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Mammalian synthetic biology: emerging
medical applications

Zoltan Kis, Hugo Sant’Ana Pereira, Takayuki Homma, Ryan M. Pedrigi
and Rob Krams

Department of Bioengineering, Imperial College London, London, UK

In this review, we discuss new emerging medical applications of the rapidly
evolving field of mammalian synthetic biology. We start with simple mamma-
lian synthetic biological components and move towards more complex and
therapy-oriented gene circuits. A comprehensive list of ON-OFF switches,
categorized into transcriptional, post-transcriptional, translational and post-
translational, is presented in the first sections. Subsequently, Boolean logic
gates, synthetic mammalian oscillators and toggle switches will be described.
Several synthetic gene networks are further reviewed in the medical appli-
cations section, including cancer therapy gene circuits, immuno-regulatory
networks, among others. The final sections focus on the applicability of syn-
thetic gene networks to drug discovery, drug delivery, receptor-activating
gene circuits and mammalian biomanufacturing processes.

1. Introduction

Synthetic Biology is a new, emerging field that aims to enhance functionality of
cells by incorporating gene networks into cells through the application of engin-
eering principles to biology. The early, pioneering studies were predominantly
focused on standardization of network components to increase transfection effi-
ciency and applications in the prokaryotic cell [1,2], while more recent
applications are emerging in yeast and mammalian cell lines [3-5]. Eukaryotic
cells, in contrast to prokaryotic cells, have developed sophisticated mechanisms
to withstand invasion of foreign RNA/DNA material, such as the major histo-
compatibility complex-dependent mechanism. Furthermore, eukaryotic cells
are highly compartmentalized, which poses obstacles for the application of
synthetic gene networks [6,7]. It might also be used to compartmentalize appli-
cations of gene networks. In addition, the highly complex nuclear packaging of
DNA and its tight regulation might hamper appropriate gene expression regu-
lation and stable transfection. It was therefore surprising that initial synthetic
biology studies performed in yeast and mammalian cell lines presented consider-
ably positive results [8—12]. These pioneering studies were soon followed by
studies in primary cells [13,14]. The majority of synthetic gene networks are
expressed from plasmids, but these genetic constructs can also be inserted into
the chromosome of immortalized cell lines, using various recombinase-based
techniques, thus creating stable cell lines. Once synthetic biology was proved to
be applicable to eukaryotic cells, the focus started to shift towards adding new
tools to the reservoir of current technologies, including modification of (disease
related) signalling pathways, new interventions at the gene level (known as
gene therapy) and therapies involving insertion of modified (immune) cells
(known as cell therapy) into patients. In this respect, synthetic biology may
be considered a natural extension to the field of systems biology and systems
medicine. Therefore, it holds great promise for future treatment of disease.

The emerging applications of synthetic biology to medicine are relatively
new and have been the topic of a few, recent reviews [3,15,16].

In the chapter on medical applications, we review synthetic gene networks
for cancer therapy, diabetes, enhancing the immune system and treatment of
cardiovascular diseases. Towards this end, the main focus is on drug discovery,
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Figure 1. ON—OFF switches in synthetic biology and their regulatory location in genetic signal processing. ON—OFF switches can control either translation, post-
translational, transcriptional or post-transcriptional events. Examples of switches at all four levels are described in the text and a comprehensive list is presented in

table 1. (Online version in colour.)

including gene networks for antibiotic and anti-cancer drug
screening and circuits for assaying receptor activation.

2. Mammalian synthetic biology

Over the past years, synthetic biology applied to higher eukar-
yotes, such as mammalian cells, has rapidly evolved from the
development of simple gene switches and gene networks
to complex and to therapy-oriented circuits. Currently,
mammalian synthetic biology provides strategies for gene-
and cell-based therapies with a wide range of applications,
such as artificial insemination, personalized medicine and
the treatment of cancer, and metabolic and immune disorders.
The application to other fields, e.g. cardiovascular disease,
will also be briefly outlined. In the following sections, we will
review mammalian synthetic biological gene switches, which
form the basis to construct more complex gene networks.

3. Switches in mammalian synthetic biology
(figures 1 and 2)

In order to harvest the full potential of synthetic biology, bio-
logical parts should be re-organized into controllable and

well-defined switches, logical operators and other systems
with predictable functions. Similar to electronic switches,
synthetic biological switches should be able to switch a signal
between two discrete states: ON and OFF. In the case of
electronic switches, the signal is electricity; in the case of biologi-
cal switches, a biological signal propagates. A crucial difference
between electronic and mammalian molecular switches resides
in the complexity, spatial context and mobility of constitutive
parts and of interacting elements. Biological switches have
been shown to be context sensitive, often unbalanced in strength
between individual elements, and sometimes excessively
resource demanding for the machinery of cells [6,17]. Despite
these difficulties, reproducible ON and OFF switches have
been designed and applied in prokaryotic cells with great suc-
cess [17,18]. A comprehensive list of ON-OFF switches in
mammalian synthetic biology is presented in table 1, indicat-
ing the function, origin, effector molecule and applications for
each switch.

