


from most current statistical approaches [45] and akin
to the incorporation of biological prior knowledge that
has proven highly successful in recent genome-wide
association studies [83-85]. Moreover, particularly in
(often noisy) metagenomic datasets, effect size can serve
as an orthogonal measure to complement ranking bio-
markers based on P-values alone. Differences between
classes can be very statistically significant (low P-value)
but so small that they are unlikely to be biologically
responsible for phenotypic differences. On the other
hand, a biomarker with a relatively large P-value (for
example, 0.01) may correspond to a large effect size,
with statistical significance diminished by technical
noise. LEfSe investigates both aspects computationally
by testing both the consistency and the effect size of dif-
ferences in feature abundance among classes with
respect to the structure of the problem. This is

performed subsequently to standard statistical signifi-
cance tests and is integrated in LEfSe by assessing biolo-
gically meaningful groups of samples among subclasses
within each condition. This coupling of statistical
approaches with biological consistency and effect size
estimation alleviates possible artifacts or statistical inho-
mogeneity known to be common in metagenomic data,
for example, extreme variability among subjects or the
presence of a long tail of rare organisms [32,86]. Simi-
larly, while multiple hypothesis corrected statistical sig-
nificance speaks to the potential reproducibility of a
result, estimation of effect size in high-dimensional set-
tings is crucial for addressing biological consistency and
interpretability.
The biology highlighted by these investigations speaks

to the potential of metagenomics for both microbial
ecology and translational applications. For example,

Figure 5 Comparison of LEfSe and the KW test alone for false positive and negative rates in synthetic data. Both tests used a = 0.05 in
all cases, and the three artificial datasets comprise 100 samples, each in two classes, each with two subclasses of cardinality 25. The samples
consist of 1,000 synthetic features taking the place of microbial taxa, pathways, and so on; half are negative (not biomarkers) and the other half
positive. (a) LEfSe and KW false positive and negative rates at increasing values of the difference between class means. Negative features are
normally distributed with parameters (� = 10,000, s = 100) across classes; positive features contain classes with increasingly different means. (b)
Performance as standard deviation varies within classes (rather than the difference between means, fixed at 2,000). (c) Performance as standard
deviation increases within inconsistent subclasses. Negative features have subclasses sampled from the same normal distribution (and thus not
representing consistent biomarkers). Positive features are distributed as in (b). In all cases, LEfSe sacrifices a small number of false negatives in
order to achieve a false positive rate near zero, with the goal of ensuring that biomarkers of large effect size will be both reproducible and
biologically interpretable.
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certain bacterial clades are frequently detected as bio-
markers even in diverse environments, suggesting that
some species can adapt in surprisingly condition-specific
manners. Staphylococcus and the Bacillales, for example,
are discriminative for mucosal tissues, aerobic condi-
tions, and murine colitis, whereas no Proteobacteria
consistently characterize any of these conditions, even
though they always represent a substantial portion of
the communities. These observations may reflect exten-
sive microenvironmental heterogeneity and the coexis-
tence of generalist and specialist bacteria [87-89].
In addition to these insights into microbiology, meta-

genomic biomarkers, including the abundances of speci-
fic organisms, abundances of entire clades, or the
presence/absence of specific organisms, can serve to
describe host phenotypes, lifestyle, diet, and disease as
well [5-10]. If the depletion of Bifidobacterium species
in ulcerative colitis proves to occur early in human dis-
ease etiology, this and comparable shifts in the micro-
biota have potential applications in the detection of
human disorders [90,91], especially as shifts in some
bacterial consortia can be detected easily and inexpen-
sively. Oral microbial biomarkers, for example, can be
easily acquired and analyzed with microarray chips tar-
geted for bacterial profiling [92]. These appear particu-
larly promising for clinical applications [11], as the
microbial communities in the saliva seem to represent
one potential proxy for other human microbiota [93].
Other important clinical applications of metagenomic
analyses include probiotic treatments [94,95] and micro-
biome transplantation [96-99] for gastrointestinal
diseases.
LEfSe, the computational approach to biomarker class

