2009

Search for the Standard Model Higgs Boson in Tau Final States

V. M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

Gregory Snow
University of Nebraska - Lincoln, gsnow1@unl.edu

D0 Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

http://digitalcommons.unl.edu/physicsbloom/305

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Search for the Standard Model Higgs Boson in Tau Final States

(D0 Collaboration)

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 University of Alberta, Edmonton, Alberta, Canada;
 Simon Fraser University, Burnaby, British Columbia, Canada;
 York University, Toronto, Ontario, Canada
 and McGill University, Montreal, Quebec, Canada
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 Universidad de los Andes, Bogotá, Colombia
9 Center for Particle Physics, Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
10 Czech Technical University in Prague, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 Universidad San Francisco de Quito, Quito, Ecuador
13 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
14 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
15 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
16 LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France
17 LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
18 CEA, Ifeu, SPP, Saclay, France
19 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
20 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
22 Physikalisches Institut, Universität Bonn, Bonn, Germany
23 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24 II. Physikalisches Institut, Georg-August-Universität Göttingen, Germany
25 Institut für Physik, Universität Mainz, Mainz, Germany
26 Ludwig-Maximilians-Universität München, München, Germany
27 Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
28 Panjab University, Chandigarh, India
29 Delhi University, Delhi, India
30 Tata Institute of Fundamental Research, Mumbai, India
31 University College Dublin, Dublin, Ireland
32 Korea Detector Laboratory, Korea University, Seoul, Korea
33 SungKyunKwan University, Suwon, Korea
34 CINVESTAV, Mexico City, Mexico
35 FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
36 Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
37 Joint Institute for Nuclear Research, Dubna, Russia

PRL 102, 251801 (2009) PHYSICAL REVIEW LETTERS

week ending 26 JUNE 2009

251801-2
We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider. We select two final states: $\tau^+\tau^-$ plus missing transverse energy and b jets, and $\tau^+\tau^-$ plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion, and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.

DOI: 10.1103/PhysRevLett.102.251801

We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider. We select two final states: $\tau^+\tau^-$ plus missing transverse energy and b jets, and $\tau^+\tau^-$ plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion, and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.

A standard model (SM) Higgs boson with a mass in the range 105–145 GeV is expected to be produced in $p\bar{p}$ collisions at a center-of-mass energy of 2 TeV with cross sections of $\mathcal{O}(100$ fb) for associated VH production ($V = W$ or Z) and vector boson fusion (VBF), $q\bar{q} \rightarrow VVq'q'' \rightarrow q'q''H$, and of $\mathcal{O}(1$ pb) for gluon-gluon fusion (GGF) [1]. Previous searches for the SM Higgs boson at the Fermilab Tevatron collider [2] have sought the VH processes with
W/Z decays to leptons other than taus and $H \rightarrow b\bar{b}$, and the gluon fusion process with $H \rightarrow VV^*$ with $V(V^*) \rightarrow ee$ or $\mu \mu$. Thus far, there have been no published searches in the case that either the V or H decays to τ leptons. Given the small Higgs boson production cross sections, it is advantageous to use all possible decay modes to increase the search sensitivity. Here, we present a search designed for either of the two final states: for type 1, a single track with $p_T > 15$ GeV, and associated EM cluster, and for type 3, at least one track decaying to leptons other than taus and H boson decays to leptons with an isolation and the transverse and longitudinal shower profiles of the calorimeter energy depositions associated with the tau candidate. Tau preselection is based on the requirement that the output $\mathcal{N}N$ value, \mathcal{N}_T, exceeds 0.3 thus favoring the tau hypothesis. The tau transverse momentum p_T^τ is constructed from the transverse energy observed in the calorimeter, E_T^τ, with type-dependent corrections based on the tracking information. For the three types we require p_T^τ to be greater than 12 (15), 10 (15), or (20) GeV for the $\tau\nu$ ($\tau\tau$) analyses. The $\tau\nu$ analysis subdivides the type 2 taus according to whether the energy deposit is electronlike or hadronlike and the two subsamples are treated separately in assessing the multijet background. For type 2 candidates in the $\tau\tau$ analysis, we require $0.7 < p_T^\tau / E_T^\tau < 2$ to remove backgrounds in regions with poor EM calorimetry or due to cosmic rays.

