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Deep Reinforcement Learning for End-to-End
Network Slicing: Challenges and Solutions

Qiang Liu, Nakjung Choi, Tao Han

Abstract—5G and beyond is expected to enable various emerg-
ing use cases with diverse performance requirements from
vertical industries. To serve these use cases cost-effectively,
network slicing plays a key role in dynamically creating virtual
end-to-end networks according to specific resource demands. A
network slice may have hundreds of configurable parameters
over multiple technical domains that define the performance of
the network slice, which makes it impossible to use traditional
model-based solutions to orchestrate resources for network slices.
In this article, we discuss how to design and deploy deep
reinforcement learning (DRL), a model-free approach, to address
the network slicing problem. First, we analyze the network slicing
problem and present a standard-compliant system architecture
that enables DRL-based solutions in 5G and beyond networks.
Second, we provide an in-depth analysis of the challenges
in designing and deploying DRL in network slicing systems.
Third, we explore multiple promising techniques, i.e., safety and
distributed DRL, and imitation learning, for automating end-to-
end network slicing.

I. INTRODUCTION

5G and beyond will be a catalyst to digitalize the econ-
omy and contribute toward global digital transformation. The
explosion of networking connections and mobile data will
dramatically increase the complexity of the network. An
increasing number of new use cases will be enabled for various
industries such as automotive, manufacturing, logistics, and
energy [1]. These new use cases have highly diverse, and even
conflicting, communication and networking requirements such
as latency, data rates, availability, and reliability. The growing
network complexity and service diversity challenge network
operators to dynamically orchestrate and coordinate network
resources to offer a different mix of capacities for supporting
services with diverse requirements simultaneously.

Since it is not economically viable to build a dedicated
network for each type of service, network slicing emerges
as a key technology in 5G wireless networks for efficiently
supporting highly diverse use cases [1]. Network slicing allows
network operators to run multiple logical networks (aka.
network slices) on top of common physical network infras-
tructures. For each network slice, customized functionalities
and network operations can be implemented according to the
specific need of an individual use case, e.g., enhanced mobile
broadband (eMBB), ultra reliable low latency communications
(URLLC) and massive machine type communication (mMTC).
For example, a network slice can be customized to support IoT
services for a large number of devices operated at low data
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Fig. 1: An illustration of end-to-end network slicing.

rates. At the same time, another network slice can be tailored
to provision latency-critical services such as vehicle-to-vehicle
communications and smart grid controls.

Network slices usually span across multiple technical do-
mains of the network, as shown in Fig. 1, e.g., radio access
networks, transportation networks, core networks, and edge
and cloud computing. Hence, end-to-end resource orchestra-
tion is essential in network slicing to dynamically manage
resource allocations to different slices in multiple domains for
achieving optimized performances. A network slice may have
hundreds of configuration parameters defining its functions
and performance according to the service level agreement
(SLA). These configurations are connected to the underlying
resource demands in different domains. Thus, it is impractical
to develop a closed-form model of the network performance
versus the joint resource allocations in multiple domains.

Recent advances in ML, especially deep learning (DL)
and deep reinforcement learning (DRL), have demonstrated
great potential to learn and understand complex and high-
dimensional correlations by leveraging artificial neural net-
work (ANN) architectures. ML as a model-free approach
requires no prior knowledge in advance, which can automati-
cally learn the complex and unknown correlations in network
slicing. Thus, there is increasing popularity of exploring ML
to automate network slicing [2], [3], [4], e.g., admission
control and resource management. Recent works reveal that
the resource orchestration in network slicing has Markov
property [5], i.e., the orchestration decision at the current
time influences not only the current performance of slices
but also the future network states, e.g., queuing. As a result,
the resource orchestration turns out to be a Markov decision
process (MDP), which cannot be resolved with DL techniques.
Hence, DRL becomes the most suitable approach to deal with
the MDP and intelligently manage the resource orchestration
in network slicing.