comparisons detailed here, thus contributes to the under-
standing of microbial communities and guides biologists
in detecting novel metagenomic biomarkers. The algo-
rithm’s effectiveness on real and synthetic data has been
highlighted by several experiments in which we success-
fully characterized both host-associated microbiota and
environmental microbiomes in multiple contexts. To
support ongoing metagenomic analyses, we have imple-
mented LEfSe as a user-friendly web application that can
provide both raw data and publication-ready graphical
results, including reports of detected microbial variation
on taxonomic trees for visual and biological summariza-
tion. LEfSe is freely available online in the Galaxy work-
flow framework [46,47] at the following link [48].

Materials and methods
The LEfSe algorithm is introduced in overview in the
Results section, and Figure 6 illustrates in detail the for-
mat of the input (a matrix with n rows and m columns)
and the three steps performed by the computational
tool: the KW rank sum test [49] on classes, the pairwise

Wilcoxon test [50,51] between subclasses of different
classes, and the LDA [52] on the relevant features.
Each of the n features is represented with a positive-

valued vector containing its abundances in the m sam-
ples, and each sample is associated with values describ-
ing its class and, optionally, subclass and/or originating
subject. The factorial KW rank sum test is applied to
each feature with respect to the class factor; the subclass
and subject information are used as stratifying sub-
groups when present. Features that, according to the
KW rank sum test, do not violate the null hypothesis of
identical value distribution among classes (with default
P-value, a = 0.05) are not further analyzed. The pairwise
Wilcoxon test is applied to retained features belonging
to subclasses of different classes. For each feature, the
pairwise Wilcoxon test is not satisfied if at least one
comparison between subclasses has a P-value higher
than the chosen a or if the sign of variation is not equal
among all comparisons. For example, if a feature
appears in samples from two classes with three sub-
classes each, all nine comparisons between subclasses in
different classes must violate the null hypothesis, and all
signs of the differences between medians must be con-
sistent. The features that pass the pairwise Wilcoxon
test are considered successful biomarkers. An LDA
model is finally built with the class as dependent vari-
able and the remaining feature values, subclass, and sub-
ject values as independent variables. This model is used
to estimate their effect sizes, which are obtained by
averaging the differences between class means (using
unmodified feature values) with the differences between
class means along the first linear discriminant axis,
which equally weights features’ variability and discrimi-
natory power. The LDA score for each biomarker is
obtained computing the logarithm (base 10) of this
value after being scaled in the [1,106] interval and,
regardless of the absolute values of the LDA score, it
induces the ranking of biomarker relevance. For robust-
ness, LDA is additionally supported by bootstrapping
(default 30-fold) and subsequent averaging.
LEfSe’s first two steps employ non-parametric tests

because of the nature of metagenomic data. Relative abun-
dances will, in most cases, violate the main assumption of
typical parametric tests (normal population in each class),
whereas non-parametric tests are much more robust to
the underlying distribution of the data since they are dis-
tribution-free approaches. The only assumption of the
Wilcoxon and KW tests is that the distributions in each
class are identically shaped with possible differences in the
medians. For example, the bimodal or multimodal abun-
dance distribution of an organism violates the assumptions
of parametric tests but not those of non-parametric tests,
unless the number of peaks in the distribution (or, more
generally, the shape of the distribution) also changes
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among classes. LDA is used for effect size estimation as
our experiments determined it to more accurately estimate
biological consistency compared to approaches like differ-
ences in group means/medians or support vector
machines (SVMs) [100]. A comparison between LDA and
SVM approaches for effect size estimation on the murine
model of ulcerative colitis (for which low-throughput bio-
logical validations of biomarkers are available in [67]) is
reported in our supplemental material (Additional files 8
and 9) and shows the advantages of LDA with respect to
upranking features of potential biological interest. Theore-
tically, this is motivated by LDA’s ability to find the axis of
highest variance and SVM’s focus on features’ combined
predictive power rather than single feature relevance. Note
that as we are performing class comparison rather than
class prediction, it is worth specifying that the effect size
estimation accuracy of an algorithm is not directly con-
nected with its predictive ability (for example, SVM
approaches are generally considered more accurate than
LDA for prediction).