3.1. Transcriptional switches (figures 1 and 2)

The first step towards a mammalian synthetic switch was
the implementation of the lactose regulator, discovered in
Escherichia coli in the early 1960s by Jacob & Monod [89],
in mammalian cells in the late 1980s [42-45]. In this
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Figure 2. (Caption opposite.)

transcriptional control system, gene expression can be
switched ON by adding the lactose analogue isopropyl
B-D-1-thiogalactopyranoside (IPTG). When IPTG subsequen-
tly binds to the Lac repressor, it facilitates its dissociation
from the lac operator DNA sequence in a dose-dependent

Figure 2. (Opposite.) Gene networks in mammalian synthetic biology. (a) I}

Boolean logic gates. The exemplified AND gate consists of two gene
expression activators, under the control of two input signals, to enable
gene expression (output) only when both activators are switched on by
the input signals. The OR gate is formed by two gene expression activators,
regulated by two input signals, that output gene expression when either one
of the activators is switched ON. The NOT gate is composed of a repressor that
shuts down the expression of a target gene in response to an input signal.
Two repressors controlled by two input signals can form a NOR gate to inhibit
gene expression when either one the two repressors is activated. (b) Toggle
switch. The exemplified network is formed by two trans-acting repressors that
inhibit each other’s expression in response to input signals. An input signal
applied for a short period of time sets the toggle switch into one of its pre-
determined states. The reporter gene can be fused to either repressors or be
under the control of these repressors. (c) Oscillator. The exemplified system is
composed of two activators and a repressor. The first activator is cis-acting
and is also trans-triggering expression of the second activator. The second
activator then switches on the expression of the repressor. The repressor
feeds back with a time-delay to inhibit expression of the first activator, gen-
erating oscillations in the concentrations of the first activator over time. In the
exemplified network, the reporter gene is fused to the first activator, but it
could also be regulated by this activator. (Online version in colour.)

manner, and the expression of targeted genes downstream
of the lac operator is switched ON [42].

Following the inclusion of a prokaryotic transcriptional
system into mammalian cells, the next step was the construction
of the first mammalian synthetic transcription factor, the tetra-
cycline-controlled transactivator (tTA), by Gossen and Bujard in
1992 [11]. This was achieved by fusing the prokaryotic tetra-
cycline (Tet) repressor, TetR, with the C-terminal domain of
virion protein 16 (VP16) from herpes simplex virus. Promoters
responsive to tTA (Pi) consist of heptamerized tetracycline
operator (tetO) sequences and minimal promoters derived
from viral or cellular RNA polymerase II promoters [11]. TetR
and tetO sequences originate from the Tnl0 transposon,
natively present in E. coli [11]. Consequently, genes down-
stream of Py are transcribed only in the presence of tTA.
Doxycycline, a tetracycline analogue, binds to tTA with rela-
tively high affinity. This promotes the dissociation of tTA
from the heptamerized tetO DNA sequence, inhibiting the
expression of the gene downstream of Py, setting the switch
to the OFF state [90,91]. A reverse tetracycline-controlled trans-
activator rtTA has also been created by point mutating the tTA
gene [57,92]. These point mutations completely reverse the
tetracycline responsiveness of rtTA: rtTA requires tetracyclines
(or tetracycline derivatives) for binding to tetO sequences to
set the switch to the ON state [57,92]. The tTA-dependent con-
trol circuit is also referred to as the Tet-Off System and the rtTA
system is also known as the Tet-On System.

Based on these developments and using prokaryotic
regulators, with DNA-binding capacity controlled allosterically
by small molecules, several mammalian transgene control
switches have been developed [93,94] (see also figure 1).
Switches controlled by antibiotics [12,27,32], hormones and
hormone analogues [29,40,95], quorum-sensing substances
[53], and immune suppressive and anti-diabetic drugs [50,96]
have recently been engineered expanding the arsenal of tools
of synthetic biologists.

The second generation of synthetic transcriptional switches
are regulated by metabolites such as amino acids [21], vitamins
[23], gaseous acetaldehyde [20], food and cosmetics additives
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[33,51]. These second-generation compounds may be used
for regulating gene therapy more effectively than the pre-
viously mentioned small molecules, such as hormones,
which have known and potent side effects. Moreover, mamma-
lian transcriptional switches that respond to physical factors,
such as electricity [30], temperature [55] and blue light
[25,47,48] have also been developed (see also figure 1). Thus,
synthetic biologists can already choose from a plethora of tran-
scriptional switches to fulfil the requirements for various
individual applications.

