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Research Article

Detection Probability of Least Tern and
Piping Plover Chicks in a Large River System
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ABSTRACT Monitoring the abundance and stability of populations of conservation concern is often
complicated by an inability to perfectly detect all members of the population. Mark-recapture offers a flexible
framework in which one may identify factors contributing to imperfect detection, while at the same time
estimating demographic parameters such as abundance or survival. We individually color-marked,
recaptured, and re-sighted 1,635 federally listed interior least tern (Sternula antillarum; endangered) chicks
and 1,318 piping plover (Charadrius melodus; threatened) chicks from 2006 to 2009 at 4 study areas along the
Missouri River and investigated effects of observer-, subject-, and site-level covariates suspected of
influencing detection. Increasing the time spent searching and crew size increased the probability of detecting
both species regardless of study area and detection methods were not associated with decreased survival.
However, associations between detection probability and the investigated covariates were highly variable by
study area and species combinations, indicating that a universal mark-recapture design may not be
appropriate. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

KEY WORDS Charadrius melodus, detection probability, endangered species, interior least tern, mark-recapture,
Missouri River, piping plover, Sternula antillarum.

Failure to account for imperfect detection can result in biased
abundance estimates and ultimately a failure to discern real
changes in demographic parameters (MacKenzie et al. 2002,
Pollock et al. 2002, Gimenez et al. 2008). For example, if
detection probabilities are <1, then estimates of abundance
and survival will be biased low, and if detection probability
varies from survey to survey then abundance estimates may
not be correlated with actual population sizes. Similarly,
unaccounted for heterogeneity in detection probability can
lead to increasing bias in demographic estimates including
apparent survival (Nichols et al. 1984, Devineau et al. 2006,
Cubaynes et al. 2010, Fletcher et al. 2012). Consequently,
extensive attention has been directed at the development of
methods to account for detection probability and thus correct
abundance and survival estimates for imperfect detection.
Detection is typically imperfect either because an animal

present is not detected (hereafter perception sensu Marsh
and Sinclair 1989; e.g., an observer does not hear a bird

singing during a point count) or an animal is unavailable for
detection (hereafter unavailability; e.g., a bird incubating in a
nest cavity or not singing during a point count;
Thompson 2002, Diefenbach et al. 2007). In either case,
a myriad of study- and species-specific factors can influence
detection probability (see Roche et al. 2013), including
territory size (Calder 1990), time of day (Skirvin 1981,
Conway et al. 2004), season (Best 1981, Skirvin 1981),
singing frequency (Farnsworth et al. 2002), and observer skill
(Sauer et al. 1994, Conway and Simon 2003, Diefenbach
et al. 2003).
Mark-recapture methodologies offer a flexible framework

with which to account for imperfect detection while at the
same time estimating demographic parameters such as
abundance or survival. Arguably, these methods are most
informative when used consistently over years to estimate
long-term and large-scale changes in population demogra-
phy, while tying observed trends to specific environmental
factors (e.g., Barbraud and Weimerskirch 2001, Peach et al.
2003, Baker et al. 2004). However, even if the long-term use
of mark-recapture methodologies is not possible, a 1-time
assessment can provide managers with a benchmark for
evaluating the accuracy of their current monitoring regimes
(e.g. McCorquodale et al. 2013, Shaffer et al. 2013).
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For actively managed species of conservation concern,
revealing true patterns of population change is imperative.
For example, the federally listed interior least tern (Sternula
antillarum; endangered) and piping plover (Charadrius
melodus; threatened) populations nesting along the upper
Missouri River both currently face challenges from the
increased vegetation and erosion (United States Fish and
Wildlife Service [USFWS] 2003) of their sandbar and
lakeshore nesting habitat (Carreker 1985, Prindiville Gaines
and Ryan 1988, Espie et al. 1996, Kirsch 1996, Schweitzer
and Leslie 1999), dynamic changes in water levels to which
they may not be well adapted (Anteau et al. 2012a), and
predation of nests and chicks (Kruse et al. 2001, USFWS
2003, Catlin et al. 2011a). Prior to the age at which chicks of
either species can fly (hereafter fledge), they are typically
confined to the sandbars and shorelines on which they
hatched (Elliottt-Smith and Haig 2004, Thompson et al.
1997) and, though mobile, are relatively easy to catch.
By individually marking and recapturing or resighting tern

and plover chicks between hatching and fledging, researchers
have been able to estimate changes in survival relative to
environmental factors under management control such as
predator removal (Catlin et al. 2011a), river flow (Catlin
et al. 2013), and habitat creation efforts (Catlin et al. 2011b,
Stucker 2013). Although mark-recapture analyses may
reveal the factors influencing population dynamics in the
face of imperfect detection, it remains important to
maximize detection to minimize variance in estimates and
reduce the potential for bias (Gimenez et al. 2008, Fletcher
et al. 2012). An understanding of factors that increase
detection of least terns and piping plovers would direct
researchers on how best to design their studies as well as lead
to more parsimonious modeling (Pollock et al. 2002,
Lindberg 2012).
We investigated the influence of multiple observer-,

subject-, and site-level factors on detection of individually
color-marked pre-fledge interior least tern and piping plover
chicks raised on upper Missouri River sandbars or shorelines.
We hypothesized that detection probability would be
influenced by chick age, time of day, the level of effort
put into detection activities and the amount of habitat
researchers would have to search. Our aim was to identify a
mark-recapture strategy that would maximize detection
probability for these species and ultimately allow us to
implement a long-term mark-recapture program for detect-
ing fledging-aged chicks as measures of productivity of both
species.

