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ABSTRACT

A potential difficulty with mixed
model equations for multiple trait evalua-
tion of sires is solving the equations as the
number of equations increases propor-
tionally to the number of traits. Time
required to obtain inverse solutions
increases by the number cubed. Thus,
iterative procedures often are used. Three
iterative procedures, successive overre-
laxation, block iteration with relaxation,
and the method of conjugate gradients,
were compared for four sets of multiple
trait equations for sire evaluation. Equa-
tions were solved after absorption of
equations for random herd-year-season
effects. Equations for two and four traits
each with test and complete data sets
made up the four sets of equations. The
two-trait system featured high herit-
abilities and large negative correlations
among effects whereas the four-trait
system had low heritabilities and smaller
negative correlations. Rate of con-
vergence for block iteration was faster
than for successive overrelaxation, espe-
cially for the four-trait system and
especially for more exacting convergence
criteria. The method of conjugate gra-
dients was efficient only for test data sets
(30 and 60 equations) and was not
competitive with the other methods for
complete data sets (1426 and 2852
equations). Test data sets accurately
predicted optimum relaxation factors for
successive overrelaxation for complete
data sets. Optimum relaxation factor for
the two-trait system was 1.5 to 1.7 and
for the four-trait system was 1.3 to 1.5.
Gauss-Seidel iteration took 33 to 400%
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more rounds than successive overre-
laxation with the optimum relaxation
factor depending on stopping criteria and
data set.

INTRODUCTION

One potential problem with multiple trait
mixed model evaluation is difficulty of solving
equations. Number of equations to be solved
increases by number of traits, number of
coefficients increases by number squared, and
number of computations required for direct
solution increases by the number cubed even
though symmetry reduces the number of
computations by about half. Efficient com-
puting strategies are needed to facilitate multiple
trait evaluation. Prediction of category fre-
quencies for traits such as calving difficulty and
type traits by best linear unbiased prediction is
a special form of multiple trait evaluation of
sires. Such sets of equations were available from
analysis of Brown Swiss type data (12). Equa-
tions for a test set of data and for the complete
data set were available for multiple subtraits of
two traits, the first having three categories
(equivalent to two traits) and the second having
five categories (equivalent to four traits). The
two pseudo-multiple trait systems also had
different variance-covariance matrices, cor-
responding to relatively high and relatively low
heritabilities.

Canonical transformation (1, 2, 6, 11) can
be used to reduce multiple trait, mixed model
equations to independent sets of single trait
mixed model equations if observations on all
traits have the same design matrices and if there
is only one random classification other than
residual effects. The model underlying available
type equations, however, contains two random
classifications so that canonical transformation
cannot be applied.

The goals of the study were: 1) to find
optimum relaxation parameters for successive
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overrelaxation (SOR) modification of Gauss-
Seidel (G-S) iteration, 2) to compare SOR with
block iteration (BLOCK), 3) to find optimum
relaxation parameters for BLOCK, 4) to com-
pare SOR and BLOCK with the conjugate-gradi-
ent (CON GRAD) method of solving equations,
and 5) to determine if optimum relaxation para-
meters can be estimated from a small set of
data, eliminating the need to use a large set of
data for that purpose.

METHODS

The model for sire evaluation was:
y=Wh+Xm+Zs+e

where:

y is a vector of observations for all traits
ordered by traits within animals (each
animal has a measurement on each trait
that will be zero or one),

his a vector of random herd-year effects
ordered by traits within herd-years,

m is a vector of fixed effects (one for each
trait corresponding to the mean frequency
for that trair),

sis a vector of random effects of sires of
animals ordered by traits within sires,

eis a vector of random residual effects
associated with the vector of observations,

Wis a matrix of zeros and ones that as-
sociates the herd-year effects with the
observations,

X is a matrix of zeros and ones associating
effects in m with observations, and

Z is a matrix of zeros and ones associating
sire effects with observations.

The expectation of the observation vector is:
E(y) = Xm

The variance-covariance matrix of the random
effects is:

H 0 0
\'% st =10 G 0
0 0 R

where H, G, and R are block diagonals with the
right direct product forms:
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H=IH*VH
G=Is*VS

where:

Vyis the variance-covariance matrix of
herd-year effects for multiple traits
observed in the same herd-year,

Vgis the variance-covariance matrix of sire
effects for multiple traits for animals
having the same sire,

Vg is the variance-covariance matrix of
residual effects for traits observed on the
same animal, and

Ify, Ig, and Iy are identity matrices of order
the number of herd-years, sires, and
animals.

