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a b s t r a c t

Southern Appalachian high elevation watersheds have deep rocky soils with high organic matter content,
different vegetation communities, and receive greater inputs of acidic deposition compared to low eleva-
tion sites within the region. Since the implementation of the Clean Air Act Amendment in the 1990s, con-
centrations of acidic anions in rainfall have declined. However, some high elevation streams continue to
show signs of chronic to episodic acidity, where acid neutralizing capacity (ANC) ranges from 0 to
20 leq L�1. We studied three 3rd order watersheds (North River in Cherokee National Forest,
Santeetlah Creek in Nantahala National Forest, and North Fork of the French Broad in Pisgah National
Forest) and selected four to six 1st order catchments within each watershed to represent a gradient in
elevation (849–1526 m) and a range in acidic stream ANC values (11–50 leq L�1). Our objectives were
to (1) identify biotic, physical and chemical catchment parameters that could be used as indices of stream
ANC, pH and Ca:Al molar ratios and (2) estimate the lime required to restore catchments from the effects
of excess acidity and increase base cation availability. We quantified each catchment’s biotic, physical,
and chemical characteristics and collected stream, O-horizon, and mineral soil samples for chemical anal-
ysis seasonally for one year. Using repeated measures analysis, we examined variability in stream chem-
istry and catchment characteristics; we used a nested split-plot design to identify catchment
characteristics that were correlated with stream chemistry. Watersheds differed significantly and the
catchments sampled provided a wide range of stream chemical, biotic, physical and chemical character-
istics. Variability in stream ANC, pH, and Ca:Al molar ratio were significantly correlated with catchment
vegetation characteristics (basal area, tree height, and tree diameter) as well as O-horizon nitrogen and
aluminum concentrations. Total soil carbon and calcium (an indicator of parent material), were signifi-
cant covariates for stream ANC, pH and Ca:Al molar ratios. Lime requirement estimates did not differ
among watersheds but this data will help select catchments for future restoration and lime application
studies. Not surprisingly, this work found many vegetation and chemical characteristics that were useful
indicators of stream acidity. However, some expected relationships such as concentrations of mineral soil
extractable Ca and SO4 were not significant. This suggests that an extensive test of these indicators across
the southern Appalachians will be required to identify high elevation forested catchments that would
benefit from restoration activities.

Published by Elsevier B.V.

1. Introduction

Ecosystem responses to acidic deposition were a significant
concern and a focus of research in the later part of the 20th century

in the eastern United States (Johnson et al., 1982, 1992). The Clean
Air Act of 1970 and the Clean Air Act Amendments of 1990 (CAAA),
along with other emission reduction regulatory programs, have
resulted in declining concentrations of sulfate (SO4) and hydrogen
(H+) in wet deposition, consistent with the declines in sulfur
dioxide (SO2) emissions across the eastern US (Driscoll et al.,
2003). For example, the U.S. Environmental Protection Agency
(2015) reported that the three-year average for 1989–1991 and
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2009–2011 sulfur (S) and total nitrogen (N) deposition (dry plus
wet) decreased by 55% in the eastern US. Similarly, NADP reported
a decline in SO4 deposition in most southern Appalachian monitor-
ing sites beginning in 1990 (NADP, 2007). This decline was also
evident in data from Great Smoky Mountains National Park
(Pardo and Duarte, 2007) and the Coweeta Hydrologic Laboratory
in southwestern North Carolina, US (Knoepp, unpublished data).
Despite reductions in emissions, many areas of the US still exhibit
evidence of the negative impacts of acidic atmospheric deposition
(Greaver et al., 2012). For example, some high elevation streams in
the eastern U.S. continue to show signs of chronic to episodic acid-
ity (Sullivan et al., 2007). Modeled patterns of SO4 + nitrate (NO3)
deposition and ecosystem critical loads, exceeded the capacity of
forest soils in approximately 17% of forested sites across the con-
terminous United States (McNulty et al., 2007) and numerous
aquatic ecosystems in the southern Appalachians (McDonnell
et al., 2014).

Patterns of atmospheric S and N deposition in mountainous ter-
rain varies across landscapes and is related to rainfall amount, the
presence of clouds and fog, elevation, forest edges, aspect, and veg-
etation composition (Weathers et al., 2000; Sullivan et al., 2007)
with an estimated a 4–6-fold range in spatial variability
(Weathers et al., 2006). Within the southern Appalachian Moun-
tains high elevation sites receive higher rainfall (Swift et al.,
1988) and greater inputs of nutrient and pollutant deposition
(Swank, 1988; Swank and Vose, 1997; Sullivan et al., 2007) than
low elevation sites. High elevation watersheds also have deep
rocky soils with high organic matter content (Knoepp and Swank,
1998; Knoepp et al., 2000) and vegetation communities similar
to forests in the northeastern U.S. (Elliott et al., 1999; Elliott and
Swank, 2008). The deposition of SO4 and NO3 anions and their
movement through the forest floor (soil O-horizon) and mineral
soil profile results in the removal of base cations (calcium (Ca),
magnesium (Mg), and potassium (K)) from soils. When base
cations are removed from soils without adequate buffering capac-
ity, soil pH decreases and aluminum (Al) is solubilized resulting in
increased Al concentrations in soil solution and streams. As a
result, stream acid neutralizing capacity (ANC) and stream pH
decline. Examination of the effects of regional changes in acidic
deposition, using biogeochemical models such as NuCM (Elliott
et al., 2008) and MAGIC (Sullivan et al., 2007, 2011) found sensitiv-
ity to SO4 deposition was related to soils and parent material; soils
and parent material with low base cations concentrations were
particularly sensitive to SO4 deposition.

Base cation depletion in southern Appalachian high elevation
watersheds is indicated by stream ANC values below 50 leq L�1,
a value that has been defined as acidic (Bulger et al., 2000;
Sullivan et al., 2007). Sullivan et al. (2008) examined the possibility
of ANC recovery in Shenandoah National Park, Virginia US and
found that watersheds located on siliciclastic bedrock would
require a 77% decrease in atmospheric SO4 deposition, compared
to 1990 levels, to reach an ANC level of 50 leq L�1 due to low con-
centrations of base cations in the soil. Sullivan et al. (2011) used
the biogeochemical cycling model MAGIC and data from 65 acid
sensitive watersheds in eastern Tennessee and western North Car-
olina to back cast historical ANC values; they estimated that in
1860, ANC was as low as 30 leq L�1 with a median of 65 leq L�1.
Likens et al. (1996) estimated that pre-industrial revolution stream
ANC in the Northeastern US averaged 20 leq L�1. While stream
chemistry at Hubbard Brook Experimental Forest has shown con-
sistent improvement (declining SO4, increasing pH and ANC) since
the implementation of the Clean Air Act in 1970, stream ANC val-
ues remain low. Likens and Buso (2012) concluded that soil weath-
ering processes have not been rapid enough to replenish stream Ca
concentrations, leaving diluted streams with altered cation ratios.
Soils in the southern Appalachians have high SO4 retention

capacity, which may delay the recovery of stream base cations.
Rice et al. (2014) predicted that soils at three locations in western
North Carolina will crossover from retaining to releasing SO4

between 2023 and 2025.
Liming is a potential management option to restore streams and

forest soils by decreasing acidity and increasing base cation avail-
ability. Lime is routinely used in agricultural systems, increasing
soil pH, as well as Ca and Mg availability while also reducing Al sol-
ubility. Lime contains Ca and Mg, the two major divalent base
cations; the ratio of these cations is dependent on the lime sources.
Huettl (1993) and more recently Reid and Watmough (2014)
review benefits and problems of lime applications in forest liming
studies. The meta-analysis conducted by Reid and Watmough
(2014) found that 67% of lime treatment trials showed increased
soil pH and foliar Ca concentration. Soil pH response was greater
in organic compared to mineral soils and Ca foliar response was
positively correlated with treatment dose. Huettl (1993) focused
on historic liming studies in Germany with reported benefits
including increased soil Ca and Mg in O-horizons and surface min-
eral soils, which was accompanied by increased soil cation
exchange capacity (CEC) and percent base saturation (%BS). Con-
versely, there was also evidence of increased soil NO3 production
following liming that resulted in cation leaching from subsoils.
Increased rates of nitrification following liming were also found
in forested sites in Finland (Priha and Smolander, 1995) and was
stated as a concern because of the potential for accelerated cation
leaching losses. Elliott et al. (2013) measured the response of soil
and soil solution to liming following a wildfire in the Linville Gorge
Wilderness Area in western North Carolina, a site previously
shown to have low soil cation availability and acidic streams
(Elliott et al., 2008). They found significant increases in surface
mineral soil ECEC, pH, and Ca and a decline in Al as well as
increases in soil solution NO3. However, the lime response was
short-lived, which they attributed to the small amount of lime
added to the site (1.1 Mg ha�1). In other forest liming studies, the
effects of liming in the O-horizon and surface mineral soils were
long-term, up to 21 years (Long et al., 2015), and in some cases
resulted in the accumulation of organic material in the O-horizon
(Johnson et al., 1995).