3.2 Post-transcriptional switches (figures 1 and 2)
The abovementioned transcriptional switches regulate the tran-
scription of DNA into mRNA. Post-transcriptional synthetic
biological switches control the function, stability and/or spli-
cing of mRNA molecules. One of these techniques, RNA
interference (RNAI), led to the development of short interfering
RNAs (siRNA) technology, which allows control over mRNA
degradation (cf. [97]). RNAi involves the cleavage of double-
stranded RNA molecules (naturally occurring in viruses [98]),
such as short hairpin RNAs (shRNA), into 21-23 nucleotide
long RNA duplexes by the endogenous enzyme Dicer [99].
The obtained RNA duplexes consist of siRNA or micro RNAs
(miRNA). One of the two strands of these RNA duplexes is
then incorporated into the RNA-induced silencing complex
(RISC), which degrades complementary mRNA sequences
to which the siRNA or miRNA of RISC binds to, leading to
mRNA degradation and post-transcriptional repression. In
principle, post-transcriptional control can be engineered by
switch-controlled generation of siRNA and miRNA molecu-
les. A TetR-switch has been developed which regulates the
expression of shRNA by doxycycline and the resulting
shRNA controls the expression of a transgene in vitro and
in vivo [71]. Similarly, a hybrid switch based on both RNAi
and Lac and tet repressor proteins has been developed for
regulating gene expression both at the transcriptional and
post-transcriptional level [100].

Post-transcriptional switches can also be created by
employing aptamers. Aptamers are small, single-stranded,
highly folded nucleic acids with high affinity and specificity
for their target molecules (small molecules or protein ligands),
which inhibit their biological functions [101]. By integrating
aptamers into siRNA or miRNA, sophisticated switches have
been obtained in which the RNAi function is ligand-controlled
[65-67]. By integrating a theophylline-binding aptamer into
an essential structural loop of a shRNA, the processing of
the shRNA by Dicer could be inhibited in a theophylline
dose-dependent fashion, making the post-translational control
of the shRNA probe inducible [65]. Gene expression has also
been regulated by controlling mRNA splicing using an apta-
mer. For this design, the theophylline-binding aptamer was
used to cloak an essential splicing element within the pre-
mRNA, inhibiting splicing in the presence of theophylline
[41,72] (see also table 1).

An aptamer (sensor) together with a ribozyme (actuator)
forms an aptazyme (also called allosteric ribozymes). The ribo-
zyme part is an RNA molecule with enzymatic function,
capable of catalysing specific biochemical reactions. In the pres-
ence of a ligand that binds to the aptamer, the ribozyme part
of the aptazyme self-cleaves and functionality is induced.
Thus, aptazymes can also act as post-transcriptional switches.
For instance, by incorporating an aptazyme into the 5 or 3’

untranslated region (UTR) of an mRNA, the 5 and 3’ UTR n

structural elements necessary for gene expression can be
chopped off, in a ligand-dependent manner, thereby inducing
ligand-controlled silencing of gene expression [69,73,74].

3.3. Translational switches (figure 2)

Once the mature mRNA reaches the ribosomes, translation of
the mRNAs into amino acid chains or peptides begins.
Recently, control switches have been engineered to regulate
the expression of genes into proteins; for example, RNA-
binding proteins, like the archaeal ribosomal protein L7Ae,
can be switched on by an input protein to block translation
or by binding to an RNA motif integrated in the 5 UTR of
an mRNA transcript [78,102]. An aptamer controlled by the
Hoechst 33258 dye has also been shown to inhibit transla-
tion in the presence of Hoechst 33258, thus functioning as a
translational switch [75].

3.4 Post-translational switches (figure 2)

Following the translation of mRNA into proteins, at the post-
translational level, switches have been developed to control the
half-life of proteins or protein trafficking. To degrade a protein,
the protein in question is tagged with a degradation signal
and it reaches the endogenous ubiquitin—proteasome system,
where it is degraded. As an example, an auxin-inducible protein
degradation system from plants was shown to degrade proteins
of interest in mammalian cells under the control of auxin [79].
Destabilized or ligand-induced degradation protein domains
can be fused to a target protein to control the degradation of
the entire fusion protein [80,85-87,103]. A noteworthy example
is the HaloTag system [82,83] which involves the fusion of a
dehalogenase enzyme to the protein of interest. By adding
small hydrophobic molecules that covalently bind to the Halo-
Tag, the fusion protein unfolds and is efficiently degraded by
the proteasome. Recently, switches have also been developed
to control protein secretion [81] (see also figure 1).