Mixed model equations for predicting sire
values are:

WR™'w+H ! WR'X  wWR'z h wRy
XRT'X X'R7'z m|=|XR 'y
Symmetric Z'’R7'z+G™' s Z'R7ly

Before solving for s, herd-year equations
were absorbed leaving symmetric equations of
the form as illustrated for two sires and two
traits:

To simplify description of the computing
procedure, notation has been changed slightly.
Now the first two equations are for the m
vector (i.e., sy3 = m; and s;; = m;), the next
two equations are for the first sire, and the last
two equations are for the second sire (i.e., first
subscript in solution and right-hand side vectors
refers to sequentially ordered sire number plus
1 and second subscript to trait).

The matrix of coefficients can be partitioned
into blocks of order corresponding to number
of traits.

Journal of Dairy Science Vol. 68, No. 3, 1985
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The G-S method of iteration is well known
(5, 8) but will be described here for com-
pleteness. Let elements of the solution and
right-hand side vectors be identified by single

subscripts (1, . . ., 6), for the example. Then the
jth solution in the nth round of iteration is:
1 j—1 6
S? = — (r] -2 ajislil— z 3j;s i_l)
il i=1 i=j+1

which can be rewritten when w = 1 as:

w 71 S 1
n n— PR ¢
+ =y 7_2 Gisi — 3y T 2 apsy )
1=]+1 (21

n_ n—1
= s
] ] a;

pl] 1=1

When 2 > w > 1 this modification of G-S is
known as SOR, and when 0 < w < 1 the
modification is known as successive under-
relaxation (SUR), where w is known as the
relaxation factor (e.g., 5, 7, 8, 10, 13).

Thus, when written in this form, G-S is
modified easily for SOR or SUR. In addition,
calculation yields a difference between each
right-hand side and the right-hand side re-
generated from solutions calculated to that
moment. These residuals were used as an
approximation to a standard method of mea-
suring rate of convergence.

Block iteration was suggested by R. L. Quaas
(personal communication, 1980) as a method
of obtaining more rapid convergence. Sub-
sequently, a textbook reference was found to
such a method as early as 1843 (3, 13). Multiple
trait equations are blocked naturally when data
and solution vectors are ordered by traits
within animal and traits within herd-year or
sire.

Let partitioned equations [1] be rewritten
in block form as:

A Ap Ajs 1 T
Asy  Ap Az $2 = | &3
As;  As Ass S3 r3

where each Ajj corresponds to a2 X 2 submatrix
in [1] and each s; and rj corresponds to a
vector of length 2.

Then the block method of iteration cor-
responding to G-S, SOR, and SUR where p =
the number of solution vectors each of length
2 can be written as:

Journal of Dairy Science Vol. 68, No. 3, 1985
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k—1
n_ n—1 —1 n
Se=sg T WAL (e — 2 Agjs;
i=1
p
— Akksﬂ_1 -2 Akisin—l) [3]
i=k+1

Computation of each vector of solutions
need not involve the inverse of Akk. When the
order of each block is small, an inverse pro-
cedure may be as efficient as an indirect pro-
cedure such as a forward and a backward
procedure based on a Cholesky decomposi-
tion of Akk,Lkk v’vhere Lk is a lower triangular
matrix and LigkLkk = Akk. In either case, Af{kl
or Lkk needs to be calculated only once and
not for each round.

Approximate differences of right-hand sides
from regenerated right-hand sides can be
calculated a block at a time as indicated in
{31.

The other method of iteration that was
compared is the method of conjugate gradients
(CONGRAD) (4, 8, 9). Technically the method
is not iterative but is an exact method that gives
the exact solution in as many steps as there are
equations. The approach to the exact solution
appears iterative in nature, and thus, solutions
at earlier steps may be sufficiently accurate for
most_ purposes. The method, however, ac-
cumulates rounding errors from round to round
in contrast to other methods in which the
solution vector at the end of any round is
simply a new starting point for the next round.

The CONGRAD method has some com-
putational advantages such as requiring less
storage space (advantage can be taken of sym-
metry) and the vector of residuals of right-hand
sides and regenerated right-hand sides is cal-
culated directly from round to round without
having to save the original right-hand sides. A
disadvantage is all of the usual convergence
criteria may increase or may decrease from
round to round, whereas with other iterative
methods for equations guaranteed to converge,
convergence criteria generally decrease from
round to round. For completeness the
CONGRAD method is listed here for equations
As=r.