STUDY AREA

We collected data in 4 study areas along a stretch of the
Missouri River extending southward from Lake Sakakawea
in North Dakota to the Gavins Point Reach in northeast
Nebraska (Fig. 1). The Lake Sakakawea study area (SAK;
from Garrison Dam near Riverdale, ND to White Tail Bay,
ND; see Anteau et al. 2012b) was located at the
northernmost point of this stretch, approximately 80 km
from Bismarck, North Dakota. Habitat at SAK occurred on
shoreline beaches or islands. The shoreline at SAK was

irregular, dissected, and consisted of numerous substrates,
slopes, and aspects (Anteau et al. 2012b). The Garrison River
Reach study area (GRR) extended from theGarrison Dam to
the headwaters of Lake Oahe, approximately 10 km south of
Bismarck, North Dakota. Habitat at GRR occurred
primarily on mid-channel low- to mid-elevation sandbars
with some established woody vegetation. Sandbar size varied
temporally due to erosion, accretion, and variation in river
stage, but ranged from 0.125 ha to 109 ha as determined from
satellite imagery (Quickbird; 0.6-m pixels; DigitalGlobe,
Longmont, CO) collected between May and September (L.
L. Strong, U.S. Geological Survey, unpublished data). The
Lewis and Clark Lake study area (LCL) consisted of a
complex of 2–4 constructed sandbars located approximately
24 km upstream from the Gavins Point Dam near Yankton,
South Dakota (Catlin et al. 2011a, b; Sherfy et al. 2012).
Individual sandbars ranged in size from 10 ha to 24 ha. The
Gavins Point study area (GVP), the southernmost area in the
Upper Missouri River, extended downstream from the
Gavins Point Dam, approximately 95 km to Ponca State
Park, Nebraska (Catlin et al. 2011a, b; Sherfy et al. 2012).
Habitat at this study area was characterized by natural and
constructed sandbars of size <0.1 ha through 171 ha.

METHODS

Field Methods
We used stratified random sampling to choose study units
within each study area (hereafter referred to as sites) other
than LCL. Study sites consisted of 2-km shoreline or island

Figure 1. Least tern and piping plover nesting areas along the Missouri
River included in a mark-recapture project conducted 2006–2009.
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segments at SAK, 4.8-km river segments at GVP, and 6.4-
km river segments at GRR. At LCL, all study units consisted
of a single complex of constructed sandbars (2007: 0.55 ha
and 4.2 ha, 2008: 17 ha and 38.6 ha). We visited all sandbar
and shoreline habitat every 2–3 days frommid-April through
end of July to locate nests and mark and recapture all tern and
plover chicks.
We captured chicks by hand at the nest site, typically within

a day of hatch. We marked chicks of both species using a
metal band and a unique combination of color bands. Least
tern chicks received 3 celluloid color bands (2 bands placed
below the tibiotarsal joint and 1 above) and a size 1A stainless
steel United States Geological Survey (USGS) metal band
placed below the tibiotarsal joint. Piping plover chicks
received up to 2 Darvic color bands placed below the
tibiotarsal joint on each leg and a size 1A USGS aluminum
band or colored Darvic flag above the tibiotarsal joint on the
opposite leg. In >85% of cases, we captured chicks from the
same brood and marked them at the same time. We
conducted mark-recapture of piping plovers at SAK in 2006–
2009, at 37 sandbars at GRR in 2007, and at 31 sandbars at
GVP in 2008–2009. Mark-recapture of least terns occurred
at 37 sandbars at GRR in 2006–2007, at 31 sandbars at GVP
in 2006–2009, and at 4 sandbars at LCL in 2007–2008.
Following chick banding, we revisited each sandbar or

shoreline site every 2–3 days and resighted or recaptured
chicks. During searches, teams systematically worked
through all areas in a grid formation, moving against the
river flow and in parallel, recorded information on nest
initiation and survival as well as chick recapture information.
Teams typically resighted piping plovers with spotting scopes
based on color band with physical recapture rare unless
required for other concurrent studies (e.g., SAK and GVP).
Least tern chicks often lie flat over their leg bands or hide
under objects limiting opportunity to observe bands
remotely. Accordingly, we recaptured the majority of least
terns by hand to allow identification and maintenance of
individual color marks. Examples of such maintenance
included movement of color bands from tarsus to tibia as tern
chicks grew (and thus had more room on the tibia for color
bands) and replacement of lost bands. Following capture, we
directed terns away from field technicians and toward the
center of the site. Once teams had systematically searched a
sandbar or shoreline, they walked the edge of the sandbar or
shoreline to return to the entry point. Typical site visits took
approximately 2 hours and occurred within 4–5 hours of
sunrise. Our field protocols were approved by the USGS
Northern PrairieWildlife Research Center Animal Care and
Use Committee.