The continued sensitivity of southern Appalachian streams to
atmospheric deposition emphasizes the need to identify watershed
characteristics that influence stream chemistry responses to acidic
deposition. For example, McDonnell et al. (2014) developed a
screening tool that used a mass balance model to estimate critical
loads for watersheds at risk of acidification based on S deposition.
Although coarsely modeled at the regional scale, their work sug-
gested that catchment characteristics could be used to identify
catchments at risk and help managers prioritize streammonitoring
and restoration efforts through liming. Hence, our first objective
was to identify catchment biotic, physical and chemical character-
istics, that are potential indices of stream acidity measured as ANC,
pH, or Ca:Al molar ratio. A better understanding of these catchment
scale characteristics and their relationship with stream chemistry
could be used to evaluate restoration options such as liming. Our
second objective was to estimate catchment lime requirements
and consider how liming may improve stream chemistry.

To address these objectives we studied three large watersheds
in the southern Appalachian Mountains along a gradient of acidic
deposition with differing geology. Within each watershed we
selected first order catchments that represented a range of eleva-
tions (849–1526 m) and stream ANC values based on previous
studies (W. A. Jackson, unpublished data). We characterized all
catchments in terms of overstory tree species composition and
stand characteristics, site and soil morphology and chemistry,
and soil lime requirement. Stream, O-horizon, and mineral soils,
were intensively sampled four times over one year to capture sea-
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sonal variability in stream chemistry and soil/stream connectivity
(Swank and Vose, 1997; McHale et al., 2002).

2. Materials and methods

2.1. Site selection

Study watersheds were selected based on the following criteria:
(a) they exceeded critical loads of acidic deposition (McNulty et al.,
2007; McDonnell et al., 2014) and (b) they were included in a
USDA Forest Service, regional synoptic sampling effort to identify
streams in 1st order catchments with low ANC (W. A. Jackson,
unpublished). The three watersheds are from west to east, North

River (NR, 35� latitude, 84� longitude; Cherokee National Forest,
Tennessee), Santeetlah Creek (SC, 35� latitude, 84� longitude; Nan-
tahala National Forest, North Carolina), and the North Fork of the
French Broad (FB, 35� latitude, 82� longitude; Pisgah National For-
est, North Carolina) (Fig. 1). Watershed size ranged from 4800 ha at
NR to 9800 ha at FB; between 17% (NR) and 53% (SC) of the water-
shed area was above 1000 m in elevation. All watersheds contained
numerous 1st order catchments with a range of median ANC values
classified as, not acidic (ANC > 50 leq L�1), intermediate
(ANC = 20–50 leq L�1), episodically acidic (ANC = 0–20 leq L�1),
and chronically acidic (ANC < 0 leq L�1) (Bulger et al., 2000).

In late 2011, we selected 4–6 first order catchments within each
watershed that represented the range in elevation and stream ANC
described above. The stream collection location for all catchments

Fig. 1. Location of three watersheds sampled in this study.
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was >850 m in elevation; 5 catchments in NR, 4 catchments in SC,
and 6 catchments in FB (N = 15 catchments). Within each catch-
ment we established 2–10 m diameter circular sample plots, one
in the riparian zone and one on the hillslope. The center of the
riparian plot was 6 m from the stream and the hillslope plot was
ca. 40 m upslope from the riparian plot, where soil morphology
and vegetative composition was different than the riparian zone.
The total number of plots per watershed were, NR, n = 10; SC
n = 8; FB, n = 12; a total of 30 plots. Seasonal stream, O-horizon
and mineral soil sample collection began in May 2012. Table 1 con-
tains a list of all measurements divided into catchment, catchment
geochemical, soil O-horizon, mineral soil and stream chemistry
variables.

2.2. Catchment characterization

We collected several types of data from all riparian and hillslope
plots to characterize each catchment. Plot measurements included
mineral soil morphology (A horizon depth, total profile depth to
saprolite or bedrock), O-horizon morphology (Oi and Oe + Oa
weight, Oe + Oa depth), plot morphology (elevation, slope, aspect),
and vegetation characteristics. From the center point of each plot,
overstory vegetation characteristics were obtained using a variable
radius plot sampling method with a wedge prism (2.0 BAF, metric),
and tree diameters within the variable plot were measured at
breast height (DBH at 1.37 m aboveground) to calculate species-
specific basal area and species composition. We measured tree
height, using a clinometer, of the six dominant or co-dominant
trees within the variable radius plot.

2.3. Stream sample collection and analysis

To capture seasonal variation, stream samples were collected
from each catchment in early summer (May 2012), mid-summer
(July/August 2012), fall (November 2012), and spring (April 2013)

a total of four collections; all sample collections were conducted
while streams were at baseflow levels. For each date, we collected
stream water grab samples in each catchment adjacent to riparian
plots (n = 4, 5 or 6 catchment samples per watershed per date).
Water samples were collected in three bottles, one sample bottle
was filtered in the field (<0.70 lm pre-muffled glass fiber filter),
and all were stored in a cooler, then placed in a refrigerator
(4 �C) or a freezer until analyses were conducted using standard
laboratory procedures (Miniat et al., 2014). Solution pH was deter-
mined on an unfrozen unfiltered sample within 24 h of collection
using an Orion Research digital pH meter 611 with a Broadley
James pH probe. Cation concentrations (Ca, Mg, Na, K, and Al) were
determined on previously frozen unfiltered samples using an
inductively coupled plasma spectrometer (ICP) (Thermo Fisher
iCAP 6300, Thermo Fisher Scientific, Madison, WI). Stream Ca:Al
molar ratios were calculated as mmol L�1. Anion concentrations
(NO3, SO4, and Cl), were determined on previously frozen unfil-
tered samples using a Dionex ICS 4000 Capillary Ion Chro-
matograph (Thermo Fisher Scientific, Madison, WI). Dissolved
organic carbon (DOC) and total dissolved nitrogen (TDN) analysis
was determined on filtered previously frozen sample on a Shi-
madzu TOC-VCPH TNM-1 (Shimadzu Scientific Instruments,
Columbia, MD). Cation and anion concentrations are reported as
leq L�1 and DOC and TDN are reported as mg L�1. Stream acid neu-
tralizing capacity (ANC) was calculated as:

ANC ðleq L�1Þ ¼
X

base cations ðCaþMgþ Naþ KÞ
�
X

acid anions ðSO4 þ NO3 þ ClÞ

2.4. Soil O-horizon sampling and analysis

Soil O-horizon samples were collected using a 30 � 30 cm
(0.09 m2) frame (3 sample frames per plot) at random distances
and directions from the plot center for each collection date;

Table 1
Variables measured for catchment characterization, catchment geochemical characterization, soil O-horizon, mineral soil, and stream chemistry. Variables
marked with ‘⁄’ were identified as significant covariates in stream chemistry statistical models (Tables 3 and 4).

