
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

US Department of Energy Publications U.S. Department of Energy 

2012 

Three-dimensional Bayesian geostatistical aquifer Three-dimensional Bayesian geostatistical aquifer 

characterization at the Hanford 300 Area using tracer test data characterization at the Hanford 300 Area using tracer test data 

Xingyuan Chen 
Pacific Northwest National Laboratory, xingyuan.chen@pnnl.gov 

Haruko Murakami 
University of California - Berkeley 

Melanie S. Hahn 
University of California - Berkeley 

Glenn E. Hammond 
Pacific Northwest National Laboratory 

Mark Rockhold 
Pacific Northwest National Laboratory 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub 

 Part of the Bioresource and Agricultural Engineering Commons 

Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark; Zachara, John 
M.; and Rubin, Yoram, "Three-dimensional Bayesian geostatistical aquifer characterization at the Hanford 
300 Area using tracer test data" (2012). US Department of Energy Publications. 309. 
https://digitalcommons.unl.edu/usdoepub/309 

This Article is brought to you for free and open access by the U.S. Department of Energy at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy 
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdoepub
https://digitalcommons.unl.edu/usdoe
https://digitalcommons.unl.edu/usdoepub?utm_source=digitalcommons.unl.edu%2Fusdoepub%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=digitalcommons.unl.edu%2Fusdoepub%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdoepub/309?utm_source=digitalcommons.unl.edu%2Fusdoepub%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Xingyuan Chen, Haruko Murakami, Melanie S. Hahn, Glenn E. Hammond, Mark Rockhold, John M. 
Zachara, and Yoram Rubin 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usdoepub/309 

https://digitalcommons.unl.edu/usdoepub/309
https://digitalcommons.unl.edu/usdoepub/309


Three-dimensional Bayesian geostatistical aquifer characterization
at the Hanford 300 Area using tracer test data

Xingyuan Chen,1,2 Haruko Murakami,3 Melanie S. Hahn,1 Glenn E. Hammond,2

Mark L. Rockhold,2 John M. Zachara,2 and Yoram Rubin1

Received 15 March 2011; revised 13 February 2012; accepted 18 April 2012; published 1 June 2012.

[1] Tracer tests performed under natural or forced gradient flow conditions can provide
useful information for characterizing subsurface properties, through monitoring, modeling,
and interpretation of the tracer plume migration in an aquifer. Nonreactive tracer
experiments were conducted at the Hanford 300 Area, along with constant-rate injection
tests and electromagnetic borehole flowmeter tests. A Bayesian data assimilation technique,
the method of anchored distributions (MAD) (Rubin et al., 2010), was applied to assimilate
the experimental tracer test data with the other types of data and to infer the three-
dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of
the Hanford formation.In this study, the Bayesian prior information on the underlying
random hydraulic conductivity field was obtained from previous field characterization
efforts using constant-rate injection and borehole flowmeter test data. The posterior
distribution of the conductivity field was obtained by further conditioning the field on the
temporal moments of tracer breakthrough curves at various observation wells. MAD was
implemented with the massively parallel three-dimensional flow and transport code
PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to
meet the computational demands of MAD. A synthetic study proved that the proposed
method could effectively invert tracer test data to capture the essential spatial heterogeneity
of the three-dimensional hydraulic conductivity field. Application of MAD to actual field
tracer data at the Hanford 300 Area demonstrates that inverting for spatial heterogeneity of
hydraulic conductivity under transient flow conditions is challenging and more work is
needed.

Citation: Chen, X., H. Murakami, M. S. Hahn, G. E. Hammond, M. L. Rockhold, J. M. Zachara, and Y. Rubin (2012), Three-

dimensional Bayesian geostatistical aquifer characterization at the Hanford 300 Area using tracer test data, Water Resour. Res., 48,

W06501, doi:10.1029/2011WR010675.

