and wet seasons (October to May). The delimitation of these periods is based 

on what was observed from the precipitation dataset (Section 4.3.3). Although numerous 

papers are addressing the drought of 2015/2016 in Amazon, we are analyzing a smaller 

region in greater detail and, therefore, this wet/dry period scheme does not follow the 

literature as these thresholds vary between locations and years. The strategy helps us to 

tailor the analysis for crops, active fires occurrences (AFO) and carbon budget in a way 

that each period has its relevance more closely linked to each of these topics, for 

example, AFO are more intense in the dry period whereas agriculture crop production 

takes place during the wet period. 

 We quantified drought intensity over these periods using the Standardised 

Precipitation-Evapotranspiration Index (SPEI, Vicente-Serrano et al., 2010), which 

represents a climatic water balance of the difference between precipitation and potential 

ET (PET); these differences are then transformed into standardized anomalies 

considering the chosen accumulation window that. For the current study, the 12-month 

scale was chosen for being less subject to short-term variations. We used an online tool 

(SPEI Global Drought Monitor - spei.csic.es) to retrieve the monthly average SPEI-12 for 
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the study area. With this procedure we are able to compare drought events in a broad 

perspective by applying the classification thresholds based on Nam et al. (2015), as 

follows: <-2: extremely dry, [-2,-1.5): severe, [-1.5,1.0): moderate, [-1.0, -0.5): mild and, 

[-0.5,0.5]: normal. 

4.3.3 Time-series analysis for the subsets 

 Vegetation of the three land use classes considered have different Enhanced 

Vegetation Index (EVI) temporal signatures, being our reference for vegetation status 

and, health when compared in terms of z-scores, as our chosen representation of anomaly. 

Our data source is the product MOD (Terra) and MYD13A1 (Aqua) (MODIS Vegetation 

Indices at 500 m spatial and, 8-day temporal resolution when combining Terra and 

Aqua). To take into account the water exchanges between land and atmosphere, as a 

comprehensive proxy for drought, but in a perspective closer to vegetation by relying on 

the Evaporative Stress Index [ESI, Anderson et al. (2007)] as presented in Equation 4.1:  

 𝐸𝑆𝐼𝑟 = 1 − 𝐸𝑇/𝑃𝐸𝑇 

𝐸𝑆𝐼 =  
𝐸𝑆𝐼𝑟 − 𝜇

𝜎
 

(4.1) 

 

 where PET is the potential ET, we call it ESIr with r for raw, which ranges from 0 

to 1, the higher, the dryer the environment. It represents the failure of ET to reach its 

potential, indicating whether soil moisture is meeting the plant's demand or not and 

maintaining the temporal signature closely associated with EVI. To allow 

intercomparability, the index is finally converted into z-scores, as shown in the second part 

of Equation 4.1, where 𝜇 and 𝜎 are the mean and standard deviation of ESIr for a given 

central 8-day in a 40-day window period (for smoothening) considering all the years; in 
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short, it is a z-score with a moving window to make historical averages less noisy. As data 

source, we used the MYD16A2 product (Mu et al., 2011), which provides ET and PET at 

500 m spatial and 8-day temporal resolution. 

 Changes in ET are attributed partially to water availability associated with 

radiation and temperature, although prevailing wind, VPD levels, and surface roughness 

are also components connected to ET variability. To account for changes in temperature, 

we analyzed daytime land surface temperature (LSTday) from the product MYD11A2 at 

1000 m spatial and 8-day temporal resolution. To account for the primary water source 

for the study region, we considered the estimates of accumulated precipitation, as 

provided by the Climate Hazards Group InfraRed Precipitation with Station [CHIRPS-

v.2, (Funk et al., 2015)], delivered at 5 km spatial resolution every five days (resampled 

to 8 days to match all the MODIS based data) and already tested for the Amazon basin 

(Wongchuig et al., 2017). 

 With a focus on the drought of 2015/2016, we analyzed how EVI, zESI, zLSTday 

and precipitation were distributed for Amazon, Cerrado/Grass, and Agriculture plots. The 

spatial-temporal data were extracted and averaged for each of the three regions, thus 

establishing our time-series of standardized anomalies. 