Jets are reconstructed with a cone of radius 0.5 in rapidity-azimuth space. Their energies are corrected to the particle level to account for detector effects and missing energy due to semileptonic decays of jet fragmentation products. We preselect jets with $p_T > 15$ GeV, $|\eta| < 2.5$, and separated by $\mathcal{R} > 0.5$ from τ and μ candidates.

Backgrounds other than those from multijet (MJ) production are simulated using Monte Carlo (MC) programs. We use ALPGEN [7] for $t\bar{t}$ and $V + j$ jets production; PYTHIA [8] for WW, WZ and ZZ (diboson) production; and COMPHEP [9] for single top quark production. The ALPGEN events are passed through PYTHIA for parton showering and hadronization. The Higgs boson signal processes are generated using PYTHIA and the CT10L [10] leading order parton distribution functions (PDF) for $M_H = 105-145$ GeV in 10 GeV steps. We normalize the cross sections to the highest available order calculations for the signal [11] and background [12]. Higgs decays are simulated using HDECAY [13] and for tau decays using TAUOLA [14]. All MC events are passed through the standard D0 detector simulation, digitization, and reconstruction programs.

Backgrounds due to MJ production, with spurious E_T or misidentified taus are estimated from data samples. For the $\tau\nu$ analysis, an enriched multijet sample is formed by selecting taus with $0.3 < \mathcal{N}_N < 0.7$. The contributions from those background processes generated by MC simulations are then subtracted to give the $\mathcal{B}_{\tau\nu}$ multijet background sample which has negligible Higgs boson signal and provides the shapes of the multijet distributions in the kinematic variables. The normalization is given by the ratio of the number of events in the signal region, \mathcal{N}_S, to the number of events in the $\mathcal{B}_{\tau\nu}$ sample.
For the MJ background in the $\tau\tau$ analysis, we prepare a multijet background data sample (BG$_{\tau\tau}$), orthogonal to the signal sample (SG$_{\tau\tau}$) defined by the μ, τ, and jet preselection cuts above, by reversing both track and calorimeter isolation requirements for the muon and by requiring $N_{\tau} < 0.8$. For both BG$_{\tau\tau}$ and SG$_{\tau\tau}$ samples, the MC backgrounds are subtracted, and the same sign (SS) or opposite sign (OS) $\mu - \tau$ charge combinations subsets are formed. The BG$_{\tau\tau}$ sample provides the shape of the multijet background, with the normalization obtained by multiplying the number of SS SG$_{\tau\tau}$ events by the ratio of OS to SS events in the BG$_{\tau\tau}$ sample. These ratios are determined separately for each tau type, and are observed to be close to 1 and independent of p_T and p_T^τ.

The event sample for the $\tau\nu$ analysis is obtained with additional requirements after the object selections described above: (a) at least two jets with $p_T > 20$ GeV and ≤ 3 jets with $p_T > 15$ GeV; (b) the angle $\Delta \phi (\vec{E}_T, \vec{T}_T) < \pi/2$, where \vec{T}_T is the negative of the transverse component of the net momentum of all tracks in the event [15]; (c) $H_T < 200$ GeV, where H_T is the scalar sum of the p_T of all jets; (d) for hadronlike type 2 taus, the transverse mass, formed from the τ and \vec{E}_T, less than 80 GeV; (e) dijet invariant mass in the range $50 < M_{jj} < 200$ GeV; and (f) the requirement $\Delta \phi (\tau, \vec{E}_T) < 0.02(\pi - 2)(\vec{E}_T - 30) + 2$ (\vec{E}_T in GeV) to reduce contamination due to poorly reconstructed multijet events in which a jet misidentified as a tau is nearly collinear with \vec{E}_T. To further improve the signal (S) over background (B) separation, we require two jets to be tagged with a NN that discriminates b quark jets and jets from light partons [16]. Figure 1(a) and 1(b) shows the M_{jj} distribution before and after b tagging and the event yields are summarized in Table 1.

