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The use of satellite-derived classification maps to improve post-stratified forest parameter estimates is well
established.When reducing the variance of post-stratification estimates for forest change parameters such as for-
est growth, it is logical to use a change-related strata map. At the stand level, a time series of Landsat images is
ideally suited for producing such a map. In this study, we generate strata maps based on trajectories of Landsat
Thematic Mapper-based normalized difference vegetation index values, with a focus on post-disturbance recov-
ery and recentmeasurements. These trajectories, from 1985 to 2010, are converted to harmonic regression coef-
ficient estimates and classified according to a hierarchical clustering algorithm from a training sample. The
resulting strata maps are then used in conjunction with measured plots to estimate forest status and change
parameters in an Alabama, USA study area. These estimates and the variance of the estimates are then used to
calculate the estimated relative efficiencies of the post-stratified estimates. Estimated relative efficiencies around
or above 1.2 were observed for total growth, total mortality, and total removals, with different strata maps being
more effective for each. Possible avenues for improvement of the approach include the following: (1) enlarging
the study area and (2) using the Landsat images closest to the time of measurement for each plot. Multitemporal
satellite-derived strata maps show promise for improving the precision of change parameter estimates.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The use of satellite and other remote sensing data to supplement
in situ measurements of forest variables is a well-established prac-
tice (Fransson, 2000; Hansen et al., 2009; Katila & Tomppo, 2002;
McRoberts & Hansen, 1999; Nilsson, Holm, Reese, Wallerman, &
Engberg, 2005; Wynne, Oderwald, Reams, & Scrivani, 2000). There
are many advantages to the use of satellite data, among them being
increased coverage, reduced cost, and more frequent (and regular)
measurement. These advantages make such data useful in assisting
the scale-up of field observations to estimate population biophysical
parameters of forests.

These parameters may be categorized into two groups. Status pa-
rameters define the condition of the forest at a point in time. Exam-
ples include total carbon stock, average canopy cover, and total
species diversity. In contrast, change parameters define the manner
in which the forest changes over time. Examples of these include
total forest growth, total removals, total mortality, and total carbon
flux.

The Forest Inventory and Analysis (FIA) program of the USDA For-
est Service uses satellite data to augment its field measurements

(McRoberts, 2010; McRoberts, Holden, Nelson, Liknes, & Gormanson,
2006; McRoberts, Wendt, Nelson and Hansen, 2002). By assigning the
field plots to image-derived strata, the FIA program is able to obtain
more precise estimates of forest parameters thanwould have otherwise
been possible or financially feasible.

1.1. Post-stratification

Stratified sampling and post-stratification (PS) are standard
methods for increasing the precision of estimates given a fixed sample
size (Cochran, 1977). In stratified sampling, a population is divided
into mutually exclusive strata, and within each stratum a random sam-
ple is taken. It is assumed that the strata represent distinct subsets of the
population which are sufficiently different as to warrant the separate
treatment. An example would be estimating a parameter based on the
land cover type, in which case one would stratify along classes of land
cover based on remote sensing data. The sample size of strata may be
based on either proportionate allocation or disproportionate (opti-
mum) allocation, the latter case being desirable when additional
sampling is needed in strata exhibiting greater variability. In either
case, onewould expect increased precision fromusing stratified designs
instead of a simple random sample (SRS) design (Cochran, 1977).

In the case of PS, the sample is not defined based on the strata.
Instead, the sample is assigned to strata which have been generated
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via some other approach (often from ancillary data, as is the case in this
study).When the strata effectively partition the sample according to the
measured variables of interest, this approach can be nearly as precise as
proportional stratified sampling (Cochran, 1977).