4.3.4 Agricultural drought 

 To assess the impacts of drought on agriculture we utilized the IBGE yearly crop 

yield and planted area data (soybeans) by municipality (IBGE, 2018b). We focus on 

soybeans due to its predominance during the summer for the study area, which is when 

most of precipitation is distributed and, for its importance as the main product in the 
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agricultural enterprises portfolio. Figure 4.3 shows the yearly soybean acreage for the 

region, yield and total production. 

 

Figure 4.3: Soybean area, yield and production for the study area. 

 Rainfed agriculture is heavily dependent on the timing of precipitation to meet 

crop needs. For soybeans, the stages of emergence/germination and flowering/grain 

filling are extremely critical on water demand and, therefore, drought during these 

specific stages is likely to affect biomass and yield negatively (Carmello and Neto, 2016). 

Other factors also have an impact on soybean yield, such as temperature are reflected by 

changes in ET (Anderson et al., 2016; Battisti and Sentelhas, 2015; Melo et al., 2008). To 

account for the effects of drought on soybean yield we considered three periods in the 

soybean development as follows: (1) emergence, greening onset -mid September to mid-

October, (2) vegetative phase -to late-November and, (3) the reproductive and grain-

filling phase of the plant ending in early January. Periods 1 and 3 are known for their 

critical demand for water from a final yield standpoint (Arvor et al., 2011; Vera-Diaz et 
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al., 2008). For this procedure, the explanatory variables were normalized to facilitate 

intercomparison. We calculated the average values for all pixels classified as crops and 

from the time-series of EVI, ESIr, and LSTd, the averages for each variable for these 

periods were computed, totaling nine explanatory variables in the initial model. Finally, 

the effect of each of the significant factors and periods was evaluated within the growing 

season on final soybean yields. 

4.3.5 Mapping the fire 

    Fire is a cause and effect of drying climate associated with LUC. Increased number of 

fire occurrences lead to a more flammable forest around the burned area, which loses 

resilience due to an increased posterior presence of grasses and other small profile 

vegetation, now favored by more light availability (Davidson et al., 2012). By mapping 

the fire occurrences, we can track how the PIX, a legally protected area, is being affected 

by successive drought events and surrounding LUC, thus, spatializing the loss of 

resilience. This task is made possible through the Fire Data Base of the National Institute 

for Space Research - Brazil (BDQueimadas - INPE), which monitors AFO using a set of 

satellites, providing rich spatiotemporal information to precisely track these events 

(Carranza et al., 2014; Rodrigues et al., 2019). We restricted our AFO data to MODIS-

Aqua-afternoon for being this the primary reference covering the whole study period for 

both biomes allowing temporal analysis (Aragão et al., 2018). 

4.3.6 Carbon budget 

 MODIS Gross Primary Productivity (GPP) (MOD17A2H, Running et al., 2006) 

has as inputs the fraction of photosynthetically active radiation (FPAR), leaf area index 

(LAI), temperature, incoming solar radiation, VPD and, light conversion efficiency, a 
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plant-functional-group related parameter in the model. GPP is the chosen indicator for 

forest state as a way to assess its resilience in the wake of disturbances caused by human 

actions and climate extremes. We could have considered EVI for this purpose, but there 

is a debate about its ability to represent mature forest state (Samanta et al., 2010). We 

took a similar approach of Phillips et al. (2009), which associates changes in net biomass 

as a proxy for forest state (comprehensively related to vegetation structures, species 

composition, height, density and layers for mature forests (Thompson et al., 2009). By 

measuring its state over time, we can map the loss of resilience, accomplished by 

computing the variance of accumulated yearly GPP per pixel, as disturbances in mature 

forests might imply in GPP increased variability. It is worth noting that, GPP is modeled, 

but there is a debate about the quality, implying that these products have to be improved 

(Joiner et al., 2018).  

4.4 Results 

4.4.1 LUC analysis for contextualization 

 Figure 4.3 shows the increase of soybean acreage for the region, where in 15 

years the total area occupied by these crops increased nearly three-fold, from 1.5 to about 

4 million ha. The average yield and overall production increased two-fold, currently at 

3.3 ton/ha totaling 14 million ton of soybeans in 2017. From a spatial standpoint, the 

agricultural expansion is shown as shaded areas in Figure 4.6, further discussed in 

Section 4.4.4, where we assess impacts of drought in agriculture. The expansion slows 

down in 2014 and even further after the 2015/2016 drought event. However, we do not 

have a post-event means to analyze if this behavior is due to less available area for 

expansion, public policies or discouragement due to the recent drought event. In terms of 
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yield, the increasing trend is primarily associated with the transformation process that 

land goes through during the conversion into agriculture rather than technology 

improvement, although the latter plays some role. During the transformation, soil organic 

matter is increased due to crop rotation and no-till techniques, providing better conditions 

for crops to grow and reach higher yields (Corbeels et al., 2006; Nagy et al., 2018).  