Most of the signal processes sought in the $\tau\tau$ analysis contain light quark jets, so we do not employ b tagging. We require 2 jets with $p_T > 20$ GeV. To further separate signals from backgrounds, we train a dedicated NN for the signal processes (HZ, WH, ZH, VBF) and for each of the main background types ($W +$ jets, $Z +$ jets, $t\bar{t}$ and MJ). After requiring two jets, the MC GGF samples are small, making NN training unreliable. Since the GGF and VBF processes both involve nonresonant dijet systems, we incorporate the GGF events with the VBF sample when constructing the final limit analysis. The NNs are separately trained for low mass (105, 115 and 125 GeV) and high mass (135, 145 GeV) Higgs bosons, giving 32 NNs in all. Twenty well-modeled input variables are considered for each of the NNs. They include transverse or invariant masses of combinations of jets and leptons, \vec{E}_T, angular correlations, and overall event distributions such as H_T and aplanarity [17]. For each signal-background pair, a choice of six or seven variables is made using the criterion that each added variable must give significant improvement in S/\sqrt{B}. The same variable choices are made for all Higgs boson masses. All NN input and output variables show good agreement between data and background prediction, and typically provide good discrimination between the signal and background under consideration. The $t\bar{t}$, $W +$ jets and MJ NNs give good separation of signal and background, whereas the $Z +$ jets NN signal and background distributions are not so well differentiated. Thus we define the variables NN_{bg} as the largest NN output variable among the various signals, for each background source, $bg = t\bar{t}$, $W +$ jets, and MJ. We require $NN_{bg} > 0.4$, based on an optimization of the expected Higgs boson cross section limits. After this selection, the NN outputs trained against the $Z +$ jets background for all signals are combined by taking their weighted average, NN_{Zjets}, over the four signal processes (HZ, WH, ZH, VBF), with weights equal to the relative expected yield for each signal. The NN_{Zjets} distribution for the final sample is shown in Fig. 1(c), now including the GGF signal events. The signal and background event yields are given in Table 1.
Table I. Numbers of events at the preselection level and after the final selection (b tagging for \(\tau \nu \) and \(NN_{bg} \) cut for \(\tau \tau \)) for all \(\tau \) types combined, for data, estimated backgrounds and signal at \(M_H = 115 \) GeV. The V + jets background is given for light parton (u, d, s, g = lp) and heavy flavor (b, c = hf) jets separately. The uncertainties shown are statistical only. For the \(\tau \nu \) (\(\tau \tau \)) analysis the combined statistical and systematic uncertainties on the sum of backgrounds in the final selections are 5.5 (14.8) events.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\tau \nu) analysis</th>
<th>(\tau \tau) analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preselection</td>
<td>Final</td>
</tr>
<tr>
<td>(W + lp)</td>
<td>1124 ± 18</td>
<td>0.5 ± 0.0</td>
</tr>
<tr>
<td>(W + hf)</td>
<td>308.2 ± 4.8</td>
<td>10.9 ± 0.3</td>
</tr>
<tr>
<td>(Z + lp)</td>
<td>49.1 ± 1.5</td>
<td><0.2</td>
</tr>
<tr>
<td>(Z + hf)</td>
<td>7.8 ± 0.5</td>
<td>0.4 ± 0.0</td>
</tr>
<tr>
<td>(\tilde{\tau})</td>
<td>46.7 ± 0.4</td>
<td>9.5 ± 0.1</td>
</tr>
<tr>
<td>Diboson</td>
<td>54.9 ± 1.1</td>
<td>0.7 ± 0.0</td>
</tr>
<tr>
<td>Multijet</td>
<td>122.6 ± 11.2</td>
<td>1.3 ± 0.1</td>
</tr>
<tr>
<td>Sum</td>
<td>1714 ± 22</td>
<td>23.3 ± 0.4</td>
</tr>
</tbody>
</table>

Data	1666	13	220	58
\(HZ \)			0.038	0.029
\(WH \)	0.543	0.201	0.145	0.106
\(ZH \)	0.023	0.015	0.094	0.069
\(VBF \)			0.071	0.059
\(GGF \)			0.041	0.030
Sum	0.566	0.216	0.389	0.293