Multiclass strategies
Comparisons with more than two classes require special
strategies for applying the Wilcoxon and LDA steps,

whereas the factorial KW test is already appropriate for
this setting. Our multiclass strategy for the Wilcoxon
test depends on the problem-specific strategy chosen by
the user to define features differentially distributed
among the n classes. In the most stringent strategy, we
require that all n abundance profiles of a feature are sta-
tistically significantly distinct among all n classes. This
strategy, called ‘strict’, is implemented by requiring that
all Wilcoxon tests between classes are significant. A
more permissive strategy, called ‘non-strict’, considers a
feature as a biomarker if at least one class is significantly
different from all others. The more permissive strategy
thus needs to satisfy only a subset of the Wilcoxon
tests. Regardless of the strategy, the LDA step always
reports the highest score detected among all pairwise
class comparisons.

Subclass structure variants encoding different biological
hypotheses
Different interpretations of the biomarker class compari-
son problem are implemented in LEfSe by modifying the
requirements for pairwise Wilcoxon comparisons among
subclasses. If classes contain subclasses that represent
distinct strata, we test only comparisons within each

Figure 6 Schematic representation of the statistical and computational steps implemented in LEfSe. Input data consist of a collection of
m samples (columns) each made up of n numerical features (rows, typically normalized per-sample, red representing high values and green
low). These samples are labeled with a class (taking two or more possible values) that represents the main biological comparison under
investigation; they may also have one or more subclass labels reflecting within-class groupings. (a) Step 1 analyzes all features, testing whether
values in different classes are differentially distributed. (b) Features violating the null hypothesis are further analyzed in step 2, which tests
whether all pairwise comparisons between subclasses in different classes significantly agree with the class level trend. (c) The resulting subset of
vectors is used to build a LDA model from which the relative difference among classes is used to rank the features. The final output thus
consists of a list of features that are discriminative with respect to the classes, consistent with the subclass grouping within classes, and ranked
according to the effect size with which they differentiate classes.
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identical subclass (Figure 4). For example, to assess the
effect of a treatment on two sub-types of the same dis-
ease, we compare pre- and post-treatment levels within
each subclass and require that the trend observed at the
class level is significant independently for both sub-
classes. To implement this variant, LEfSe performs the
Wilcoxon step only comparing subclasses with the same
name. Alternatively, subclasses may represent covariates
within which feature levels may vary but for which the
problem does not dictate explicit stratification (Figure
2). In both settings, we explicitly require all the pairwise
comparison to reject the null hypothesis for detecting
the biomarker; thus, no multiple testing corrections are
needed.

Subclasses containing few samples
When few samples are available, non-parametric tests
like the Wilcoxon have reduced power to detect differ-
ences. This can affect LEfSe when subclasses are very
small, preventing the overall test from even rejecting the
null hypothesis. For this reason, small subclasses should
be avoided when possible, for example, by excluding
them from the problem or by grouping together all sub-
classes with small cardinalities. For cases in which
removing or grouping subclasses is not possible or dis-
rupts the biological consistency of the analysis, LEfSe
substitutes the Wilcoxon test with a test to compare
whether subclass medians differ with the expected sign.
The user can choose the subclass cardinality threshold
at which this median comparison is substituted for the
Wilcoxon test.

Parameter settings
Except as stated otherwise in Results, all experiments in
this study were run with LEfSe’s a parameter for pair-
wise tests set to 0.05 for both class normality and sub-
class tests, and the threshold on the logarithmic score of
LDA analysis was set to 2.0. The stringency of these
parameters is easily tunable (also through the web inter-
face) and allows the user to detect biomarkers with
lower P-values and/or higher effect size in order, for
example, to prioritize additional biological experiments
and validations. All LDA scores are determined by boot-
strapping over 30 cycles, each sampling two-thirds of
the data with replacement, with the maximum influence
of the LDA coefficients in the LDA score of three orders
of magnitude.