4.4.2 Drought occurrence 

 Using SPEI-12 we classified each year and season of our study period in terms of 

drought intensity. Since mid '90s, SPEI levels for the region entered in a quasi-permanent 

drought condition with few episodes of normal seasons (Figure 4.4), as opposed to the 

previous three decades. Thus, at this point, we are analyzing drought events within a near 

two-decade extended drought that, to date, has not return to the normal SPEI (near zero) 

levels. Similar patterns of extended drought were simulated for Rondônia-Brazil on the 

southwest side of the Amazon forest, a region that underwent intense deforestation in the 

last four decades (Khanna et al., 2017). Table 4.1 shows an almost permanent dry 

condition, with very few occurrences of normal years.  
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Figure 4.4: Monthly SPEI-12 for all the available data (top chart) and, for our study 

period (bottom) with the rainy seasons highlighted in grey. 

 

Table 4.1: Averages of SPEI-12 for drought classification by period, (First year) is the 

(dry) season and the pair refers to the wet season. 
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 In Table 4.1, it is worth noting that the wet season is twice longer than the dry; 

therefore, the averaged SPEI for these periods have a sample size proportion of 2:1 ratio. 

The dry seasons (June-September) were predominantly classified as mild dry and, during 

the El Niño period of 2015/2016 it transitioned into a severe drought (2016: -2.0). The 

wet seasons (October to May) were mostly mildly dry having only one severe year 

(2005/2006: -1.5, further discussed in Jimenez et al. (2018). For the recent El Niño, all 

the years were at least moderately dry; in short, 2014 to 2018 can be considered a period 

of extended drought in the PIX region. SPEI-12 values for the 2015/2016 drought went to 

its lowest in the series (-2) (Figure 4.4), and it is the critical year within the extended 

drought period. (Garcia et al., 2018) highlight the extreme above-normal temperatures in 

this period as both partially cause and consequence of drought exacerbation. The impacts 

of the extreme event are analyzed in terms of agriculture (Section 4.4.4), wildfires 

(Section 4.4.5) and carbon balance (Section 4.4.6). 

4.4.3 Time series analysis 

 Figure 4.5 shows the time-series of precipitation and z-scores of EVI, ESI and 

LSTday for the three plots (Forest_PIX, Cerrado-Grass, and Agro_West). It is worth 

noting that these areas were not affected by fire during the studied period presented on 

Figure 4.5, that comprehends the extended drought of 2014-2018 and, the z-scores refer 

to the whole series (2003-2018). The average total precipitation for these regions was 

2051 mm (2014/2015), 1475 mm (2015/2016), 2822 mm (2016/2017) and, 1865 mm is 

the average for 2004-2018 wet periods.  
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Figure 4.5: Time-series of z-scores for EVI, ESI and LSTday for the focus areas 

capturing the drought of 2015/2016. The blue bars indicate the accumulated precipitation 

in 8-day periods.  

As shown in Figure 4.5, in 2015/2016 zEVI values were lower for agriculture 

than of Cerrado, while forest remained stable, highlighting how the natural vegetation is 

more resistant to drought events than agriculture is. Temperatures were above normal for 

all the regions most of the time and continuously high for agriculture. zESI (the higher, 

the more stressed) were remarkably high during the following dry season (June and July 

of 2016), when LSTday reached the highest values for all the classes. Higher 

temperatures can be both cause and effect of evaporative stress, whereas precipitation 

only causes it. The anomalously high LSTday for this period can also be partially 

attributed to the creeping drying effect coming from below-normal precipitation levels. 

Drought effects have different outcomes on each of the vegetation types covered in this 
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study, and the time-series here presented help on examining what is observed in 

agriculture and natural environments. 