1. Introduction
[2] Spatial variability of subsurface hydrogeological

properties, such as hydraulic conductivity, plays a critical
role in groundwater flow and transport modeling [Rubin,
2003; Sudicky et al., 2010]. An accurate map of such prop-
erties forms the basis for understanding more complex
physical, chemical, and microbiological processes [e.g.,
Scheibe et al., 2001]. The prohibitive cost of collecting suf-
ficient direct point-scale measurements (e.g., core samples)
to characterize heterogeneity has motivated extensive
research in groundwater inverse modeling (see reviews by
McLaughlin and Townley [1996] and Vrugt et al. [2008]),

which utilizes indirect data that can be obtained more eas-
ily, such as pumping tests and tracer tests, for inferring the
hydrogeologic parameters. Geostatistical inverse techni-
ques (see reviews by Zimmerman et al. [1998] and
Hendricks Franssen et al. [2009]), which aim at inferring
the spatial distribution of hydrogeologic properties using
indirect data, have been particularly useful for improving
the characterization of spatially variable hydrogeologic
properties.

[3] Among the difficulties shared by all geostatistical
inversion techniques, the two most challenging ones include
the heavy computational burden associated with data inver-
sion and the problem of assimilating multiple types of avail-
able data [Medina and Carrera, 2003]. The first difficulty
stems from the large number of parameters in geostatistical
inverse problems, whereas the latter stems from the absence
of a framework that can assimilate multiple types of data
while recognizing the multiple scales of measurements they
represent. The method of anchored distribution (MAD)
[Rubin et al., 2010] was developed to deal with the latter
challenge. MAD is a general Bayesian inverse modeling
technique that can systematically assimilate multiple sources
and scales of data into aquifer characterization. Its modular
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structure enables it to handle complex relationships between
data and target variables.

[4] In MAD, the vector of target variables (or parame-
ters) includes structural parameters (such as mean and var-
iogram parameters) that describe the spatial pattern of the
heterogeneous property and probability distributions of the
target property at selected locations, referred to as anchors.
The anchors are used to capture local heterogeneity and
serve as conditioning points when we generate random
fields over the model domain. Unlike most of the other geo-
statistical inversion methods, such as those reviewed by
Hendricks Franssen et al. [2009] and Bayesian geostatisti-
cal inversion based on kriging or cokriging [e.g., Kitanidis,
1995; Shlomi and Michalak, 2007; Fienen et al., 2008],
MAD yields a posterior joint distribution of the parameters
rather than identifying a single optimal set of parameters.
The posterior distribution of parameters, which is nonpara-
metric and is not subject to model linearization or Gaussian
confidence interval assumption, not only accounts for the
nonuniqueness of the parameters of interest [cf. McKenna
et al., 2003; de Barros et al., 2009; Nowak et al., 2010],
but also enables accurate quantification of uncertainty.
MAD shares the challenge of computational burden with
other geostatistical inversion methods. Nevertheless, recent
developments in high-performance computing have made
the computational cost more affordable. For groundwater
flow and transport problems, the parallel three-dimensional
reactive flow and transport code PFLOTRAN [Hammond
and Lichtner, 2010] can be used to alleviate the computa-
tional burden through parallel domain decomposition on
supercomputing resources. Its multirealization simulation
capability is especially well-suited for MAD implementa-
tion, since MAD requires forward simulations on a large
number of realizations of random fields.

[5] In this paper, we employ MAD for characterization
of the hydraulic conductivity field at the Integrated Field
Research Challenge (IFRC) site in U.S. Department of
Energy’s Hanford 300 Area (available at http://ifchanford.
pnl.gov). The Hanford IFRC project is an interdisciplinary
project investigating multiscale reactive transport and mass
transfer processes associated with a uranium plume, the per-
sistence of which has been attributed to a continuous ura-
nium source in the lower vadose zone and to a combination
of complex physical and geochemical processes [Peterson
et al., 2008]. In order to evaluate scientific hypotheses
regarding uranium geochemistry and rate-limited mass
transfer processes, it is critical to characterize the three-
dimensional (3-D) hydraulic conductivity field. MAD is an
ideal tool for integrating various data at the site to estimate
the underlying heterogeneous hydraulic conductivity field.
Murakami et al. [2010] implemented MAD to estimate the
3-D hydraulic conductivity field conditioned on constant-
rate injection tests and electromagnetic borehole flowmeter
(referred to as flowmeter hereafter) tests. This study extends
the work of Murakami et al. [2010] by expanding the data-
base to include data from the tracer experiment conducted
at the site in March 2009.