To facilitate ML-based network management solutions, the
open-radio access network (O-RAN) alliance proposes a gen-
eral framework of ML procedure which incorporates ML com-
ponents, e.g., supervised and unsupervised learning, within
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multiple network functions [6]. ETSI introduces experiential
networked intelligence (ENI) to enable context-aware artificial
intelligence based on the “observe-orient-decide-act” control
model. It supports adaptive and intelligent service operation
and management for network operators by integrating network
function virtualization (NFV) and software-defined network
(SDN) controllers. 3GPP suggests the management loop of
”observation-analytics-decision-execution” by leveraging the
management data analytics (MDA), which provides the ca-
pability of processing and analyzing the raw data related
to network and service events and status, e.g., performance
measurements, and QoE reports.

Following these initiatives, this article dives deep into
DRL-based network slicing solutions. First, we introduce the
end-to-end resource orchestration problem in network slicing
and show that the problem can be naturally formulated as
a Markov decision process (MDP). To deploy DRL-based
network slicing, a new end-to-end network system architecture
is engineered with the network layer, orchestration layer and
intelligence layer. Second, we discuss the challenges of design-
ing DRL-based network slicing solutions from the perspectives
of both algorithms and system. Third, we explore and envision
multiple promising techniques, i.e., safety and distributed
DRL, and transfer learning, to address these challenges in
automating the end-to-end network slicing.

II. DRL FOR NETWORK SLICING

A fundamental research problem in network slicing is
the design of end-to-end resource orchestration that jointly
orchestrates resources in multiple domains, e.g., radio access
networks and edge computing, based on service requirements
of network slices. In this section, we analyze the end-to-
end resource orchestration problem and present the system
architecture for DRL-based network slicing.

A. Resource Orchestration Problem

The rationale behind using DRL is that the end-to-end re-
source orchestration problem can be reasonably formulated as
a Markov decision process (MDP) when considering the tem-
poral dependency of the resource orchestration and network
performance [5]. A MDP can be denoted by 〈S,A, r, P, µ〉,
where st ∈ S is defined as the state that describes the network
status and traffic load distributions in the current time slot
t. at ∈ A is defined as action that describes how resources
are orchestrated on every edge node, e.g., radio base stations
and edge servers, for every network slices in time slot t.
r : S ×A→ R is defined as the reward function that models
the performance of the network system (e.g., resource usage).
c : S × A → C is defined as the cost function that models
the constraints of the network system (e.g., SLA requirement).
P : S × A × S → R is defined as the state transition func-
tion describes the underlying temporal dynamics of the state
depending on the current action and initial state distribution
µ : S → [0, 1]. The resource orchestration action is denoted by
at = {atm,k} where atm,k is the amount of type-m resource
allocated to slice k in time slot t. A resource orchestration
policy π : S → Pr(A) prescribes a probability distribution

over actions given the current state. Given policy π, the end-
to-end networking system receives a sequence of rewards and
costs (i.e., network resource usage and system performance)
r1, r2, ... and c1, c2, .... The end-to-end orchestration problem
is to find the policy that maximizes the long-term system
reward, i.e., argmaxπ Eπθ [

∑∞
t=0 γ

trt(st, at), s.t. ct(st, at) ≤
0] where γ is the discount factor that balances immediate and
future rewards.

B. DRL-based Network Slicing System Architecture

To facilitate DRL-based end-to-end network slicing, we
design a new and standard-compliant system architecture with
three functional layers as shown in Fig. 2. The network
layer consists of network infrastructure devices, e.g., eNB and
gNB, switches/routers, network functions, and edge and cloud
servers. The orchestration layer provides end-to-end resource
management functions that allocate resources to network slices
to ensure their performances according to SLAs. Domain man-
agers are deployed in each technical domain, e.g., access, edge,
transport, and core networks, with the action and state APIs
to execute the orchestration. The domain managers realize the
network slice subnet management functions (NSSMF) sug-
gested by 3GPP [7]. The end-to-end orchestration and service
assurance modules, which are similar to the 3GPP network
slice management function (NSMF), aim to coordinate domain
managers to ensure the end-to-end system performance of
network slices [7]. These modules are designed with interfaces
that allow DRL agents to receive orchestration actions and
feedback the slice performance statistics. The intelligence
layer implements DRL agents that learn the optimal resource
orchestration policy for end-to-end network slicing. Since the
machine learning components, i.e., DRL agents, are decoupled
from orchestration functions, various machine learning tech-
niques, e.g., safety learning, distributed learning and imitation
learning, can be deployed without changing the underlying
network slice functions in the orchestration layer.

