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A B S T R A C T   

This work innovatively explores the bio-methanol production process, conducts comprehensive analyses, de-
velops statistical models, and optimizes operational conditions, contributing valuable insights to the field of 
sustainable energy production from biomass. Accordingly, bio-methanol production from biomass through 
gasification route was investigated and simulated using Aspen Plus software. The effects of operational pa-
rameters on energy duty of gasification reactor and the methanol production rate in syngas to methanol reactor 
were investigated. The parameters affecting the process performance including temperature, pressure, and 
steam/feed ratio were examined using the response surface methodology (RSM) by central composite design 
(CCD) technique. Analysis of variance (ANOVA) was performed, and two quadratic models were derived. The 
predicted R2 values of these models for methanol mass flowrate and energy duty were 0.9394 and 0.9363, 
respectively. The optimal operational conditions were identified using genetic algorithm (GA). The optimum 
values of temperature, pressure, and steam/feed ratio in gasification reactor were 900 ◦C, 4 bar, and 0.675, 
respectively. This condition leads to methanol mass flowrate and energy duty of 4.254 kg/s and 40736.355 kw, 
respectively. In addition, sensitivity analysis was performed on syngas to methanol reactor performance.   

1. Introduction 

In recent years, due to the phenomenon of global warming, air 
pollution, and energy crisis, efforts such as upgrading fossil fuels [1–3] 
or replacing them with renewable energy sources [4–6] have been un-
dertaken. Combustion of bio-methanol as a renewable energy results in 
lower emissions of gases such as nitrogen oxide, carbon dioxide, and 
sulfur oxide compared to fossil fuels [7]. The reduction of greenhouse 
gas emissions, the possibility of using it in internal combustion engines 
with minor modifications [8,9], and the availability of multiple sources 
as feedstock for its production are among the advantages of using 
bio-methanol as a green fuel. 

Despite the above mentioned advantages, the production and use of 
bio-methanol as a green fuel are also accompanied by several disad-
vantages. The need for land to cultivate biomass for bio-methanol pro-
duction leads to an increase in food prices and ultimately poses a threat 
to food security, especially for poor countries. Therefore, the production 
of bio-methanol from the waste biomass such as agricultural residues, 

food waste, and stabilized sewage sludge can be useful solutions. 
Further, during the process of producing this bio-fuel, formaldehyde 
gases and nitrogen oxides are generated, which lead to environmental 
pollution. The release of these gases is also among the other disadvan-
tages of this green fuel production. 

Bio-methanol can be produced through both biological and chemical 
methods. In the chemical process, due to the use of a catalyst, the effi-
ciency of the process is higher. Furthermore, process control is easier in 
chemical methods, leading to higher productivity. Due to better process 
control and higher efficiency in chemical processes compared to bio-
logical ones, there is a greater inclination towards industrial-scale pro-
duction of bio-methanol using chemical methods. 

Zheng et al. investigated the gasification process of several woody 
biomass sources for the production of bio-methanol. They simulated this 
process using Aspen Plus simulator. Further, they assessed the economic 
profitability of this process. They reported that biochar is the best 
biomass with the highest production efficiency [10]. AlNouss et al. 
performed a techno-economic analysis of bio-methanol production 
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through gasification of palm oil waste as biomass. Further, they assessed 
the impact of CaO addition on CO2 capturing during the gasification and 
advancing the process performance. They used Aspen Plus as simulation 
environment and conducting economic evaluation by this software. 
Finally, they investigated the effects of parameters on process perfor-
mance through doing sensitivity analysis [11]. Im-orb et al. investigated 
the gasification of oil palm residues using a model in Aspen Plus. They 
reported that the highest gasification performance is achieved when 
temperature and equivalent ratio are 750 ◦C and 0.25, respectively [12]. 