1.2. Post-stratification and the FIA program

PS estimation is used by the FIA program (Bickford, 1952;
Chojnacky, 1998; LaBau, 2007; McRoberts, Gobakken, & Naesset, 2012;
Scott et al., 2005; Westfall, Patterson, & Coulston, 2011). When consid-
ering continuous forest inventories with permanent plot locations, PS
estimation is often used because strata boundaries change over time.
The FIA has used PS, starting with aerial imagery, since 1952 (Bickford,
1952). Because of the cost, time and effort required to obtain and inter-
pret aerial images and the relative temporal sparseness of such images,
the FIA program transitioned to primarily using digital and satellite im-
agery around the turn of the millennium (Hansen & Wendt, 2000;
McRoberts, Wendt, et al., 2002). In the decade that followed, re-
searchers enjoyed success in cheaply improving the precision of many
status forest parameter estimates using Landsat and its products
(Hansen & Wendt, 2000; Hoppus & Lister, 2003; McRoberts, 2010;
McRoberts, Nelson and Wendt, 2002; Musy, Wynne, Blinn, Scrivani, &
McRoberts, 2006; Wayman, Wynne, Scrivani, & Reams, 2001; Wynne
et al., 2000), such as the National Land Cover Database (Fry et al.,
2011). The FIA program currently uses Landsat-based stratification
methods to increase the precision of estimates for status parameters
such as forest area and forest volume. One such method stratifies plots
according to the number of forested pixels in a 5 × 5 neighborhood,
resulting in a variety of strata based on the density of forested pixels
around the target pixel (Hoppus & Lister, 2003). McRoberts, Wendt,
et al. (2002) developed another approach that defines four strata of for-
est, forested edge, nonforested edge, and nonforest.

While there has been substantial work done with PS for status
parameter estimates, published work has suggested that methods
which are effective for status parameter estimation are less so for
change parameter estimation (McRoberts et al., 2006). There is relative-
ly little in the literature with regards to stratified estimation of change
parameters. To develop strata maps related to forest growth from

satellite data, multiple images through time are needed. Strata may be
based on the time and severity of change or on the pattern of regenera-
tion after a disturbance. Methods such as the vegetation change tracker
(Huang et al., 2010), LandTrendr (Kennedy, Yang, & Cohen, 2010), expo-
nentially weighted moving average change detection (Brooks, Wynne,
Thomas, Blinn, & Coulston, 2014), and the continuousmonitoring of for-
est disturbance algorithm (Zhu, Woodcock, & Olofsson, 2012) can pro-
duce stratification criteria for time and severity of disturbance, but
they may not be able to provide sufficient regrowth information by
themselves. Accordingly, the primary objective of this study was to
test the effectiveness of using a Landsat-derived time series in PS esti-
mation of forest area, total carbon stock, area of planting, area of cutting,
total growth, total mortality, and total removals.

2. Data

The study area for this work was in west-central Alabama, USA
(Fig. 1). The area is largely forested, and the dominant forest type is lob-
lolly pine (Pinus taeda).

2.1. FIA plot data

We used FIA phase 2 plot data corresponding to the study area de-
scribed above. The resulting 977 plots covered all land uses and
ownerships.

The FIA sample locations are approximately systematic and are as-
sumed to produce an equal probability sample (McRoberts et al.,
2006). GPS positional accuracy of plot locations is approximately 8 to
20 m (McRoberts, 2010). The sample for this study is divided into
seven rotating panels, giving a seven-year remeasurement period for a
set of plots with remeasurements for this study covering the years
2004–2010.

The FIA phase 2 plot design is detailed in Bechtold and Scott (2005).
The plot consists of four circular subplots of radius 7.3m (24 ft) each, ar-
ranged with one subplot in the center and the remaining three equidis-
tant from the central subplot at a distance of 36.6 m (120 ft) with
azimuths of 0, 120, and 240°. The total extent of the four subplots is
about 675 m2 (1/6 acre). For each plot land use is determined, and for

Fig. 1. Study area. Inset RGB are the mean normalized difference vegetation index (NDVI) values for 3-year groups centered on 1985, 1988, and 1991, respectively.
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those plots determined to contain a forest land use (in whole or in part)
additional forest measurements are taken, including but not limited to
tree diameters, tree heights, tree species, and forest type (Burkman,
2005a, 2005b).

2.2. Satellite data

We used Landsat 5 Thematic Mapper data (L1T) from WRS-2 path
21 row 37 covering our study area (Fig. 1) from 1985 to 2011. The
temporal distribution of the images is shown in Fig. 2. Note that while
any given year may lack an image for a particular season, the temporal
coverage improves for any three year period. For simplicity, we used
only Landsat 5 as a data source, choosing only scenes with 10% or less
nominal cloud cover to reduce incoming noise in the time series. The
resulting stack comprised 174 images in total. We further processed
the images through the LEDAPS algorithm (Masek et al., 2006) to
convert them to surface reflectance, and we also used a band-
minimum based dark object subtraction (Chavez, 1988) with water
bodies in the study area as the calibration objects.

After preprocessing, we computed normalized difference vegetation
index values (NDVI) (Tucker, 1979) for each image and stacked the
resulting images in date order. We also generated a stack of squared
NDVI values because of its relationship to fractional vegetation cover
(Choudhury, Ahmed, Idso, Reginato, & Daughtry, 1994). NDVI, squared
NDVI, and image acquisition dates were used to generate strata maps.