Another type of post-translational switch involves inteins.
An intein (also known as protein intron) is a segment within
a protein that is capable of excising itself, while the remaining
protein segments (the exteins) are joined with a peptide bond
in the process of protein splicing [104,105]. As inteins are tran-
scribed and translated together with the target protein before
they undergo autocatalytic self-excision and splicing, inteins
increase the time it takes to transcribe, translate and post-
translationally process a target gene. The intein domain can
be transcribed and translated by two separate genes (known
as split inteins) and the resulting precursor proteins splice
each other, process termed trans-splicing, to yield a single func-
tional protein [106,107]. The protein splicing and trans-splicing
processes can be triggered by small molecules or protein inputs
to obtain intein-based post-translational switches [108—111].

3.5. Rheostat switches

Most synthetic gene circuits developed to date employ digital
logic. However, there has been rising interest in the design
and implementation of analogue synthetic gene circuits. These
circuits allow for the construction of multi-signal integration
and are able to execute complex computational functions in
living cells, such as ratiometric operations, power-law
implementations, logarithmically linear sensing, among others
[112]. The majority of synthetic gene circuits developed to

OOOiVLOZ ‘:zll a)‘npam/“")dg. y T ‘516'ﬁu!qs!|qnd‘/(19pos‘|é/(or;jsj



date have been implemented in prokaryotes or lower eukar-
yotes, i.e. yeast. However, few mammalian implementations
of synthetic gene circuits are available in the literature. Relevant
examples of such implementations include the RNAi-based
logic evaluator developed by Rinaudo et al. [113], and the
singe-cell half-adder/subtractor constructed by Auslander
etal. [114]. The logic evaluator was developed with the objective
of sensing endogenous molecular inputs, processing it through
Boolean logic and eliciting a physiological response [113].
This system was implemented by targeting siRNAs to endogen-
ous mRNA signals, which allows for logic operations to be
executed depending on the presence or absence of these
endogenous inputs [113]. The single-cell biocomputers devel-
oped by Auslander et al. [114] were based on coupling three
logic gates in a combinatorial fashion, thus enabling single
cells to execute half-adder and half-subtractor operations. This
sophisticated approach relied on the activity of two transactiva-
tors, ETI (erythromycin-dependent transactivator) and TtgA;
(phloretin-dependent transactivator), and their corresponding
DNA-binding sequences, Pgrro and Prigri. The transcriptional
activation properties of these transcription factors are disabled
by the presence of erythromycin and phloretin, respectively,
which function as the inputs of the system [114]. By coupling
this layer of transcriptional control to C/D and MS2 boxes,
Auslander et al. were able to couple XOR logic gates to
N-IMPLY and AND gates, thus creating a half-subtractors and
half-adders, respectively.

4. Synthetic gene networks in mammalian cells

Synthetic biological ON—-OFF switches and/or a set of genes
can be rationally selected and combined, to interact in a pre-
dictable and controllable manner, forming a system with a
pre-set function, a synthetic gene network, also known as syn-
thetic gene circuit. In order to rationally construct higher-order
gene networks for advanced therapeutic applications, a tool-
box of well-characterized and well-controllable standardized
parts should be available. The following subsections present
gene networks that were developed to function as standar-
dized parts in a higher-order gene network. In some cases,
these simple gene networks are also used as therapies.

In order to perform logical operations in mammalian cells,
programmable Boolean logic gates were constructed in 2004,
by combining heterogeneous transcription factors [115]. More-
over, similarly to electronic circuits, several multicomponent
circuits with complex trigger-controlled topology have been
designed with time-delay [116], bandpass [117] and hysteretic
[118] properties. A gene network operated by a Boolean AND
gate was applied for targeting cancer cells [119], where the
AND gate activity was achieved when both pre-set conditions
were met, leading to the expression of apoptotic genes and
cancer cell death.

Boolean logic gates have also been engineered based on
synthetic transcription factor-containing zinc finger motifs
and clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 motifs [120]. These are attractive parts for
engineering higher-order networks because (i) zinc fingers
and CRISPR/Cas9 can be created to recognize virtually any
DNA sequence and (ii) they can function without interfering
with each other. Indeed, the bacterial CRISPR/Cas system
has been shown to be particularly versatile and easy to use.
Many bacteria use CRISPR-based immune systems to degrade
genetic materials of invading phages [121,122]. In these