In gasification process, the gasifying agent can be air, oxygen, or 
steam [4]. AlNouss et al. compared the gasification process with pure 
oxygen only and steam only as gasifying agents. They concluded that the 
use of steam as gasifying agent is economically and environmentally 
preferable to pure oxygen [13]. Liu investigated the gasification of coal, 
biomass, and coal/biomass with air/steam gasifying agent with Aspen 
Plus simulator. The results showed that coal gasification is more 
cost-effective for methanol production in comparison with the other two 
feedstocks [14]. Of course, it should be noted that in the economic 
evaluation of a process, various factors such as energy prices, avail-
ability of feedstocks, tax laws, and so on, have impact. Therefore, over 
time and with changing conditions, a process that is currently 
cost-effective may not be economically viable in the future, and vice 
versa. Furthermore, a cost-effective project in one region may not be 
economically viable in another geographical area. In addition, in 
bio-methanol production, one should not only consider economic issues. 
Rather, the production of bio-methanol is also important from envi-
ronmental perspectives. 

Yousef et al. used fuzzy logic methodology to develop models to 
predict yield of bio-methanol production from sugar cane bagasse. The 
operative parameters were reaction temperature, reaction time, and 
nitrogen flow. They reported good agreement between model predicted 
and real data. In addition, they used particle swarm optimization (PSO) 
technique to find the optimum values of operational parameters [15]. 
Shamsul et al. investigated the optimization of bio-methanol production 
from goat manure via statistical approach. The operational parameters 
included temperature, hydraulic retention time (HRT), and cell con-
centration [16]. 

Countries with significant amounts of agricultural and food waste or 
any other type of non-utilizable biomass waste should pay special 
attention to the production of bio-methanol and investment in this field. 

Mathematical modeling is a critical tool to examine the influencing 
parameters and can be used to forecast the process performance and 
optimization [17,18]. But in some cases, developing a precise mathe-
matical model is hard and impossible due to the lack of knowledge in 
nature of process. Design of experiment (DoE) method is a practical tool 
for examining the effect of various operational parameters on process 
performance. The advantage of this method over the conventional 
method is considering the interaction between operational parameters 
and performing fewer tests, which leads to time savings and reduced 

testing costs. Given the popularity and effectiveness of this approach, 
DoE is used in various studies in different fields of science and tech-
nology [19–28]. 

In this study, the whole biomass gasification process for bio- 
methanol production was investigated and evaluated. Due to the exis-
tence of multiple main sections and different units in the plant, it is not 
possible to thoroughly examine, study the effect of operational param-
eters, model, and optimize all the equipment and units in one paper. 
Therefore, in this study, the focus is on simulation, modeling, and 
optimization of the gasification and syngas to methanol process. Totally, 
the gasification process is of great importance in bio-methanol produc-
tion. So, the effects of operational parameters on energy duty of gasifi-
cation reactor and the production rate of syngas to methanol process 
were investigated. Accordingly, in first step, the whole process was 
simulated using Aspen Plus software. Then, the parameters affecting the 
performance of process including temperature, pressure, and steam/ 
feed ratio in gasification reactor were examined using the DoE-RSM 
central composite design (CCD) technique. Analysis of variance 
(ANOVA) was performed, and statistical models were derived. In the 
next step, optimal conditions for the process were obtained using the 
developed models and genetic algorithm (GA) as optimization algo-
rithm. In addition, sensitivity analysis was performed on syngas to 
methanol reactor performance. The impact of temperature and pressure 
on methanol mass flowrate and mass fraction in output were 
investigated. 

This study brings innovation to the forefront by delving into the 
production of bio-methanol from biomass via the gasification route. 
Through a combination of in-depth parameter analysis, process simu-
lation, statistical modeling, RSM, sensitivity analysis, and optimization 
techniques, authors offer novel insights into the realm of sustainable 
energy production from biomass. The models developed in this work 
have acceptable accuracy. These findings pave the way for enhanced 
efficiency and environmental sustainability in methanol production, 
contributing to the broader field of renewable energy solutions. 