3. Methods

This study consists of three components: generation of a strata map
from Landsat-based temporal trajectories, PS estimation of parameters
based on the strata map, and comparison of the variance of the post-
stratified estimates to the variance of estimates using the SRS estimator.

3.1. Strata map generation

We generated strata maps by estimating temporal trajectories from
the Landsat data, refining them into objects for classification, and
classifying these objects via a hybrid clustering approach.

3.1.1. Trajectory generation
We used harmonic regression (HR) (Brooks, Thomas, Wynne, &

Coulston, 2012; Brooks et al., 2014) to compute trajectories of NDVI
by year over the study timeframe. A brief summary of the use of HR
for this study follows; for full details on the method, we suggest refer-
ring to Brooks et al. (2014).

For a given year,we took all acquired images from that year andboth
the years preceding it and succeeding it. Corresponding acquisition day
numberswere scaled for convenience from [1,365] to [0,2π], and denot-
ed as T . From this, we created a design matrix consisting of a column of
1′s and columns corresponding to sines and cosines of T for two har-
monics, previously shown to capture the majority of the seasonal vari-
ability in the time series (Brooks et al., 2014; Moody & Johnson, 2001;
Roerink, Menenti, & Verhoef, 2000).

For each pixel in the image, we used this design matrix in conjunc-
tion with the associated NDVI time series to estimate harmonic coeffi-
cients via least squares estimation. To remove short-duration
anomalies in the time series, we calculated residuals based on initial co-
efficient estimates and, for that pixel, omitted any dates with unusually
large residuals (defined as 2 standard deviations away from 0) before
recalculating the coefficient estimates from the remaining data. We
retained only the constant coefficient estimate thus obtained, treating
this value as the representative value for that pixel for that year.

We performed the above process for each available year: 1986–
2010, resulting in a time series trajectory of 25 temporally auto-
correlated values, repeating the process on the squared NDVI stack to
approximate trajectories of fractional vegetation cover. Fig. 3 shows tra-
jectories of NDVI-based harmonic coefficient estimates from three ex-
ample pixels. All three pixels are in loblolly pine (Pinus taeda) stands,
and all three show some level of disturbance over their histories,
although the degree and timing of the disturbances varies.

3.1.2. Cluster object generation
The criteria of minimal heterogeneity within strata and maximal

heterogeneity between strata are the same criteria underpinning cluster
analysis. Thus, a cluster analysis will produce useful stratamaps, provid-
ed that appropriate clustering object (CO) types are used. In this study,
the chosen CO type should attempt to capture change through time.

Fig. 2. Temporal distribution of Landsat Thematic Mapper (TM) images.
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Based on our interest in assessing site quality by tracking regrowth rates
after disturbance and the recognition that the FIA plot data used in the
study were acquired relatively recently, we explored two avenues
with respect to CO selection.

3.1.2.1. Clustering objects based on minimum value. Consider the case of
mimicking site index first, by noting that rapid regrowth of an area sug-
gests a higher site index. In general, a forest stand grown from planting
will growmost quickly in the first few years after planting, as evidenced

by the rapid increase in leaf area index (LAI) in these first years
(Sampson, Wynne, & Seiler, 2008). Recognizing this, the first CO type
in this study estimates the point in time at which the forest in a pixel
is disturbed and includes a set number of subsequent observations
from that point.

We used a simple method of estimation for disturbance timing, tak-
ing the year forwhich the greatest decrease inNDVIwasmeasured to be
the year of disturbance. We took the subset of the trajectory including
this year and the seven subsequent years as the CO. Disturbances in

Fig. 3. Runningmeanmethod on NDVI values, detailed for three example pixels from different loblolly pine (Pinus taeda) stands. It is evident from the time series trajectories that pixels A
and C underwent a harvest of some degree, although the degree and timing of each harvest varied. Pixel B appears to have suffered a decrease in vegetation in the late 1990s as well.

Fig. 4. Clustering objects (COs) computed from the example pixels of Fig. 3. Note how the two most similar objects vary according to which CO type is chosen.
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the last seven years of the time series were excluded to ensure seven
years' worth of recorded data after the disturbance. This CO type, denot-
ed throughout thiswork as thepost-minimum type, is depicted in Fig. 4a,
showing the extracted sub-trajectories for the example pixels from
Fig. 3.