[6] Tracer test data have been shown to provide valuable
information on the spatial distribution of the hydraulic con-
ductivity [Harvey and Gorelick, 1995a; Woodbury and
Rubin, 2000; Hendricks Franssen et al., 2003; Nowak
and Cirpka, 2006; Fu and Gómez-Hernández, 2009;

Fienen et al., 2009]. However, among the various types of
data that are only indirectly related to the hydraulic con-
ductivity, including pressure head and geophysical data,
the field concentration data are used less often for geostatis-
tical aquifer characterization. There are several reasons for
this underutilization [c.f. Ezzedine and Rubin, 1996;
Wilson and Rubin, 2002; Bellin and Rubin, 2004]. One rea-
son is the difficulty in choosing a measurement procedure
that best suits the site (e.g., volume-averaging versus flux-
averaging, bailing versus pumping), which makes it diffi-
cult to interpret concentration measurements and to model
them (we will provide an example later in this paper).
Another reason is the discrepancy between the small spatial
scale of the measurement device and the support volume
they represent, on one hand, and the scale of the numerical
grid block, on the other [cf. Rubin et al., 1999, 2003; de
Barros and Rubin, 2011]. This discrepancy is usually
ignored in applications (see discussion by Ezzedine and
Rubin [1996]), because addressing it would require a large
number of small grid blocks, with dimensions on the order
of the concentration’s measurement device, which would
lead in turn to heavy computational burdens. With very few
examples of 3-D field or laboratory sandbox applications
[e.g., Lavenue and de Marsily, 2001; Kollat et al., 2008,
2011], inverse modeling thus far has mainly been con-
ducted in two dimensions, usually in the horizontal plane
[e.g., Rubin and Dagan, 1987; Harvey and Gorelick,
1995a, 1995b; Hendricks Franssen et al., 2003; Nowak
and Cirpka, 2006; Fu and Gómez-Hernández, 2009]. Such
applications rely likewise on 2-D data such as transmissiv-
ity and vertically averaged pressure heads. Although 2-D
application is appealing because of its relatively light com-
putational burden and can be justified under restrictive con-
ditions, concentration data in many cases are measured
over limited vertical intervals that would require modeling
in three dimensions at a high computational cost. Hence,
including concentrations in the database for inversion
requires a 3-D formulation, which would increase the com-
putational burden by orders of magnitude. This requires
that special consideration be given to the computational
aspects. Recent developments in Monte Carlo-based geo-
statistical inverse modeling techniques, including MAD,
and advances in computing power have enabled the imple-
mentation of more sophisticated and computationally inten-
sive conceptual models within inverse modeling frameworks.

[7] The objectives of this study are to apply MAD to
condition the aquifer characterization on tracer test data as
well as on two types of hydraulic tests (constant-rate injec-
tion tests and flowmeter tests) and assess improvement by
comparing inversion results with and without the tracer
data, to address the challenges of implementing the pro-
posed framework on real field data due to the complex field
conditions, and to show the potential of using high-
performance computing to tackle the computational burden
stemming from the nature of Monte Carlo-based geostatis-
tical inversion techniques (including MAD) or the com-
plexity of the conceptual model. In our work, full 3-D
simulation of flow and transport processes are necessary due
to the extremely dynamic flow conditions caused by the river
stage fluctuations in the adjacent Columbia River. Consider-
able uncertainty exists in conceptualizing this boundary con-
dition, and as a result, we first verify the proposed framework
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using a synthetic study that mimics the field conditions, and
then present the results of assimilating the real experimental
data. We focus on studying the parameter uncertainty, i.e., no
conceptual model uncertainty is considered in the present
study.

2. Site Conditions and Experiment Description
[8] The Hanford 300 Area Integrated Field Research

Challenge (IFRC) site is located in southeastern Washing-
ton State. The site is within the footprint of a former dis-
posal facility for uranium-bearing liquid wastes known as
the South Process Pond, �250 m west of the Columbia
River. The groundwater table at the site is highly variable
in response to river stage fluctuations, ranging 2–3 m or
more annually and averaging 0.5 m diurnally.