4.4.4 Agricultural drought 

 Table 4.1 shows periods of intense drought, in 2005/2006 and on consecutive 

years around 2015, at the same time that Figures 4.3 and 4.6 indicate relative crop yield 

losses per municipality. The drop in 2006 was large, however, in parts of the region, 

agriculture was still in its initial years, not yet benefiting from organic matter 

accumulation in the soil (as a result of years of agriculture) (Cerri et al., 2007). Thus, the 

expected yields were not high to start with and, in 2006 we observed yields 40% below 

the previous and next years average. After the drought of 2005/2006, the region 

experienced a substantial yearly increase in yield, but this climbing halted in 2012, which 

started to show signs of drought (dry season of 2012 had SPEI of -0.6). Besides the 

normal year of 2013/2014, the region finally entered in an extended drought, leading to 

consecutive yield loss culminating with a drastic drop in 2016.  



 

 

109 

 

 

Figure 4.6: Z-scores for soybean yield by municipality (small maps) and descriptive 

statistics about quantitative and qualitative geographical distribution of crops in the study 

region. The yearly maps refer to the harvest year. The shaded masks refer to the soybean 

areas for each year in the yearly maps and, for 2017 in the bottom maps.  

We modeled soybean yield (kg/ha) based on remote sensing indicators of temperature 

(LSTday), evaporative stress (ESIr) and green biomass (EVI) divided into three periods 

within the emergence-grain filling continuum of the soybean cycle, as the water needs for 

each period vary. After performing parameters elimination based on higher p-values, we 

obtained the model shown in Equation 4.2, with adjusted r2 of 0.70. LSTday had a 

significant impact on vegetative (2) and reproductive/grain-filling (3) phases, whereas 
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ESIr was significant for the latter. The negative coefficients on phase 3 indicate how 

water stress and high temperatures are catastrophic for the final yield (Sentelhas et al., 

2015). Decoupling these effects is hard due to their reciprocity, as soybean plants have 

the ability to regulate stomata aperture under high temperatures; therefore, impacting ET 

rates. The non-significant EVI indicates how apparently normal canopies (green biomass) 

does not represent yield, as it is possible for the crop to have regular green biomass 

accumulation (through efficient stomatal regulation), but unable to keep up with the 

prolonged drought, which unfolds into flower abortion, deficient pod formation and 

insufficient grain filling (Rafael Battisti et al., 2017).   

𝑌𝑖𝑒𝑙𝑑 =  3241.8 + 353.5 ∗ 𝐿𝑆𝑇𝑑2 − 377.8 ∗ 𝐿𝑆𝑇𝑑3 − 398.3 ∗ 𝐸𝑆𝐼𝑟3 (4.2) 

 As shown in Figure 4.6, not all the observed results can be explained by the 

drought-yield assessment, as many other factors not measured in this study are 

determinant on final yields, such as crop management, technology and soil condition, 

which changes throughout years of agricultural activity in this relatively new frontier in 

the Brazilian territory. Moreover, our study period is predominantly dry, which can bias 

the analysis. Regardless of the limitations, the results indicate how drought impacts 

soybean yields in the region and, how these effects are pronounced during the 

reproductive phase. Not all drought occurrences led to severe yield losses, as the timing 

and intensity of drought are determinant on the impacts. Still, we can see, for example, 

the drastic yield loss in the municipalities comprising the southern region of the PIX in 

2016, which are more recently converted. It is possible that these regions get better soil 
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conditions in the forthcoming few years, yet, the local microclimate is being affected too 

and, it can impede sustainable rainfed agriculture.  

4.4.5 Fire 

 Figure 4.8 shows the number of AFO per biome during the study period. Fire is 

used as a tool for forest clearing and expansion of agricultural enterprises. Crop area 

more than doubled in Mato Grosso from 2001 to 2006 (Galford et al., 2010), which is 

also when most of the AFO were detected in our study period. When considering the 

whole study region, the AFO number seems unrelated to the drought level, but rather to 

human activities, which also occur mostly during the dry seasons. The total AFO number 

slows its rate as the region is transformed, reaching a plateau for both biomes, as depicted 

in Figure 4.8. The analysis can be misleading, as one would say that "the yearly AFO 

number is decreasing, regardless of drought frequency and intensity," which is 

incomplete, as we show next. 

