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Successive Overrelaxation, Block Iteration, and Method of Conjugate Gradients 
for Solving Equations for Multiple Trait Evaluation of Sires 

L. O. VAN VLECK and D. J. DWYER 
Department of Animal Science 

Cornell University 
Ithaca, NY 14853 

ABSTRACT 

A potential  difficulty with mixed 
model equations for multiple trait evalua- 
tion of sires is solving the equations as the 
number of equations increases propor- 
t ionally to the number of traits. Time 
required to obtain inverse solutions 
increases by the number cubed. Thus, 
iterative procedures often are used. Three 
iterative procedures, successive overre- 
laxation, block iteration with relaxation, 
and the method of conjugate gradients, 
were compared for four sets of multiple 
trait equations for sire evaluation. Equa- 
tions were solved after absorption of 
equations for random herd-year-season 
effects. Equations for two and four traits 
each with test and complete data sets 
made up the four sets of equations. The 
two-trait  system featured high herit- 
abilities and large negative correlations 
among effects whereas the four-trait  
system had low heritabilities and smaller 
negative correlations. Rate of con- 
vergence for block iteration was faster 
than for successive overrelaxation, espe- 
cially for the four-trait  system and 
especially for more exacting convergence 
criteria. The method of conjugate gra- 
dients was efficient only for test data sets 
(30 and 60 equations) and was not  
competitive with the other methods for 
complete data sets (1426 and 2852 
equations). Test data sets accurately 
predicted opt imum relaxation factors for 
successive overrelaxation for complete 
data sets. Optimum relaxation factor for 
the two-trait  system was 1.5 to 1.7 and 
for the four-trait  system was 1.3 to 1.5. 
Gauss-Seidel i teration took 33 to 400% 

Received April 30, 1984. 

more rounds than successive overre- 
laxation with the opt imum relaxation 
factor depending on stopping criteria and 
data set. 

INTRODUCTION 

One potential  problem with multiple trait 
mixed model  evaluation is difficulty of solving 
equations. Number of equations to be solved 
increases by number of traits, number of 
coefficients increases by number squared, and 
number of computat ions required for direct 
solution increases by the number cubed even 
though symmetry reduces the number of 
computat ions by about  half. Efficient com- 
puting strategies are needed to facilitate multiple 
trait evaluation. Prediction of category fre- 
quencies for traits such as calving difficulty and 
type traits by best linear unbiased prediction is 
a special form of multiple trait  evaluation of 
sires. Such sets of  equations were available from 
analysis of Brown Swiss type data (12). Equa- 
tions for a test set of data and for the complete 
data set were available for multiple subtraits of 
two traits, the first having three categories 
(equivalent to two traits) and the second having 
five categories (equivalent to four traits). The 
two pseudo-multiple trait systems also had 
different variance-covariance matrices, cor- 
responding to relatively high and relatively low 
heritabilities. 

Canonical transformation (1, 2, 6, 11) can 
be used to reduce multiple trait, mixed model  
equations to independent sets of single trait 
mixed model equations if observations on all 
traits have the same design matrices and if there 
is only one random classification other than 
residual effects. The model  underlying available 
type equations, however, contains two random 
classifications so that canonical transformation 
cannot be applied. 

The goals of the study were: 1) to find 
opt imum relaxation parameters for successive 
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overrelaxation (SOR) modification of Gauss- 
Seidel (G-S) iteration, 2) to compare SOR with 
block iteration (BLOCK), 3) to find optimum 
relaxation parameters for BLOCK, 4) to com- 
pare SOR and BLOCK with the conjugate-gradi- 
ent (CON GRAD) method of solving equations, 
and 5) to determine if optimum relaxation para- 
meters can be estimated from a small set of 
data, eliminating the need to use a large set of 
data for that purpose. 

METHODS 

The model for sire evaluation was: 

y = W h  + X m  + Z s  + e 

where: 

y is a vector of observations for all traits 
ordered by traits within animals (each 
animal has a measurement on each trait 
that will be zero or one), 

h is a vector of random herd-year effects 
ordered by traits within herd-years, 

m is a vector of fixed effects (one for each 
trait corresponding to the mean frequency 
for that trait), 

s is a vector of random effects of sires of 
animals ordered by traits within sires, 

e is a vector of random residual effects 
associated with the vector of observations, 

Wis a matrix of zeros and ones that as- 
sociates the herd-year effects with the 
observations, 

X is a matrix of zeros and ones associating 
effects in m with observations, and 

Z is a matrix of zeros and ones associating 
sire effects with observations. 