Dataset Variables measured

Catchment characteristics Elevation (m)⁄

Slope and aspect (�)
Soil morphology (A horizon, profile depth; cm)⁄

O-horizon morphology (cm depth)
Overstory basal area (m2 ha�1)⁄

Overstory species composition
Height of 6 dominant trees (m)⁄

DBH of all trees (cm)⁄

Catchment geochemical characteristics Nutrient Uptake index; litterfall represented by November Oi-horizon collection⁄

Soil total elemental analysis (g kg�1) (Ca, Mg, K, Na, Al, P, calculated Felsic:Mafic, Fe:Al)⁄

Total mineral soil elemental nutrient content (kg ha�1)⁄

Total mineral soil extractable nutrient content (kg ha�1)

Soil O-horizon; sampled by date and horizon Mass per unit area (g m�2)⁄

Total base cations (g kg�1) (Ca, Mg, K, Na)
Total Al (g kg�1)⁄

Total C and N (g kg�1)⁄

Mineral soil; sampled by date and soil depth pH
Extractable base cations (g kg�1) (Ca, Mg, K, Na)
Base saturation (%)⁄

ECEC (cmolc kg�1)
Extractable Al (g kg�1)⁄

Lime Requirement (to pH 5.5)
Total C and N (g kg�1)⁄

Extractable SO4-S (g kg�1)

Stream chemistry; sampled by date Calculated ANC
pH
Molar Ca:Al
Other: DOC and TN, NO3-N, SO4-S, Cl, NH4-N, Base cations, and Al
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collection dates coincided with stream sampling dates (i.e., early
summer (May 2012), mid-summer (July/August 2012), fall
(November 2012), and spring (April 2013)). The O-horizon was
separated into Oi and Oe + Oa horizons in the field, and each hori-
zon from each location was placed in a paper bag (3 frames � 30
plots � 4 dates � 2 horizons; a total of 720 O-horizon samples).
The November 2012 sample collection was conducted soon after
leaf-fall from all watersheds and we used the Oi horizon chemistry
data as a proxy for litterfall and an index of soil nutrient availabil-
ity, a geochemical characteristic. Depth of the Oa + Oe horizon was
measured along the edge of each sample frame and recorded. Upon
returning to the laboratory, all samples were oven dried at 60 �C
until reaching a constant weight; samples were weighed to the
nearest 0.01 g. Dried samples were thoroughly mixed, composited
by plot and horizon, ground to <1 mm using a Retsch grinding mill
(Retsch, Inc., Newtown, PA), mixed again, and a subsample was
placed in a glass vial for storage prior to analysis. Samples were
analyzed for total C and N by combustion on a Flash EA 1112 series
(CE Elantech, Lakewood, NJ). Total phosphorus (P) and cation (Ca,
Mg, Na, K, and Al) concentrations were determined by dry-ashing
a 0.5 g sample at 500 �C for 4 h. followed by digestion in 2.2 M
nitric acid (Miniat et al., 2014), the resulting solution was analyzed
using ICP as described above. Ash-free dry weight of all O-horizon
samples was measured during the dry-ashing/digestion process to
allow sample weight correction for mineral soil contamination. All
weight and nutrient concentration data presented for Oe + Oa hori-
zon samples are presented on an ash-free basis. Oi horizon samples
contained <5% mineral material, data are presented on an oven-dry
weight basis.

2.5. Mineral soil sampling and analysis

Composite mineral soil samples were collected using a 2.5 cm
diameter soil probe from each plot by depth (surface soil, 0–
10 cm; subsoil, 10–30 cm; and deep soil, 30+ cm), for each date
as described above (i.e., early summer (May 2012), mid-summer
(July/August 2012), fall (November 2012), and spring (April
2013)). Composite samples consisted of 12–20 individual soil cores
from random locations within each 10-m circular plot. Total profile
depth to saprolite reached at each location sampled was recorded;
a total of 360 soil samples were collected (30 plots � 3 soil
depths � 4 dates). Mineral soil samples were placed in re-
sealable plastic bags, returned to the lab, air dried to a constant
weight, sieved to <2 mm and stored in a 120 ml glass jar for storage
prior to chemical analysis. Soil pH was determined in a 1:1 soil to
0.01 M CaCl2 slurry with a Thermoscientific Orion 3 star pH bench-
top meter with a Thermo Scientific Orion pH probe. We deter-
mined exchangeable cation concentrations (Ca, Mg, Na, K, and Al)
as well as effective cation exchange capacity (ECEC) by extracting
cations from 5.0 g of soil with 50 ml 1.0 M NH4Cl on a mechanical
vacuum extractor (SampleTek, Science Hill, KY), followed by rins-
ing the soil with 95% EtOH and extraction of remaining NH4 with
1 M KCl to determine ECEC. Cation concentrations in NH4Cl solu-
tion were determined using ICP as described above; NH4 concen-
tration in KCl extraction solution was determined
colorimetrically using the alkaline phenol method (USEPA, 1983),
and used to calculate ECEC (cmol kg�1). Percent base saturation
(%BS) was calculated: %BS = ((Ca + Mg + Na + K)/ECEC) ⁄ 100. Ca to
Al ratio was calculated using molar concentrations (Ca:Al
mmol kg�1). Extractable phosphate (PO4) was determined by
extracting 5.0 g of soil in 20 ml dilute double acid (0.05 M HCl
+ 0.0125 M H2SO4) followed by centrifugation and determination
of PO4 in solution by ICP as described above (Kuo, 1996; Miniat
et al., 2014). Sub-samples (�5 g) of each soil sample were ground
to a fine powder prior to total C and N analysis by combustion as
described above.

We conducted total elemental analysis of soils from each water-
shed, catchment, plot, and depth collected in April 2012 using the
closed vessel aqua regia and hydrofluoric acid dissolution method
(Hossner, 1996) followed by analysis with ICP as described above
on soils as a proxy for total mineral availability and soil parent
material as geochemical characteristics. We calculated an indicator
of the ratio of felsic to mafic parent material (Felsic:Mafic) as K
+ Na: Ca + Mg. Felsic parent materials are dominated by K and Na
(monovalent ions) and Mafic parent materials by Ca and Mg (diva-
lent ions). We also calculated the Fe:Al ratio as an indicator of the
mineralogy of the soils clay component, which regulates the soil
cation exchange capacity. We used recent soil surveys for catch-
ment within watershed descriptions including soil bulk density
and percent coarse fragment of each soil type by depth
(Soil_Survey_Staff, 2014); these values were used with laboratory
determined soil chemistry (extractable and total elemental
cations) to calculate total available and total mineral nutrient con-
tent of the soil profile (kg ha�1) for each plot within each
catchment.

2.6. Catchment lime requirement

To estimate the lime requirement for each catchment, we ana-
lyzed mineral soils collected at all four dates, from all plots, catch-
ments, and watersheds (3 depths � 4 dates � 2 plots � 15
catchments = 360 samples). We used the Mehlich Single Buffer
method (Sims, 1996), to estimate lime addition required to adjust
the mineral soil to pH to 5.5. This method yields lime application
estimates in Mg ha�1 of CaCO3 assuming a 20 cm soil depth. We
estimated the lime required to adjust the surface mineral soil (0–
10 cm), dividing the estimated lime requirement by 2 (Lime
Required 0–10 cm = Lime Mg ha�1/2). We calculated the sum of
the surface and subsoil mineral soil depths by summing the lime
requirement for each depth (Lime Required 0–30 cm = Lime
Required 0–10 cm + Lime Required 10–30 cm).

2.7. Statistical analysis

Our statistical analysis varied depending on whether we were
testing for spatial vs. temporal differences in variables. For vari-
ables sampled by date (i.e., stream chemistry, mineral soil chem-
istry and O-horizon chemistry) sample date was included as a
discrete qualitative repeated measures factor because we did not
expect a trend over time that could be modeled with a mathemat-
ical function (Littell, 2007). We tested several covariance struc-
tures for each dataset as suggested by Littell et al. (1998) and
Littell (2007), including compound symmetry (CS), Huynh-Feldt
(HF), spatial power structure (SP(POW)), variance components
(VC) and others, selecting the covariance structure that resulted
in the minimum corrected Akaike’s Information Criterion (AICC)
value (Hurvich and Tsai, 1991). We examined watershed, sample
collection date, and watershed by date interaction effects on
stream chemistry variables using a nested plot experimental
design with watershed and date (fixed effects) and catchment
nested within watersheds (random effect) using Proc Mixed (SAS
v9.3 (SAS, 2013)). We included sample date in a repeated measures
statement, using compound symmetry (CS) as the covariance
structure. A nested split-plot experimental design was used to
examine watershed and date effects on O-horizon and mineral soil
chemistry data with watershed (fixed effect), date (fixed effect),
catchment nested within watershed (random effect), and slope
position as a split plot within watersheds (fixed effect) using Proc
Mixed (SAS, 2013). We included sample date in a repeated mea-
sures statement using Huynh-Feldt (HF) covariance structure for
O-horizon chemistry and a spatial power structure (SP(POW)) for
mineral soil chemistry. O-horizon and soil depths were analyzed
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separately. For testing spatial differences in variables (i.e., among
and within watersheds and catchments), we used a nested split-
plot experimental design, examining watershed effects (fixed
effect), catchment within watershed effect (random) and the
split-plot of slope position (i.e., midslope vs. riparian) within catch-
ment (fixed) using Proc Mixed (SAS, 2013); we used variance com-
ponents (VC) covariance structure.