[9] The main lithology at the site is a poorly sorted mix-
ture of sediments dominated by gravel up to boulder size
[Bjornstad et al., 2009]. This highly permeable and coarse-
grained Hanford formation is underlain by the Ringold forma-
tion, whose upper portion is a discontinuous low-permeability
layer consisting of cohesive and compacted fine sand to silty
sand. An example cross section in the vicinity of the IFRC
well field is provided in Figure 1 to show these stratigraphic
units. The portion marked as ‘‘South Process Pond’’ is most
relevant to this study. Our focus is on the saturated portion of
the Hanford formation, the thickness of which is variable
over the site due to groundwater table fluctuations, ranging
from �5 m to �8 m.

[10] The porosities of the Hanford and Ringold forma-
tion sediments have been estimated from a limited number
of intact core samples from within the IFRC well field, and
from a larger number of intact core samples obtained in
previous drilling and sampling efforts at the 300 Area
[Williams et al. 2008]. We assumed that the average total
porosity value is 0.2 in the saturated portion of the Hanford
formation, as recommended by Williams et al. [2008]. We
are aware that the heterogeneity of porosity can affect the
estimated hydraulic conductivity field. However, there is
currently not enough information for us to define a spatially
variable porosity field. Compared to the variability in hy-
draulic conductivity (orders of magnitude difference), the
variability in porosity should have a secondary effect on
transport. The error introduced by not explicitly modeling the
spatial variability of porosity is incorporated into the uncer-
tainty in the estimated anchors and structural parameters

describing the variability in hydraulic conductivity. Ongoing
geophysical characterization at the site may contribute to the
development of a heterogeneous porosity field that can be
incorporated in a future study.

[11] The experimental well field at the IFRC site is
depicted in Figure 2. The triangular design was due to the
highly variable groundwater flow direction. Well 2-9 is
chosen as the primary injection well as the dominant flow
direction is southeast and parallel to the axis of the well
field passing through wells 2-10 and 3-29. Most of the wells
are �20 m deep and are screened over the entire saturated
portion of the Hanford formation. There are also three mul-
tilevel well clusters screened over three different depth
intervals to provide depth-discrete monitoring. The shallow
wells are screened over a 1.53-m (5-ft) interval located at
�9.14–10.67 m below ground surface, the intermediate
wells are screened over a 0.61-m (2-ft) interval located at
�12.86–13.47 m below ground surface, and the deep wells
are screened over a 0.61-m (2-ft) interval located at
�16.46–17.07 m below ground surface.

[12] One complication at the site is the vertical wellbore
flow in fully screened wells induced by the river stage fluc-
tuations in the Columbia River, which was later observed
at the site during the long-term monitoring [Newcomer
et al., 2010]. The vertical wellbore flow, as illustrated in
Figure 3 and discussed by Zachara [2010] and Vermuel
et al. [2010], occurs within long-screened wells in layered
media where the wells act as conduits for intercommunica-
tion between shallow and deep, high-permeability zones
that are separated by a zone of lower permeability. This
study demonstrated that when contaminant concentrations
within the aquifer vary significantly over the depth interval
interrogated, river-induced vertical wellbore flow can result
in variations in measured concentration that nearly encom-
pass the full range of variation in aquifer contaminant dis-
tribution with depth. The difficulty in the assimilation of
tracer data caused by this complication will be discussed
later.

[13] As a part of the hydrologic characterization of the
conductivity field, 14 constant-rate injection tests were con-
ducted in fully screened wells. Each test had one injection
well and seven to 10 observation wells. There were reliable
flowmeter tests data available from 19 (out of 26 tested)
fully screened wells, which yielded 283 depth-discrete
relative hydraulic conductivities with depth intervals of
0.3–0.6 m [Murakami et al., 2010]. The interpretation of

Figure 1. Cross section through the 300 Area showing major hydrostratigraphic units [from Williams
et al., 2008]. WT denotes the water table. Ringold C/E denotes Ringold unit C or E.
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Figure 2. IFRC well field (provided by Rob Mackley, Environmental Systems Group, Pacific North-
west National Laboratory).