Some systematic uncertainties induce a shape dependence on the final limit setting variable. For the \(\tau \nu \) analysis, such shape dependence is found for the jet energy scale, jet energy resolution, and the b-tagging efficiencies. Alternate shapes are determined by changing the relevant parameter by ±1 standard deviation from the nominal value and are provided to the limit setting program. For the \(\tau \tau \) analysis, only the multijet background is found to give an appreciable shape change. It is determined by varying the method for selecting MJ events, reversing either the muon or the tau requirements, but not both, relative to the standard choice. The remaining “flat” systematic uncertainties do not affect the final variable distribution shape. Such flat uncertainties for the \(\tau \nu \) (\(\tau \tau \)) analysis are, unless otherwise noted, fully correlated for different backgrounds and analysis channels, and include (a) integrated luminosity, 6.1% (6.1%) [18]; (b) trigger efficiency, 5.5% (3%) (uncorrelated \(\tau \nu \) and \(\tau \tau \)); (c) muon identification, (4.5%); (d) tau identification, 5.0%–6.0% (5.0%); (e) tau track efficiency, 3.0% (3.0%); (f) tau energy scale, 2.3%–2.7% (3.5%); (g) jet identification and reconstruction, 1.7%–4.9% (2%); (h) jet energy resolution, (4.5%); (i) jet energy scale (7.5%) [19]; (j) MC background cross sections, 6%–18% (6%–18%) (these are taken to be uncorrelated among the backgrounds); (k) higher order correction for the V + jets cross section, 20% (20%); (l) V+ heavy flavor jet cross section correction, 30% (30%); and (m) multijet background, 82%–100% (uncorrelated \(\tau \nu \) and \(\tau \tau \)).

The upper limits on the Higgs boson cross section are obtained using the modified frequentist method [20]. For the \(\tau \nu \) analysis, the test statistic is the negative log likelihood ratio (LLR) derived from the \(M_{jj} \) distribution. For the \(\tau \tau \) analysis, the LLR is formed from the \(NN_{jets} \) final neural network variable. The confidence levels \(CL_{b+} \) (\(CL_{b} \)) give the probability that the LLR value from a set of simulated pseudoexperiments under the signal plus background (background-only) hypothesis is less likely than that observed, at the quoted C.L. The hypothesized signal cross sections are scaled up from their SM values until the value of \(CL_s = CL_{b+}/CL_b \) reaches 0.05 to obtain the limit cross sections at the 95% C.L., both for expected and observed limits. In the calculation, all contributions to the systematic uncertainty are varied, subject to the constraints given by their estimated values, to give the best fit [21]. The correlations of each systematic uncertainty among signal and/or background processes are accounted for in the minimization.

The ratios of the expected and observed upper limits to the SM expectations are shown in Table II for the two channels separately and combined. For all Higgs boson masses, the observed limits are within 1σ of the expected limits. At \(M_H = 115 \) GeV, the observed (expected) 95% C.L. limit is 29 (28) times that predicted in the SM for the seven signal processes considered in the combined \(\tau \nu \) and \(\tau \tau \) analyses. This is the first limit on SM Higgs production using final states involving hadronically decaying tau leptons. These results contribute to the sensitivity of the combined Tevatron search for low mass Higgs bosons [2].

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and West-Grid Project.
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

*Visitor from Augustana College, Sioux Falls, SD, USA.
†Visitor from Rutgers University, Piscataway, NJ, USA.
‡Visitor from The University of Liverpool, Liverpool, United Kingdom.
§Visitor from Centro de Investigacion en Computacion-IPN, Mexico City, Mexico.
‖Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.
¶Visitor from Helsinki Institute of Physics, Helsinki, Finland.
**Visitor from Universität Bern, Bern, Switzerland.
††Visitor from Universität Zürich, Zürich, Switzerland.
‡‡Deceased.

[2] For references to the full set of Higgs searches by the CDF and D0 collaborations, see arXiv:0903.4001.
[15] In events with true E_T^F due to noninteracting particles, E_T^F and T_6^F tend to be aligned, whereas for events with mis-measured jets in the calorimeter they do not.