We used Proc Mixed (SAS, 2013) to select catchment character-
istics, O-horizon chemistry, mineral soil chemistry and catchment
chemical characteristic variables that were significant in informing
the best statistical model of stream chemistry variables (ANC, pH,
and Ca:Al molar ratio). For these analyses, we used mean catch-
ment values (i.e., average of the hillslope and riparian plots) for
catchment characteristics, O-horizon chemistry, mineral soil
chemistry and catchment chemistry as the independent variables.
We also examined the influence of the riparian zone by examining
riparian plot data separately. First, we conducted linear regression
analysis (Proc Reg (SAS, 2013)) for each data set (catchment char-
acteristics, O-horizon, soil chemistry, and catchment chemical
characteristics), to reduce the number of variables included in
the analysis. Regression analyses included comparison of the same
measurements made in different O-horizons and mineral soil
depths. Variables that did not exhibit significant collinearity
(r2-value < 0.70) were used in the first step of model analysis. We
also included variables (i.e., extractable Ca:Al molar ratio, ratio of
cation concentrations in surface mineral soil relative to deep soil)
that utilized several measurements and were potentially useful
as explanatory variables. Next, variables from each data set were
included as covariates in the mixed model analysis; variables were
eliminated if the probability (P) of an F-value was >0.25; the result
yielded 2–8 variables for final testing. We included all of these
variables (those with P < 0.25) to select the final model which
included only variables with P 6 0.05. By examining datasets
separately we were able to identify the best statistical model and
significant covariates for stream chemistry. We used the nested
experimental design with repeated measures to identify O-
horizon and mineral soil chemistry variables that were significant
covariates of stream chemistry. We used the mean stream chem-
istry data (four sample collection dates), in the nested split-plot
experimental design to develop the best statistical model for catch-
ment characteristic data, both non-chemical and chemical. The
results presented are primarily the variables that were identified
as significant covariates in the statistical models examining
variation in stream chemistry (Section 3.6).

3. Results

3.1. Watershed and catchment characterization

The catchments and plots within watersheds represented a
broad range of morphological and vegetative characteristics. Soil
A-horizon depth ranged from 5 to 33 cm and total soil profile depth
ranged from 43 cm to 92 cm (Fig. 2). Overstory basal area ranged
from 14 m2 ha�1 to 56 m2 ha�1 and mean plot tree height ranged
from 18.5 m to 54.1 m (Fig. 2). Basal area of Quercus spp. ranged
from 0 to 22 m2 ha�1, and Acer spp. ranged from 0 to 14 m2 ha�1

(Fig. 2). Basal area of Quercus spp. varied with slope position
(F = 12.58; P < 0.01) with greater Quercus spp. present in the hill-
slope position.

3.2. Variation in O-horizon mass and chemistry

Watershed did not have a significant effect on Oi horizon mass,
total C or total N concentrations however, date effect and date by

watershed interaction were significant. As expected, the greatest
Oi horizon mass was measured in fall (November) and the least
in summer (July). Ca and Al concentrations differed significantly
among watersheds (Ca, F = 3.83, P = 0.04; Al, F = 3.47, P = 0.05)
and sample collection date (Ca, F = 4.75, P < 0.01; Al, F = 5.39,
P < 0.01). Neither slope position nor watershed by date interaction
were significant.

Oe + Oa horizon mass was significantly affected by watershed
(F = 16.17, P < 0.001) and date (F = 8.94, P < 0.001). Mass was great-
est in the spring (April 2013); watershed by date interaction was
not significant. Collection date had a significant effect on total C
and N concentration (C, F = 3.35, P = 0.02; N, F = 3.36, P = 0.02).
Oe + Oa horizon Ca concentrations ranged from 0.89 to
5.0 g Ca kg�1 and differed among watersheds (F = 9.39, P = 0.001)
and by date (F = 7.84, P = 0.001); there were no significant water-
shed by date interactions. Oe + Oa Al concentrations did not differ
among watersheds but date effect was significant (F = 4.25,
P = 0.01).

Fig. 2. Plot characterization variables were measured at each riparian and hillslope
plots. A-horizon and total soil profile depth, basal area, diameter at breast height
(DBH) and mean height of the 6 dominant overstory trees, and basal area of Quercus
spp. and Acer spp. Plot values for each variable are shown with North River (d),
Santeetlah Creek (N), and North Fork of the French Broad (j). Box plots show
watershed median value, along with the 10th, 25th, 75th and 90th percentiles.
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3.3. Variation in mineral soil chemistry

Mineral soil chemical characteristics in the surface soil depth
varied significantly with both watershed and sample date; water-
shed by date interaction were significant for some variables (soil
pH, total N and total C). Soil pH ranged from 3.1 to 4.4 (watershed,
F = 6.24, P = 0.01; date, F = 15.18, P < 0.001) and %BS ranged from
2.3 to 42.2 cmolc kg�1 (watershed, F = 7.51, P < 0.01; date,
F = 6.02, P < 0.01). Total C ranged from 10.9 to 153.2 g kg�1 (water-
shed, F = 28.44, P < 0.01; date, F = 5.04, P < 0.01) and total N from
0.63 to 10.3 g kg�1 (watershed, F = 22.60, P < 0.01; date, F = 5.28,
P < 0.01).

Deep mineral soil pH, %BS, total N and total C concentrations
showed a significant watershed and date effect; watershed by date
interaction was significant for pH, total N and total C. Soil pH ran-
ged from 4.1 to 4.7 (watershed, F = 5.33, P = 0.01; date, F = 3.30,
P = 0.03) and %BS ranged from 1.2 to 14.7 cmolc kg�1 (watershed,
F = 7.49, P < 0.01; date, F = 11.00, P < 0.01). Deep mineral soil total
C ranged from 6.5 to 114.5 g kg�1 (watershed, F = 7.70, P < 0.01;
date, F = 4.14, P < 0.01) and total N from 0.51 to 7.4 g kg�1 (water-
shed, F = 9.92, P < 0.01; date, F = 4.84, P < 0.01).

Mineral soil total Ca, K, and P in all mineral soil depths (surface,
0–10 cm; subsoil, 10–30 cm; deep soil, 30+ cm) differed among
watersheds. Surface mineral soil total Ca concentrations ranged
from 157 to 19,900 g kg�1 (F = 9.57, P < 0.01) and total K concentra-
tions ranged from 6900 to 24,300 g kg�1 (F = 8.93, P < 0.01). The
ratio of extractable Ca to total Ca (extractable Ca:total Ca) also dif-
fered significantly among watersheds (F = 12.46; P < 0.001) as did
the Felsic:Mafic ratio (F = 20.86; P < 0.01) and the Fe:Al ratio
(F = 8.50; P < 0.01).

3.4. Catchment soil nutrient availability characterization

We used nutrient concentrations in the November Oi horizon
collection, a time when this horizon closely represents litterfall
(hereafter, litterfall), and soil nutrient availability. None of the vari-
ables measured, litterfall mass, total N, Ca, Al concentrations, or the
Ca:Al molar ratio showed significant differences among water-
sheds. Plot slope position had a significant effect on litterfall total
Ca concentration (F = 7.79, P = 0.02).

3.5. Watershed variation in stream chemistry

Stream ANC varied significantly among watersheds; ANC values
ranged from 6 leq L�1 to 84 leq L�1 at NR, from �5 leq L�1 to
42 leq L�1 at SC, and �7 leq L�1 to 51 leq L�1 at FB (Table 2 and
Fig. 3). Sample collection date had no significant effect on stream
ANC. Stream pH did not vary among watersheds or sample dates
(Table 2). Mean stream pH values ranged from 6.1 to 6.7 in NR,
from 5.4 to 6.3 in SC, and 5.8 to 6.4 in FB (Fig. 3). Watershed and
date had a significant effect on stream Ca:Al molar ratio; there
was no watershed by date interaction (Table 2). Stream Ca:Al
molar ratio was lower in the summer compared to fall and spring.

3.6. Catchment variables as indicators of stream chemistry

Nested split-plot analyses of biotic and physical catchment
characteristics identified stream elevation (P = 0.02) as the only
significant covariate for stream ANC (Table 3 and Fig. 4); basal area
of Quercus spp. was a marginally positive covariate (P = 0.08). Biotic
and physical characteristics that were significant in covariates in
analysis of stream pH were depth of mineral soil A horizon
(P = 0.001) and total catchment basal area (P = 0.01), both with
positive coefficients (Table 3 and Fig. 4). Vegetation characteristics
were also significant covariates for analysis of stream Ca:Al molar

ratio; mean height of the dominant trees (P = 0.01) was a positive
coefficient (Table 3 and Fig. 3).