Covariates Associated With Detection Probability
We evaluated detection probability of marked least tern and
piping plover chicks in relation to time of day, chick age, year,
observation effort, and environmental covariates, including
area (ha) of suitable habitat for searching, and area (ha) of
unsearched hiding cover. We included site-level covariates in
our analysis (i.e., covariate values particular to a least tern or
piping plover chick depending on where it hatched) that we

believed could be associated with detection probability. Some
covariates varied by encounter occasion (i.e., were time
varying), whereas others were time invariant and remained
constant from hatch day until the cessation of observation.
We truncated encounter histories at 18 days for least terns
and 25 days for piping plovers. If we did not obtain a
covariate value, we used the mean study-area-specific
covariate value.
Because we hypothesized that detection of chicks increased

with age because of mobility (Whittier and Leslie 2009), we
directly coded chick age into our mark-recapture analysis by
creating age-structured encounter histories such that each
occasion represented a single day-of-age. We then built
linear trend models on the logit scale, hereafter denoted as
age (in contrast to agecat, which denotes age as a category).
We quantified observation effort as the number of hours all
observers devoted to searching for chicks (hours searched)
and the number of persons searching for chicks (crew size).
Finally, we included the number of hours since sunrise or to
sunset (time of day) from the midpoint of the survey period
as light conditions in mornings and evenings could be more
conducive to distinguishing color bands through scopes than
in midday. Constructing the covariate in this way allowed for
a single covariate that reflected time since midday.
We considered the year that we marked a chick as an

additive effect in all mark-recapture models. Additionally,
we enumerated the amount (ha) of non-vegetated and
sparsely vegetated habitat suitable for searching for least
terns and piping plovers (suitable habitat; Fig. 2a) and
vegetated hiding cover unsuitable for searching (hiding
cover; Fig. 2b) for each sandbar, island, or shoreline segment
from land-cover maps derived from annually acquired
satellite imagery (M. J. Anteau and L. L. Strong, U.S.
Geological Survey, unpublished data). We constructed land-
cover maps for GRR, GVP, and LCL study areas using an
object-based classification procedure for the above habitat
classes. We used satellite imagery for this procedure, which
was typically collected between May and September. At the
river study areas (i.e., GRR and GVP), we deemed the area
(ha) of a sandbar (or shoreline) consisting of bare-substrate
(<5% vegetation) or sparse vegetation (5–30% vegetation) to
be suitable habitat for chick-searching, whereas we consid-
ered the amount of a sandbar (or shoreline) consisting of
moderate to dense vegetation, to be habitat unsuitable for
searching but ideal hiding cover for chicks. We constructed
land-cover maps for SAK using habitat data collected in the
field to develop and evaluate a raster-based model to predict
the percent cover of vegetation. For this procedure, we used
the satellite imagery Probationary System of Earth Obser-
vation satellite 5 (SPOT-5; Satellite Imaging Corporation;
Magnolia, TX), which was collected between June and
August in 2007 and 2008. On SAK, we evaluated available
suitable habitat and hiding cover within a 500-m radius circle
around a central location for each observation of a brood.We
deemed the area (ha) of shorelines and islands with �15%
predicted vegetation to be suitable habitat for searching and
the remaining area as hiding cover. Despite the fact that
these covariates were at times correlated, we included both

Roche et al. � Detectability of Tern and Plover Chicks 711



hiding cover and suitable habitat as covariates in our models
so as to separately test study area- and species-specific effects
for both.

Mark-Recapture Analysis
We built Cormack-Jolly-Seber (CJS) recaptures-only mod-
els in program RMark 2.0.1 and MARK (White and
Burnham 1999, Laake and Rexstad 2011) to estimate the
detection probability (p) from a combined dataset of least
tern (n¼ 1,635) and piping plover (n¼ 1,318) chicks from
hatching through 18 and 25 days of age, respectively, an
approximate point at which fledging occurs in these species
(Prindiville Gaines and Ryan 1988, Thompson et al. 1997).
We organized data into capture histories consisting of 25
occasions, where an occasion represented a single day of age.
For each occasion, a chick received a 1 if we visited its site and
resighted or recaptured the chick, received a 0 if we visited its
site but did not see the chick, and was censored (.) if we did
not visit its site or had not yet banded the chick. We
estimated detection probabilities for 6 groups, representing
the 6 possible combinations of species by study area: piping
plovers at Garrison (PIPL-GRR; n¼ 354), piping plovers at
Gavins Point (PIPL-GVP; n¼ 713), piping plovers at Lake
Sakakawea (PIPL-SAK; n¼ 251), least terns at Garrison