systems, short RNAs expressed from CRISPR loci are used to [ 10 |

guide an endonuclease protein (Cas9) to recognize and
cleave invading genetic material. Recently, Cas9 was used as
a programmable tool for genome editing in mammalian cells
[123-125]. In this context, small customizable guide RNAs
(gRNAs) can be designed to programme and target Cas9 endo-
nuclease to specific loci in living cells to induce double (or
single)-stranded breaks in DNA. Upon cleavage, error-prone
or template-directed repair pathways are triggered, generating
variants of the original target loci. Recently, Qi et al. [126]
showed that an endonuclease-deficient Cas9 (dCas9, with
D10A H841A mutations relative to the wild-type Cas9) can
be used as a programmable ‘CRISPRi” tool for gene silencing
in E. coli. Several groups have shown that dCAS9/gRNA can
be used to inhibit or partially stimulate synthetic or endo-
genous mammalian genes, when dCAS9 was fused to an
actuator (VP64), depending on the position of gRNA binding
with respect to the TATA box [127-129]. Inhibitory circuits in
mammalian cells have recently been introduced using dCAS9
systems [124,130,131]. Recently, CRISPR regulatory devices
were layered to obtain cascaded circuits [132], and the
expression of functional gRNAs from RNA polymerase II
promoters (normally expressed from RNA polymerase II pro-
moters) and multiplexed production of proteins and gRNAs
from a single transcript in human cells was made possible
[133]. In the above discussed switches, the switching mole-
cule should be continuously present in order to maintain
the switch in either the ON or OFF state. To reversibly set the
switch to ON or OFF positions by transiently applying a trigger
molecule, toggle switches have been developed [12,32,134,135].
Examples of how these toggle switches have been employed
include monitoring the environment of immune cells in lymph
nodes or the presence of hormones or signalling molecules.
Although more complex in network topology, functionally,
synthetic mammalian oscillators constitute synthetic biological
parts that can be integrated into higher-order circuits or applied
alone to reprogramme circadian clocks [136,137] or to govern
metabolic [138], repair [139] and signalling pathways [140] in
mammalian cells. Such a synthetic mammalian oscillator has
been developed using a time-delayed negative feedback loop,
but these systems have been shown to dampen their oscillations
due to noise and / or epigenetic silencing [141]. The addition of a
positive feedback loop may overcome these limitations and
generate autonomous, self-sustained and tuneable oscillatory
expression of reporter genes [141]. A low-frequency mamma-
lian oscillator has also been developed, by silencing of the
tetracycline-controlled transactivator using siRNA encoded in
the introns of the mRNA, in order to facilitate robust and auton-
omous expression of a fluorescent reporter protein with periods
of 26 h [142]. In order to generate transcriptional and transla-
tional time-delay for tuning oscillators, inteins (described in
the Post-translational switches section) could also be employed
[143-145]. All of these synthetic biological control circuits
described in this subsection contribute to the development of
mammalian cell biocomputers [114] and gene networks with
advanced functions, described in the following subsections.

5. Synthetic gene networks for advanced
medical applications (figure 3)

One of the ultimate goals of mammalian synthetic biology is
to improve human health. For this purpose, gene networks
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Figure 3. Synthetic biology enlightens the healthcare spectrum from diagnosis of diseases, to drug screening, biomanufacturing and to therapy. (a) Synthetic
biology can be applied to diagnose diseases either by inserting gene circuits into the human body or into patient-derived cells. Alternatively, viruses, bacteria
or mammalian cells can be used as synthetic network carriers and added to patient-derived tissue or body fluids. In either case, the diagnostic synthetic network
should recognize diseased stated and generate a measurable readout in response to the disease. (b) Following disease diagnosis, synthetic biology can also be
applied to screen for pharmaceutical compounds to combat diseases. In this case, synthetic circuits inserted into various organisms should mimic disease-related
states and the alteration of these states by added compounds should yield a measurable readout. Synthetic gene networks can also be applied to monitor the
activation or inactivation of trans-membrane receptor, which are potential drug targets. Additionally, synthetic biology holds great promise to screen for vaccines
[146]. (c) After pharmaceuticals are identified, synthetic biology can significantly enhance the manufacturing of these pharmaceuticals and other biologics. (d) Last
but not least, synthetic biology enhances state-of-the-art treatments such as gene therapy, cell therapy, CAR T cell immunotherapy, bacterial-based therapy for

cancer and other diseases and bacteriophage-based therapy for infectious diseases. (Online version in colour.)
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that contribute to the diagnosis and/or treatment of diseases
are emerging and/or have been already developed.

Imaging of cellular behaviour has been greatly improved
by enriching target cells with new functions. A gene network
has been created that enables the tracking of human cell fate
by retaining memory of exposure to stimuli [147]. In these
memory circuits, a brief doxycycline, UV or hypoxic stimulus
upregulates the expression of a synthetic transcription factor
which retains its presence over longer periods of time
through a positive feedback loop. This memory circuit can
change gene expression, growth rates and cell viability for
several generations after the initial stimulus, offering a new
diagnostic and therapeutic window. Implementing these net-
works with toggle switches (see above) in migrating immune
cells would enable monitoring of the location of hypoxic
regions in non-dividing tumour or atherosclerotic tissue.