Nested split-plot analysis of catchment chemical characteristics
identified total soil Ca content (kg ha�1) (P < 0.001), as a significant
negative covariate for stream ANC (Table 3 and Fig. 5). The extrac-
table Ca:total Ca in the surface soil (P = 0.02) was the only signifi-
cant catchment chemical characteristic (positive coefficient) that
varied with stream pH (Table 3 and Fig. 5). Analysis of stream
Ca:Al molar ratio identified two significant covariates, surface soil
Fe:Al ratio (P = 0.01) and litterfall Ca:Al ratio (P = 0.02), both had
negative coefficients (Table 3 and Fig. 5).

O-horizon physical and chemical characteristics were included
in repeated measures analysis of stream chemistry variability.
Stream ANC analyses identified total N concentration (negative
coefficient) in the Oe + Oa horizon as a significant covariate
(P = 0.05). Oi horizon mass (g m�2) was a significant covariate in
stream pH analysis (P = 0.001) with a negative coefficient (Table 3
and Fig. 6). Al concentration in the Oi horizon (P = 0.01) was a pos-
itive covariate for stream Ca:Al molar ratio (Table 3 and Fig. 6).

Repeated measures analysis of soil chemical characteristics
identified two significant covariates for stream ANC, deep mineral
soil total C concentration (P < 0.001) and surface mineral soil Al
concentration (P = 0.02); both had negative coefficients (Table 3
and Fig. 7). Deep mineral soil total C concentration (P = 0.002)
was also identified as a significant covariate in stream pH analysis.
Analysis of stream Ca:Al molar ratio identified subsoil (30+ cm) %
BS (P = 0.05) as a significant covariate with a positive coefficient
(Table 3 and Fig. 7).

We also examined the effect of only the riparian plot measure-
ments of non-chemical, O-horizon physical and chemical, and soil
physical and chemical characteristics on stream chemistry
(Table 4). Nested split plot analysis identified stream elevation
(P = 0.02) as a significant covariate with stream ANC (Table 4),
and A horizon depth as a significant covariate for both pH
(P < 0.001) and Ca:Al molar ratio (P < 0.01). Analysis of stream pH
with riparian plot chemical characteristics included the Felsic:
Mafic ratio of the deep mineral soil (P < 0.001) as well as extracta-
ble K:total K (P = 0.001) and surface soil total Ca concentration
(P = 0.001) as significant covariates. Both Felsic:Mafic and extracta-
ble K:total K had positive coefficients while total surface soil Ca
was negative (Table 4). There were no significant soil chemistry
covariates in the riparian plot analysis of stream Ca:Al molar ratio.
Repeated measures analysis of stream chemistry and riparian plot
O-horizon chemistry identified no significant covariates for stream
ANC or pH, whereas Al concentration of the Oi horizon (P < 0.01)

Table 2
Stream chemistry statistical analyses of acid neutralizing capacity (ANC (leq L�1) =

P

base cations (Ca + Mg + Na + K) � P
acid anions (SO4 + NO3 + Cl)), pH, and the molar

ratio of calcium to aluminum (mmol Ca:mmol Al). (A) Repeated measures analysis
including effects of watershed (fixed), date (fixed), watershed by date interaction, and
catchment within watersheds (random effect); (B) nested split-plot experimental
design included watershed (fixed) and catchment within watersheds (random effect).
Presented are F-value, degrees of freedom (DF), probability (P) of a value greater than
F in parentheses, and the estimated R2 of the model. Significant relationships are
highlighted in bold.

ANC (leq L�1) pH Molar Ca:Al
DF F-value (P) F-value (P) F-value (P)

A. Repeated measures experimental design
WS 2 6.50 (0.01) 2.20 (0.15) 14.72 (<0.001)
DATE 3 1.55 (0.22) 0.71 (0.55) 9.39 (<0.001)
WS � D 6 5.84 (<0.001) 1.76 (0.14) 0.14 (0.99)

Model R2 0.56 0.26 0.63

B. Nested split-plot experimental design
WS 2 3.75 (0.05) 2.28 (0.14) 15.17 (<0.001)

Model R2 0.38 0.28 0.72
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and C:N of the Oe + Oa horizon (P = 0.02) were significant positive
covariates for stream Ca:Al molar ratio. Deep mineral soil total C
concentration was a significant soil chemistry characteristic, pro-
viding a negative coefficient for ANC (P < 0.001) and a positive
coefficient for stream pH (P = 0.01) analyses.

3.7. Lime requirement

We conducted laboratory analyses to estimate the lime applica-
tion required to increase soil to pH 5.5 for each soil layer (Fig. 8).
Watershed did not have a significant effect on lime requirement;

however, slope position was significant for both surface mineral
soil (0–10 cm) (F = 13.72, P < 0.001) and mineral soil 0–30 cm
(F = 8.46, P = 0.005), hillslope plots required greater lime inputs
to reach the pH 5.5 target than riparian plots. Lime required to
increase the soil to pH = 5.5 varied among catchments, ranging
from 5.2 Mg ha�1 to 9.5 Mg ha�1 for the surface mineral soil
(Fig. 8) and 11.6 Mg ha�1 to 21.1 Mg ha�1 for the surface soil min-
eral plus subsoil (Fig. 8). Lime requirement was initially included in
statistical analyses as a catchment chemical characteristic, but was
not identified as a significant covariate for any of the stream chem-
istry variables.

Fig. 3. Catchment stream chemistry including all sample dates (early summer, mid-summer, fall and spring) for acid neutralizing capacity (ANC), pH, and log10 molar Ca:Al
ratio. Shown are catchment values for each watershed, North River (d), Santeetlah Creek (N), and North Fork of the French Broad (j). Box plots showwatershed median value,
along with the 10th, 25th, 75th and 90th percentiles.

Table 3
Catchment variables included as covariates in the statistical models examining the variability in stream chemistry for ANC, pH and molar Ca:Al ratio. Covariates listed were
included in the model with P-value 6 0.05. Covariate variables designated ‘⁄’ were significant in the split plot experimental design and ‘⁄⁄’ in the repeated measures analysis. The
estimated model R2 incorporates the nested split-plot or repeated measures models as presented in Table 2 with the improvement in predictions by including covariate(s).

Variables Stream ANC Stream pH Stream molar Ca:Al

Catchment characteristics⁄ Stream elevation A Hzn depth Basal areaa Mean tree heightb

(m) (cm) (m2 ha�1) (m)
(�) (+) (+) (+)

Model R2 = 0.64 Model R2 = 0.83 Model R2 = 0.86

Catchment geochemical characteristics⁄ Total Cac Ext Ca:Total Cae Fe:Alg Litterfallh

(kg ha�1)d 0–10 cmf 0–10 cm Ca:Al
(�) (+) (�) (�)

Model R2 = 0.71 Model R2 = 0.55 Model R2 = 0.89

O-horizon⁄⁄ N (g kg�1) Mass (g m�2) Al (g kg�1)
Oe + Oa Hzn Oi Hzn Oi Hzn

(�) (�) (+)
Model R2 = 0.64 Model R2 = 0.46 Model R2 = 0.75

Mineral soil chemistry⁄⁄ C (g kg�1) Al (g kg�1) C (g kg�1) %BS
30+ cmi 0–10 cm 30+ cm 30+ cm

(�) (�) (+) (+)
Model R2 = 0.65 Model R2 = 0.21 Model R2 = 0.68

a Plot basal area m2 ha�1.
b Mean tree height of the six dominant trees per plot.
c Total elemental Ca.
d Total mineral soil profile content (0–30+ cm).
e Ratio of NH4Cl extractable to total Ca.
f Mineral surface soil (0–10 cm).
g Ratio of total elemental Fe to total elemental Al.
h Litterfall chemistry estimated as November Oi-horizon collected immediately after leaf-fall.
i Mineral deep soil (30+ cm).
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4. Discussion

Despite a 40% decrease in wet SO4 deposition across the eastern
United States high elevation streams in the southern Appalachian
have been identified as acidic with ANC values <50 leq L�1