(LETE-GRR; n¼ 335), least terns at Gavins Point (LETE-
GVP; n¼ 986), and least terns at Lewis and Clark (LETE-
LCL; n¼ 314).
Cormack-Jolly-Seber models concurrently estimate detec-

tion probability and apparent survival (w), the probability an
individual survives between sampling occasions and remains
on the monitored study area (Sandercock 2006). Because our
interest was in estimating the detection probability, we chose
a biologically reasonable a priori parameterization for
apparent survival, which we then used in all subsequent
models to determine the best parameterization for detection
probability. We assumed an apparent survival that varied
according to a linear trend with age on the logit scale (age) for
both least tern and piping plover chicks, w(species� study
area� age), where � indicates a multiplicative relationship
among model parameters. Although more highly parame-
terized models are possible, this model is well supported for
daily apparent survival in plover chicks (Colwell et al. 2007,
Dinsmore 2008, Roche et al. 2008).
The full model [w(species� study area� age), p(species�

study area� agecat)] included 150 detection parameters and
12 apparent survival parameters. We used the full model to
estimate overdispersion (ĉ) by conducting a within-brood
bootstrapping analysis on a sample of our data for which

Figure 2. Examples of (a) habitat suitable for searching for least terns and piping plovers (Garrison Reach), (b) vegetated hiding cover unsuitable for searching
(Garrison Reach), and (c) one of the many ways vegetation might be distributed on a sandbar that could make chick recapture and resighting challenging
(Gavins Point Reach).
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brood membership was known (n¼ 2,216 out of 2,953
individuals), following Bishop et al. (2008). We iterated this
bootstrap simulation 1,000 times. We then calculated the
mean standard deviation (SD) for each estimate of detection.
To estimate ĉ, we divided the squared standard deviation
(SD2) of each age-specific detection estimate by the squared
standard error (SE2) of the corresponding detection estimate
from the non-bootstrapped dataset. We then averaged the ĉ
values for each age-specific detection parameter to calculate
our overall ĉ value (ĉ¼ 1.69). We used this ĉ value to correct
the Akaike’s Information Criterion (AICc) rankings gener-
ated for eachmodel for overdispersion.We used the resulting
QAICc values to rank each model; lower QAICc values
indicated better model fit and, along with relative model
weight (wi), indicated the importance of each covariate
tested (Burnham and Anderson 2002). Following Arnold
(2010), we report 85% confidence intervals and used these
intervals to assess the degree of statistical support for the
regression coefficients.
We built models sequentially according to our a priori

expectations by adding to a null model the following
covariates: 1) year, 2) chick age, 3) observer effort, and 4)
environmental effects including time of day, and type of
search habitat (e.g., suitable habitat or hiding cover).
Parameters in our null model for chick detection varied by
species and study area combination but not by chick age [w
(species� study area� age), p(species� study area)]. For
each covariate, we built models in which covariate effects
were: 1) constant across all species and study area
combinations, 2) variable by species, 3) variable by study
area, and 4) variable for each species by study area
combination. At each step, we selected the parameterization
for detection probability with the lowest QAICc and used
this parameterization as a starting point when modeling the
effects of the next covariate on detection probability.
In addition to detection probabilities, we included an

observer impact covariate to determine if frequent observer
activities associated with our detection effort influenced
apparent survival. We created an occasion-specific covariate
unique to each individual capture history that posited an

attenuation effect of observer impact (OI) on daily survival
rates. On a day during which a site was the subject of a
targeted search (i.e., a chick had an encounter history value of
either 1 or 0), the OI value was equal to 3, a 2 on the day
following a search if the site was not visited (i.e., a chick had
an encounter history value of “.”), and a 1 on the second day
following a search (Rotella et al. 2004, Roche et al. 2010).
We reset this attenuation pattern at each site visit (i.e., for a
capture history of 11…, then the occasion-specific covariate
would be 3321) and assigned a 0 after 3 days had passed since
the last visit. We considered models in which the impact of
observer presence was 1) the same for both species and 2)
variable depending on species. We considered a reduction in
QAICc relative to our best model without this covariate as
evidence in support of the observer impact covariate.
We used our top-supported model to project daily

detection probabilities over the covariate values observed at
a study area for a given species while multiplying all non-
focal study area parameters at their site-specific mean values
(Table 1). We used the delta method (R package msm;
Jackson 2011) to obtain the mean probability and associated
confidence intervals among years. To estimate the
cumulative probability of detecting a chick at least once
in 2–4 site visits just prior to fledging, we used age-specific
estimates from our top-supported model and assumed we
made site visits on back-to-back days (e.g., probability of
detecting a least tern sampled at age 15 and 16 and a piping
plover at 22 and 23 days if we completed 2 site visits). We
used the delta method to estimate the cumulative
probability of detecting a least tern or piping plover chick
at search time lengths varying from 2 to 4 hours and
following 2–4 site visits.