3.1.2.2. Clustering objects based on recent measurements. We took NDVI
trajectories corresponding to the years 2002–2009, recognizing that
this timeframe would be comparable with the specific 7-year intervals
from the plot measurements, even if those plots were not measured in
2002 and 2009. This CO type, denoted as the 2002–2009 type, is
depicted in Fig. 4b.

We also took a relative approach as follows. For the 2002–2009
period, we took the squared NDVI trajectory (not to be confused with
the square of the mean-coefficient NDVI trajectory used in the other
CO generations) as a proxy for fractional vegetation cover, used the
2002 value as a baseline reference, and calculated relative change values
for 2003–2009 by differencing. This CO type, denoted asmodified 2002–
2009, is depicted in Fig. 4c.

3.1.3. Classification
We used each collection of COs as the inputs in an algorithm based

on hierarchical cluster analysis (HCA) and nearest-neighbor assignment
(Tomppo et al., 2008), as demonstrated in Fig. 5.We chose HCA because
it allowed us to sequentially explore the changes in the strata maps as
the number of strata increased: in moving from an n-cluster solution
to an (n+1)-cluster solution, only the least coherent cluster of the n-
cluster solution is broken up; all other assignments remain stable.

From the collection of all trajectories, we chose a training sample
(Fig. 5a). This sample may be randomly generated or chosen to capture
expected variation in the trajectories (e.g., drawing pixels from known
forest regions of interest). For our sample, we created a distance matrix

using the Manhattan, or taxi-cab, distance, which sums the absolute
values of the differences between the trajectories at each point along
those trajectories. We chose this distance metric over the Euclidean
metric because it requires nomultiplications,making it computationally
more efficient, and it tends not to penalize single-value aberrations as
heavily because deviations are summed without squaring.

Once the distance matrix was created, we performed HCA on the
sample to generate solution sets of classes (Fig. 5b), identifiable with
strata in this study. HCA sequentially agglomerates the trajectories
into clusters using a linkage method which calculates the distances be-
tween all clusters at each step and links the two clusters with the min-
imum calculated distance. We used Ward's method (Ward, 1963) for
our linkage method. Because the agglomeration is sequential, we need-
ed to run the algorithm only once to generate multiple cluster solution
sets.

Once the sample classification was completed, we classified the re-
maining trajectories by a nearest-neighbor approach to the calculated
cluster centroids, again using the Manhattan distance to compute
between-trajectories distances (Fig. 5c and d).We repeated this process
for each desired cluster solution set. Since the trajectories are identifi-
able with pixels in the study area, the final product of this process is a
multilayered raster wherein each layer depicts a different strata map
for the specified cluster solution sets.

3.2. Post-stratification and estimation

The estimators that follow in this section are based on those of Scott
et al. (2005). As a general rule, wemade the population estimates by es-
timating stratum means per unit area from the observations (FIA plots,
assigned to strata based on the pixels containing the plot centers) and
multiplying these means by the corresponding stratum areas. Note as
well that the FIA program recommends a minimum of 10 plots per

Fig. 5. HCA algorithm, demonstrated on a sample of trajectories for three clusters (colors). a) From the full population, take a random sample (sample in black). b) Classify this sample
according to self-similarity, and compute cluster centroids (dashed lines). c, d) In the original population, classify each element based on the nearest centroid.
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stratum for stability in the parameter estimates (Westfall et al., 2011).
This effectively limits the number of strata available.

From our study area with total area A, we used n observations of a
variable y. The n observations were from FIA permanent plots. We
then took an independently derived collection ofH strata forming a par-
tition of the study area (derived in our case from Landsat data) so that
the hth stratum contains nh of the n observations, denoting the observa-
tions in the hth stratum as y1h ,y2h ,… ,ynhh. In an ideal situation, the
stratification would generate a homogenous grouping of observations
within each stratum and observations would be heterogeneous among
strata.

We defined wh, the weight of the hth stratum, as the proportion of
the study area assigned to that stratum, and calculated it accordingly
(in our case, the number of pixels in the hth stratum divided by the
number of pixels in the entire study area). We treated the weights as
known quantities since a wall-to-wall strata map of the study area is
used. Thenwe obtained the total PS estimate (ŷst) and its estimated var-
iance (VarðŷstÞ),

ŷst ¼ A
XH
h¼1

whyh ð1Þ

and

Var ŷstð Þ ¼ A2

n
∑
H

h¼1
whnhVar yhð Þ þ ∑

H

h¼1
1�whð Þnh

n
Var yhð Þ

" #
ð2Þ

respectively, whereyh is themean of the observations from the hth stra-
tumandVarðyhÞ is the variance of thatwithin-stratummean. Complete-
ly non-sampled plots were excluded from the analysis and were
assumed to be missing at random within strata (Patterson, Coulston,
Roesch, Westfall, & Hill, 2012). Partially non-sampled plots were han-
dled according to Scott et al. (2005).