(NADP, 2007; Burns et al., 2011). We measured catchment biotic,
physical, and chemical characteristics that were potential indica-
tors of stream chemistry. The catchments represented a broad
range of all characteristics allowing us to evaluate potential indica-
tors of stream acidity and to help identify catchments where
stream acidity could be mitigated with liming. The relationships
between indicators and stream chemistry were complex and in
some cases opposite of the expected patterns. For example, stream
ANC was negatively correlated with total soil Ca, and stream Ca:Al
was negatively correlated with litterfall Ca:Al. These unexpected
patterns may be partially due to insufficient sample size (either
too few catchments or too few plots within a catchment to capture
the full range of variation), seasonally varying patterns of stream/
soil connectivity, or as yet undescribed patterns of stream and soil
recovery from acidic deposition (Lawrence et al., 2015). Long-term
forest soil sampling efforts in the 1980s and 1990s showed declin-
ing exchangeable Ca and increasing soil acidity linked to forest
growth and leaching losses (Johnson et al., 1991; Knoepp and
Swank, 1995; Lawrence et al., 1995; Likens et al., 1998). Implemen-
tation of the CAA in 1970 resulted in the recovery of stream chem-
istry in Hubbard Brook Experimental Forest (Likens and Buso,
2012). However, since 2007 streams show a declining trend of both
acid anions and base cations resulting in a decline in both stream
ANC and stream Ca concentrations. Likens and Buso (2012)
suggested that this response was due to changes in the stream

ion balance from being historically dominated by Ca(HCO3)2, then
shifting to CaSO4, and currently toward NaHCO3. In another study,
Lawrence et al. (2015) examined soil recovery in 27 sites across the
NE USA and eastern Canada by resampling soils after 8–24 years.
They found that site specific decline in SO4 deposition was corre-
lated with increased base saturation and decreased exchangeable
Al in the O-horizon. However, base saturation in B horizon soils
had not increased, and actually decreased at 33% of the sites. These
examples of declining soil and stream Ca following reductions in
acidic deposition demonstrate the value of long-term stream and
soil sampling. Thus, one time collections (or one year of collec-
tions) may not reveal all of the interactions between forest growth
and nutrient uptake, soil nutrient processes, and stream ion bal-
ance, particularly if acidic deposition is expected to continue to
decline.

4.1. Physical parameters

High elevation catchments in the southern Appalachians are
sensitive to acidic deposition not only due to the high rates of
input, but also physical factors such as steep topography and soil
depth. As expected (Swank and Vose, 1997; Sullivan et al., 2011)
(Knoepp, unpublished data), our data show a significant negative
linear correlation between stream elevation and measures of
stream acidity such as ANC, pH, and Ca:Al molar ratios (Fig. 9);
however, we also identified other physical catchment characteris-
tics that could be used to explain variability in stream chemistry.
For example, we found significant positive relationships between
mineral soil A-horizon depth and stream pH and Ca:Al molar ratio
(Fig. 3). The formation and depth of the A-horizon is the result of

Fig. 4. Relationship between catchment non-chemical characteristics that significantly inform stream chemistry variability and stream chemistry: elevation versus ANC,
log10 mineral soil A-horizon depth and catchment basal area versus pH, and mean dominant tree height versus log10 molar Ca:Al. Data shown are mean catchment values for
each watershed, North River (d), Santeetlah Creek (N), and North Fork of the French Broad (j).
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vegetation, topography, parent material and other factors of soil
formation (Ramann, 1928; Jenny, 1941; Buol et al., 2011); hence,
the relationship between soil A-horizon depth and stream chem-
istry is not surprising due to the movement of organic material,
dissolved and exchangeable nutrients, and water through the soil
profile. We also expected total soil profile depth would be an indi-
cator of stream chemistry due to its effect on stream/soil connec-
tivity, which directly affects stream chemistry. However, in this
study, soil profile depth was not identified as a significant indicator
of stream chemistry. Some studies have shown that the movement
of chemical constituents to the stream varies with its location in
the profile. For example, Lutz et al. (2012) found evidence that
NO3 is transported to the stream via subsurface pathways across
a range of precipitation event sizes, whereas surface soil DOC is
only mobilized when soils become connected with the stream after
large precipitation events. Research has also shown that seasonal
differences in stream chemistry are often due to differences in
hydrologic flow paths and soil/stream connectivity (Christopher
et al., 2006; Murdoch and Shanley, 2006a,b). We conducted our
stream collections seasonally to account for the differences in
soil/stream connectivity that are evident due to greater stream
baseflow in March–May in the southern Appalachians (Swift
et al., 1988).

4.2. Vegetation parameters

The effects of vegetation composition on stream chemistry have
been noted in several ecosystems (Knoepp and Swank, 1998;
Lovett and Mitchell, 2004; Christopher et al., 2006; Wurzburger

and Hendrick, 2007; Knoepp et al., 2008). For example,
Christopher et al. (2006) found that the presence of base rich tree
species (Acer saccharumMarsh., Tilia americanaMill., Ostrya virgini-
ana (Mill.) K. Koch) resulted in greater stream Ca and NO3 concen-
trations; whereas, concentrations were lower in the watershed
dominated by Fagus grandifolia Ehrhart and Pinus strobus L.
McLaughlin (2014) found that although hardwood sites contained
significantly greater pools of Ca compared to mixed hardwood-
conifer sites, they also lost a greater amount of Ca from the O-
horizon and to stream export. In addition, vegetation that stimu-
lates nitrification, resulting in increased soil and soil solution
NO3, can also result in increased cation leaching (Lovett and
Mitchell, 2004; Christopher et al., 2006). We identified catchment
Quercus spp. basal area as a marginally significant covariate in
our model of stream ANC at the catchment scale; where ANC
increased with increasing Quercus basal area. Previous work in
the southern Appalachians has shown lower N cycling rates and
N leaching (i.e., lower NO3 in soil solution and lower potential
cation leaching) and greater O-horizon accumulation in Quercus
dominated sites compared to northern hardwood forests (Knoepp
and Swank, 1998; Knoepp et al., 2000, 2008). Other significant veg-
etation characteristics in our models were mean catchment basal
area of all species (positive covariate with stream pH) and mean
tree height of all species (positive covariate with stream Ca:Al
molar ratio). Because catchment basal area is related to site pro-
ductivity (e.g., nutrient availability and soil pH) and species com-
position (e.g., species specific nutrient uptake and requirements)
(Searcy et al., 2003; Hahm et al., 2014), it is not surprising that
basal area, tree height, and mean DBH were positively related to

Fig. 5. Relationship between catchment geochemical characteristics that significantly inform stream chemistry variability and stream chemistry: soil profile total Ca content
versus ANC, log10 ratio of extractable to total Ca in surface mineral soil versus pH, and surface mineral soil Fe:Al ratio and litterfall Ca:Al versus log10 molar Ca:Al. Data shown
are mean catchment values for each watershed, North River (d), Santeetlah Creek (N), and North Fork of the French Broad (j).
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stream pH. This suggests that relatively simple forest stand mea-
surements, such as tree heights, diameters, and total basal area,
could be useful indicators of sensitive streams (i.e., those with
low Ca:Al or pH). For example, although soil pH and extractable
Ca:Al molar ratio were not significant covariates in our stream
chemistry models we found significant positive relationships
between surface mineral soil pH and Ca:Al molar ratio and mean
tree height (r2 = 0.29, P = 0.002 and r2 = 0.18, P = 0.02, respectively)
and mean DBH (r2 = 0.33, P = 0.001 and r2 = 0.28, P = 0.002,
respectively).

4.3. Soil O-horizon and litterfall

Soil O-horizon physical and chemical characteristics were sig-
nificant covariates in models examining catchment variability in
stream chemistry (Tables 3 and 4). Past research has examined
how overstory litter input and root turnover provide nutrient
inputs to unfertilized forest ecosystems (Hursh, 1928; Alban,
1982; Knoepp et al., 2011), and how inputs are affected by site
nutrient availability (Knoepp et al., 2000; Ordoñez et al., 2009).
In general, O-horizon formation is the result of inputs and turnover
rates which are regulated by the interactions among site nutrient
availability, temperature, precipitation, and micro- and macro-
fauna and microbial populations. In some forest ecosystems the
Oa-horizon plays an important role in nutrient availability with
many tree roots occupying that layer (Perala and Alban, 1982;
Rauland-Rasmussen and Vejre, 1995; Joergensen et al., 2009).
The Oa-horizon has been examined as a surrogate for total

deposition, as it represents the accumulation of all mineral input
sources, litterfall, root turnover, and fungal activity, as well as
wet and dry deposition (Weathers et al., 2006; Joergensen et al.,
2009). In our study, O-horizon Al concentrations and C:N ratios
had a positive relationship with stream Ca:Al molar ratio; however,
increasing O-horizon total N concentrations resulted in declining
stream ANC. This finding is similar to studies examining the declin-
ing SO4 deposition. Pannatier et al. (2011) found that SO4 deposi-
tion declines in ecosystems where N deposition was dominant
had no effect on improving soil solution chemistry. Lawrence
et al. (2012) measured increased exchangeable Al concentrations
in B horizon soils in some red spruce forests after years of SO4