RESULTS

Out of 2,953 chicks, we banded 94% of all piping plovers
(n¼ 1,238 of 1,318) and 93% of all least terns (n¼ 1,523 of
1,635) within 5 days of hatch; we banded 87% (n¼ 1,073) of
all piping plovers and 92% (n¼ 1,396) of all least terns within
a day of hatching. Daily detection probabilities varied by
species as well as study area (Table 2, Fig. 3). Although

Table 1. Sample means ð�xÞ and standard deviations (SD) of observation effort and environmental covariates believed to influence detection probability by
species (least tern, piping plover) and study area (GRR, Garrison Reach; GVP, Gavins Point Reach; LCL, Lewis and Clark Lake; and SAK, Lake
Sakakawea) along the Missouri River in 2006–2009. The covariates representing observation effort included: 1) hours searched, the number of hours spent
chick searching; and 2) crew size, the number workers searching for chicks. The covariates representing environmental effects included: 1) suitable habitat, the
area (ha) of a sandbar (or shoreline) consisting of bare-substrate (<5% vegetation) or sparse vegetation (5–30% vegetation); 2) hiding cover, the area of a
sandbar (or shoreline) consisting of moderate to dense vegetation which could offer hiding cover for least terns or piping plover chicks; and 3) time of day, the
time of day at which chick searching occurred measured as the number of hours from sunrise or sunset to the median time at which surveying occurred.

Species and study area

Suitable habitat (ha) Hiding cover (ha) Hours searched Crew size Time of day

�x SD �x SD �x SD �x SD �x SD

Least tern
GRR (n¼ 335) 12.74 9.81 17.15 34.69 2.07 1.22 3.70 0.74 4.29 0.85
GVP (n¼ 986) 12.90 10.50 1.66 4.37 1.85 0.85 4.67 0.92 4.67 0.77
LCL (n¼ 314) 19.30 4.84 4.50 10.19 2.02 0.57 5.47 0.66 4.42 0.48

Piping plover
GRR (n¼ 354) 14.75 9.42 7.90 10.16 2.04 0.91 3.90 0.63 4.40 0.90
GVP (n¼ 713) 17.55 12.98 9.79 22.13 1.53 0.56 4.91 0.77 4.70 0.59
SAK (n¼ 251) 6.26 6.03 17.79 13.41 1.47 0.85 2.75 0.45 4.57 0.87

Roche et al. � Detectability of Tern and Plover Chicks 713



Table 2. Set of models used to estimate apparent survival (w) and detection (p) of 1,635 least tern and 1,318 piping plover chicks marked and recaptured or
resighted along the Missouri River during 2006–2009. Parameters having independent (i.e., factorial) relationships are joined by �; whereas, parameters
having additive relationships are joined by þ; age specifies a linear trend in apparent survival or detection probabilities based on age and a dot (.) indicates a
model in which detection is constant across chick age. The designation species represents grouping by species (i.e., least tern or piping plover), study area
designates grouping by study area (i.e., Gavins Point Reach, Garrison Reach, Lewis and Clark Lake, or Lake Sakakawea), hours searched represents the
number of hours of chick-searching, crew size represents the crew size searching for chicks, suitable habitat designates the area (ha) of non-vegetated habitat
suitable for searching, hiding cover represents the area (ha) of vegetated hiding cover, and time of day represents the time of day at which searching occurs.
Akaike’s Information Criterion values were corrected for small sample size and overdispersion (ĉ¼ 1.69), yielding quasi-AIC (QAICc) values. We used
DQAICc values, model weights (wi), number of parameters (K), and quasi-deviance values (QDev) to rank best-supported models. In all models, apparent
survival was parameterized w(species� study area� age).

Rank p K DQAICc wi QDev

1a (species� study area)þ (year� species)þ (age� species� study area)þ
(crew size� species� study area)þ (hours searched� species� study area)
þ (suitable habitat� species� study area)þ (hiding cover� species�
study area)þ (time of day� species� study area)

60 0 0.99 128,374.9

2 (species� study area)þ (year� species)þ (age� species� study area)þ
(crew size� species� study area)þ (hours searched� species� study
area)þ (suitable habitat� species� study area)þ (hiding cover� species
� study area)

54 24.81 0.00 128,411.8

3 (species� study area)þ (year� species)þ (age� species� study area)þ
(crew size� species� study area)þ (hours searched� species� study area)

42 394.22 0.00 128,805.5

4 (species� study area)þ (year� species)þ (age� species� study area) 30 1,163.61 0.00 115,487.3
5 (species �study area)þ (year� species) 24 1,173.73 0.00 115,509.4
6 (species� study area) 18 1,331.67 0.00 115,679.4