A slightly more elaborate circuit has been designed to
detect cell line lineages [148]. This multi-input RNAi-based
Boolean logic circuit identified the presence of HeLa cells
by the expression levels of a customizable set of endogenous
miRNAs. When these pre-determined conditions are met, a
fluorescent signal or an apoptosis signal is triggered, causing
the diagnosis or death of the targeted cells. This offers unique
capabilities to monitor complex miRNA dynamics in cells
under a wide variety of conditions. Similarly, in order to
target cancer cells, a tunable dual-promoter integrator has
been developed, which expresses an effector gene when
two internal input promoters show high activity levels [119].

In order to control cellular behaviour in a more sophisti-
cated way, several synthetic gene networks have been
engineered that interface with native cellular pathways [68].
For instance, a class of RNA controllers have been constructed,
which recognize innate signalling through the nuclear factor
kB and Wnt signalling pathways in human cells, and rewire
these signalling cascades to generate new behaviour by regu-
lating alternative RNA splicing. Furthermore, several groups
have engineered the MAPK pathway either through modifying
its scaffolding proteins [149] or by dynamically controlling
regulators in the pathway [150].

A therapeutic gene network that is capable of sensing and
regulating host metabolic signalling pathways to normal levels
has been developed as well. In one study, a synthetic signalling
cascade was interfaced as a sensing-controller device to regu-
late blood glucose homeostasis after illumination with blue
light [151], while in another study, insulin deficiency was
corrected for by an insulin expression mammalian gene net-
work under the control of radio waves [152]. A slightly more
sophisticated, self-sufficient, sensor-effector gene network
was designed which senses uric acid concentrations in blood
and expresses urate oxidase in a uric acid-dependent
manner. Urate oxidase then restores urate homeostasis [59].

While these therapeutic networks described above were
supplied through external devices, endogenous cells may
also be used as a therapeutic agent. Thymus-derived (T) lym-
phocytes are a type of white blood cell that plays a crucial
role in cell-mediated immunity, especially in the response to
invading pathogens. Human T cells are important targets for
synthetic biology because they can be extracted from patients,
genetically engineered and inserted back into patients to treat
chronic infection or cancer [153]. A synthetic, drug-responsive,
RNA-based switch has been implemented to control cytokine
expression in mice, in turn governing T cell proliferation [73].
In this system, the input ligands and regulatory targets can

be modified to meet various therapeutic needs. Recently, T m

cells were reprogrammed for treating acute lymphoid leukae-
mia with considerable success by modifying their chimeric
antigen receptors (CARs) [154].

In addition to the above described RNA-based switch,
a synthetic signal cascade has been developed in order to
confront multiple risk factors of cardiovascular disease
simultaneously [155]. In this circuit, the chimeric trace-amine-
associated receptor 1, activated by the clinically licensed
antihypertensive drug guanabenz (Wytensin®), is coupled
to cAMP and cAMP-dependent phosphokinase A (PKA)-
mediated activation of the cAMP-response element binding
protein (CREB1). After activation, CREB1 drives the expression
of bi-functional therapeutic peptide hormone GLP-1-Fc-leptin
which attenuates hyperglycaemia and dyslipidaemia. Thus,
this gene network adds to the antihypertensive effect of Wyten-
sin® two other functions to create a three-in-one treatment
strategy for cardiovascular diseases [155].

5.1. Synthetic gene networks in bacterial antibiotic
resistance (figure 3)

Recent advances in molecular biology and genetic engineer-
ing have refined the ability to synthesize, design and modify
bacteriophages [156]. Indeed, this has enabled innovative
strategies and technologies for bacteriophage-based tools to
be applied to the treatment of infectious diseases, within a syn-
thetic biology context. The main phage-enabled technologies
used to this end are phage display, bio-part development
and genomic recombineering [156]. Phage display, a method-
ology involving fusing random peptide libraries to phage
coat proteins, has yielded significant advances in the areas
of vaccine development and drug delivery [156-159], with
particular applications to management of Pseudomonas
aeruginosa, Staphylococcus aureus and Bacillus anthracis [156].
Phage-based bio-part development represents a core strategy
of synthetic biology. Phage bio-parts are orthogonal in both
prokaryotic and eukaryotic cells and their robustness has
been demonstrated in the past decades through their ubiqui-
tous presence in common laboratory protocols. Specifically,
the T7 promoter has been extensively used in synthetic biology
due to its ability to drive high-level gene expression in an
orthogonal, low-toxicity fashion [160-162]. Additionally,
phage-occurring recombinases such as Cre, PhiC31 and Bxb1
have been widely used in the construction of several gene net-
works, including Boolean logic gates and counters [163,164].
Phage-based genomic recombineering also represents a power-
ful tool for the development of synthetic biology applications
that tackle infectious diseases. An example of this is the phage
A Red recombination system used in conjunction with flanking
homology target sequences in transformed DNA [156]. This
methodology has been used to induce genomic modifications
to several bacterial species which are known to represent high
disease burdens, i.e. E. coli, Salmonella enterica, P. aeruginosa,
Yersinia pestis, Shigella flexneri and Vibrio cholerae [165-170].