For a starting point, choose some s, €.g., So
= D™ !r, where D is the diagonal of A.
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Let:
Pp=r
Pg <= Pg — Asg

10 < Pg

where < indicates replace the term on the left
of the arrow with the term on the right of the
arrow as in Fortran programming. Then for
each round i (i = 0, ...) repeat the following
steps until convergence criterion is satisfied.

1) x; = Ap; (vector)

QN € pixi (scalar)

Do = (p{ri)/)\i (scalar)

4} 55,1 = 85 + 0;p; (vector)

5)r5,1 < 1; — o5x; (will be algebraically

equal to vector of residuals from original
right-hand sides)

6) B; = (_ri+1xi)/7\i (scalar)
7) Pis1 Sripp + 5jpi

Stopping Point

A difficulty with iterative methods is deter-
mining when to stop and accept solutions (5).
Convergence criteria based on maximum
change from round to round, on sum of absolute
changes from round to round, or on sum of
squares of changes from round to round are
relatively easy to calculate but depend more on
a feeling for the data than on an absolute
criterion because such criteria depend basically
on the trait or traits measured rather than on
the coefficient matrix. Therefore, after con-
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siderable reflection as well as searching through
numerical analyses texts (5, 7, 8, 10), the
following criterion was adopted.

The square root of the sum of squares of the

right-hand sides, (2r2)*® = ('), the Euclidean

norm, if divided by the number of equations is
much like the standard deviation of right-hand
sides and reflects the scale of traits if a single
trait is being used or an average of the scales of
traits for a multiple trait system. A common
procedure for checking whether a set of solu-
tions satisfies the original equations is to
regenerate the right-hand sides as a product of
the coefficient matrix and the solution vector.
The difference or residual from the original
right-hand sides reflects the scale of the trait.
Thus, the square root of the sum of squares of
residuals divided by the number of equations is
similar to the standard deviation of residuals
and reflects the scale of the traits and the fre-
quency each trait occurs in the solution vector.

In symbols, for the nth round of iteration:

e=r— AsN and (Zeiz)‘s = (e'e)‘s

The standardized stopping procedure would
be to examine the ratio:

(e’e)'5 /x'r)®

and stop if this ratio is less than some constant,
C. One textbook (8) suggested C <.001. Ex-
perience with several sets of equations suggested
C between .001 and .0001. The use projected
for the solutions may determine the necessary
convergence. For ranking animals, a less precise
stopping point may be required than when

TABLE 1. Description of data sets for studying optimum solution strategies.

Number

Equations

after absorption
Data set Categories’ Animals Herd-years Sires of herd-years
Test 1 3 21 10 14 30
Complete 1 3 12,838 2,295 712 1,426
Test 2 5 21 10 14 60
Complete 2 5 12,838 2,295 712 2,852

! The last category is ignored in the analysis. The solution for that category is obtained as a difference from

the other categories.

Journal of Dairy Science Vol. 68, No. 3, 1985
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genetic evaluations are used to predict genetic
trend.

The approximation used for e in this study
was to calculate the regenerated right-hand side
for each equation (see term in square brackets
in [2] and [3)) just prior to solving that
equation in a particular round of iteration and
then use that residual rather than the residual
which could be calculated at the end of a
round. Approximation to the residual is con-
servative in the sense that it averages half a
round behind the residual calculated at the end
of the round. Actual sum of squares of residuals
would be smaller at the end of the round.

Starting Point

A problem in comparing iterative procedures
is that rate of convergence often depends on
the initial solution. A number of arbitrary
procedures were tried including 1) dividing
right-hand sides by diagonal coefficients, 2)
inserting raw means for fixed effects and zeroes
for s, 3) solving A1;8; =r; for the fixed effects
and setting sire effects to zero, and 4) using the
same solutions to Aj;s; = r; for up to three
rounds, The conclusion was to start with
solutions that approximate the expected values
of the solutions. Thus, starting method 3 was
employed for all iterative procedures, which is
also the first step in a block iteration procedure
when the fixed effect equations come first.

Relaxation Parameters

The original intent was to vary the relaxation
parameter over the range of .7 to 1.9 by in-
crements of .1 for SOR and BLOCK SOR. This
plan was followed for all except the largest set
of equations with SOR. Only four relaxers were
tried for that set of equations (.7,1.0, 1.3, and
1.6) because of the time required to obtain
convergence for each relaxer and because by
that time BLOCK SOR appeared decidely
superior to SOR with an optimum relaxation
parameter.