a QAICc¼ 128,495.6.
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Figure 3. Regression coefficient estimates for covariates included in our top-supported model for detection probabilities of piping plovers (PIPL) and least
terns (LETE) at Missouri River study areas in 2006–2009 (GRR, Garrison Reach; GVP, Gavins Point Reach; LCL, Lewis and Clark Lake; and SAK, Lake
Sakakawea). These values represent the effect of (a) age, (b) hours searched (mean¼ 1.88 hrs, SD¼ 1.22 hrs), (c) crew size (mean¼ 4.56 people, SD¼ 2.40
people), (d) hiding cover (mean¼ 7.81 ha, SD¼ 18.24 ha), (e) suitable habitat (mean¼ 14.35 ha, SD¼ 10.78 ha), and (f) time from sunset or sunrise
(mean¼ 4.56 hrs from sunrise or sunset, SD¼ 1.68 hrs from sunrise or sunset) on detection probability. Vertical bars are 85% confidence intervals; the effect of a
covariate would be supported if 85% confidence intervals do not overlap 0 (the horizontal dashed line). All covariates other than age (which was modeled as a
linear trend in the logit scale) were standardized to a mean of 0 and a standard deviation of 1.
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detection probabilities were generally unrelated to age
(Fig. 3a), detection of least terns at GRR decreased with
age (Fig. 3a, b̂age ¼�0.03; 85% CI: �0.06 to �0.01) and
detection of piping plovers at SAK increased with age
(Fig. 3a, b̂age ¼ 0.06; 85% CI: 0.03–0.08).
We found a positive association between hours spent

searching and detection probability for both species (Figs. 3b
and 4). For example, increasing search time by 0.5 SD
(approx. 40min) was associated with increases in daily
detection probabilities of 0.03 (85% CI: 0.02–0.04), 0.03
(85% CI: 0.03–0.04), and 0.09 (85% CI: 0.08–0.11) for least
terns at GRR, GVP, and LCL (Fig. 4b). An equivalent
increase in search time for piping plovers was associated with
increases in daily detection probabilities of 0.07 (85% CI:
0.06–0.08), 0.04 (85% CI: 0.04–0.05), and 0.06 (85% CI:
0.04–0.07) at GRR, GVP, and SAK (Fig. 4a).
The positive effect of crew size was most pronounced for

least terns at LCL and for piping plovers at GVP (Figs. 3c
and 5a), where an increase in 0.5 SD (approx. 1 person)
resulted in daily detection probabilities that increased by 0.13
(85% CI: 0.11–0.15) and 0.08 (85% CI: 0.07–0.09),

respectively. Daily detection probabilities increased with
increasing crew size for least terns at GRR (an increase of
0.06, 85% CI: 0.03–0.08, with 1 additional crew member)
and least terns at GVP (an increase of 0.07, 85% CI: 0.06–
0.08, with 1 additional crew member; Fig. 5b).
Increases in the amount of hiding cover (i.e., the habitat

unsuitable for searching) were associated with decreases in
daily detection probabilities for both species (Fig. 3d).
However, although this effect was supported for least terns
across all study areas (i.e., 85% CI did not overlap 0), it was
supported only for piping plovers at GRR, where an increase
in hiding cover of 0.5 SD (approx. 9 ha) resulted in daily
detection probabilities that decreased by 0.07 (85% CI: 0.05–
0.09; Fig. 3d). For least terns, an increase in hiding cover of
0.5 SD resulted in decreases in daily detection probability of
0.02 (85% CI: 0.01–0.03), 0.14 (85% CI: 0.05–0.22), and
0.08 (85% CI: 0.05–0.11) at GRR, LCL, and GVP.
Increases in the amount of non-vegetated habitat suitable

for chick searching (i.e., suitable habitat) were also associated
with decreasing detection probabilities for the study area and
species areas for which it was supported (Fig. 3e). An increase
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Figure 4. Daily detection probabilities for (a) piping plovers and (b) least terns by number of hours spent searching (hours searched) at each study area (GRR,
Garrison Reach; GVP, Gavins Point Reach; LCL, Lewis and Clark Lake; and SAK, Lake Sakakawea) along theMissouri River in 2006–2009. Daily detection
probabilities at GRR are represented by squares, at SAK by inverted triangles, at GVP by circles, and at LCL by triangles. Solid fill indicates that the 85%
confidence intervals of the regression parameters for an effect did not overlap 0. Dashed lines represent the 85% confidence intervals for the daily detection
probabilities. All estimates were generated from the top-supportedmodel while holding all covariates at site-specificmean values and solved only over the values
for hours searched observed at the site-specific mean values. We calculated mean values and variances across years using the delta method.
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in suitable habitat of 0.5 SD (approx. 5.5 ha) was associated
with daily detection probabilities that decreased by 0.10 (85%
CI: 0.08–0.11), 0.06 (85%CI: 0.05–0.07), and 0.05 (85%CI:
0.02–0.09) for piping plovers at GRR, GVP, and SAK,
respectively. Although detection probability decreased with
increasing non-vegetated habitat for least terns at GVP (a
decrease of 0.06, 85% CI: 0.05–0.08, with an increase of 0.5
SD) and GRR (a decrease of 0.09, 85% CI: 0.07–0.11, with
an increase of 0.5 SD), we did not find support for this
relationship for least terns at LCL (i.e., 85% CI overlaps 0,
Fig. 3e).
Daily detection probabilities of piping plovers at GVP