III. DRL CHALLENGES

Although many existing works focus on applying DRL
to solve various networking problems, deploying DRL-based
network slicing solutions in practical end-to-end networks still
faces multiple research challenges in terms of the performance
assurance, solution scalability, and convergence speed of DRL.

A. Performance Assurance

Network operators aim to satisfy service level agreements
(SLAs) of slices with the minimum usage of cross-domain
resources and thus reduce the operating expenses (OPEX).
Realizing this goal is non-trivial because of the following
research challenges.

1) DRL explainability: To provide performance assurance,
it is important to understand why a DRL-based slicing solution
can lead to certain network performance. The difficulties
come from two aspects. First, it is non-trivial to interpret the
impact of the state space of DRL on the optimal policy. The
state space should provide a comprehensive representation of
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Fig. 2: DRL-powered end-to-end network slicing system architecture.

network status to DRL agents. End-to-end networking systems
generate a huge amount of measurement data from different
domains. There still has no clear path to follow and build the
state space based on these network measurements in order to
achieve the optimal network slicing policy.

Second, the reason why the actions generated by the DRL
agent can achieve the optimal performance in long term is
difficult to interpret. For a DRL policy, actions are calculated
through mathematical operations, e.g., addition, multiplex and
activation in hidden layers and the output layer of a neural
network. Although the mathematical calculations are known,
analyzing them can only provide very limited understandings
about why an action is generated instead of the others, espe-
cially considering deep neural networks with heterogeneous
layers such as convolutional and dropout. Without such inter-
pretable knowledge, it’s hard for network operators to directly
control or modify actions generated by DRL agents.

2) Exploration in policy optimization: DRL usually relies
on random exploration mechanisms to find a better policy for
improving long-term rewards. A practical useful exploration
mechanism explores a nearby space of action at, e.g., at + ε
where ε is sampled from a normal distribution with zero mean
and a predefined deviation. As the new action deviates from
the original action at, the performances of network slices, e.g.,
throughput and delay, may be degraded to the extent that SLAs
are violated. It is straightforward to limit the magnitude of
the action exploration, e.g., at + clip(ε,−H,H), where H
is a given maximum allowed deviation. However, this method
reduces the exploration efficiency as the exploration is clipped.
As a result, it may lead to a suboptimal policy or require more
interactions learn the optimal policy in practice.

3) Quantization error and parameterization: DRL agents
update their neural parameters by using gradient descent
methods, e.g., SGD, Adam and Momentum [8], based on
the collected historical trajectories (state-action-reward pairs).
Although the step size of gradient descent methods are usually
small, e.g., 1E-3 or 1E-4, the performance of the DRL agent
after one single policy update can be significantly different.
The reason is that DRL policies are often parameterized by

millions of neurons, a slight change in each neuron can result
in a dramatic discrepancy in output actions. Hence, when
learning the optimal policy via interacting with a real end-to-
end network, DRL agents may show changing performances
during the learning phase. As a result, it is challenging to
assure a predictable performance of network slices using DRL-
based slicing solutions.

B. Solution Scalability

Learning-based networking mechanisms are designed to
solve complex networking problems in a large scale. Hence,
the scalability of DRL-based network slicing solutions deter-
mines whether they can be deployed in practical networking
systems with heterogeneous infrastructures, e.g., base stations
and servers, and dynamic service demands. The challenges
of scaling DRL-based solutions up-and-down are from two
aspects: communication and computing overhead, and neural
network design.