Data description
Except as stated otherwise, taxonomic abundances for
16S samples were generated from filtered sequence
reads using the RDP classifier [101], with confidences
below 80% rebinned to ‘uncertain’. For all the datasets
described below, the final input for LEfSe is a matrix of

relative abundances obtained from the read counts with
per-sample normalization to sum to one. Witten-Bell
smoothing [102] was used to accommodate rare types,
but due to LEfSe’s non-parametric approach, this has
minimal effect on the discovered biomarkers and on the
LDA score. This also allows our biomarker discovery
method to avoid most effects of sequence quality issues
as long as any sequencing biases are homogeneous
among different conditions, as no specific assumptions
on the statistical distribution and noise model are made
by the algorithm as is standard for non-parametric
approaches.

Human microbiome data
The 16S rRNA-based phylometagenomic dataset of the
normal (healthy) human microbiome was made available
through the Human Microbiome Project [13], and con-
sists of 454 FLX Titanium sequences spanning the V3
to V5 variable regions obtained for 301 samples from 24
healthy subjects (12 male, 12 female) enrolled at a single
clinical site in Houston, TX. These samples cover 18
different body sites, including 6 main body site cate-
gories: the oral cavity (9 samples), the gut (1 sample),
the vagina (3 samples), the retroauricular crease (2 sam-
ples), the nasal cavity (1 sample) and the skin (2 sam-
ples). Detailed protocols used for enrollment, sampling,
DNA extraction, 16S amplification and sequencing are
available on the Human Microbiome Project Data Ana-
lysis and Coordination Center website [103], and are
also described elsewhere [55,56]. In brief, genomic DNA
was isolated using the Mo Bio PowerSoil kit [104] and
subjected to 16S amplifications using primers designed
incorporating the FLX Titanium adapters and a sample
barcode sequence, allowing directional sequencing cov-
ering variable regions V5 to partial V3 (primers: 357F
5’-CCTACGGGAGGCAGCAG-3’ and 926R 5’-
CCGTCAATTCMTTTRAGT-3’). Resulting sequences
were processed using a data curation pipeline imple-
mented in mothur [41], which reduces the sequencing
error rate to less than 0.06% as validated on a mock
community. As part of the pipeline parameters, to pass
the initial quality control step, one unambiguous mis-
match to the sample barcode and two mismatches to
the PCR amplification primers were allowed. Sequences
with an ambiguous base call or a homopolymer longer
than eight nucleotides were removed from subsequent
analyses, as suggested previously [105]. Based on the
supplied quality scores, all sequences were trimmed
when a base call with a score below 20 was encoun-
tered. All sequences were aligned using a NAST-based
sequence aligner to a custom reference based on the
SILVA alignment [106,107]. Sequences that were shorter
than 200 bp or that did not align to the anticipated
region of the reference alignment were removed from
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further analysis. Chimeric sequences were identified
using the mothur implementation of the ChimeraSlayer
algorithm [108]. Unique reads were classified with the
MSU RDP classifier v2.2 [58] using the taxonomy pro-
posed by [109], maintained at the RDP (RDP 10 data-
base, version 6). The 16S rRNA reads are available in
the Sequence Read Archive at [110].

T-bet-/- × Rag2-/- and Rag2-/- mouse data
T-bet-/- × Rag2-/- and Rag2-/- mice, their husbandry, and
their chow have been described in [67]. The animal stu-
dies and experiments were approved and carried out
according to Harvard University’s Standing Committee
on Animals as well as National Institutes of Health
guidelines. Collection, processing, and extraction of
DNA from fecal samples were performed as described
in [67]. The V5 and V6 regions of the 16S rRNA gene
were targeted for amplification and multiplex pyrose-
quencing with error-correcting barcodes. Sequencing
was performed using a Roche FLX Genome Sequencer
at DNAVision (Charleroi, Belgium) and data were pre-
processed to remove sequences with low-quality scores.
There were 7,579 ± 2,379 high-quality 16S reads per
sample with a mean read length of 278 bp.