We used the estimated relative efficiency (ERE) (Eq. (3)) to quantify
the gains in precision from the estimator:

ERE ¼ Var ŷSRSð Þ
Var ŷstð Þ ð3Þ

where Varð ŷSRSÞ is the variance of the estimate using the SRS estimator,
obtained by setting H=1 in Eqs. (1) and (2). When H=1, then n1=n
and W=w1=1, where n1 and w1 are the sample size and weight for
stratum 1, respectively. We note that relative efficiency is defined as
the ratio of the variances, but here we estimate it by the ratio of the es-
timated variances. In general, the greater the value of ERE, the more ef-
fective the stratification map at increasing the precision of the
parameter estimate.

3.3. Analysis

The chief response in this study is ERE for each of seven forest pop-
ulation parameters. Four parameters were status parameters (forest
area, forest carbon, forest cutting area, forest planting area) and three
were change parameters (forest growth, removals, and mortality). The
parameters are based on observed areal extent and individual treemea-
surements, where trees are defined as having a diameter at breast
height of at least 12.7 cm (5 in.). There were n=977 FIA plots (forest
and non-forest) in the study area (population).

For each map of COs (one for each CO type as defined in
Section 3.1.2), we used a training sample of 10,000 pixels to generate
solution sets ranging from 4 clusters to 7 clusters.We chose the training
sample at random across the scene, using the same training sample for
each CO type to control the results for training variation. Making
nearest-neighbor assignments for each CO and solution set yielded 12
single-layer strata maps: one for each CO type/solution set combination

(Table 1). For each of the 12 combinations, we assigned to every FIA plot
the stratumvalue for the pixel containing the center of the plot. For each
such assignment and parameter of interest we used the PS estimators
and the SRS estimators described in Section 3.2 to calculate ERE
(Eq. (3)).

4. Results and discussion

Themain thrust of this researchwas to test the effectiveness of using
a Landsat-derived time series in PS estimation of forest area, total car-
bon stock, area of planting, area of cutting, total growth, total mortality,
and total removals. To accomplish this we quantified the effectiveness
by examining ERE (VarðŷSRSÞ=VarðŷstÞÞ for each parameter. We note
that the FIA program does not typically use SRS estimators but much
of the previous research (e.g., McRoberts et al., 2006) has also used
SRS estimators to benchmark increase in precision of proposed PS ap-
proaches using ERE. Our results should be interpreted in the context
of previous research and not be taken as a direct comparison to current
FIA PS approaches.

Fig. 6 presents the results of the study, with EREs arranged horizon-
tally within the parameter columns to show the effect of the stratum
coarseness on ERE. The majority of the EREs were close to 1, with the
vast majority of the EREs being within 0.1 of 1. However, there were a
number of cases where the ERE was greater, on the order of 1.2. Recall
that an ERE of 1.2 indicates that a sample size of 120% of the original
sample would have been required to achieve the same precision when
using SRS estimators. In the case of the status parameters, namely forest
area, ERE values approached 2.2. These relatively greater values were
less than but comparable with the EREs for status parameters from
McRoberts et al. (2006), which had EREs (from other regions of the
USA) on the order of 2 or greater. Generally, the finer cluster maps pro-
duced larger EREs, which suggests that more partitioning typically al-
lows within-strata variation to be smaller and thus increases the
effectiveness of the PS approach. However, the change in ERE from in-
creasing the number of stratawas generally quite small, with the excep-
tion of the values corresponding to forest area. This dampening may be
a result of using the HCA process to define the stratifications, sincemost
stratum assignments from one step to the next remain the same.

All three of the CO types were comparable in terms of their effect on
ERE for change parameters, with each CO type associated with the
greatest ERE for a different change parameter. There is some intuitive,
albeit speculative, reasoning behind these change ERE results. For ex-
ample, the CO type based on the squared NDVI, here used as a proxy
for fractional vegetation cover, yielded the greatest EREs for total re-
movals. Similarly, the 2002–2009 CO type, chosen for its temporal cor-
respondence with the dimensional measurements taken by the FIA
crews, yielded the greatest EREs for total growth.