1) Communications and computing overhead: DRL agents
need to collect network measurements from distributed in-
frastructures to train the neural network [9]. As the scale
of the network increases, more measurement data need to
be transmitted over the network, which may incur excessive
communication overhead. According to OpenCelliD database,
the number of base stations (e.g., GSM, UMTS, CDMA, LTE)
of a medium city downtown (several square miles) could
reach 1000. Consider each base station transmits hundreds
of parameters every millisecond, the transmission demands of
such area will reach up to gigabits per second. Meanwhile,
managing a large-scale network also requires DRL agents to
add more dimensions in their state and action spaces. As a
result, the DRL agent consumes more computing resources
and takes a longer time to learn the optimal policy.

2) Neural network design: DRL policies are parameterized
by deep neural networks whose input and output dimensions
are selected based on the states and actions [8], where the
dimensions stay unchanged throughout the policy training.
When the networking condition changes, e.g., new admitted
network slices, both the states and actions space need to be
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revised to reflect this change. As a result, the input and output
dimensions of the neural network need to be updated, and
the DRL policy has to be trained under the new networking
condition. Although recently emerged recurrent neural net-
works (RNN) and graph neural networks (GNN) can handle
the flexible sizes of inputs and outputs, their implementations
in the context of DRL still need further investigations in terms
of data efficiency, generalization and convergence.

C. Convergence Speed of DRL

DRL agents learn the optimal policy by directly interacting
with real networking systems. To obtain the optimal policy, a
DRL agent usually needs to be trained by a large number of
online interactions. Depending on how frequently the network
measurements can be collected, it may take a very long time
to achieve the convergence of the DRL policy. The large-scale
5G network normally has a long orchestration interval [10] as
it involves the reconfiguration for various network devices and
hardware. Considering 15 minutes as a practical reconfigura-
tion interval, the feedback of an orchestration action generated
by the DRL policy can only be obtained every 15 minutes.
Since a single policy update usually requires more than one
thousand transitions [8], it needs, at least, a few days to achieve
one policy update.

IV. SYSTEM CHALLENGES

Deploying DRL-based network slicing solutions faces sev-
eral system level challenges such as preparing networking data
and providing appropriate network programmability for DRL.

A. Networking Data for DRL

DRL agents are trained with measurement data collected
from heterogeneous and distributed network infrastructures.
Preparing the data for DRL training can be a huge burden on
networking systems.

1) Data heterogeneity: The openness evolution of 5G leads
to the dis-aggregation of network components, which allows
flexible network deployment strategies and increases the het-
erogeneity of these data in terms of formats, volume and time
scales. For example, 3GPP suggests splitting the gNB function
into a central unit (CU) and a distributed unit (DU). The
DU focuses on signal and data processing at PHY and MAC
layers, and CU manages controlling functions at higher layers
such as PDCP and RRC. O-RAN [6] further split the gNB
functions into CU, DU and radio unit (RU), where RU only
provides functions related to radio frequency (RF) and Low-
PHY processing such as fast Fourier transform (FFT), inverse
FFT and physical random access channel (PRACH) extraction.
To efficiently manage measurement data from various network
functions, O-RAN introduces the key performance measure-
ment (KPM) function that defines a collection of information
elements such as 5G QoS Identifier (5QI), QoS Class Identifier
(QCI), time stamp, and Cell Object ID. These information
elements contain highly heterogeneous data. In addition, the
service-based architecture of 5G core (5GC) implements new
network functions such as access and mobility management

function (AMF), session management function (SMF), and
user plane function (UPF), which further increases the amount
and heterogeneity of network data.

2) Data processing capability: Since a large amount of
heterogeneous network data have to be collected and analyzed
for DRL-based network slicing solutions, additional comput-
ing devices and functions are necessary to meet such data
processing demands. For example, the logging size of an
operating gNB could easily exceed 1GB every minute [11],
which is difficult to be transmitted from infrastructures to DRL
agents. To reduce the data size of runtime data, the function
of feature extraction, e.g., autoencoder, may be implemented
to generate a concise representation. The feature extractor
usually achieves a better compression rate and accuracy of
representation if more computing resources are enforced, e.g.,
denser neural network architectures. As a result, there is a
tradeoff between the deployed computation resources and the
extraction performances, which requires further investigations.