2. Methods and materials 

2.1. Process mechanism 

The production process consists of three steps including dehumidi-
fication, syngas production, and methanol production from syngas. In 
bio-methanol production through gasification route, biomass is con-
verted to syngas, mainly including CO,H2, CO2, and CH4, then syngas is 
converted to methanol in a catalytic process [29]. The reactions of 
syngas production in gasification and pyrolysis, which reported by 
Moghadam et al. are as follows [30]:  

C+1/2O2→CO Exothermic                                                                (1)  

C + O2→CO2 Exothermic                                                                 (2) 

Fig. 1. PFD of biomass to bio-methanol process.  
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C + CO2→2CO Endothermic                                                            (3)  

C+2H2→CH4 Exothermic                                                                 (4)  

C + H2O→CO + H2 Endothermic                                                     (5)  

CO + H2O→CO2+H2 Exothermic                                                      (6)  

CH4+H2O→CO+3H2 Endothermic                                                    (7)  

CH4+ CO2→2CO+2H2 Endothermic                                                  (8)  

C+2H2O→ CH4+ CO2 Endothermic                                                  (9) 

In this work, steam is used as a gasifying agent and the whole process is 
endothermic. 

The reactions that occur in in the process of converting the syngas to 
methanol (hydrogenation) are as follows [10]:  

CO+2H2O→CH3OH                                                                      (10)  

CO2+3H2→CH3OH + H2O                                                            (11) 

These reactions are exothermic. Therefore, the operational temper-
ature of reactor should not be high. The pressure and temperature of 
syngas to methanol conversion were set within 50–150 bar and 
200–300 ◦C, respectively [10]. 

The output stream from the methanol production reactor consists of 
methanol, water, and unreacted synthesis gases. In the first step, 
unreacted syngas are separated from the mixture of water and methanol 
and is recycled to the inlet of reactor. In the second step, water and 
methanol need to be separated each other, and pure methanol should be 
obtained. 

2.2. Process description 

In Fig. 1, a process flow diagram (PFD) of bio-methanol production 
process simulated in this work is shown. The specifications of the 
biomass used in this study are based on the work of Poluzzi et al. [31]. 
The constituent components of biomass are presented in Table 1. Aspen 
Plus (version10) software was used to simulate the process. The used 
fluid package is Peng-Robinson. The pressure, temperature, and flowrate 
of feedstock are 1 bar, 25 ◦C, and 10.27 kg/s, respectively. The binary 
interaction parameters have been shown in Table 2. 

In the first step, the biomass should be moistened. For this purpose, 
the feed is introduced into a stoichiometric reactor called B1. The con-
version percentage in this reactor is 0.444 and the reaction is as follows:  

Biomass(wet)→0.055508H2O + Biomass(dry)                                    (12) 

In the next stage, the mixture is fed into a separator called B2 in order to 
separate moisture from dry biomass. In the following, dry biomass is fed 
into a conversion reactor called B3.In this reactor, biomass is decom-
posed into its constituent components. 

The output products from the B3 reactor are fed into a Gibbs reactor 
called B4. In this reactor, several products such as CO, CO2, H2O, CH4, 
HCl, H2S, and NH3 are produced. 

The output stream from the B4 reactor is fed into a separator called 
B5.The purpose of installing this separator is to remove ash from the 
synthesis gases. In the following, the synthesis gases are introduced into 
a cooler (B6).Then, along with the return flow from the methanol pu-
rification section, it enters into a multistage compressor (B7). 

In the next step, the high-pressure flow is introduced into a high- 
pressure Gibbs reactor (B8). In this reactor, synthesis gases are con-
verted into methanol. The output product from the B8 reactor is then fed 
into a cooler (B10) after passing through a pressure relief valve. And 
finally, it enters into separator B11. In this separator, methanol is 
separated from synthesis gases. Totally, 25% of the unreacted synthesis 
gases are purged, and the rest is recycled to the multi-stage compressor. 

The mass flowrate of different components in final product and the 
return stream are presented in Table 3. 

2.3. Design of experiment 

Different regression models, including linear, two-factor interaction 
(2FI), and quadratic, were investigated. These models for three input 
parameters are presented by equation (13)–(15), respectively. 

Y = [αA,αB,αC].

⎡

⎣
A
B
C

⎤

⎦+ β (13)  

Table 1 
Biomass compositions.  

Component Weight Fraction wt% (Dry Basis) 

Carbon 51.19 
Hydrogen 6.08 
Oxygen 41.3 
Nitrogen 0.2 
Sulfur 0.02 
Chlorine 0.05 
Ash 1.16  

Table 2 
The binary interaction parameters.  