Data Sets

Two sets of equations for sire evaluation
(12) were chosen for categorically scored traits
of front end (5 categories = 4 subtraits) and
stature (3 categories = 2 subtraits) corresponding
to traits with low and moderately high herit-

Journal of Dairy Science Vol. 68, No. 3, 1985

TABLE 2. Variance-covariance matrices for test and complete data sets for stature (2 subtraits) and for front end (4 subtraits).

Sire

Herd-year

Residual

Category

Trait 1 (stature)

.0261
—.0216

—.0105

0136
—-.0105

—.0216

—.1895

2021
—.1895

.0085

0203

2195

Trait 2 (front end)

—.0008
L0004
—.0002
.0007

—.0004
—.0003
0008

—.0033
0031

.0049

Sym

—.0023
—.0001
—.0002

.0023

—.0040
.0009
0031

—.0208
0201

.0276
Sym.

—.0130 —.0086
—.0208

—.0016

0321

—.0311
.0473

—.1573
2228

.1859

Sym.!

— N oen

Symmetry.

!Sym



PRODUCTION TECHNICAL NOTE

765

TABLE 3. Number of rounds to reach convergence criteria by successive overrelaxation (SOR), by block iteration
with relaxation (BLOCK), and by the method of conjugate gradients (CONGRAD) for a trait with three cate-

gories (two subtraits).

Relaxation parameter

Stopping CON
point, C! 7 .8 9 10 11 12 13 14 15 16 1.7 18 1.9 GRAD
Test data set, trait 1

SOR
.001 * 88 74 62 52 44 37 30 24 18 15 32 51 8
.0001 * * * ¥ 90 74 61 49 37 26 21 77 97 9
.00001 * * * * * * 85 67 51 35 28 * * 12

Complete data set, trait 1

SOR
.001 10 10 8 8 8 7 7 7 6 7 7 8 11 15
.0001 72 61 52 45 38 33 28 24 19 15 13 19 35 42
.00001 * * * * 96 80 65 53 40 25 52 76 * 62

Test data set, trait 1

BLOCK
.001 6 5 4 3 3 4 5 5 79 11 14 14
.0001 8 7 6 4 4 5 6 8 10 14 19 15 15
.00001 11 9 7 5 5 7 8 10 14 18 24 15 16

Complete data set, trait 1

BLOCK
.001 17 14 12 10 9 g8 6 6 8 8 8 8 9
.0001 27 23 19 16 13 11 8 9 11 12 14 13 11
00001 38 31 26 21 17 14 9 12 15 13 19 19 16

T(e'e)* /(x'r)° < C.
*Indicates > 100 rounds.

ability. A small set of data had been used to
test the sequence of programs that set up and
solved the equations. Descriptions of the four
sets of equations are in Table 1. Two basic
comparisons were intended: 1) to determine
whether the same iteration procedure would be
optimum for test and complete data sets and 2)
to determine whether the same iteration
procedure would be optimum for both traits.

The same variance-covariance matrices for
herd-year, sire, and residual effects were used
for the pair of test and complete data sets for
the same trait. Matrices are in Table 2.

RESULTS AND DISCUSSION

Trait I. Number of rounds of iteration to
reach convergence criteria are in Table 3 for
trait 1. The method of conjugate gradients
was most efficient for the test data set as might
be expected for a system with only 30 equations

because exact convergence (unless disrupted by
rounding errors) is guaranteed in 30 rounds or
less. For the complete data set, CONGRAD,
although more efficient than G-S for more
strict convergence criteria (C = .0001 and
.00001), was not as efficient as SOR with an
optimum relaxation parameter. Optimum block
iteration was more efficient than optimum SOR
for both the test and complete data sets.

Optimum relaxation parameter for SOR for
the test data set was a good indicator of the
relaxation factor for the complete data set.
Although 1.7 was optimum for the test data for
all three convergence criteria (C = .001, .0001,
.00001), the optimum parameter for the
complete data set depended on the convergence
criterion but ranged from 1.5 to 1.7 with 1.6
good for all three C’s.

Optimum relaxation parameter for block
iteration was smaller than for SOR. The test
data set also underestimated the optimum

Journal of Dairy Science Vol. 68, No. 3, 1985
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TABLE 4. Number of rounds to reach convergence criteria by successive overrelaxation (SOR), by block itera-
tion with relaxation (BLOCK), and by the method of conjugate gradients (CONGRAD) for a trait with five

categories (four substraits).