B. Network Programmability

To reconfigure network slices dynamically, network systems
need to provide virtualization functions and programming in-
terfaces to allow DRL agents to configure end-to-end network
slices.

1) End-to-end infrastructure virtualization: The infrastruc-
ture virtualization is a key technology to provide neces-
sary isolations among network slices, which assure that the
performance and functions of a network slice are not af-
fected by the operations of any other slices. The existing
virtualization solutions are designed for individual technical
domains, e.g., RAN, transportation networks, and edge and
cloud computing. For example, FlexRAN virtualizes physical
resource blocks (PRBs) in the MAC layer as virtual radio
bandwidth in RAN [11]; OpenFlow allows the creation of
virtual networks using software defined networking (SDN)
in transport networks; virtual machine and docker container
techniques enable the virtualization of computing resources
in edge and cloud computing. It is, however, challenging
to integrate virtualization solutions from different technical
domains due to the heterogeneity of time scale, programming
interfaces, and data models. For instance, the PRBs in RAN
can be modified in milliseconds, while the scaling of docker
containers in edge computing requires seconds to take effect.

2) Network resource model: The network resource model
(NRM) is introduced to provide predefined interfaces based on
either XML, JSON, or YANG to query and manage network
resources [12]. The NRM defines various network resources
that allow efficient network management. For example, RRM-
PolicyRatio defines rRMPolicyMaxRatio, rRMPolicyMinRatio
and rRMPolicyDedicatedRatio, which represent the maximum,
minimum and dedicated resource usage quota for the associ-
ated rRMPolicyMemberList. A RRMPolicyMember is defined
by its pLMNId and sNSSAI (S-NSSAI). Considering diverse
performance requirements of services, e.g., reliability and
delay, the NRM needs to support more configurable param-
eters, e.g., antenna array, transmit power, modulation and
coding schemes. However, how these parameters affect the
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Fig. 3: a) the explored techniques for addressing challenges; b) the network slicing testbed [5].

performance of users and enable more customization features
for slices are still open problems.

V. DRL-BASED NETWORK SLICING SOLUTIONS

In this section, we discuss several promising techniques,
as summarized in Table I, to address the aforementioned
algorithm and system challenges. Fig. 3 (a) illustrates how
these technologies can be deployed for end-to-end network
slicing.
• The safety DRL addresses the challenge of the perfor-

mance assurance by tackling the unpredictable exploita-
tion and random exploration, and assuring performance
requirements of slices throughout the learning phase.

• The distributed DRL addresses the scalability challenge
by leveraging multi-agent DRL and allowing effective
coordination among distributed agents.

• The imitation learning addresses the challenge of DRL
convergence by offline imitating a baseline policy and
obtaining a good start point for online learning.

We implement and evaluate these solutions using the testbed
shown in Fig. 3 (b). The radio domain manager is designed
based on OpenAirInterface (OAI) project with FlexRAN sup-
port [11] and use Ettus USRP B210 as the RF front-end of
a base station. The transport domain manager is developed
based on OpenDayLight (ODL) with OpenFlow 1.3 to control
the transportation network composed of Ruckus ICX series
SDN switches. We use OpenAir-CN project to deploy core
network and docker container technique to enable edge com-
puting virtualization. The DRL agents are developed by using
PyTorch 1.5 with 3-layer fully-connected neural networks.

A. Safety DRL

The safety DRL aims to train the DRL agent to maximize
the cumulative rewards while maintaining different constraints.
It is accomplished by integrating the Lagrangian primal dual
method for statistical performance assurance and the baseline
switching mechanism for avoiding instantaneous violations.