Figure 3. Illustration of downward and upward wellbore flow when river water rises. A flow barrier,
which could be relatively more permeable than the low-K zone in the layered material, within the upper
zone would impose pressure gradients on wells penetrating the low-K zone. Water flows preferentially
through the well to bypass the low-K zone. When river stage rises, water would flow downward within
the boreholes on the river side of the barrier, and upward on the opposite side. The flow direction flips
when the river stage falls.
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the flowmeter data using the standard procedure suggested
by Molz et al. [1994] could be affected by the dynamics of
the vertical wellbore flow, which may not be fully accounted
for by subtracting an ambient flowmeter profile from the
dynamic profile obtained during pumping, since ambient
flow conditions could be changing during the dynamic test.
The results from wells that experienced significant change
in ambient flow during the flowmeter test were excluded in
the study of Murakami et al. [2010] and in this study as
well. The vertical profiles from the flowmeter tests indicate
a less permeable layer over the central third of the Hanford
formation at many of the wells, with variable thickness and
contact depths across the site. More detailed descriptions of
the site and hydrologic tests are provided by Bjornstad et al.
[2009].

[14] Two field-scale nonreactive tracer tests were per-
formed at the site in November 2008 and March 2009,
respectively. The first test took place during a period when
the adjacent Columbia River experienced large water level
fluctuations. The second test was started on 13 March
2009, during which the river stage was relatively stable.
We focus on the second test (referred to as the March 09
tracer test hereinafter) in this study.

[15] In the March 09 tracer test, a bromide solution (Br–)
with an average concentration of 95 mg L�1 was injected
into wells 2-9 for 9.5 h at a nearly constant rate of 4.52 �
10�3 m3 s�1. The total injected volume was 153.7 m3. After
the injection stopped, the plume was allowed to drift under
natural gradient conditions, and it was tracked for several
weeks. The tracer plume was monitored by collecting aque-
ous samples at selected monitoring wells over time, and the
samples were analyzed to quantify Br– concentration.

3. Methodology
[16] To incorporate the tracer-test data into the character-

ization efforts of the heterogeneous hydraulic conductivity
field, we used MAD, which is designed to assimilate multi-
type multiscale data sets that are related directly or indi-
rectly to the target variables (e.g., conductivity, porosity).
MAD also does not require assumptions (e.g., Gaussianity)
about the statistical distributions of parameters or like-
lihood function. It is thus suitable for integrating multiple
and complementary types of data into aquifer characteriza-
tion. A major advantage of the MAD framework is that it
can be implemented sequentially to assimilate data that are
generated at different times, without having to discard
assimilation results that are completed prior to the avail-
ability of new data. We refer readers to Rubin et al. [2010]
for details of MAD, while its underlying principles are
summarized here for the sake of completeness.

3.1. MAD Framework

[17] In the MAD framework, we denote the spatial prop-
erty of interest by Y(x), which is a space random function
that describes the spatial variability as a point process, with
x being the space coordinate. We further denote a realiza-
tion of the entire field of Y by ~Y, and it is defined through a
vector of parameters {h, 0}, where h represents geostatisti-
cal structural parameters that capture the global features of
~Y (e.g., mean and correlation structure of the field) and 0
denotes anchored distributions or anchors in short. The

anchors are given in the form of statistical distributions of
the property at known or chosen locations, and they are
used as devices for capturing local heterogeneity of ~Y that
cannot be modeled by the structural parameters.

[18] MAD employs a systematic classification of data
available in a specific study as a major tool for data assimi-
lation. Data that gives point values of Y directly or via em-
pirical relations are classified as type A, and data that are
related to Y indirectly through a large-sale physical process
are classified as type B. If our variable of interest is hydrau-
lic conductivity, then examples of type-A data could be
permeameter test data or grain size distributions, and exam-
ples of type-B data could be drawdown curves recorded
during a pumping test or tracer concentrations measured
during a tracer test. We denote all available data by z :
type-A data by za, and type-B data by zb.

[19] MAD defines two types of anchors corresponding to
its data classification. Type-A anchors (0a), which are
placed at the same locations as the type-A data, are given
as exact values assuming no measurement error or in the
form of statistical distributions about the local measure-
ments to account for measurement (or regressional) errors.
Type-B anchors (0b), which are placed at selected loca-
tions, are used to capture information from type-B data.
Since type-B data, such as drawdown curves obtained from
pumping tests, are influenced by the spatial property over
an area, multiple type-B anchors can be placed for each
type-B measurement based on sensitivity analysis, geologi-
cal conditions, or the locations that are beneficial to predic-
tion (details provided by Rubin et al. [2010]). We denote
the entire anchor set by 0 ¼ {0a, 0b}.