H = I H * V H 

G = I S * V S 

R = I N *  V E 

where: 

V H is the variance-covariance matrix of 
herd-year effects for multiple traits 
observed in the same herd-year, 

V S is the variance-covariance matrix of sire 
effects for multiple traits for animals 
having the same sire, 

V E is the variance-covariance matrix of 
residual effects for traits observed on the 
same animal, and 

IH, IS, and I N are identity matrices of order 
the number of herd-years, sires, and 
animals. 

Mixed model equations for predicting sire 
values are: 

IWRW+.I W.X W RZ ][mI WR   
x R-,x X'R mz =/x'R 'Y/ 

LS~, . . . . . . . . .  Z'R 'z+~ ' Lz',~ 'y l  

Before solving for s, herd-year equations 
were absorbed leaving symmetric equations of 
the form as illustrated for two sires and two 
traits: 

[ .................... ]I11] [rll l a21 a22 a23 a24 a2s a26 512 rl~ 

&31 a32 a33 a34 a3g a36 s21 r21 

,/41 z/42 a43 ~I 4z~ a4~ a46 522 = r22 

d~l d~2 a53 &54 aS~ a56 $31 r31 

,161 a62 a63 a64 a6~ a66 32 r32 

ll] 

The expectation of the observation vector is: 

E(y) = Xm 

The variance-covariance matrix of the random 

V 

effects is: 

E! ] E °!]o0 
where H, G, and R are block diagonals with the 
right direct product forms: 

To simplify description of the computing 
procedure, notation has been changed slightly. 
Now the first two equations are for the m 
vector (i.e., sll = ml  and s12 = m2), the next 
two equations are for the first sire, and the last 
two equations are for the second sire (i.e., first 
subscript in solution and right-hand side vectors 
refers to sequentially ordered sire number plus 
1 and second subscript to trait). 

The matrix of coefficients can be partitioned 
into blocks of order corresponding to number 
of traits. 
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The G-S method  of i terat ion is well k n o w n  
(5, 8) bu t  will be described here for com- 
pleteness. Let elements of the solut ion and 
right-hand side vectors be identif ied by  single 
subscripts (1 . . . . .  6), for the example.  Then  the 
j th  solut ion in the n th  round  of i terat ion is: 

1 j - 1  6 
n = _ _  n n--1 

sj ajj (rj -i=12~ ajis i -i=j+l 2~ ajis i ) 

which can be rewri t ten when  w = 1 as: 
j-1 6 

s n sn_l + w_ n n 1 _ w n-1 
J= J ajj (rj Z ajisi-ajjs 3 - a)s i ) 

i=l i=j+l [2] 

When 2 > w > 1 this modif ica t ion of G-S is 
known  as SOR, and when 0 < w < 1 the 
modif ica t ion  is known  as successive under-  
relaxation (SUR), where w is known  as the 
relaxation factor (e.g., 5, 7, 8, 10, 13). 

Thus, when wri t ten in this form, G-S is 
modified easily for SOR or SUR. In addit ion,  
calculation yields a difference be tween each 
right-hand side and the right-hand side re- 
generated from solut ions calculated to that  
momen t .  These residuals were used as an 
approximat ion  to a s tandard method  of mea- 
suring rate of convergence. 

Block i tera t ion was suggested by R. L. Quaas 
(personal communica t ion ,  1980) as a method  
of obta ining more  rapid convergence. Sub- 
sequently,  a t ex tbook  reference was found  to 
such a method  as early as 1843 (3, 13). Multiple 
trait  equat ions  are blocked natural ly  when  data 
and solut ion vectors are ordered by traits 
within animal and traits wi thin  herd-year or 
sire. 

Let par t i t ioned equat ions  [1] be rewri t ten 
in block form as: 

i 11 A12 A31 Ill A21 A22 A23 / s2 = r2 

A31 A32 A33] s3 r 

where each Aij corresponds to a 2 x 2 s u b m a m x  
in [I]  and each si and ri corresponds to a 
vector of  length 2. 