increased with the approach of midday, whereas daily
detection probabilities of piping plovers at GRR and SAK
decreased with hours since sunrise or to sunset (Fig. 3f).
With an increase of 0.5 SD (approx. 50min from sunrise or
to sunset), daily detection probabilities increased by 0.02
(85% CI: 0.01–0.03) for piping plovers at GVP, and
decreased by 0.02 (85% CI: 0.01–0.03) and 0.02 (85% CI:
0.01–0.04) for piping plovers at GRR and SAK, respec-
tively. The most pronounced effect of time on detection
probabilities occurred for least terns at LCL (Fig. 3f);

daily detection probabilities decreased by 0.03 (85% CI:
0.02–0.04) with an increase in 0.5 SD from sunrise or to
sunset.
The presence of observers was associated with an increase

in survival of least tern chicks (b̂LETE-OI¼ 0.68, 85% CI:
0.48–0.89), but survival of piping plover chicks (b̂PIPL-OI
¼�0.09, 85% CI: �0.30 to 0.11) was unrelated to the
presence of observers (addition of the observer impact [OI]
covariate led to a 16 point decrease in QAICc relative to
Table 2, model 1). Daily survival rates of least tern chicks
were 0.01–0.02 greater on days during which resighting
occurred compared to the day following resighting.
The cumulative probability of detection when we

conducted 2 visits of 4 hours was equivalent to 3 visits of
2 hours each, suggesting alternate strategies for increasing
detection probability could be pursued. Across all study areas,
the cumulative probability of detecting a least tern chick once
in 2–4 site visits was 20–40% lower than that for piping
plovers. Cumulative probabilities of detecting piping plovers
approached or exceeded 80% with 2 visits of 4 hours or with
at least 3 visits; for least terns, more than 3 visits of greater
than 3 hours would be necessary (Fig. 6).
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Figure 5. Daily detection probabilities for (a) piping plovers and (b) least terns by crew size at each study area (GRR, Garrison Reach; GVP, Gavins Point
Reach; LCL, Lewis and Clark Lake; and SAK, Lake Sakakawea) along theMissouri River in 2006–2009. Daily detection probabilities at GRR are represented
by squares, at SAK by inverted triangles, at GVP by circles, and at LCL by triangles. Solid fill indicates that the 85% confidence intervals of the regression
parameters for an effect did not overlap 0. Vertical lines represent the 85% confidence intervals for the daily detection probabilities. All estimates were generated
from the top-supported model while holding all covariates at site-specific mean values and solved only over the values for crew size observed at the site-specific
mean values. We calculated mean values and variances across years using the delta method.
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DISCUSSION

Factors Affecting Detection Probability

The diversity of conditions in the Upper Missouri River
system leads to a number of logistical challenges to
implementing a mark-recapture program. Chief among
them is that factors associated with increasing detection
probability varied by study area, species behavior, and
detection method, a result that is not unique to this system
(Pagano and Arnold 2009, Durso et al. 2011, Roche et al.
2013). In general, daily detection probabilities were
substantially greater for piping plover chicks than for least
terns, indicating that current mark-recapture methodologies
are better suited for detecting plovers than terns.
A relationship between age and detection was supported for

only 2 groups and could be explained by the unique properties
of the shoreline-sandbar habitat. Older chicks are more likely
to feed at the water’s edge (Elliottt-Smith and Haig 2004,
Whittier and Leslie 2009) and along lakeshore habitat, such
as the SAK study area, this might make older piping plover
chicks more visible at a distance with age. In contrast, GRR
consisted largely of sandbar habitat with intermixing patches
of suitable habitat and hiding cover (e.g., Fig. 2c), meaning
that it was likely observers would flush chicks into hiding

cover. The decreasing probability of resighting or recapturing
least terns with age likely reflects the fact that they become
increasingly mobile and difficult to catch (discouraging
reading bands in hand) and more likely to make it to hiding
cover where they can avoid being resighted. Although we did
not find much support for an association between detection
probability (here generated through a combination of
resighting and recapture) and age, we caution that the actual
probability of physical recapture of piping plover chicks does
decrease with age (Catlin et al. 2013).
Detection probabilities for both species increased with

search effort (i.e., hours spent searching and crew size),
strengthening support for the influence of effort on
probability of detection (e.g., Mack et al. 2002, Smith
et al. 2009, Vine et al. 2009, Christy et al. 2010, Jeffress et al.
2011). Consistent with the results of Hunt et al. (2013), we
found no negative impact of the presence of observers on the
survival of terns and plovers. The more pronounced effect of
hours spent searching on the detection of plovers relative to
terns is most likely explained by the manner in which chicks
were detected. Increasing the time spent resighting band
combinations leads to the discovery of more (would-be)
unseen combinations. However, physical recapture, which is
more frequently used on least tern chicks, causes chicks to