 Forest fire is likely to occur in the vicinity of previously cleared (either burned or 

logged) area, as flammability increases on the interfaces due to a combination of various 

edge effects. Due to vegetation elimination, there is an increase in the Bowen ratio on the 

clearing area altering the interface's microclimate, which gradually causes forest 

desiccation reaching up to 2.7 km from the edge, as moisture is drawn by the "thirsty" 

atmosphere (high VPD and vegetation breeze, as depicted in Figure 4.1) of the cleared 

area (Briant et al., 2010). With more light reaching the lower layers of the forest edge due 

to opened canopies, comes the proliferation of vines and other small profile vegetation 

that, later on, is likely to turn into highly flammable material further increasing fire risk 

(Camargo and Kapos, 1995). From year to year, we can see the AFO taking place around 
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the same areas of previous years, a pattern depicted in Figure 4.7. On the first five years 

of our study period, we observed intense fire activity on the far-west and close-east of the 

PIX, regions where agriculture and pastures are, nowadays, the dominant landscapes. The 

AFO reduction on the same areas after a few years is, therefore, due to no forest left to 

burn. So we can track the AFO shifting to other regions, like in the south of PIX border. 

Inside the PIX, however, AFO are recurrent, but in low number and happening mostly 

where the native population lives, usually, near rivers, as fire is used a traditional 

agricultural tool. What is concerning is the increase in AFO on the southern border of the 

PIX, a region that has typically no fire incidence, denoting no indigenous activity. The 

area is protected and, fire is probably due to the increased flammability resulting from the 

clearing on the south of the PIX, which loses resilience as marked by the intense AFO in 

the drought of 2015/2016.  
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Figure 4.7: Spatialized yearly AFO, areas in grey registered no occurrences. Each pixel 

corresponds to 66 ha, therefore, the color bar numbers are associated to the AFO count in 

a given pixel. 
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Figure 4.8: Cumulative active fire occurrences by biome in the study area as detected by 

MODIS Aqua-afternoon. The grey shaded areas correspond to the average SPEI during 

the dry (July to October) and wet (November to June). The grey scale refers to the range 

of S SPEI considering only the period of 2003-2018 (Figure 4.4): the darker the area, the 

lower the SPEI (indicating dryer periods). Refer to Table 4.1 for the actual SPEI-12 

average values.  

Back to the non-accurate statement about AFO decrease, we observed that the 

unprotected areas (outside the PIX) are what is burned and transformed, therefore, the 

reduction in AFO number is mostly due to legal restrictions (lack of "legal" areas to 

convert). With the increasing drought trend, patterns like those observed in 2015/2016 on 

the PIX borders are liked to become recurrent, which will cause forest degradation, 

regardless of legal protection against deforestation. The PIX becomes, thus, less resilient 

to drought and less prepared to the projected trends.  

4.4.6 Carbon budget 

 The study area generally presented post-drought total GPP declines, highlighting 

the event in 2006/2007 and, the most extreme in 2015/2016, as shown in Figure 4.9. 

Forest height and biomass decrease and, consequently GPP loss, as a result of extreme or 

severe droughts. In this mosaic of agriculture, Cerrado and forests, the latter presented 

considerable carbon loss, as an effect of both the areal contribution (62%) and, most 

importantly, drought effects on forest health (Aragão et al., 2018; Feldpausch et al., 2016; 

Yang et al., 2018). Considering the period average yearly GPP per class, forest and 

Cerrado experienced losses of 7.6% and 10.4% in 2007, respectively. For the drought of 

2015/2016, both classes presented a GPP reduction of 9% in 2015 and, 16% (Forest) and 

12.5% (Cerrado) in 2016.  
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 We further detailed the spatial distribution of the carbon loss on the PIX region as 

shown in Figure 4.10. In the time-series of maps, we noticed that rather than just post-

drought, the region suffers "at drought" disturbances, as we can observe in 2005/2006, 

2007/2008, 2010/2011 and the most severe in 2015/2016. The eastern and southern sides 

of the PIX presented the lower contributions to regional GPP, whereas the park presents 

the highest. By observing the variance map, we observe many regions with high variance, 

which can indicate two facts: indigenous population increase and resilience loss on the 

PIX southern borders. 