Component i Component j KAij Component i Component j KAij 

H2O CO2 0.12 CO N2 0.0307 
H2O NH3 − 0.2589 CO2 CH4 0.0919 
H2O H2S 0.04 CO2 H2S 0.0974 
H2O CH4O − 0.0778 CO2 N2 − 0.017 
H2 CO 0.0919 CO2 CH4O 0.023 
H2 CO2 − 0.1622 CH4 N2 0.0311 
H2 CH4 0.0156 NH3 N2 0.2193 
H2 N2 0.103 H2S N2 0.1767 
CO CH4 0.03 N2 O2 − 0.0119 
CO H2S 0.0544 N2 CH4O − 0.2141  

Table 3 
The mass flowrate of different component (kg/s).  

Component Recycle Off Gas Product 

H2O 0.00410624 0.00136879 0.0512877 
H2 0.192506 0.0641695 3.40E-05 
CO 2.99082 0.996934 0.001363 
CO2 8.23422 2.74475 0.125292 
CH4 0.786555 0.262185 0.00167839 
NH3 0.000217607 7.25E-05 3.07E-05 
H2S 0.00302987 0.00100996 0.000203862 
N2 0.0339044 0.0113015 3.39E-05 
CH4OH 0.891725 0.297241 3.74199 
HCL 0.00810795 0.00270265 0.000233582  
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Y =
[
αA, αB,αC
αAB,αAC, αBC

]

.

⎡

⎣
A AB
B AC
C BC

⎤

⎦+ β (14)  

Y =

⎡

⎣
αA, aB, aC
αAB, aAC, aBC
αA2 , αB2 ,αC2

⎤

⎦.

⎡

⎣
A AB A2

B AC B2

C BC C2

⎤

⎦+ β (15)  

Where β is the intercept and α is the coefficient of parameters. 
By comparing the performance of each of these models in fitting the 

data, optimal models were selected.One of the important indexes for 
evaluating the reliability of a model is R2, but it should be noted that as 
the operational variables increase, the value of R2 increases while the 
predictive power of the model does not necessarily increase. To address 
this issue, another index called "adjusted R2" is defined. Although R2 and 
adjusted R2 indicate the predictive power of the model, they are calcu-
lated based on the data used for fitting the model. Accordingly, another 
index called "predictive R2" is introduced, which has a better perfor-
mance in introducing an optimal model. 

The operational parameters and their ranges of variation are pre-
sented in Table 4. The operational range of these parameters has been 
determined based on the work of other researchers [10]. It should be 
noted that the developed model will only be valid within a range of 

operational variables mentioned in this table. 
In Table 5, the design arrangement of the experiments using the CCD 

method is presented. Based on the fact that there is three operative 
parameters and considering six repetitions at center point, the number 
of experiments will be twenty. It should be noted that the reason for 
repeating the experiments at the center point is to determine the amount 
of systematic error in the results. 

2.4. Data assessment 

Table 6 shows the specifications of the obtained data. Fig. 2 illus-
trates the correlation between operational variables and the response. 
The closer the correlation coefficient is to one or minus one, the stronger 
the correlation between the two variables. It is clear that there is no 
significant correlation between the operational variables. Mass flowrate 
has the highest correlation with temperature. Furthermore, the corre-
lation between energy consumption and temperature is even stronger 
than the correlation between mass flowrate and temperature. 

3. Result and discussion 

3.1. Model assessment 

The data collected in this study were modeled using statistical 
methods. As mentioned before, regression models were used to establish 
predictive relationships between the factors and the responses. Various 
models including linear regression, 2FI, and quadratic regression were 
studied and investigated. Table 7 displays the values of R2, adjusted R2, 
and predicted R2 of these models for energy duty and bio-methanol 
flowrate. It is clear that the best fitted model is quadratic one. 

For the statistical analysis, widely accepted methods, including 
ANOVA were employed. This statistical tool provided the ability to 
assess the significance of the independent variables and their in-
teractions on the response variables. Backward elimination technique 
was used to remove unimportant factors from the models. This tech-
nique is commonly used in regression analysis. In this way, all potential 

Table 4 
The operational range of operative parameters.  