Figure 6. The cumulative (cumm.) probabilities of detecting a fledging-aged chick at least once in 2–4 site visits for 3 different search times (1 hr¼white circle,
3 hrs¼ gray circle, and 4 hrs¼ black circle) for 17-day-old least terns at (a) Garrison Reach (GRR), (b) Gavins Point Reach (GVP), and (c) Lewis and Clark
Lake (LCL) and for 20-day-old piping plovers at (d) GRR, (e) GVP, and (f) SAK along the Missouri River in 2006–2009. Vertical lines represent 85%
confidence intervals as calculated by the delta method.
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scatter in the direction of vegetation or other cover that
might be too difficult to search safely. Additionally, least
terns appear to be particularly adept at hiding, being more
likely to crawl into inaccessible locations or even bury
themselves in sand (C. Dovichin, U.S. Geological Survey,
personal observation).
Although previous studies on shorebirds have found

detection increases with the number of observers (Lyons
et al. 2012), in our study, only detection probability for least
terns increased with crew size in all study areas. Piping plover
chicks of all ages are more likely to run from surveyors than
least terns, exposing their unique band combinations;
however, least tern chicks are far more likely than piping
plover chicks to crouch hidden in vegetation, requiring the
physical recapture of a chick to read a band combination.
Thus, although a single surveyor with a spotting scope could
theoretically read multiple piping plover band combinations
from a stationary position, a single surveyor searching
through vegetation may actually cause least tern chicks to
become more scattered, better hidden, and more difficult to
find. Thus, a larger team of individuals searching concur-
rently is likely to have a greater probability of success
resighting least tern chicks than is a smaller crew. Following
this logic, crew size is less likely to have an influence on the
detection of piping plovers if they are being resighted, as was
the case at GRR and SAK.
For some species, detection probabilities may vary with

time-of-day or lighting conditions because of changing
behaviors (Bailey et al. 2009, Pagano and Arnold 2009,
Christy et al. 2010, Niemuth et al. 2012). We initially
suspected the detection of piping plover chicks might vary
with time-of-day because forage availability changes
throughout the day with peaks in the morning (Anteau
and Sherfy 2010) and evening (Lee 2007) and intently
foraging plovers might be easier to observe. However, the
lack of a consistent pattern, for both species, offered no
compelling evidence for an effect of time of day on detection.
Many studies have demonstrated shorebirds are negatively

associated with vegetative cover (Fernández and Lank 2006,
Pomeroy 2006, Van den Hout et al. 2008) but most, like
Brindock and Colwell (2011) who demonstrated that snowy
plovers (Charadrius alexandrines) avoid areas of high cover,
have explained this negative association as a real avoidance
and not due to decreased detection. When we controlled for
number of hours searched, crew size, and time of day, both
the amount of hiding cover (i.e., areas considered unsuitable
for chick searches because of >15% vegetation cover) and
non-vegetated suitable habitat (i.e., habitat most easily
searched) were consistently associated with decreased daily
detection probabilities. We found only 2 exceptions to these
patterns, both of which could be explained by unique aspects
of a few sites unaccounted for in our analysis. For example,
the presence of pipes at 1 of the LCL sites enabled least terns
to hide themselves beyond the physical reach of technicians
(C. Dovichin, personal observation). At GRR, vegetative
cover on the sandbars was consistently patchier than in the
other areas (see Fig. 2c for an example of patchy vegetative
cover). As a result, piping plover chicks, which were generally

more likely to run and crouch rather than hide, were more
easily able to flee into hiding cover during recapture events.
Although we limited our analysis to the amount of suitable

(largely barren) habitat and hiding cover at a site, the habitat
at which piping plover and least tern chicks are found in the
Missouri River system is highly diverse. Sandbars ranged in
size from 0.125 ha to 171 ha with the degree of vegetation
ranging from completely unvegetated to sandbars nearly
completely covered by vegetation growing since the last
major flood in 1997 (USFWS 2000). At some locations,
chicks are found and observed along longitudinal shoreline
habitat, bounded on 1 side by water and the other a dune,
bluff, or treeline, which minimizes the potential for a chick to
move into hiding cover (Anteau et al. 2012b). This is not the
case on large sandbars where chicks may escape through
vegetation to an opposite shoreline and thus more easily
evade observation. Additionally, the location of vegetation
on a sandbar (or lakeshore) along with the shape of the
sandbar itself, can have serious consequences on the ease at
which resighting or recapture occurs, with large sandbars
punctuated by several discrete vegetated areas offering some
of the most logistically difficult conditions, and narrow
unvegetated relatively small sandbars some of the easiest
(Fig. 2c). Consequently, at each location, observers are faced
with different logistical constraints and considerations.

MANAGEMENT IMPLICATIONS

Given that 1) increasing search times is probably more cost-
effective than adding additional teammembers to a crew, and
2) increasing search times increased the probability of
detection for both species at all study areas, the most efficient
means by which to increase overall daily detection probability
would be to increase the length of site visits. To account for
the possible influence of heterogeneity in the lower detection
probabilities associated with least tern chicks, researchers
should use a combination of modern statistical methods
designed to account for heterogeneity (Royle 2008, Calvert
et al. 2009, Gimenez and Choquet 2010) or include
observer-, site-, or individual-specific covariates believed
to influence detection (Pollock et al. 2002, Lindberg 2012).
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