 Indigenous population increase: With a 53% indigenous population increase from 

2000 to 2010 partially as a result of improved living conditions and access to healthcare, 

it is expected an increase in the pressure for local resources. In Figure 4.10 (areas 1 and 

2) we observed hotspots of high variance near the rivers inside the PIX, where the 

indigenous population is concentrated. There is a steady low amount of AFO on these 

areas (Figure 4.7), reflecting the sustainable character of the use of fire by the native 

population. That generates a variance in the series of annual GPP, but not showing any 

noticeable increase in area. The pattern indicated in area 1 is intriguing, as the AFO 

seems to oscillate from low to null inside the PIX, whereas fire activity was usually high 

on the west of the border, a region of recent agricultural expansion. However, due to the 

proximity of indigenous population and the expansion area, the interaction of these actors 

has to be further studied and, unfortunately, we do not have enough data to indicate a loss 

of resilience, despite the high variance. 

Resilience loss on the PIX southern borders: High variance in forest state was 

detected on the southern borders of the PIX (areas 3 and 4), where we also observed high 
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AFO number in the park in 2016, indicating a loss of resilience. LUC in the vicinity of 

the park exerted a degradation effect in the protected area leading to forest desiccation 

and increased flammability. What we observed on area 4 is similar to 1, with indigenous 

population dwelling near the PIX border with agricultural enterprises laying on the park 

limits. However, the high variance area extent spreads beyond one focal point, which 

indicates that forest degradation due to proximity with the interface with grasslands and 

agriculture begins to show its widespread effects. Thus, the edges of the park appear to be 

affected by the vegetation breeze. Zemp et al. (2017) modeled similar effects but at a 

much larger study scale, with projections indicating possible alterations in forest structure 

due to changes in the local climate. What our study does, however, is to suggest that 

these alterations are already happening on a small scale, closely related to local human 

activity rather than just regional changes in the climate. At the plot level, Silva et al. 

(2018) show that forest recovery is severely affected by fire, which increases mortality of 

all trees (including old-growth forests) and, therefore, leading to biomass reduction. 

Similar effects are expected in our study region due to fire occurrences. The PIX is, 

therefore, undergoing increased internal pressure for resources, microclimatological 

alterations on the borders and, potentially inserted in a context of regional climate 

change, which can accelerate the degradation process. Although the disturbance areas are 

considerably small in the context of the park, their proliferation and expansion has the 

potential to alter the local carbon balance, which has a positive feedback in the 

degradation cycle (Soares-Filho et al., 2012). 
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Figure 4.9: Yearly Tg of carbon in the region with all the classes combined as estimated 

by MODIS-GPP. 

 

Figure 4.10: Temporal analysis of accumulated GPP on the rainy seasons (DOY 250-150) 

for the study period. On the Variance map, the areas (1-4) are further discussed in this 

study. 

 

4.5 Discussion and Conclusion 



 

 

118 

 

 

Figure 4.11: PIX degradation cycle. * indicates a factor that is both exogenous and 

endogenous. 

 Global population increase is leading to higher demand for food, which turns into 

the globalization of food commodities, finally, pushing agricultural expansion to new 

lands (Boerema et al., 2016). This poses the Economic Pressure indicated in Figure 4.11, 

which shows the interconnectedness of human, land and climate factors on the PIX 

degradation cycle. The background of our study is a period of continuous drought, with 

SPEI levels below the average since the late '90s. This dreadful scenario deserves further 

investigation and raises questions: is this SPEI inversion a local and isolated phenomenon 

or is that a sign that Amazon is reaching the tipping point of its hydrothermal 

sustainability, as suggested by Davidson et al. (2012)? The fact is, the study period 
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presented two major drought events, one centered in 2005/2006 and the more severe and 

extended in 2015/2016.   

 During the same period (2003-2017), we witnessed a fast-paced agricultural 

expansion driven by commodities price boom and government incentives (Hargrave and 

Kis-Katos, 2013). LUC slowed down in the last years due to legal restrictions (proximity 

to protected areas), Brazilian environmental agencies enforcement efforts and, 

climatological adverse conditions. The latter led to astounding crop yield loss in 

2005/2006 and even more in 2015/2016, as soybean cannot cope with an extended 

drought. More specifically, the soybean crop is highly sensitive to environmental 

conditions in the reproductive phase (flowering, pod formation, and grain filling). 