Then  the block me thod  of i terat ion cor- 
responding to G-S, SOR, and SUR where p = 
the n u m b e r  of solut ion vectors each of length 
2 can be wri t ten as: 

k - 1  
S n : S~--I --1 AkiSn k + WAkk (r k -- 2; 

i=l  

n - 1  _ ~ A k i S n - 1 )  [3] - AkkSk 
i=k+l  

Computa t ion  of each vector of solut ions 
need no t  involve the inverse of Akk. When the 
order of each block is small, an inverse pro- 
cedure may  be as efficient as an indirect  pro- 
cedure such as a forward and a backward 
procedure based on a Cholesky decomposi-  
t ion of Akk,Lkk where Lkk is a lower tr iangular 

t ~ - - 1  
matr ix  and LkkLkk = Akk. In either case, Akl~ 
or Lkk needs to be calculated on ly  once and 
no t  for each round.  

Approximate  differences of r ight-hand sides 
f rom regenerated r ight-hand sides can be 
calculated a block at a t ime as indicated in 
[3].  

The other  method  of i terat ion that was 
compared is the method  of conjugate gradients 
(CONGRAD) (4, 8, 9). Technical ly  the me thod  
is no t  iterative bu t  is an exact  method  that  gives 
the exact solut ion in as m a n y  steps as there are 
equations.  The approach to the exact solut ion 
appears iterative in nature,  and thus, solut ions 
at earlier steps may be sufficiently accurate for 
most .  purposes. The method ,  however, ac- 
cumulates  rounding  errors f rom round  to round 
in contrast  to other  methods  in which the 
solut ion vector at the end of any round  is 
simply a new starting point  for the next  round.  

The CONGRAD method  has some com- 
puta t ional  advantages such as requiring less 
storage space (advantage can be taken of sym- 
metry)  and the vector of residuals of  r ight-hand 
sides and regenerated right-hand sides is cal- 
culated directly from round to round wi thou t  
having to save the original r ight-hand sides. A 
disadvantage is all of the usual  convergence 
criteria may increase or may  decrease from 
round to round,  whereas with other  iterative 
methods  for equat ions  guaranteed to converge, 
convergence criteria generally decrease from 
round  to round.  For  completeness  the 
CONGRAD method  is listed here for equat ions  
A s = r .  

For  a starting point ,  choose some So, e.g., So 
-- D- - l r ,  where D is the diagonal of A. 
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Let: 

P0 ~ r  

P0 ~ P0 -- As0 

r0 ~ P0 

where ~ indicates replace the term on the left  
o f  the arrow with the te rm on the  right of  the 
arrow as in For t ran  programming.  Then for 
each round i (i = 0 . . . .  ) repeat  the fol lowing 
steps unti l  convergence cr i ter ion is satisfied. 

1) x i ~ APi (vector) 

2) X i ~ PlXi (scalar) 

3) ~i ~ (p[ri)/~i (scalar) 

4) si+ 1 ~ s i + aiPi (vector)  

5) ri+ 1 ~ r i - ~ixi (will be algebraically 
equal to vector  o f  residuals f rom original 
right-hand sides) 

6)/3 i ~ ( - r~+lXi) /~  i (scalar) 

7) P i+ l  = r i+ l  +/3iPi 

Stopping Point 

A diff icul ty with i terative me thods  is deter- 
mining when to stop and accept  solutions (5). 
Convergence criteria based on m a x i m u m  
change f rom round to round,  on sum of  absolute  
changes f rom round to round,  or on sum of  
squares of  changes f rom round to round are 
relatively easy to calculate bu t  depend more  on 
a feeling for the data than on an absolute  
cri terion because such criteria depend basically 
on the  trait  or  traits measured rather than on 
the coeff ic ient  matr ix.  Therefore ,  after con- 

siderable ref lect ion as well as searching through 
numerical  analyses texts  (5, 7, 8, 10), the 
fol lowing cri terion was adopted.  

The square roo t  of  the sum of  squares of  the 

rig/at-hand sides, (Zr2)  "s = (rPr) 's , the  Eucl idean 

norm, if  divided by the number  of  equat ions  is 
much  like the  standard deviat ion of  r ight-hand 
sides and reflects the scale o f  traits if a single 
trait  is being used or an average of  the scales of  
traits for  a mul t ip le  trait  system. A c o m m o n  
procedure  for checking whether  a set of  solu- 
t ions satisfies the original equat ions  is to 
regenerate the right-hand sides as a p roduc t  of  
the coeff ic ient  mat r ix  and the solut ion vector .  
The  difference or residual f rom the original 
r ight-hand sides reflects the scale of  the trait.  
Thus, the square roo t  of  the sum of  squares of  
residuals divided by the number  of  equat ions  is 
similar to the standard deviat ion of  residuals 
and reflects the scale of  the traits and the fre- 
quency  each trait  occurs  in the solut ion vector.  