Relaxation parameter

Stopping CON
point, C* 7 .8 9 10 11 12 1.3 14 15 16 17 18 1.9 GRAD
Test data set, trait 2

SOR
.001 41 35 30 27 24 21 20 19 20 22 22 27 30 16
.0001 * 85 71 59 48 40 32 27 35 45 52 58 62 18
.00001 * * * 90 73 58 42 43 52 65 84 90 94 22

Complete data set, trait 2

SOR
.001 2 m m 1 m m 2 m m 3 m m m 9
.0001 24 18 4 19 46
.00001 * 60 35 62 86

Test data set, trait 2

BLOCK
.001 3 2 2 2 2 2 2 3 3 4 4 6 10
.0001 5 4 3 3 3 4 4 5 6 8 10 15 21
.00001 7 6 5 3 4 5 6 8 9 12 17 29 32

Gomplete data set, trait 2

BLOCK
.001 5 5 4 4 4 4 4 3 5 5 5 7 8
.0001 11 10 8 7 6 5 5 6 7 8 9 10 11
.00001 18 15 13 10 9 7 7 8 10 11 12 13 14

Te'e)y S /(') < C.
*Indicates > 100 rounds.

m, . .
Indicates these relaxers were not tried.

relaxation parameter for the complete data set
(1.0or 1.1 vs. 1.3).

Trast 2. Numbers of rounds to reach con-
vergence criteria for trait 2 are in Table 4.
Because categories of trait 2 correspond to
four subtraits, the number of equations is twice
the number for trait 1. The pattern for trait 2
parallels that for trait 1. The main difference is
that optimum relaxation parameter for SOR
was smaller for trait 2 than for trait 1. In fact,
although not all relaxation parameters were
tried for the complete set for trait 2, it appears
that the test data set did a good job of esti-
mating the relaxation parameter for the com-
plete data set. Efficiency of convergence for
BLOCK for data set 2 did not depend as much
on choice of relaxation parameter as compared
to data set 1; i.e., a wider range of relaxation
parameters was nearly optimum for data set 2
than for data set 1.

Journal of Dairy Science Vol. 68, No. 3, 1985

Increase in efficiency due to optimum
relaxation for SOR or for block iteration was
greater for more severe convergence criteria
(Table 5). BLOCK was more efficient than
other methods. The method of conjugate
gradients generally was not competitive.

CONCLUSIONS

Extrapolating from results for one or two
kinds of data to other sets of data seems
extraordinarily hazardous for iterative pro-
cedures. What may work well for one set may
not work at all for similar sets.

Results presented here do suggest, somewhat
surprisingly, that a test set of data might be
used to indicate a reasonably optimum relaxa-
tion parameter for a larger set of data having
the same variance-covariance structure.

It is likely that block iteration will be more
efficient than G-S iteration, and efficiency of
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TABLE 5. Comparison of number of rounds of iteration to convergence for Gauss-Seidel (G-S), optimum suc-
cessive overrelaxation (SOR), optimum block (BLOCK), and conjugate-gradient (CONGRAD) iteration for the

complete data sets for traits 1 and 2.

S . Trait 1 Trait 2

topping

point, c! G SOR (1.6) BLOCK (1.3) CONGRAD G-§ SOR (1.3) BLOCK (1.3) CONGRAD
.001 8 7 6 15 1 2 4 9

.0001 45 15 8 42 18 14 5 46

.00001 >100 25 9 62 60 3s 7 86

Ye'e) s /(x'r)® < C.

convergence will be greater for more strict
convergence criteria. Relaxation parameters
greater than 1 and up to 1.6 or 1.7 are likely to
provide as good or better efficiency of con-
vergence than G-S iteration, although for these
equations G-S iteration at a less severe con-
vergence criterion (.001) was surprisingly
efficient, possibly due in part to having starting
values relatively close to the final solutions.

A step-wise procedure for obtaining an
optimum iteration procedure for an evaluation
program which will be run a number of times
would seem to be the following. If the equations
have a natural block structure as do multiple
trait equations: 1) choose the desired con-
vergence, 2) for a small set of data, find the
optimum relaxation parameter for block
iteration, 3) use that relaxation parameter on a
representative complete set of data and increase
and decrease by some interval (e.g., .1) until the
optimum relaxation parameter is bracketed, 4)
occasionally repeat step 3 for larger sets of
data.
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