[20] In the MAD framework, the goal of the inversion is
to determine a posterior distribution of the model parame-
ters conditioned on the data, i.e., p(h, 0 j z). Once this dis-
tribution is determined, any random draw of {h, 0} from
this distribution contains all of the information needed for
generating a random realization of ~Y.

[21] Using Bayes’ rule, the posterior distribution can be
derived as,

pðh; 0 j za; zbÞ / pðzb j h; 0; zaÞpðh; 0 j zaÞ;
¼ pðzb j h; 0Þpð0b j h; 0aÞpðh j 0aÞpð0a j zaÞ

; (1)

where p(zb j h, 0) is the likelihood of type-B data, the distri-
bution p(0a j za) is the distribution of type-A anchors con-
ditioned on type-A data, the distribution p(h j 0a) can be
determined using model-based geostatistical approach
[Diggle and Ribeiro, 2006], and the distribution p(0b j h, 0a)
is the prior of type-B anchors given type-A data and struc-
tural parameters.

[22] The likelihood function in equation (1) is the key to
relating the posterior distribution of the model parameters
with the type-B data. It can be obtained in one of two ways.
It can either be assumed or derived from physical principles
using statistical modeling assumptions [Hoeksema and
Kitanidis, 1984; Dagan, 1985; Rubin and Dagan, 1987],
or it can be determined nonparametrically by generating an
ensemble of zb for any given {h, 0}. Both approaches can be
implemented in MAD. The flexibility of using a nonparamet-
ric likelihood estimation differs MAD fundamentally from
other Bayesian methods, such as the ensemble Kalman filter
(EnKF) [Evensen, 1994, 2003] and generalized likelihood
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ML estimator of parameters revealed that different connec-
tivity patterns were favored when different forms of temporal
moments were used for conditioning. Using the breakthrough
curves at selected testing wells as an alternative metric to
evaluate the relative performance of temporal moments in
the real case, we found that results based on m1/m0 could
lead to the best match in some wells while providing the
worst match in some other wells, as a result of the narrower
posterior distribution of the parameters. It is expected that
the relative performance of temporal moments depend not
only on the set of wells that were selected for conditioning
but also on the wells that were used for testing. Therefore, it
may be necessary in real applications to compare the per-
formance of different temporal moments and experiment
with different sets of conditioning and testing wells. How-
ever, the results from an alternative set of conditioning and
testing wells were not available in this study because we
have a limited choice of wells due to the wellbore flow
complications.

5. Conclusions
[61] We presented in this study a method for improving

site characterization using data from tracer experiments,
in addition to data from constant-rate injection tests and

flowmeter tests. The proposed procedure was based upon a
Bayesian data assimilation technique, MAD, which enables
assimilation of various types of data collected at multiple
scales. We used the hydraulic conductivity field character-
ized with constant-injection tests and flowmeter tests
[Murakami et al., 2010] as the prior information, and the
posterior field were inferred conditioning on the temporal
moments of tracer data at a set of wells. The MAD tech-
nique is computationally intensive and it was only made pos-
sible with the availability of high-performance computing
codes, such as PFLOTRAN, and supercomputer resources.

[62] The proposed method was verified using a synthetic
study before being applied to the real tracer test data. The
synthetic study showed the effectiveness of the proposed
method in capturing the true underlying heterogeneity of
the hydraulic conductivity field, in the absence of concep-
tual model errors. We also found in the synthetic study that
the normalized hydraulic conductivity profile estimated
from the flowmeter data alleviated the nonuniqueness in
inversion and substantially reduced uncertainty in the esti-
mated hydraulic conductivity through conditioning. The
performance of the inversion in the real case study was
assessed by the RMSE of simulated breakthrough curves
with respect to the observed ones at selected testing wells.
A reduction in RMSE was observed after inversion.