The reward shaping method, which re-weights the reward
if constraints are violated, has been widely used to penalize
the DRL agent and guide its training. However, it is difficult
to choose the optimal weights especially under multiple con-
straints. For example, too small weights leads to insufficient

penalization for the violations of constraints, while too large
weights would suppress the exploration of DRL. To address
this problem, recent advances adaptively incorporate these
constraints into the reward function by using the Lagrangian
primal dual method [13]. In particular, Lagrangian multipliers
are introduced to re-weight the reward function, which are
updated with the sub-gradient descent method in a larger
time scale than that of resource orchestration. On learning the
resource orchestration policy, the reward function of the DRL
agent is rewritten by the Lagrangian function, which integrates
both the original objective and the weighted constraints by
using the updated Lagrangian multipliers. The constraints can
be eventually satisfied by alternatively updating the multipliers
and training the DRL agent.

The constraints, however, can still be violated before the
Lagrangian primal dual method converges. As shown in Fig. 4
(a), a baseline switching mechanism is developed to enable the
dynamic switching between the policy of the DRL agent and
a baseline policy. We consider there is a baseline policy, e.g.,
rule-based or heuristic, which can guarantee the slice SLA
but with higher resource usages [14]. The policy evaluation
module is created to predict whether enforcing the current
action generated by the DRL agent will break the slice SLA.
In particular, we design the module to learn the value of
constraints under different states and actions. This module can
be implemented with DNN, where the input is the combination
of state and action space, and the output is set to be the value
of constraints, i.e., ct(st, at). If the prediction result is above
zero with high confidence, the baseline policy will be invoked,
which can maintain slice SLA at a cost of high resource
usage. Fig. 4 (b) shows the cumulative probability of the SLA
violation by two schemes, i.e., with and without the baseline
switching mechanism. The SLA violation is defined if the
constraints are violated, i.e., ct(st, at) ≥ 0. It can be seen that,
without the baseline switching mechanism, the SLA violation
can be as high as 15%. If the baseline switching mechanism
is enabled, the SLA violation is reduced significantly (∼1%).

B. Distributed DRL

The distributed DRL aims to assure the scalability of the
DRL agent when tackling dynamic networks, e.g., varying
slice traffic and infrastructure deployment. The multi-agent
DRL is the common approach to scale the DRL agent in
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Challenges Existing Work Our Solution
Performance
Assurance

unawareness of performance requirements,
free action space exploration

Safety DRL: constraint-awareness update, baseline switching
scheme

Solution Scalability communication & computing overhead,
fixed input/output DNN design

Distributed DRL: distributed multi-agents, coordination
mechanism among agents

DRL Convergence massive online interactions required, poor
performance at early stage

Imitation Learning: offline imitate from baseline for online
acceleration

TABLE I: Summary of challenges and solutions

distributed networks, which creates multiple cooperative or
competitive agents to achieve the global optima. For example,
an individualized DRL agent can be created to orchestrate
the resource for each network slice, where these agents are
competitive due to the limitation of resource capacity. This
individualized slice agent scheme helps to resolve the dynam-
ics of slice admission and departure, where the action space
varies. The training of distributed agents can be accomplished
by centrally aggregating their experiences and updating the
policy of all agents simultaneously.

To orchestrate the cross-domain resources for end-to-end
slices, multiple individualized DRL agents can be created in
distributed infrastructures. As illustrated in Fig. 4 (c), the
DRL agent 1 orchestrates RAN and edge networks, the DRL
agent 2 controls transport networks, and the DRL agent 3
manages core networks and cloud computing resources. These
agents learn to allocate resources of infrastructures to slices
independently, e.g., the DRL agent 2 allocates the bandwidth
in transport networks. As these agents only focus on their
technical domains, the end-to-end performance requirement
of slices may not be guaranteed if no collaborations. Thus,
we propose an SLA decomposition module to decompose the
end-to-end performance requirements of slices into different
technical domains, which allow the DRL agents aware of
local requirements. For example, the end-to-end latency and
reliability performance of a slice may be decomposed to local
requirement in RAN, TN, CN, and Edge. Then, the DRL
agents in each domain is focused to allocate their resources to
meet the local performance requirement of this slice. In this
scenario, the SLA decomposition module needs to balance the
resource utilization in different domains, and is responsible for
satisfying the end-to-end performance requirement.