Viral and microbial environmental data
We retrieved from the online supplemental material of
[69] the 80 available metagenomes (42 viromes, 38
microbiomes). We identified three environments con-
taining at least seven samples and grouped them into
coral, hyper-saline, and marine subclasses; the fourth
subclass, other, groups all environments with few
samples.

Infant and adult microbiome data
The COG profiles of the nine adult and four unweaned
infant microbiomes were obtained from the supplemen-
tal material of [73] and used unmodified in this study.

Synthetic datasets
We built three collections of artificial datasets in order
to compare LEfSe to KW and Metastats. All datasets
have 1,000 features and 100 samples belonging evenly to
two classes, and the values are sampled from a Gaussian
normal distribution. The samples in the two classes are
further organized in four subclasses (two per class) with
equal cardinality. Of the 1,000 features, 500 features
have different means across classes and should thus be
detected as biomarkers (positive features), the other 500
features are evenly distributed among classes or among
at least one subclass in both classes and should not be
detected as discriminative (negative features). The meth-
ods are evaluated assessing the false positive rate (num-
ber of erroneously detected biomarkers with respect to

the total number of features) and the false negative rate
(number of correctly detected non-discriminant features
with respect to the total number of features, that is, sen-
sitivity). The three collections of datasets (graphically
shown in Figure 5) differ in the distribution of values in
the subclasses and in the mean/standard deviation of
the normal distribution. (a) The subclasses in the same
class have the same parameters (thus the subclass orga-
nization is meaningless). Negative features all have μ =
10,000 and s = 100, whereas one class of the positive
features has μ = 10,000 - t (s = 100) and the other μ =
10,000 + t (s = 100) where t is a parameter ranging
from 1 to 150. The performances of all methods are
assessed at regular steps of the t parameter. (b) Datasets
in this collection are defined in the same way as collec-
tion (a) but with t = 1,000 for all datasets and s ranging
from 1,000 to 10,000. (c) The negative class in the third
collection has different subclass distribution. In particu-
lar, the second subclass of the first class has the same
mean of the first subclass of the second class. The other
two subclasses have different means (μ = 10,000 - t and
μ = 10,000 + t, t = 1,000), but the feature is not consid-
ered differential since the difference is not consistent
between subclasses. The positive features are defined in
the same way as dataset (b).

Implementation and availability of the method
LEfSe is implemented in Python and makes use of R sta-
tistical functions in the coin [111] and MASS [112]
libraries through the rpy2 library [113] and of the mat-
plotlib [114] library for graphical output. LEfSe is pro-
vided with a graphical interface in the Galaxy
framework [46,47], which allows the user to select para-
meters (the primary three stringency parameters, the
multiclass setting, and other computational, statistical,
and graphical preferences), to pipeline data between
modules in a workflow framework, to generate publica-
tion-quality graphical outputs, and to combine these
results with other statistical and metagenomic analyses.
LEfSe is available at [48].

Additional material

Additional file 1: Supplementary Figure S6. Histogram of within-
subject b-diversity (community dissimilarity) between different mucosal
(red) and non-mucosal (green) body sites.

Additional file 2: Supplementary Figure S1. Cladogram representing
the differences between viromes and microbiomes on the subsystem
framework.

Additional file 3: Supplementary Figure S2. Histogram of LDA
logarithmic scores of biomarkers found by LEfSe comparing microbiomes
and viromes within the subsystem framework.

Additional file 4: Supplementary Figure S3. Histogram of LDA
logarithmic scores of COG biomarkers found by LEfSe comparing adult
and infant microbiomes.