Droughts are characterized by high temperatures (LSTday) and evaporative stress (ESI), 

thus hurdling soybean production, which suggests that local climate anomalies can be an 

impediment to this economic activity for this economic activity. ET rates are altered by 

LUC and repeated droughts (Lathuillière et al., 2012), which can lead to a reduction in 

the water source for precipitation formation (Fisher et al., 2009, 2017), representing a 

long-term threat for the local agriculture.  

 The agricultural expansion can be tracked by fire occurrences, as mapped in 

Figure 4.7. Andela et al. (2017) found decreasing trends in the human-driven global 

burned area, which is in agreement with what we observed. Is the expansion deceleration 

due to human consciousness or just the lack of areas to convert? In our case, the second 

possibility seems more plausible. As shown in Figure 4.7, there is a shifting of fire 

occurrences toward the PIX borders and, as in 2016, an above normal number of AFO in 
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legally protected areas, indicating the vegetation breeze effects increasing forest 

flammability and, therefore, fire risk.  

 Brazil experienced economic growth during the period, which reflected on 

enhanced indigenous welfare and led to population growth (Schwartzman et al., 2013; 

Villas-Bôas, 2012). The natives traditionally make sustainable use of fire in their 

subsistence agriculture (Uhl et al., 1988), however, with increased pressure for resources 

inside the PIX associated with repeated droughts, their way of living is also put under 

threat. As forest desiccation encroaches the park indicating loss of resilience on the 

forest/agriculture interfaces (Figure 4.10), we observe inwards and outwards degradation 

signs represented by high yearly  GPP variance, although firm conclusions can be 

overstated due to significant uncertainties on GPP estimations (Joiner et al., 2018). Our 

study suggests that forest resilience loss has, therefore, positive feedback (dashed line in 

Figure 4.11), which initially unfolds into a harsh prospect for the local environment with 

long-term consequences at a larger scale.  

 Post-drought GPP totals decrease are evident (Figure 4.9, when Cerrado and 

forest have their contribution to the local carbon balance reduced. The Amazon is a large 

terrestrial carbon sink, however, at small scales, as pointed out by Espírito-Santo et al. 

(2014), there are hotspots of higher tree dieback, slowly shifting the area from carbon 

sink to neutral, a behavior also demonstrated by Baccini et al. (2019) on the eastern and 

southern portions of the forest. We mapped hotspots of intense forest disturbance and 

shifting patterns; although these spots are not big enough yet to significantly change the 

carbon sink role of Amazon, the expansion of these weakened areas is just another cog in 

the land degradation engine. The changes in carbon balance, also catalyzed by frequent 
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droughts (thus, ET reduction), imply in an increase in greenhouse gases released to the 

atmosphere, potentially leading to changes in the climate (purple arrows in Figure 4.11) 

(Cai et al., 2014; Huntingford et al., 2013). That being said, we do not see how the SPEI 

levels will again fluctuate close to the historical average. With this scenario being drawn, 

we consider that agriculture is facing a climate-related potential yield loss as the PIX 

degradation cycle advances. 

 Protected areas (like the PIX) are effective in hampering LUC and, therefore, 

maintaining the ecosystem stability (Carranza et al., 2014). We observed the increasing 

effects of vegetation breeze on forest resilience and, the chain-reaction on climate and 

consequently in agriculture sustainability. Breaking the stability implies shocks to an 

increasingly weakened ecosystem. Freitas et al. (2018), in a study on federal and state level 

relaxation of policies for land tenure consolidation for illegal farmers and loggers, indicate 

that we are moving away from the deforestation reduction (signed) global agreements. 

Improved regulation and governance fostering vertical intensification of cropland and 

pasture is a way to increase productivity and, therefore, relieve the pressure for LUC 

(Garrett et al., 2018). 

 We concluded that agricultural expansion is, therefore, a threat to itself and to the 

economic sustainability it strives for. Consequences of LUC are ubiquitous, ranging from 

forest disturbances to changes in the climate. Actions to mitigate the effects of repeated 

drought occurrences are needed; they can be partially addressed by reaching tighter 

adaptation to drought and, verticalization of the already converted areas to increase 

productivity. The whole system would benefit from forest conservation endeavors, leading 

to better management of the pressure for resources, improving indigenous wellbeing and 
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forest resilience. Long term results of them would likely reflect on the local carbon balance 

and hopefully, reduction of climate anomalies frequency bringing stability to the 

ecosystem. 