In symbols,  for  the nth round of  i terat ion:  

e = r - As n and (Ze2)  "s = (e 'e)  -s 

The standardized stopping procedure  would  
be to examine  the  rat io:  

(e'e) .s /(r'r)  "5 

and stop if this ratio is less than some constant ,  
C. One t e x t b o o k  (8) suggested C <<.001. Ex- 
perience with several sets of  equat ions  suggested 
C be tween  .001 and .0001. The use projec ted  
for the solutions may  determine  the necessary 
convergence.  For  ranking animals, a less precise 
s topping point  may  be required than when 

TABLE 1. Description of data sets for studying optimum solution strategies. 

Number 

Equations 
after absorption 

Data set Categoriesl Animals Herd-years Sires of herd-years 

Test 1 3 21 10 14 30 
Complete 1 3 12,838 2,295 712 1,426 

Test 2 5 21 10 14 60 
Complete 2 5 12,838 2,295 712 2,852 

The last category is ignored in the analysis. The solution for that category is obtained as a difference from 
the other categories. 
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764 VAN VLECK AND DWYER 

genetic evaluations are used to predict genetic 
trend. 

The approximation used for e in this study 
was to calculate the regenerated right-hand side 
for each equation (see term in square brackets 
in [2] and [3]) just prior to solving that 
equation in a particular round of iteration and 
then use that residual rather than the residual 
which could be calculated at the end of a 
round. Approximation to the residual is con- 
servative in the sense that it averages half a 
round behind the residual calculated at the end 
of the round. Actual sum of squares of residuals 
would be smaller at the end of the round. 

Star t ing  P o i n t  

A problem in comparing iterative procedures 
is that rate of convergence often depends on 
the initial solution. A number of arbitrary 
procedures were tried including 1) dividing 
right-hand sides by diagonal coefficients, 2) 
inserting raw means for fixed effects and zeroes 
for s, 3) solving At~s~ = r~ for the fixed effects 
and setting sire effects to zero, and 4) using the 
same solutions to AHs~ = rx for up to three 
rounds. The conclusion was to start with 
solutions that approximate the expected values 
of the solutions. Thus, starting method 3 was 
employed for all iterative procedures, which is 
also the first step in a block iteration procedure 
when the fixed effect equations come first. 

R e l a x a t i o n  Parameters  

The original intent was to vary the relaxation 
parameter over the range of .7 to 1.9 by in- 
crements of .1 for SOR and BLOCK SOR. This 
plan was followed for all except the largest set 
of equations with SOR. Only four relaxers were 
tried for that set of equations (.7, 1.0, 1.3, and 
1.6) because of the time required to obtain 
convergence for each relaxer and because by 
that time BLOCK SOR appeared decidely 
superior to SOR with an optimum relaxation 
parameter. 

D a t a  Sets 

Two sets of equations for sire evaluation 
(12) were chosen for categorically scored traits 
of front end (5 categories = 4 subtraits) and 
stature (3 categories = 2 subtraits) corresponding 
to traits with low and moderately high herit- 
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TABLE 3. Number of rounds to reach convergence criteria by successive overrelaxation (SOR), by block iteration 
with relaxation (BLOCK), and by the method of conjugate gradients (CONGRAD for a trait with three cate- 
gories (two subtraits). 

Relaxation parameter 

Stopping CON 
point, C 1 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 GRAD 

Test data set, trait 1 

SOR 
. 0 0 1  * 88 74 62 52 44 37 30 24 18 15 32 51 8 

.0001 * * * * 90 74 61 49 37 26 21 77 97 9 

.00001 * * * * * * 85 67 51 35 28 * * 12 

Complete dataset, trait l 

SOR 
.001 10 10 8 8 8 7 7 7 6 7 7 8 11 15 
.0001 72 61 52 45 38 33 28 24 19 15 13 19 35 42 
.00001 * * * * 96 80 65 53 40 25 52 76 * 62 

Test dataset, t r a i t l  

BLOCK 
.001 6 5 4 3 3 4 5 5 7 9 11 14 14 
.0001 8 7 6 4 4 5 6 8 10 14 19 15 15 
.00001 11 9 7 5 5 7 8 10 14 18 24 15 16 

Complete data set, trait 1 

BLOCK 
.001 17 14 12 10 9 
.0001 27 23 19 16 13 
.00001 38 31 26 21 17 

8 6 6 8 8 8 8 9 

11 8 9 11 12 14 13 11 
14 9 12 15 13 19 19 16 

i (e,e).S/(r,r).S < C. 