Operative Parameters Operational Range Unit 

Temperature 700–900 ◦C 
Pressure 2–4 bar 
Steam/Feed Ratio 0.675-1.225 –  

Table 5 
The design layout of experiments.  

std run Temperature (◦C) Pressure (bar) Volume (m3) 

16 1 800 3 0.95 
10 2 1000 3 0.95 
19 3 800 3 0.95 
2 4 900 2 0.675 
6 5 900 2 1.225 
15 6 800 3 0.95 
20 7 800 3 0.95 
3 8 700 4 0.675 
13 9 800 3 0.4 
8 10 900 4 1.225 
18 11 800 3 0.95 
12 12 800 5 0.95 
17 13 800 3 0.95 
4 14 900 4 0.675 
5 15 700 2 1.225 
7 16 700 4 1.225 
11 17 800 1 0.95 
14 18 800 3 1.5 
1 19 700 2 0.675 
9 20 600 3 0.95  

Table 6 
Data specifications.   

Temperature Pressure Steam/ 
Feed 

Mass 
Flowrate 

Energy 
Duty 

count 20.00 20.00 20.00 20.00 20.00 
mean 800.00 3.00 0.95 3.31 36772.70 
std 91.77 0.92 0.25 0.65 6881.87 
min 600.00 1.00 0.40 1.97 16635.24 
25% 775.00 2.75 0.88 3.05 34487.97 
50% 800.00 3.00 0.95 3.52 38954.65 
75% 825.00 3.25 1.02 3.64 40132.15 
max 1000.00 5.00 1.50 4.27 44790.75  

Fig. 2. Correlations between parameters.  

Table 7 
Determination coefficients of different models.  

Response Model R2 Adjusted R2 Predicted R2 

Bio-methanol Mass 
Flowrate 

Linear 0.7083 0.6536 0.4790 
2FI 0.7710 0.6654 0.5447 
Quadratic 0.9927 0.9861 0.9394 

Energy Duty Linear 0.7512 0.7046 0.5272 
2FI 0.7635 0.6544 0.5274 
Quadratic 0.9923 0.9854 0.9363  
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predictive factors and their interactions were included in the model (R2 

values of these models have been shown in Table 7). Then, the signifi-
cance of each variable and interaction was evaluated systematically and 
those that did not contribute significantly to explaining the variance in 
the dependent variables was removed from the model. 

Accordingly, BC, and B2 were removed from model for flowrate and 
BC, B2, and C2 were removed from energy duty model. The p-values of 
theses interactions were above the predetermined significance level. 
After removing these ineffective factors, the predicted R2 of bio- 
methanol flowrate and energy duty raised to 0.9568 and 0.9572, 
respectively. It is clear that backward elimination helps simplify the 
model by retaining only the most relevant factors. The ANOVA table of 

reduced model has been presented in Table 8. 
The reduced statistical models extracted for bio-methanol flowrate 

and energy duty in coded form are as follows:  

Bio-methanol Flowrate = 3.59 + 0.68A - 0.15B - 0.12C + 0.17AB - 0.24AC +
0.038BCE - 0.31A2 -0.010B2 - 0.083C2                                             (16)  

Energy Duty = 38959.34 + 5998.04A - 673.15B + 2412.44C + 1000.59AB - 
595.56AC - 2733.30A2                                                                   (17) 

Based on statistical analysis, the importance level of factors for the 
bio-methanol flowrate and energy duty are as follows:  

Bio-methanol Mass Flowrate: A > A2>AC > B > AB > C > C2                 

Table 8 
ANOVA table for reduced models.  