In addition to the referred phage-enabled technologies,
bacteriophage-based synthetic gene networks with therapeutic
and diagnostic orientations have recently been developed.
These networks can be categorized into antimicrobial and anti-
biotic-sensitizing. Antimicrobial synthetic gene networks are
based on engineering existing phages through the addition or
improvement of biological functions. Examples of this include
the biofilm-degrading network designed by Lu & Collins [171]

OOOiVLOZ ‘:zll a)‘npam/“")dg. y T ‘516'ﬁu!qs!|qnd‘/(19pos‘|é/(or;jsj



and the lysis-inducing network constructed by Westwater et al.
[172]. These networks were based on the T7 and M13 phages,
respectively. Rather than delivering toxic compounds to target
infectious cells, antibiotic-sensitizing networks use phages as
the chassis for generating biochemical responses to antibiotics.
This concept was elegantly illustrated by Edgar et al. [173]:
phage A was used to generate antibiotic re-sensitizing particles
through the delivery of wild-type copies of gyrA and rpsL [156].
Phage performance was assayed by transducing these genes in
streptomycin and fluoroquinolone-resistant target cells, i.e.
caused by point mutations in rpsL and gyrA, respectively.
Expression of the wild-type copies resulted in the biosynthesis
of enzymes that showed sensitivity to these antibiotics [173].

6. Synthetic gene networks for drug discovery
(figure 3)

While synthetic gene networks may be used for tackling disease
by modifying or reprogramming genetic material, mammalian
synthetic gene networks can also be developed to screen for
novel pharmaceutical compounds. This therapeutic approach
has the advantage of keeping the genetic material of the treat-
ment subject intact, thus reducing the severity of controversial
ethical issues [174-176].

An early example for this approach is the employment of a
streptogramin-controlled transcriptional switch [12] for the
identification of bioavailable, non-cytotoxic streptogramin
antibiotics [177]. This streptogramin-controlled transcriptional
switch contains a protein domain that is involved in conferring
the antibiotic resistance, which is activated by adding libraries
of metabolic compounds to cells that contained the strepto-
gramin-controlled switch. This method clearly identified new
streptogramin antibiotics that modified the transcription
activity of the switch.

Another example is the development of a drug discovery
circuit that led to the identification of anti-tuberculosis drugs
[33]. In Mycobacterium tuberculosis, ethionamide activator
(EthA) converts the pro-drug ethionamide into an antimyco-
bacterial nicotinamide adenine dinucleotide derivative which
is effective against M. tuberculosis [178]. The expression of the
EthA is inhibited by the ethionamide repressor (EthR), increas-
ing the resistance of this pathogen to ethionamide, which is the
last-line-of-defence in treatment of TBC [178]. In the anti-
tuberculosis drug discovery gene network, the activity of
EthR is monitored and a screening for compounds that inhibit
EthR was carried out to identify the food additive ‘strawberry
flavour’ (2-phenyl ethyl butyrate) as a new line of defence
against multidrug-resistant M. tuberculosis [33].

Besides gene networks for antibiotic discovery, a gene net-
work that allows screening for anti-cancer drugs has also been
developed [179,180]. Cancer is characterized by cells that uncon-
trollably proliferate in healthy tissues where cells are arrested in
the resting phase (GO) or growth 1 (also known as gap 1, G1)
phases of their cell cycle. In order to treat cancer, proliferating
cancer cells should be targeted and destroyed without adversely
affecting healthy tissue. For this purpose, a mammalian syn-
thetic gene network was developed, which expressed the
cyclin-dependent kinase inhibitor p27*P* under the control of
tTA to arrest mammalian cells in their cell cycle in a tetra-
cycline-dependent manner. Chinese hamster ovary cells
containing this gene circuit grow normally in the presence of
tetracycline, which inhibits tTA and thus, p275"" expression is

switched OFF. When tetracycline is removed, tTA promotes
the expression of p27<"! and cells are arrested in the G1
phase. By maintaining p27*'P* expression for prolonged periods
of time, a fraction of cells escape the arrest in their G1 phase and
resumed growth. This way, similarly to cancer development, a
mixed cell population is obtained which contains proliferating
and proliferation-arrested cells. Approved cancer therapeutics
killed proliferating cells, without adversely affecting growth-
arrested cells. Therefore, cells with this gene network that
are led into this mixed population could be used to screen
compounds that selectively kill neoplastic cells [179,180].