*Indicates > 100 rounds. 

ability. A small set o f  data  had been used to 
tes t  the  sequence  of  p rograms tha t  set  up and 
solved the  equat ions .  Descr ip t ions  of  the  four  
sets o f  equa t ions  are in Table 1. Two basic 
compar i sons  were in t ended :  1) to de t e rmine  
w h e t h e r  the  same i tera t ion p rocedure  would  be 
o p t i m u m  for  tes t  and comple t e  data sets and 2) 
to de t e rmine  whe the r  the  same i tera t ion 

p rocedure  would  be o p t i m u m  for  b o t h  traits.  
The same variance-covariance matr ices  for  

herd-year ,  sire, and residual ef fec ts  were  used 
for  the  pair o f  tes t  and comple te  data  sets for  

the  same trait .  Matrices are in Table 2. 

RESULTS AND DISCUSSION 

Trait 1. Number  of  rounds  o f  i te ra t ion  to 
reach convergence criteria are in Table 3 for  
t rai t  1. The m e t h o d  of  conjugate  gradients  
was mos t  ef f ic ient  for  the  test  data  set as migh t  
be expec ted  for  a sys tem with  only  30 equa t ions  

because exact  convergence  (unless d i s rup ted  by  
rounding  errors) is guaranteed  in 30 rounds  or 
less. Fo r  the  comple te  data set, CONGRAD,  
a l though more  ef f ic ient  than  G-S for  more  
str ict  convergence  criteria (C = .0001 and 
.00001),  was no t  as ef f ic ient  as SOR with  an 
o p t i m u m  relaxat ion parameter .  O p t i m u m  block 
i terat ion was more  ef f ic ient  than o p t i m u m  SOR 
for  b o t h  the  tes t  and comple te  data sets. 

O p t i m u m  relaxat ion paramete r  for  SOR for  
the  tes t  data  set was a good indicator  o f  the  
re laxat ion fac tor  for  the  comple t e  data set. 
A l though  1.7 was o p t i m u m  for  the  tes t  data  for  

all th ree  convergence  criteria (C = .001, .0001, 
.00001),  the o p t i m u m  paramete r  for  the  
comple te  data set d e p e n d e d  on the  convergence  
cr i ter ion bu t  ranged f rom 1.5 to 1.7 wi th  1.6 

good  for  all three  C's. 
O p t i m u m  re laxat ion paramete r  for  b lock  

i tera t ion was smaller than  for  SOR. The tes t  
data  set also unde res t ima ted  the  o p t i m u m  

Journal of Dairy Science Vol. 68, No. 3, 1985 
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TABLE 4. Number of rounds to reach convergence criteria by successive overrelaxation (SOR), by block itera- 
tion with relaxation (BLOCK), and by the method of conjugate gradients (CONGRAD) for a trait with five 
categories (four substraits). 

Relaxation parameter 

Stopping CON 
point, C 1 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 GRAD 

Test data set, trait 2 

SOR 
.001 41 35 30 27 24 21 20 19 20 22 22 27 30 16 
.0001 * 85 71 59 48 40 32 27 35 45 52 58 62 18 
.00001 * * * 90 73 58 42 43 52 65 84 90 94 22 

Complete dataset, trait2 
SOR 

.001 2 m m 1 m m 2 m m 3 m m m 9 

.0001 24 18- 14 19 46 

.00001 * 60 35 62 86 

Test dataset, trai t2 

BLOCK 
.001 3 2 2 2 2 2 2 3 3 4 4 6 10 
.0001 5 4 3 3 3 4 4 5 6 8 10 15 21 
.00001 7 6 5 3 4 5 6 8 9 12 17 29 32 

Complete data set, trait 2 
BLOCK 

.001 5 5 4 4 4 4 4 3 5 5 5 7 8 

.0001 11 10 8 7 6 5 5 6 7 8 9 10 11 

.00001 18 15 13 10 9 7 7 8 10 11 12 13 14 

1 (e'e)'S/(r'r) "s < C. 