decline.
We used the November Oi horizon collection to represent litter-

fall chemistry as a proxy for plant available soil nutrients. We
found that litterfall Ca:Al ratio was a significant negative covariate
in stream Ca:Al molar ratio. Examination of the relationship
between litterfall Ca:Al ratios and soil chemistry and found a weak
but positive correlation with soil extractable Al (r2 = 0.18, P = 0.02)
but not with extractable soil Ca. On the other hand, litterfall Ca
concentration was significantly correlated with both soil extracta-
ble Ca (r2 = 0.35, P = 0.001) and the proportion of extractable Ca
(i.e., available to plants) to total elemental Ca (r2 = 0.47,
P < 0.001). Additionally, seasonally collected Oi-horizon Al concen-
tration was identified as having a positive relationship with stream
Ca:Al molar ratio. Hallet and Hornbeck (1997) found that soils in
both red oak and white pine forests exhibited Ca depletion while
Al accumulated in the O-horizon. Our data suggest a complex

Fig. 6. Relationship between catchment O-horizon physical and chemical characteristics that significantly inform stream chemistry variability and stream chemistry: total N
concentration in the Oe + Oa horizon versus ANC, log10 Oi horizon mass versus pH, and log10 total Al concentration in the Oi horizon versus log10 molar Ca:Al. Data shown are
mean catchment values for each watershed, North River (d), Santeetlah Creek (N), and North Fork of the French Broad (j) for all sample dates (early summer, mid-summer,
fall and spring).
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interaction between nutrient availability, plant uptake and litter-
fall, and O-horizon formation, and ultimately stream Ca:Al molar
ratio. Oi-horizon Ca:Al ratio was greatest in fall (November) and
least in summer (July). As litterfall material transitions from the
Oi- to the Oe + Oa-horizon the Ca:Al molar ratio declined 5-fold
(Oi horizon Ca:Al = 35, Oe + Oa horizon Ca:Al = 6) suggesting a
preferential loss of Ca or accumulation of Al during decomposition
and O-horizon formation. The presence of Quercus spp. was
positively correlated with ANC, perhaps due to its effect on
O-horizon accumulation (Knoepp et al., 2008). Other researchers
have documented the linkage between understory vegetation,
O-horizon decomposition, and soil nutrient availability (Qiao
et al., 2014; Elliott et al., 2015), however, we did not include
measurement of leaf litterfall decomposition rates or herbaceous
plant surveys in this study.

4.4. Mineral soil chemistry

The interaction of soils with soil water and ultimately stream
water is determined not only by mineral soil exchangeable chem-
istry but also by parent material which controls the release of
cations and anions through weathering processes (Velbel, 1985,
1988). We used mineral soil total elemental cation concentrations
(Ca, Mg, K and Na) as a proxy for parent material and found that
soil total elemental Ca content was negatively related to stream
ANC (Table 3) at the catchment scale, while surface soil total Ca
was related to stream pH within the riparian zone alone (Table 4).
Other mineral soil total cation parameters (Fe:Al ratio, Felsic:Mafic,

extractable K:total K), at both the catchment and riparian zone
scale, were significantly related to stream pH and Ca:Al molar ratio
(Tables 3 and 4). The role of riparian zone characteristics differs
among stream acidity indices, perhaps due to differences in loca-
tion of exchangeable cations and anions within the soil profile
(Fölster et al., 2003; Lutz et al., 2012) or differences among water-
sheds and catchments (Christopher et al., 2006; Talhelm et al.,
2012). Elliott et al. (2008) and Sullivan et al. (2011) modeled sen-
sitivity of wilderness areas in western North Carolina USA to SO4

deposition, they found that sites with soils derived from parent
material with low base cation concentrations were more sensitive
to SO4 deposition. This agrees with the conclusions of other studies
(Rice et al., 2006; Sullivan et al., 2007) that suggest that stream
ANC is largely regulated by watershed geology. However, soil par-
ent material and stream chemistry relationships are not always
predictable due to variation in the regulation of mineral weather-
ing (Velbel and Price, 2007). For example, Grieve (1999) tested the
response of mineral soils from three different parent materials
(basalt, sandstone sediments, and metamorphosed schists) to
leaching with an acidic solution in laboratory experiments. In this
case, leachate chemistry could not be explained simply by soil
chemical characteristics such as ion exchange capacity or weather-
ing potential. Searcy et al. (2003) examined the influence of parent
material and aspect on soil and vegetation distribution in moun-
tains of Massachusetts USA. They found that only 51% of the vari-
ance in soil chemistry was due to parent material differences while
differences in vegetation composition were due to both parent
material and aspect.

Fig. 7. Relationship between catchment mineral soil chemical characteristics that significantly inform stream chemistry variability and stream chemistry: total C
concentration in the deep mineral soil and log10 extractable Al in the surface mineral soil versus ANC, total C concentration in the deep mineral soil versus pH, and log10 %base
saturation in deep mineral soil versus log10 molar Ca:Al. Data shown are mean catchment values for each watershed, North River (d), Santeetlah Creek (N), and North Fork of
the French Broad (j) for all sample dates (early summer, mid-summer, fall and spring).
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Factors of soil formation suggest that forest soils become
increasingly acidic over time for a number of reasons including
base cation uptake by vegetation, humus formation, soil leaching
wherever precipitation exceeds mean annual evapotranspiration
(Johnson, 1987), and base cation removal during forest harvesting
(Federer et al., 1989; Knoepp and Swank, 1997). Cation losses have
been accelerated by acidic deposition and Ca depletion has
occurred in many forest ecosystems (Joslin et al., 1992; Knoepp
and Swank, 1995; Graf Pannatier et al., 2004; Likens, 2004;
McLaughlin, 2014). In high elevation red spruce, Joslin et al.
(1992) showed that base cations Ca and Mg were preferentially
leached out of surface soils, tree ring chemistry showed decreasing
Ca:Al ratios over time, suggesting that soil acidity and Al solubility
had increased. In Switzerland, Graf Pannatier et al. (2004) exam-
ined ratios of base cations to aluminum (BC:Al) in forest soils
and soil solution to estimate acidic deposition response. Their data
showed that the pH – Al relationship was curvilinear and that soils
with %BS < 10 and BC:Al ratios <0.2 generally had soil solutions

with low BC:Al ratios and the potential for root toxicity. In our
study, soil %BS was often <10% and mineral soil exchangeable Ca:
Al ratio was <1.0 (mol:mol). Similar to the findings of Graf
Pannatier et al. (2004), we found that %BS in deep soil was a signif-
icant covariate informing variability in stream Ca:Al molar ratio
(Table 3).

Although decreasing atmospheric SO4 deposition has resulted in
decreasing soil solution and stream SO4 in some studies (Fölster
et al., 2003; Pardo and Duarte, 2007), we found no relationships
between stream chemistry and soil total S or extractable SO4 in
any soil layer (data not shown). However, soil solution or stream
SO4 may not respond immediately to changes in deposition due
to other sources of SO4 within the soil profile and the watershed
(Bailey et al., 2004; Morth et al., 2005; Mitchell et al., 2008;
Pannatier et al., 2011; Rice et al., 2014). These sources include
weathering of mineral S in bedrock, dry deposition inputs, miner-
alization of organic S, desorption of soil SO4, and the oxidation of
recently formed SO2 in anoxic areas draining to the stream.
Responses to declining SO4 deposition may also vary within the
soil profile. For example, Fölster et al. (2003) measured declining
soil solution SO4 in catchments in Sweden. They found greater
SO4 declines in soil E horizons compared to B horizons suggesting
that desorption of previously accumulated SO4 in B horizons was
occurring more slowly in response to decreasing acid deposition.