In addition to screening for anti-cancer drugs and anti-
biotics, gene circuits for identifying compounds that modify
the activity of cell membrane receptors are also engineered.
Cell membrane receptors are extremely important drug tar-
gets. In fact, one family of plasma membrane receptors, the
G protein-coupled receptors (GPCRs), represent the core
drug target in modern medicine [181]; over 50% of all pre-
scription drugs currently on the market act on GPCRs [182].
Despite this large number, only 50 members out of the approxi-
mately 1000 members of the large GPCR family are currently
targeted by drugs [183]. Therefore, developing drugs that
target GPCRs represents an important goal in pharmacology.
A common approach for finding GPCR targeting drugs is to
screen for compounds that modify the activity of GPCRs.
Although receptor activation assays have already been devel-
oped [184], synthetic biology offers possibilities to improve
the efficiency and controllability of receptor activation monitor-
ing. We have recently developed an activity assay for a subset of
GPCRs that are sensitive to blood flow. The assay detects GPCR
activity by GFP and produces a dose—response curve enabling
testing of new drugs for their effect on this subset of receptors
(data yet not published)

Recently, synthetic gene networks have been established
that record the activation of plasma membrane receptors such
as GPCRs, receptor tyrosine kinases and steroid hormone recep-
tors [185]. The activation of these plasma membrane receptors is
coupled to secondary messengers, which then promote the tran-
scription of a firefly luciferase reporter gene. This circuit was
used to identify a ligand for the orphan G protein-coupled
receptor 1 (GPR1), suggesting that this receptor is involved in
the regulation of inflammation [185]. Recently, a synthetic
GPCR was designed where the C-terminus was replaced by
Gaypzs to test the role of this receptor and their drugs in
tumour metastasis [186]. In addition, we have modified a
GPCR system to monitor the activity of a mechanosensitive
GPCR. We have shown that this GPCR becomes activated at
higher shear stress values and it was not responsive to para-/
autocrine effects. By seeding cells containing this gene network
in parallel-plate flow chambers, we can screen compound
libraries for new drugs that modify the shear stress-sensing
ability of this GPCR.

Another human health improving application of synthetic
biology that does not modify the genetic material of patients
is the manufacturing of biotherapeutics. Although a large pro-
portion of biomanufacturing is carried out in bacteria, some
products need to be manufactured in mammalian cells,
predominantly those from the area of biopharmaceuticals. A
common example for biomanufacturing in mammalian cells
is the production of monoclonal antibodies [187,188]. In gen-
eral, mammalian proteins that require mammalian-specific
post-translational modifications, such as glycosylation, carbox-
ylation, hydroxylation, sulfation and amidation are needed to
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be expressed in mammalian cells. When expressing proteins in
mammalian cells, the rate-limiting step seems to be the folding
and secretion of the protein of interest. Mammalian synthetic
biology was also employed to increase the rate of protein fold-
ing and secretion for the manufacturing of recombinant protein
biopharmaceuticals [189,190].

In conclusion, synthetic biology has been pioneered in pro-
karyotic cells, but it is now emerging as a novel therapy-
oriented field in mammalian cells and organisms. Initially,
basic mammalian synthetic biological parts and components
have been created to switch biological signals between two dis-
crete states (ON and OFF) to gate biological signals and to
oscillate parameters of interest. Using these elementary com-
ponents, more complex and therapy-focused gene networks
have been engineered. Mammalian synthetic biology aims to
cure severe health disorders from their root cause, to treat
symptoms of diseases, to help identify pharmaceuticals and
to enhance the manufacturing of biopharmaceuticals. More-
over, synthetic biology has the potential to revolutionize

state-of-the-art therapeutic approaches, such as gene therapies,
CAR T cell therapies and other cell therapies. For this, it is also
necessary to engineer new modules and components and to
characterize and generate component libraries for mammalian
synthetic biology. Such a toolbox would help the field to pre-
vent, diagnose and treat disease in general. In the near
future, the emergence of more and more therapy-oriented
gene networks is expected and existing and future synthetic
circuits might be subjected to clinical trials. A key challenge
of synthetic biology enhanced gene therapies remains the
development of vectors that can efficiently deliver the gene net-
works to the cells and tissues of interest. For synthetic biology
to live up to its clinical potential, it should also be better inte-
grated with clinicians. Additionally, clinical trials will be
required to evaluate the potency of the treatments and their
side effects, and arising ethical issues have to be taken into
account. Further work is required to clinically implement
synthetic biology, but this field remains one of the most prom-
ising and exciting areas of science and technology of our times.
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