*Indicates > 100 rounds. 

mlndicates these relaxers were not tried. 

re laxat ion paramete r  for  the  comple te  data set 

(1.0 or 1.1 vs. 1.3). 
Trai t  2. Numbers  of  rounds  to reach con- 

vergence criteria for  trait  2 are in Table 4. 
Because categories of  trait  2 co r respond  to 
four  subtrai ts ,  the  n umber  of  equa t ions  is twice 
the  n u m b e r  for  trait  1. The pa t t e rn  for  t rai t  2 
parallels tha t  for  trait  1. The main d i f ference  is 
tha t  o p t i m u m  relaxat ion pa ramete r  for  SOR 
was smaller for  t rai t  2 than for  trait  1. In fact,  
a l though n o t  all re laxat ion parameters  were 
tr ied for  the  comple te  set  for  t rai t  2, it appears  
tha t  the  test  data  set did a good  job  of  esti- 

mat ing the  re laxat ion pa ramete r  for the  com-  
plete  data set. Eff ic iency of  convergence  for  

BLOCK for  data set 2 did no t  depend  as m u c h  
on choice of  re laxat ion pa ramete r  as compa red  
to  data  set  1; i.e., a wider  range of  re laxat ion 
parameters  was nearly o p t i m u m  for  da ta  set 2 
than  for  data  set  1. 

Increase in ef f ic iency due to  o p t i m u m  
relaxat ion for  SOR or for  block i tera t ion was 
greater  for  more  severe convergence  criteria 
(Table 5). BLOCK was more  eff ic ient  than  
o the r  me thods .  The m e t h o d  of  conjugate 
gradients  generally was no t  compet i t ive .  

CONCLUSIONS 

Extrapola t ing  f rom results for  one  or two  

kinds  of  data to o the r  sets o f  data seems 
ext raordinar i ly  hazardous  for  i terative pro- 
cedures.  What  may  work  well fo r  one  set may  
no t  work  at all for  similar sets. 

Resul ts  p resen ted  here do suggest, s o m e w h a t  
surprisingly, tha t  a test  set o f  data  might  be 

used to indicate  a reasonably  o p t i m u m  relaxa- 
t ion paramete r  for  a larger set  o f  data  having 
the same variance-covariance s t ructure .  

It is likely tha t  block i tera t ion will be more  
ef f ic ient  than  G-S i terat ion,  and ef f ic iency of  
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TABLE 5. Comparison of number of rounds of iteration to convergence for Gauss-Seidel (G-S), optimum suc- 
cessive overrelaxation (SOR), optimum block (BLOCK), and conjugate-gradient (CONGRAD) iteration for the 
complete data sets for traits 1 and 2. 

Trait 1 Trait 2 Stopping 
point, C 1 G-S SOR (1.6) BLOCK (1.3) CONGRAD G-S SOR (1.3) BLOCK (1.3) CONGRAD 

• 001 8 7 6 15 1 2 4 9 
.0001 45 15 8 42 18 14 5 46 
.00001 >100 25 9 62 60 35 7 86 

1 (e,e).S/(r,r).S < C. 

convergence  will be  grea ter  for  m o r e  s t r ic t  
convergence  cri teria.  R e l a x a t i o n  pa rame te r s  
grea ter  t h a n  1 and  up to 1.6 or  1.7 are l ikely to  
provide  as good  or b e t t e r  e f f ic iency  of  con-  
vergence t h a n  G-S i t e ra t ion ,  a l t h o u g h  for  these  
equa t i ons  G-S i t e ra t ion  at  a less severe con-  
vergence c r i te r ion  ( .001)  was surpr is ingly  
eff ic ient ,  poss ib ly  due in pa r t  to  having s ta r t ing  
values re la t ively  close to the  f inal  so lu t ions .  

A step-wise p rocedu re  for  ob t a in ing  an 
o p t i m u m  i t e ra t ion  p rocedu re  for  an eva lua t ion  
p rogram which  will be run  a n u m b e r  of  t imes  
wou ld  seem to  be the  fol lowing.  If  the  e q u a t i o n s  
have a na tu ra l  b lock  s t ruc tu re  as do  mul t ip l e  
t ra i t  equa t ions :  1) choose  the  desired con-  
vergence,  2) for  a smal l  set  of  data ,  f ind  the  
o p t i m u m  re laxa t ion  p a r a m e t e r  for  b lock  
i te ra t ion ,  3) use t h a t  r e l axa t ion  p a r a m e t e r  on  a 
r ep resen ta t ive  comple t e  set of  da ta  and  increase  
and  decrease  b y  some in terval  (e.g., .1) un t i l  t he  
o p t i m u m  re l axa t ion  p a r a m e t e r  is b racke ted ,  4) 
occas ional ly  r epea t  step 3 for  larger sets of  
data.  
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