Due to close proximity, we expected a high level of connectivity
between the riparian zone soil chemistry and the stream, espe-
cially during sample dates with greater baseflow (i.e., spring and
early summer) (Christopher et al., 2006; Lutz et al., 2012). How-
ever, we identified fewer significant covariates of stream acidity
(ANC, pH, and Ca:Al molar ratio) from riparian zones (Table 4)
compared to the catchment scale suggesting little riparian-
stream connectivity (Table 3). This could be due to sample collec-
tion during baseflow conditions. Other studies, for example,
Murdoch and Shanley (2006a, b), have shown that sampling during
baseflow or during a storm event can affect stream chemistry and
observed trends in declining stream acidity. We collected stream
samples seasonally and compared indicator sample collections at
the riparian and catchment scale in order to evaluate soil-stream
connectivity. Interestingly, we found strong relationships between

Table 4
Riparian plot variables from that were included as covariates in the statistical model examining the variability in stream chemistry, for ANC, pH and molar Ca:Al ratio. Covariates
listed were included in the model with P-value 6 0.05. ‘NS’ indicates analyses in which no significant covariates were identified. Covariate variables designated ‘⁄’ were significant
in the nested split-plot experimental design and ‘⁄⁄’ in the repeated measures analysis. The estimated model R2 incorporates the split-plot or repeated measures models as
presented in Table 2 with the improvement in predictions by including covariate(s).

Variables Stream ANC Stream pH Stream molar Ca:Al

Catchment characteristics⁄ Stream elevation A Hzn depth A Hzn depth
(m) (cm) (cm)
(�) (+) (+)
Model R2 = 0.64 Model R2 = 0.81 Model R2 = 0.87

Catchment geochemical characteristics⁄ NS Felsic: Mafica ExtK:Total Kc Total Cad NS
30+ cmb 0–10 cm 0–10 cm
(+) (+) (�)
Model R2 = 0.94

O-horizon⁄⁄ NS NS Al (g kg�1) C:N
Oi Hzn Oe + Oa Hzn
(+) (+)
Model R2 = 0.74

Mineral soil chemistry⁄⁄ C (g kg�1) C (g kg�1) NS
30+ cme 30+ cm
(�) (+)
Model R2 = 0.69 Model R2 = 0.28

a Estimated ratio of felsic to mafic parent material; (total elemental K + Na)/(total elemental Ca + Mg).
b Mineral surface soil (0–10 cm).
c Ratio of NH4Cl extractable to total elemental K.
d Total elemental Ca in the surface soil (g kg�1).
e Mineral deep soil (30+ cm).

Fig. 8. Estimated lime required to increase mineral soil to pH 5.5 for the surface soil
(0–10 cm) and surface plus subsurface soil (0–30 cm). Shown are plot values for
each watershed, North River (d), Santeetlah Creek (N), and North Fork of the French
Broad (j). Box plots show watershed median value, along with the 10th, 25th, 75th
and 90th percentiles.
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stream chemistry and soil O-horizon and mineral surface and deep
soils.

4.5. Catchment liming and mitigation

Our second objective was to make laboratory based estimates of
catchment lime requirements and evaluate how liming at a catch-
ment scale may improve stream chemistry. Soils and stream recov-
ery from acidic deposition is a slow process that may be
accelerated by land managers through liming. The specific goals
of liming streams or catchments are to increase stream ANC, pH
and Ca while decreasing SO4 and Al. Restoration practices include
adding lime directly to stream water or treating the entire catch-
ment with reported lime additions ranging from 5 to 30 Mg ha�1

(Clair and Hindar, 2005). Our estimated lime additions fall within
this broad range, with 11.6–21.1 Mg ha�1 CaCO3 required to
increase the top 30 cm of soil to pH 5.5. Our estimated lime
requirement did not differ among the three watersheds we stud-
ied. However, as reported in the literature (Reid and Watmough,
2014), riparian zone soils which have greater organic C content,
required less lime to increase soil pH to 5.5. Understanding stream

acidity responses to riparian zone or catchment level liming would
require experimental lime addition, ideally in catchments with the
low extractable Ca and high stream acidity such as, those in the
Santeetlah Creek watershed.

In an extensive literature review, Clair and Hindar (2005) exam-
ined liming experiments conducted from the 1980s to 2000,
including various chemical compounds and methods of applica-
tion. Overall, their review found that directly adding lime to the
stream channel significantly improved the stream pH, chemistry,
and suitability for fish populations. Their review also presents
research suggesting that while catchment level liming was effec-
tive at increasing stream pH and Ca concentrations the effects on
inorganic Al concentrations were variable. Johnson et al. (1995)
presented long term soil and stream chemistry results of a catch-
ment level liming experiment in the southern Appalachians;
6.7 Mg ha�1 dolomitic limestone was added in a single application.
They found liming increased Ca, Mg and percent base saturation in
surface (0–15 cm) and subsurface (15–30 cm) mineral soils but
there was little movement of the added lime to deep soils (30
+ cm); stream Ca was increased for almost 20 years. A study by
Long et al. (2015) examined soil responses to a liming treatment

Fig. 9. Relationship between catchment stream elevation and stream chemistry: ANC, pH, and log10 molar Ca:Al. Data shown are mean catchment values for each watershed,
North River (d), Santeetlah Creek (N), and North Fork of the French Broad (j).
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on sugar maple stands in northern Pennsylvania; 22.4 Mg ha�1

dolomitic lime was added in a single application. They found
increases in exchangeable Ca and Mg to soil depths of 45 cm along
with increased foliar Ca, 21 years after treatment. Ormerod and
Durance (2009) examined 25 year stream chemistry responses to
reductions in acidic deposition and liming in moorland and forest
catchments; 9–25 Mg ha�1 calcium carbonate added in a single
application. Declining acidic deposition, without lime treatment,
resulted in increased stream water pH with values increasing from
4.8 to 5.2 while liming increased stream pH to 5.9. Our estimated
lime requirements for high elevation, mixed deciduous forests
were greater than that applied by Johnson et al. (1995), but are
within the range applied by others in the northeastern USA (Clair
and Hindar, 2005; Long et al., 2015), suggesting that lime applica-
tions in these forests would result in long-term soil and stream
responses.

Research studies have also examined base cation additions,
specifically Ca, without pH adjustment, on soil chemistry, vegeta-
tion Ca, and stream chemistry. In the Hubbard Brook Experimental
Forest, wollastonite (CaSiO3) (0.85 Mg Ca ha�1) was applied to a
forested catchment with Ca depleted soils and the responses have
been extensively studied (Juice et al., 2006; Nezat et al., 2010;
Green et al., 2013). Juice et al. (2006) found that Ca addition
increased the pH of the Oi + Oe horizons from 3.8 to 5.0 and the
Oa horizon from 3.9 to 4.2 within 3 years of treatment; foliar and
fine root Ca concentrations also increased. Nezat et al. (2010) found
that it took 3–9 years for the applied Ca to infiltrate the deeper
flow paths in the soil profile before it was exported to the stream.
Within this same watershed, Green et al. (2013) found that stream
flow was increased due to reduced rates of evapotranspiration for
three years, before returning to pre-treatment levels. They attribu-
ted this to increased aboveground productivity due to the short
term correction of a nutrient imbalance, as found in other studies
(e.g., Kulmatiski et al., 2007).

5. Conclusions

We studied three watersheds in the southern Appalachian
mountains, North River (NR), Santeetlah Creek (SC) and the North
Fork of the French Broad (FB), in an effort to identify catchment
(i.e., smaller 1st order catchments within the 3rd order water-
sheds) indicators of stream acidity (ANC, pH, and Ca:Al molar ratio)
that would aid land managers in selecting catchments to focus
restoration efforts. Catchments represented a broad range of
stream acidity and indicators of sensitivity to acidic deposition.
We found that vegetation (stand basal area, dominant tree height
and tree diameter), soil A-horizon depth, deep soil C concentra-
tions and indicators of soil parent material (total elemental Ca
and extractable Ca:total Ca ratio) were significant covariates for
stream ANC, pH, and Ca:Al ratio. O-horizon total N and Al concen-
trations were also strongly related to stream acidity.

Laboratory estimated lime requirements, which were within
the broad range found in other studies, varied by as much as
8 Mg ha�1 among catchments due to differences in soil chemistry.
Expected stream responses to lime application may also differ,
depending on overstory species, soil-stream connectivity and other
soil processes. Long-term lime application studies are recom-
mended for these high elevation, mixed deciduous forests to eval-
uate how they will respond to lime application. Nonetheless, our
initial estimates of lime requirement will help land managers tar-
get the catchments and streams where lime application would
have the greatest probability of reducing stream acidity.

Our measures of how catchment biotic, physical and chemical
indicators related to stream acidity could provide insight to select-
ing forested catchments for restoration treatments. However, full

understanding of the applicability of these indicators in targeting
restoration efforts will require an effort that includes widespread
regional sampling to capture a greater range of watershed condi-
tions and recovery patterns.
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