Figure 13. Mean log-conductivity field at the cross section along T1 prior and posterior to conditioning
on tracer data for March 09 tracer test. (a) Mean field prior to conditioning on the tracer data. (b–d)
Mean fields posterior to conditioning on m0, m1, and m1/m0, respectively. The posterior fields were gen-
erated using the ML estimator of parameters for each temporal moment.
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[63] A primary feature that distinguishes this study from
others that involve inversion based on temporal moments is
that our inversions were conducted under dynamic flow
conditions. Therefore, the information content in each tem-
poral moment is more complicated than in the steady state
cases, since the flow and transport behavior through a po-
rous medium under transient flow conditions is strongly
influenced by the interactions between the spatial heteroge-
neity of conductivity and the temporal dynamics of the

flow fields. We compared the relative performance of three
forms of temporal moments, m0, m1, and m1/m0, in captur-
ing the true heterogeneity in both the synthetic and real
case studies. In the synthetic study, conditioning on m0

yielded the best estimate of the true parameters. In the real
case, conditioning on m1/m0 yielded the narrowest posterior
distributions for the structural parameters, while condition-
ing on m1 or m0 yielded multimodal posterior distributions.
It was found in the real case study that different connectivity

Figure 14. Mean log-conductivity field at the different elevations prior and posterior to conditioning
on tracer data for March 09 tracer test. (a) Mean field prior to conditioning on the tracer data. (b–d)
Mean fields posterior to conditioning on m0, m1, and m1/m0, respectively. The posterior fields were gen-
erated using the ML estimator of parameters for each temporal moment.
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patterns were favored when different forms of temporal
moments were used for conditioning. It is expected that the
relative performance of temporal moments could vary case
by case, and therefore it may be necessary in real applica-
tions to compare the performance of different temporal
moments and experiment with different sets of conditioning
and testing wells.

[64] We expect the inversion results in the real case
study to be negatively affected by uncertainties involved in
the forward simulations, including but not limited to tran-
sient flow boundary conditions estimated through triangula-
tion and vertical wellbore flow induced by the river stage
fluctuations in the adjacent Columbia River. As an initial
attempt to assimilate the real experimental data under the
complex field conditions, the results from this study can be
used to identify future research directions, which could
include collecting more reliable flowmeter data (or equiva-
lent type-A data) near the injection well or integrating other
types of data such as borehole and tomographic geophysi-
cal data to provide better prior information on the vertical
profile of hydraulic conductivity, and addressing the con-
ceptual model uncertainty, such as uncertainties in bound-
ary condition and vertical wellbore flow, in inversion.

Appendix A: Including Depth-Averaged
Conductivities in 3-D Field Generation

[65] Figure A1 shows all the conditional information avail-
able for field generation, where 0a is a depth-discrete log
conductivity value along each flowmeter well, 0b is type-B

anchors, and VnonEBF is the supporting volume for depth-
average conductivity KA along each of the nonflowmeter
wells.

[66] Following Rubin [2003], we can convert KA to effec-
tive conductivity 0 ¼ ln KG along the well using

0 ¼ ln KA �
�2

local

2
; (A1)

where �2
local is a local variance at each nonflowmeter well,

which is a conditional variance at the midpoint elevation of
each non-EBF well conditioned on {h, 0a}. With equation
(A1), realizations of {h, 0a, KA} can be converted to real-
izations of {h, 0a, 0}.

[67] To connect data with different support volumes, a
point xi or a finite volume Vi, we define three correlation
matrices according to the work by Behrens et al. [1998].

[68] 1. Point-to-point correlation:

Rðxi; xjÞ ¼ �ðxi; xjÞ; (A2)

where xi and xj are two point locations and �(xi, xj) is the
correlation coefficient between these two points.

[69] 2. Point-to-block correlation:

Rðxi;VjÞ ¼
1

Vj

Z
x02xj

Rðxi; x
0Þdx0: (A3)

[70] This represents the correlation between the point xi

and the volume Vj. The point-to-point correlation is aver-
aged over the volume Vj.

Figure 15. Distribution of RMSE prior and posterior to conditioning on the March 09 tracer test data
at selected wells. Wells 2-8, 2-11, and 3-28 were used for testing. The injection concentration is c0.

Figure A1. Vertical cross section of the domain including conditional information (EBF refers to elec-
tromagnetic borehole flowmeter).
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[71] 3. Block-to-block correlation:

RðVi;VjÞ ¼
1

ViVj

Z
x2Vi

Z
x02Vj

Rðx; x0Þdxdx0: (A4)

[72] This represents the correlation between one volume
Vi and another volume Vj. The point-to-point correlation is
averaged over the two volumes Vi and Vj.

[73] Using the point-to-block and block-to-block correla-
tions, we can include 0 as another set of the conditioning
values in the field generation.
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