C. Imitation Learning

Imitation learning aims to train the DRL agent to mimic
the behavior of a target agent, where the target agent can
be either human, model-based rules or another DRL agent.
The main methods of imitation learning are behavior cloning,

direct policy learning via interactive demonstrator, and inverse
reinforcement learning. Consider the network operator has a
baseline policy, e.g., model-based rules, the imitation learning
can train the DRL agent to mimic its behaviors, e.g., mapping
the observed states to actions. The advantage of offline imita-
tion learning is that the transitions of the baseline policy are
not expensive to obtain. In Fig. 4 (d), we offline train the DRL
agent to imitate the behavior of the baseline policy by using
the behavior cloning method. Specifically, the offline training
is accomplished by minimizing the action differences between
the DRL policy and the baseline policy under different states.
We see that the DRL agent uses a similar resource usage as
the baseline policy does after several offline training epochs.
The DRL agent, after the imitation learning, serves as the
start point for the online learning phase, which then continues
learning and improving.

VI. FUTURE DIRECTIONS

We envision several promising techniques that may help
to alleviate and resolve the aforementioned system and DRL
challenges for end-to-end network slicing.

A. Hierarchical and Recursive Abstraction

The hierarchical and recursive abstraction (HRA) aims to
adaptively abstract and manage resources in different domains
both vertically and horizontally. In the vertical direction,
domain managers (DMs) in the same technical domain are
hierarchically abstracted to provide high-level programmabil-
ity. For example, the coverage in RAN can be accomplished
by abstracting radio resources in multiple base stations in the
geographic area. In the horizontal direction, DMs in different
technical domains are recursively abstracted to provide end-
to-end programmability. For example, the end-to-end data
rate can be achieved by abstracting virtual resources in both
radio, transport and core DMs. These DMs are responsible
for enabling the network programmability of infrastructures,
collecting the network state with standardized interfaces, and
enforcing the management actions made by the DRL agents.
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B. Offline DRL

Offline DRL can be explored to offline train the DRL
agents only based on collected online data sets. It helps
to avoid expensive and unsafe online interactions with real
networks. The main difficulty is the distributional shift issue,
i.e., although its function approximators (e.g., policy and value
networks) is trained under one distribution (i.e., limited data
set), it will actually perform on a different distribution (i.e.,
the real network).

C. Transfer Learning

Transfer learning has shown a great potential to address
challenges regarding scalability, model reproducibility, and
sample efficiency [15]. The basic idea is to exploit prior
learned knowledge to benefit the learning process in target
tasks. For example, several works have been done to transfer
resource allocation policies from one network to another
with similar settings, which accelerates the convergence speed
of DRL agents [15]. Hence, the exploration of leveraging
transfer learning in dealing with DRL challenges needs further
research.

D. Explainable AI

The explainable artificial intelligence (XAI) aims to under-
stand, interpret and explain the black-box DNN-based policies
via different approaches, e.g., visual explanation, local ex-
planations, illustrative examples, and simplifications. Various
techniques, e.g., linear regression, decision trees, K-nearest
neighbors, and Bayesian models, can be exploited to improve
the explainability of DNN-based policies. For example, given
a state observation, the Q-value of each possible action can
be obtained from the Q network in the Deep Q-Network
(DQN) agent. To maximize the long-term cumulative reward,
the action with the highest Q-value is usually selected by the
DQN agent.

VII. SUMMARY

This article discusses DRL-based end-to-end network slic-
ing. We have briefly studied the end-to-end resource orches-
tration problem and presented a new system architecture to
enable DRL-based network slicing. We have also analyzed
the challenges of deploying DRL-based solutions from the
perspectives of both algorithm and system. Moreover, we
have explored and envision multiple promising techniques,
e.g., safety and distributed DRL and transfer learning, for
automating end-to-end network slicing.
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