Response Source df Sum of Squares Mean 
Square 

F 
Value 

p-value 
Prob > F 

Bio-methanol Flowrate Model 7 11.29298 1.613284 199.3214 <0.0001 
A-Temperature 1 7.463097 7.463097 922.0664 <0.0001 
B-Pressure 1 0.372841 0.372841 46.06454 <0.0001 
C-Steam/Feed 1 0.231366 0.231366 28.58528 0.0002 
AB 1 0.239948 0.239948 29.64558 0.0001 
AC 1 0.463635 0.463635 57.28221 <0.0001 
A2 1 2.502775 2.502775 309.2181 <0.0001 
C2 1 0.173061 0.173061 21.38166 0.0006 

Energy Duty Model 6 8.900E+008 1.483E+008 196.90 <0.0001 
A-Temperature 1 5.756E+008 5.756E+008 764.06 <0.0001 
B-Pressure 1 7.250E+006 7.250E+006 9.62 0.0084 
C-Steam/Feed 1 9.312E+007 9.312E+007 123.60 <0.0001 
AB 1 8.010E+006 8.010E+006 10.63 0.0062 
AC 1 2.837E+006 2.837E+006 3.77 0.0743 
A2 1 2.032E+008 2.032E+008 269.73 <0.0001  

Fig. 3. Estimated errors.  
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Energy Duty: A > A2>C > AB > B > AC                                               

The “Adeq precision” for bio-methanol mass flowrate and energy 
duty are 57.538 and 55.187, respectively. This index indicates the 
capability of the model to extrapolate to new experimental data. If the 
“Adeq precision” value is greater than 4, it signifies sufficient accuracy 
of the model in fitting the data and making predictions. 

The coefficient of variation (C.V.) was computed, which serves as a 
measure of the relative variability within the dataset. The calculated C. 
V. value for mass flowrate and energy duty were 2.75% and 2.36%, 
respectively. These values signify that the degree of variation in this 
dataset, relative to the mean, is moderately low. These values of C.V. 
imply that the data points exhibit relatively consistent values in com-
parison to the dataset’s average. Accordingly, this observation suggests 
that the dataset is stable, with variations that are not pronounced in 
relation to the overall mean, supporting the reliability of the findings 
and conclusions. 

In Fig. 3, the estimated error of bio-methanol mass flow rate and 
energy duty are shown. 

3.2. Parametric analysis study 

In Fig. 4, the predicted mass flow rate of bio-methanol and energy 
duty are plotted against the input variables. It should be noted that these 
charts are plotted based on derived statistical models. In Fig. 4 (a), the 
values of bio-methanol mass flow rate are plotted against temperature 
and pressure. Meanwhile, the steam to feed ratio has been kept constant 
at the average value. As evident, with an increase in temperature, the 
mass flowrate increases. Furthermore, for higher temperature values, 
changes in pressure do not have a significant effect on the mass flowrate. 
However, for lower temperature values, increasing pressure results in a 
decrease in the mass flowrate. Of course, this decrease is not significant. 
Such observation also exists for energy duty (Fig. 4b). 

Based on Fig. 4 (c), at high temperatures, the decrease in the steam to 
feed ratio leads to an increase in mass flowrate. However, the decrease in 
the steam to feed ratio results in a reduction in energy duty (Fig. 4d). In 
Fig. 4 (d), energy duty is plotted as a function of pressure and steam to 
feed ratio. Contrary to the previous charts, the relationship between the 
independent variables and the response is linear, while the extracted 
statistical relationship is quadratic in nature. The reason for this is that, 
by fixing the temperature value, the quadratic model for energy duty is 
transformed into a linear regression model. 

Fig. 4. Predicted mass flowrate and energy duty vs. operative parameters.  
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3.3. Optimization 

In this research, the optimization process relied on models derived 
through CCD and GA. Multiple distinct strategies were developed, each 
assigning varying weights to individual input and output parameters. 
The optimization process was then carried out based on these strategies. 
By changing the values of the operational variables, the mass flowrate of 
bio-methanol and energy duty changes simultaneously. By defining an 
optimization function and assigning weights to each of the operational 
variables and responses, optimization can be performed. The defined 
optimization function is as follows: 

Optimization Function=W.X (18)  

W =
[
wFlowrate.,wEnergy,wTemp,wPress.,wSF

]
(19)  

X=

⎡

⎢
⎢
⎢
⎢
⎣

1 − Flowrate
Energy Duty
Temperature
Pressure

Steam to Feed ratio

⎤

⎥
⎥
⎥
⎥
⎦

(20)  

Where W is the weights assigned to the input and output variables. This 
optimization function is defined in such a way that the optimal condi-
tions result in the minimum value of the function. A unique weight 
between zero and unity is assigned to each of the five dependent and 

independent variables. The closer the assigned weight to a factor is to 
one, the more important that factor is, and the closer it is to zero, the less 
important it is. 