 Future research can help answer questions raised in this study, improve the 

understanding of the PIX degradation cycle intricacies and, local climate changing. The 

persistent SPEI negative anomalies is a phenomenon that has to be investigated on the 

entire Amazon biome to detect possible land degradation related changes in the climate. 

Another interesting research subject is the mapping of forest disturbance using the GPP 

variance technique. Further, there is a clear need for human dimension data, especially 

when it comprehends demographics and economics related to forest dwellers. 
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CHAPTER 5.  

FINAL REMARKS AND OUTLOOK 

 The three studies compiled in this document are based on data from the 2000s and, 

all the regions covered presented above normal drought occurrences with unprecedent 

impacts. The availability of high-quality RS data, especially those from the MODIS series, 

allowed us to design innovative techniques and approach some underexplored subjects in 

drought impacts assessment. These two aspects have to be highlighted: the high availability 

of data and the high number and intensity of drought events. Climate variability is on the 

rise and, our studies point to an intriguing question: is drought the new normal?  

 In the south of Brazil, anticipating agricultural drought impacts in soybean based 

on "within growing season" data seems possible, but far from trivial. To date, the freely 

available RS data with spatial and temporal resolution to address the retrieval of such 

information is still a limiting factor for robust systems to operate. Nevertheless, our study 

presented on Chapter 2indicates that we can move on this direction with reasonably good 

results, delivering new and valuable information for agriculture value chain stakeholders. 

A similar approach might have better results on the Brazilian midwestern agriculture, with 

larger and more homogeneous agricultural areas. The results presented on Chapter 4 

indicate the possibility of modeling soybean yields with r2 of 0.7, with higher sensitivity to 

thermal based data from the reproduction/grain-filling phase. Both studies provide possible 

solutions for yield assessment, which might have increasing importance as drought 

frequency also increases. 

 Time-series of RS data allowed us to understand the unfolding of land degradation 

(LD) in regions where drought is repeated and, in some cases, also extended. The studies 

about northeast Brazil and southeastern Amazon (Chapters 3 and 4, respectively) brought 

new insights on how drought leads to LD and are often catalyzed by human actions. The 
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case of Xingú Indigenous Park (PIX) is emblematic: land use changes leading to forest 

resilience loss even in protected areas, as an impact of local microclimate alteration 

promoting forest desiccation and, therefore, increasing flammability. Another question 

surfaces: is the same happening in other parts of Amazon or, going even further, is this 

phenomenon happening at a much larger scale? The concept of drought in the 

Anthropocene is, thus, taken to another level, with humans not relegated to cause only 

direct hydrological impacts, rather, as positive feedback in a cycle encompassing land use 

changes impacting the climate. On top of the LD feedback on climate, there is also the 

increased pressure on the ecosystem posed by increasing population and demand for 

resources.  

 All the rhetorical questions presented here, sometimes as post-realizations, can turn 

into valid scientific questions, thus, directing future research. Here are listed these 

unanswered questions and suggestions: 

•  Is something like the PIX LD cycle happening in other parts of Amazon and 

possibly in other tropical forest/non-forest interfaces? 

•  Is the to date apparently persistent drought (from a SPEI standpoint) happening in 

other areas in Amazon, indicating the reach of a "tipping point", as suggested by 

Davidson et al. (2012)? 

•  What is the economic value of information of agricultural drought predictions? 

•  There is a need for better understanding the feedbacks of LD on climate for Brazil, 

not only in the studied places, but the whole country. 

•  There is also a need for better human dimensions data. Such information will lead 

to improved use of RS data for assessing drought impacts and also understand 

feedback mechanisms. 

    As emphasized, RS-based studies focusing on social problems requires more data on the 

human side. This is key for making science more applied and tangible. However, there is 
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one factor that brings even more uncertainties: political decisions. At the same time that I 

write these conclusions, science and climate research are being defunded in the United 

States and, to a more severe degree in Brazil. Political decisions, unfortunately, often fail 

to follow scientific evidence. There is a debate in Earth sciences about "tipping points": the 

thawing of the Greenland and Antarctica, Amazon as a carbon source, changes in the 

oceanic streams like the deceleration of the Thermohaline Circulation (W. Liu, Xie, Liu, 

& Zhu, 2017), methane release from the bottom of warming oceans to the atmosphere, to 

name few. What are the tipping points we have to reach to prevent self-destructive political 

decisions? 
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