The post-minimum CO type yielded the greatest EREs for total mor-
tality. This was counterintuitive since the study area was dominated by
loblolly pine plantations which, on a stand level, exhibit removal far
more routinely than mortality. We hypothesize that after a removal
event (e.g., clearcut harvest), the natural regeneration or rapid
replanting resulted in a reduced impact on our annual NDVI time series.
However, in a large mortality event without removal, the canopy be-
comes dominated by dead crowns, at which point the satellite-based
sensor registers a prolonged reduction in NDVI, long enough to be

Table 1
Experimental factors in the study.

Factor Levels

Cluster object type Post-minimum
2002–2009
Modified 2002–2009 (using squared NDVI)

Number of strata 4, 5, 6, 7
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observed at the annual time scale. Further assessmentwould be needed
to verify this hypothesis.

There are several straightforward avenues which could improve
subsequent analyses. For example, increasing the overall area of the re-
gion of interest would have the effect of incorporating more FIA plots,
allowing potentially more strata (due to the higher likelihood of the
minimum stratum population being achieved) against the tradeoff of
requiringmore strata in order to account for the potential increased for-
est diversity in the area of interest. Further, prior research suggests that
more than six strata may yield minimal benefits (Cochran, 1977). We
could also account for mixed plots more robustly by taking amode stra-
tum value in a larger spatial neighborhood around each plot center
point.

Other avenues for improvement will be more challenging to imple-
ment. We suspect that a chief contributor to noise in our approach is
the temporal disagreement of the CO timeframes with the actual dates
of the plot measurements. As an illustrative hypothetical example, a
plot which was measured in 2004 and 2011 might have grown undis-
turbed from 2002 to 2009 but have been harvested in 2010. In this
case, the plot would be assigned to a stratum consistent with the undis-
turbed growth while the measurements show removal. Cases like this
contribute to an increase in within-stratum variance, resulting in a
lower ERE. The issue is compounded in the post-minimum CO type,
where the FIA measurements were generally not from the period used
for the COs. Additionally, since sufficient post-disturbance data are
needed to generate the CO, plots undergoing recent disturbances cannot
easily be included in the stratification for the post-minimum objects. In
any case, the PS approach presented here can only benefit from trajec-
tories that more closely tie into the FIA measurement dates. However,
since the FIA plots are measured on a rotating panel, such a matching
would require a tailoring of Landsat time series to the measurement
dates for each plot.

The rate of regrowth after a heavy removal event, as observed in the
post-minimum CO trajectory, might be related to the site quality, with
higher quality sites displaying a greater regrowth rate. By acting as a
proxy for the site index (please see Section 3.1.2.1), the stratamaps pro-
duced by the post-minimum object type might also be employed any-
where that site index is, in wall to wall raster format. This possibility
is an area worth exploring, but it would require more precise estimates
of the time and severity of disturbances, attainable via any of the
multitemporal change detection methods available today (Brooks
et al., 2014; Huang et al., 2010; Kennedy et al., 2010; Zhu et al., 2012).

Harmonic coefficient estimates from a Landsat time series improved
the precision of change parameter estimates via a stratification that
generated maps related to land cover. This is encouraging given the re-
cent emergence of harmonic regression in the literature as ameans to fit
Landsat time series data for subsequent change analysis (Brooks et al.,
2012; Zhu, Woodcock, Holden, & Yang, 2015; Zhu et al., 2012). There
is potential to use such coefficients for more general land cover/land
use classification, as bases for change detection, or as predictors in
models relating images to plot measurements. This potential is a chief
focus for related future work.

In this study,we usedPS estimation, but the data used to develop the
strata maps could also be used in a model-assisted estimation frame-
work (McRoberts, 2010; Särndal, Swensson, & Wretman, 1992). One
potential approach is using NDVI trajectory as a proxy or model of
change. In simple terms, the relationship betweenfield-observed values
and themodel of change would form the basis of the estimator. Model-
assisted estimation of forest change parameters remains a fruitful area
of research.

5. Conclusion

This study focused on improving precision for forest change param-
eter estimates by using trajectory-based stratum assignments. We used
several variations on this general approach to explore its potential with
no clear expectations of which variation would be optimal. In general,
the EREs from this research suggest modest increases in precision as
compared to the SRS variance estimates. Even so, the PS estimates
based on our stratification maps had smaller estimated variances for
growth, mortality, and removal, offering evidence that multitemporal
stratification methods incorporating fractional vegetation cover and
post-disturbance recovery can improve the precision of change param-
eter estimates.
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