GA has better performance and higher speed compared to other 
optimization methods. Therefore, it is used in many optimization ap-
plications [32–37]. GA is actually a computational method that uses a 
combination of biological concepts and mathematics for optimization. 
The algorithm defines the process environment as a population of in-
dividuals with specific characteristics. 

In this study, the goal is to find values for the operational parameters 
that lead to the minimum value of the defined optimization function. In 
the first step, an initial population is created with random genes. The 
second step is generating the next generation using genetic operations. 
The genetic operation includes selecting parents with high fitness, 
changing chromosomes to improve performance, and creating the next 
generation using the selected and modified parents. And the third step is 
evaluating the fitness of each individual, based on which the best indi-
vidual is selected. 

The optimization function is plotted against the operational variables 
in Fig. 5. In this figure, equal weights have been assigned to all depen-
dent and independent variables. Considering that the independent and 
dependent parameters differ from each other in terms of values, there-
fore, equation (18) cannot be used to optimize the process by GA. To face 
this, all variables involved in the optimization function have been 
normalized. And the optimization calculations have been performed 

Fig. 5. Optimization function vs. input parameters.  

Table 9 
Optimum conditions.  

Strategy No. Weights Temperature Pressure Steam/Feed Predicted Aspen Plus 

Mass Flowrate Energy Duty Mass Flowrate Energy Duty 

1 1-0-0-0-0 900 4 0.675 4.254 40736.355 4.196126 40829.89 
2 0-1-0-0-0 700 4 0.675 2.061 25546.338 2.030981 24906.74 
3 1-1-1-1-1 700 2 0.676 2.714 28908.361 2.789121 29364.07 
4 1-1-0-0-0 899 2 0.676 4.212 40081.770 4.26734 41154.53 
5 1-1-1-1-0 700 2 0.680 2.718 28950.333 2.789334 29415.59 
6 1-1-0.5-0.5-0 700.6 2 0.675 2.720 28954.554 2.790206 29425.76  
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based on the normalized values. The optimum conditions corresponded 
to different strategies is presented in Table 9. The methanol mass 
flowrate and energy duty predicted by extracted models as well as Aspen 
Plus simulator in optimum conditions have been presented in this table. 
The values of R2 of this dataset for methanol mass flowrate and energy 
duty are 0.9942 and 0.9997, respectively. 

3.4. Sensitivity analysis 

In the process of methanol production from syngas, sensitivity 
analysis was performed for the mass flowrate and mass fraction of 
methanol vs. reactor temperature and pressure. The sensitivity analysis 
of this reactor was performed using the Aspen Plus simulator. Fig. 6 il-
lustrates the variations in methanol mass flowrate and mass fraction as a 
function of mentioned operative parameters. As it is evident, with an 
increase in temperature at different pressures, the mass flowrate and 
mass fraction of methanol at the reactor outlet decrease. This observa-
tion is consistent with the exothermic nature of methanol production 
reactions. Temperature changes between 90 and 150 ◦C have no sig-
nificant impact on response variables. Further, at high temperatures, as 
the pressure of reactor increases, it leads to an increase in the mass 
flowrate and mass fraction of methanol in reactor outlet. 

4. Conclusion 

In this study, the bio-methanol production via gasification route was 
simulated, modeled, and optimized. Based on obtained data from Aspen 
Plus simulator, statistical models were developed for methanol mass 
flowrate in outlet of syngas to methanol reactor and energy duty of 
gasification reactor with R2 of 0.9923 and 0.9927, respectively. These 
results imply that the statistical models can fully explain the relations 
between input and responses. Using these developed models, the effects 
of operative parameters on the responses were examined. The analysis of 
variance (ANOVA) revealed that the gasification temperature has the 
highest impact on energy duty of gasification reactor and the methanol 
production rate in syngas to methanol reactor. Based on developed 
statistical models coupled with genetic algorithm (GA), optimization 
was performed for different strategies. It was figured out that the 
maximum achievable methanol mass flowrate is 4.254 kg/s. 
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