Segata et al. Genome Biology 2011, 12:R60
http://genomebiology.com/2011/11/6/R60

Page 14 of 18

http://www.biomedcentral.com/content/supplementary/gb-2011-12-6-r60-S1.PDF
http://www.biomedcentral.com/content/supplementary/gb-2011-12-6-r60-S2.PDF
http://www.biomedcentral.com/content/supplementary/gb-2011-12-6-r60-S3.PDF
http://www.biomedcentral.com/content/supplementary/gb-2011-12-6-r60-S4.PDF


Additional file 5: Supplementary Figure S4. Functional features (COGs)
that are discrimantive for the comparison between adult and infant
microbiomes according to LEfSe but not detected by Metastats among
the discriminant features with LDA score higher than 3. If we consider all
the discriminant features without threhold on LDA score, LEfSe identifies
366 COGs in total, 185 of which are not discriminant for Metastats.

Additional file 6: Supplementary Figure S5. Functional features (COGs)
that are discrimantive for the comparison between adult and infant
microbiomes according to Metastats but not detected by LEfSe. Even if
median and variance suggest the differences to be discriminative, there
are always some microbiomes (at least two) that are overlapping
between classes. This is due to the stringent a-value (0.01) set for the
KW test in LEfSe and to the fact that we use non-parametric statistics
(differently from Metastats). Notice, however, that even using a low a-
value LEfSe detects many more biomarkers than metastats (366 versus
192).

Additional file 7: Supplementary Figure S9. Comparison between
LEfSe and Metastats using the synthetic data described in Figure 5 and
in the Materials and methods. LEfSe was applied as detailed in the paper;
for Metastats we used the default settings (that is, a = 0.05 and
Npermutations = 1,000) and, as for LEfSe and KW, we disabled the per-
sample normalization as the features are independent. (a,b) Metastats
has a higher false positive rate (average 5%) than LEfSe (average below
0.5%) and lower false negative rate. (c) When the subclass information is
meaningful (see Figure 5 for the representation of the dataset), LEfSe
performs substantially better than Metastats both in terms of false
positive and false negatives. Overall, on these synthetic data, Metastats
achieves very similar results compared to KW (Figure 5) and neither of
them can make use of additional information regarding the within-class
structure, thus achieving poor results compared to LEfSe when such
kinds of information are available.

Additional file 8: Supplementary Figure S7. SVM-based effect size
estimation for the biomarkers found for the Rag2-/- versus T-bet-/-xRag2-/-

comparison reported in Figure 3 of the manuscript. The LDA-based
approach for assessing effect size (Figure 3) is closer to the biological
follow-up experiments and is more visually consistent. The reason for
LDA superiority over SVM approaches for effect size estimation is
theoretically connected with the ability of LDA to find the axis with the
highest variance, and the SVM effort on evaluating the combined feature
predictive power rather than single feature relevance. It is worth
specifying that the effect size estimation accuracy of an algorithm is not
directly connected with its predictive ability (SVM approaches are usually
considered more accurate than LDA for prediction).

Additional file 9: Supplementary Figure S8. Comparison between the
features with the highest SVM-based effect size (Papillibacter, on the left),
the highest LDA-based effect size (Bifidobacterium, in the center), and the
Actinobacteria phylum (on the right). From a visual analysis,
Bifidobacerium shows a larger effect size, which is also evident looking at
the ratios between class means, suggesting LDA as a better option for
effect size estimation than SVM approaches. As detailed in the
manuscript, the relevance of Bifidobacterium has been experimentally
validated. Moreover, the large difference in the score given by the SVM
approach to Actinobacteria compared to Bifidobacterium and Papillibacter
is not consistent.

Additional file 10: T-bet-/- × Rag2-/- - Rag2-/- dataset. Input LEfSe file
for the analysis of the ulcerative colitis phenotype in mice.

Abbreviations
bp: base pair; KW: Kruskal-Wallis; LDA: linear discriminant analysis; LEfSe:
linear discriminant analysis effect size; PCR: polymerase chain reaction; RDP:
Ribosomal Database Project; SVM: support vector machines.
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